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Source Modeling Using Phaseless Low-Frequency
Near-Field Measurements

Markus Johansson, Hoi-Shun Lui, Member, IEEE, Jean-Charles Bolomey, Fellow, IEEE,
and Mikael Persson, Member, IEEE

Abstract—Field measurements of both amplitude and phase gen-
erally are more complicated and require more expensive equip-
ment than amplitude-only measurements. Phase retrieval from
measured phaseless field data is, therefore, of interest for source
modeling in dosimetry applications, electromagnetic compatibility
investigations, near-field to far-field transformations and antenna
diagnostics. We here present a phase-retrieval method that uses
an optimization algorithm based on the phase angle gradients of
a functional. Numerical test cases have shown that the method is
working for different initial phase distributions as well as differ-
ent placements of the source. The method also works well for a
test case with measured 50 Hz magnetic flux density from a trans-
former. The obtained phase angles on a measurement plane in front
of the transformer gave calculated field amplitudes on other mea-
surement planes that agree well with measured field. The ratios
between the largest amplitude difference and the largest measured
amplitude for the three Cartesian magnetic flux density compo-
nents, for one of the planes, are for example 6.62%, 9.51% and
6.40%.

Index Terms—Complex source modeling, electromagnetic
dosimetry, electromagnetic measurements, inverse problem,
optimization methods.

I. INTRODUCTION

PHASE retrieval from measured phaseless field data is of
interest for near-field to far-field transformations [1], an-

tenna diagnostics [2], as well as for dosimetry applications [14].
Phase-retrieval methods are interesting, since field measure-
ments of both amplitude and phase generally require more
efforts and are more expensive than amplitude-only measure-
ments. Furthermore, they are particularly important for electro-
magnetic compatibility (EMC) applications involving incoher-
ent emissions from nonintentional parasitic sources.

In dosimetry studies, it is important to be able to model field
distributions from electromagnetic sources, to make it possible
to predict whether exposure safety guidelines are complied with.
If the total complex field, both amplitude and phase, is known on
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Fig. 1. Source in front of planes where field amplitudes can be measured.

a surface that encloses an electromagnetic source in free space,
the field outside the surface can be calculated according to the
field equivalence principle [15]. The field in an area in front of
the source can be calculated with a good accuracy provided the
total field is known on a large enough planar surface between
the source and the area of interest. However, usually only the
amplitude values of the field are measured by dosimetric probes.
Therefore, a method that can retrieve the phase from measured
field amplitudes on a set of parallel planes close to the source is
needed (see Fig. 1).

Different phase-retrieval methods have been presented in the
scientific literature [1]–[13]. Some of them [1]–[5] are gradient-
based and try to minimize a function, whereas other meth-
ods [6]–[9] aim to recreate the phase angles in an iterative
fashion, by propagating field estimates back and forth between
different surfaces. Hybrid algorithms, which combine more than
one method, have also been presented [10], [11].

A formulation of the problem of determining radiation pat-
tern, from phaseless square amplitude measurements over two
planes, as a quadratic inverse problem, is described by Isernia
et al. [1]. The radiated field in the near zone is searched for
using a gradient based functional minimization. The method
in [1] was experimentally tested with near-zone data from a
shaped reflector at 9 GHz and the obtained radiation pattern
was similar to the calculated radiation pattern using a standard
near-field technique. Isernia et al. [3] have also discussed a
method that determines radiation pattern from phaseless near-
field data collected over limited domains on planar surfaces by
minimization of a functional. Strategies to avoid getting trapped
in local minima is discussed both in [1] and by Soldovieri et al.
in [5]. In a method presented by Sarkar et al. [4] and Las-Heras

 
 
 



et al. [2], an expansion of an equivalent magnetic current dis-
tribution on a plane in front of the source is done. To find the
correct equivalent current, expansion coefficients that minimize
a cost function are searched for with a gradient-based algorithm.
The measurement points can be on planes, but can also be on
any other arbitrary surface. Roczniak et al. [13] have presented a
procedure that uses measured amplitude distributions on spher-
ical surfaces and searches for coefficients for a spherical wave
expansion, that minimize a cost function.

In optics, phase-retrieval by propagating field estimates back
and forth between different planes, using fast Fourier transform
(FFT), was put forward by Gerchberg and Saxton [6]. Between
consecutive propagations in the algorithm, the field amplitudes
are reset to the measured ones. In [12], the Gerchberg-Saxton
algorithm and related algorithms for phase-retrieval and also
gradient search methods are discussed by Fienup. After these
early works in optics, other researchers have used similar meth-
ods for phase-retrieval in the antenna community [7]–[9].

An iterative Fourier procedure for phase-retrieval in a
forward-backward fashion, used for constructing the far-field
pattern and performing diagnostic of an antenna under test, has
been presented by Yaccarino et al. [8]. In a slightly modified
version, Farhad Razavi et al. [10] use the differential evolution-
ary algorithm to search a suitable initial guess for improving the
convergence of the iterative reconstruction. A cylindrical phase-
retrieval algorithm, which propagates field estimates back and
forth and uses field intensity measurements made on two cylin-
drical surfaces instead of planes, has been described by Tennant
et al. [7].

Phase-retrieval methods are useful for numerical dosimetry
at both high and low frequencies. For instance, a method sim-
ilar to the iterative procedure in [8], has been used by Fridén
et al. [9] to retrieve the electric field distribution and determine
the specific absorption rate (SAR) in a phantom with lossy liq-
uid. The method suffers from a stagnation problem. To improve
the convergence, a three-step algorithm that also utilizes a gra-
dient search method, has been proposed by Fridén et al. [11].
Phase-retrieval for low-frequency electromagnetic field is also
of interest for electromagnetic compatibility (EMC) investiga-
tions. Source reconstruction for electromagnetic interference
(EMI) studies, using both field amplitude and phase, is de-
scribed in [16]–[18]. It is reported by Rodrı́guez et al. [16] that
phase retrieval was first attempted in their proposed system, but
the results were not accurate. The authors concluded that this
was due to the long wavelengths of the radiated field. Baudry
et al. [19] discussed near-field techniques in EMC investigations
and presented results for a method in which equivalent electric
dipoles are used for source modeling. It may be interesting to
mention that similar low-frequency inverse source problems are
relevant for other fields of applications such as medical imag-
ing by magnetoencephalography (MEG) [20] or magnetization
identification [21].

As described above, results from earlier attempts to do phase-
retrieval for low frequencies were not encouraging. From the
above discussion, it is clear that if phase-retrieval can be per-
formed even for situations with distances between the mea-
surement planes that are small in terms of wavelengths, it is

interesting not only for numerical dosimetry, but also for EMC
applications.

It is reported in [1] that the distance between the scanning
surfaces plays an important role in determining the lack or oc-
currence of local minima. Both theoretical investigations and
experimental results are presented. A practical procedure for
antenna testing is also described in which the distance between
the scanning surfaces is chosen to be of the order of a few wave-
lengths. As compared to [1], the method we have employed,
which is further described in next section, is also gradient based
and a functional is minimized using the steepest descent method.

However, an important difference between the two methods
is the choice of unknowns. In [1] the complex field is searched
for and the functional is formulated so that the inverse problem
becomes quadratic. In the method we use, namely the phase
angle gradient method (PAGM), we instead search for the cor-
rect phase angles that together with measured field amplitudes
on one measurement plane, give correct calculated field ampli-
tudes on two other planes. In other words, the unknowns that
we are searching for in the PAGM are the phase angles, but
not the complex fields. The tangential component of the electric
field on the measurement plane closest to the source Ētan can
be written as an expression containing the measured amplitudes
and sinusoidal functions of the unknown phase. The field on the
other planes can be written in terms of Ētan , which is discussed
further in next section. This leads to an inverse problem with
a nonlinearity that is not quadratic. So although the basic goal
for the PAGM and the method in [1] are to find the correct field
from amplitude measurements, they are quite different math-
ematically. Thus the results in [1] do not provide information
about whether the PAGM works for cases with plane distances
much smaller than the wavelength or not. The PAGM has pre-
viously been presented and tested for numerical high frequency
cases by Johansson et al. [14]. Later the PAGM was extensively
tested with various numerical test cases in [22], [23]. It was
found that the method performed well for test cases with sep-
arations between the measurement planes ranging from 0.4λ

down to separations in the scale of 10−9λ.
This paper is more particularly focused on low frequency

applications for which no simple guidelines are available to di-
mension the experimental setup. While such guidelines exist for
microwave antenna testing in terms of sampling rate, truncation
errors, distance of measurement, etc. they are intimately related
to the wavelength, and, hence, of no practical use at low fre-
quencies. To demonstrate its effectiveness at low frequencies
and to obtain some guidelines to define the experimental setup,
the PAGM is here tested for determining the 50-Hz field dis-
tribution around a transformer. To show that we can do phase
retrieval for cases with relevant distances (i.e., sampling space
and plane-to-plane separation distance) much smaller than the
wavelength, we have also considered different numerical test
cases.

An important advantage with the PAGM is that it can be used
for many different electromagnetic sources, without the need for
modeling of all the details of the sources. In the source recon-
struction studies described in [16]–[18], both field amplitude
and phase were used. For the PAGM, on the other hand, it is



enough to measure the field amplitudes on a set of planes in front
of each source. The PAGM is versatile, since it can be used for
both high and low frequencies. In particular it works well even
for cases with plane sizes and separations between the planes
that are extremely small in terms of wavelengths. As compared
to the source modeling method in [19], where the equivalent
sources are found through successive comparison between the
model predictions and the measurements, the PAGM is more au-
tomated and the equivalent sources do not need to be searched
manually.

The rest of the paper is organized as follows. Section II de-
scribes the phase-retrieval method we have used in more detail.
The Sections III and IV contain results for test cases with nu-
merical and measured field values respectively. In Section V
conclusions are presented.

II. THE PHASE ANGLE GRADIENT METHOD

According to the field equivalence principle, the actual source
in Fig. 1 can be replaced by an equivalent magnetic surface
current density on plane 1

M̄s = −2n̂ × Ēp1 (1)

where n̂ is a unit vector perpendicular to plane 1 pointing toward
the other planes and Ēp1 is the total electric field on plane 1.

One can divide plane 1 into a square grid with the grid cell area
ΔS = Δx · Δy, where Δx and Δy are the sampling spacing in
x- and y-directions, respectively. If the point in the middle of the
square number p is represented by r̄′p , the Cartesian components
of the electric field Ē in point r̄ can be calculated [14] with the
expressions

Ex(r̄) = −ΔS

2π

∑

p

Ex(r̄′p)
∂G(r̄, r̄′p)

∂z
(2)

Ey (r̄) = −ΔS

2π

∑

p

Ey (r̄′p)
∂G(r̄, r̄′p)

∂z
(3)

Ez (r̄) =
ΔS

2π

∑

p

(
Ex(r̄′p)

∂G(r̄, r̄′p)
∂x

+Ey (r̄′p)
∂G(r̄, r̄′p)

∂y

)
. (4)

Here, the system of coordinates is chosen such that plane 1 is
part of the z = 0-plane, as illustrated in Fig. 1, and G(r̄, r̄′) is
the Green’s function

G(r̄, r̄′) =
e−jk |r̄−r̄ ′|

|r̄ − r̄′| (5)

where k is the wavenumber. Note that for the special case when
the wavelength is much larger than the relevant distances, the
exponential function in (5) can be approximated with 1. If plane
1 is chosen large enough and ΔS small enough, the (2)–(4)
give a good approximation for the electric field on the planes 2
and 3. The required size of plane 1 depends on several factors.
The plane should be large enough so that the contributions to the
calculated field from the field outside the edges can be neglected,

but how large that is depends on where the area of interest for
the field calculation is. A larger plane may for example be
needed, if the field further away from the plane is wanted. The
requirement on the plane can also vary, if the area of interest is
in the center in front of the plane or more towards the edges.
Moreover, the resolution need to be high enough to resolve the
spatial variation of the field. Thus, it is hard to formulate a simple
general condition for required plane size and resolution. To give
an insight in what a suitable plane size can be, it is investigated in
Section III-D with numerical calculations in how large volume
the field can be obtained with good accuracy for a given plane
size. The requirement for the resolution of the measured field is
explored in IV-A. Since the field amplitudes are known on plane
1, the field on the other planes can be regarded as a function of
the unknown phase angles of the tangential components of Ē
on plane 1.

After the phase angles on plane 1 have been initiated, the
resulting field estimates on the planes 2 and 3 can be calculated.
To find the correct phase, the initial angles are altered in small
steps, so that the field amplitudes |Ei |n , where n is a compu-
tational grid point on plane 2 or 3, converge to the measured
values |Em

i |n . A functional J of the phase can be defined as

J ≡ 1
2

∑

n

(
(|Ex |n − |Em

x |n )2 +
(
|Ey |n − |Em

y |n
)2

+ (|Ez |n − |Em
z |n )2

)
. (6)

The phase angles are changed in the opposite direction of the
phase angle gradients of J , so that J is minimized. That is, in
each iteration the phase angles for the x- and y-components of
the field in each grid cell on plane 1 are updated according to
the equation

φnew = φold − Gold
φ · α (7)

where φold and φnew are the values of a phase angle φ before
and after the update. Gold

φ is

Gφ =
∂J

∂φ
(8)

calculated for the values of the phase angles on plane 1 before
the update and α is a constant that is chosen with a line-search
method. The iterative procedure is finished after an adjustable
number of iterations. To verify that a sufficient number of iter-
ations have been performed, the convergence of the procedure
should be checked by plotting J as function of iteration number
and it should also be made sure that amplitudes calculated with
the retrieved phase agree well with the measured amplitudes.

The measurement points could be placed in many different
ways. For simplicity, the measurement points have been located
on a set of parallel planes, with the same distance between
the measurement points on all the planes. Different numbers
of measurement planes can be used in our implementation of
the PAGM, but experience has shown that it is suitable to use
three measurement planes to get a reliable and accurate result.
The PAGM has performed well with three measurement planes
for many different test cases, with plane sizes and separations



Fig. 2. Phase angles obtained with the PAGM, correct phase angles, and the difference between them. (a) Retrieved phase for Ex . (b) Correct phase for Ex .
(c) Phase difference for Ex . (d) Retrieved phase for Ey . (e) Correct phase for Ey . (f) Phase difference for Ey . To facilitate comparison between retrieved and
correct phase, all the axes for the phase and the colorbars in (a), (b), (d), and (e) have the same max and min. The colorbars for (c) and (f) have maxima and minima
that are chosen to make it possible to see how the differences vary.

between the planes extremely small in terms of wavelengths as
well as comparable to the wavelength [22], [23].

Although the PAGM originally was developed for calculation
of the phase angles of the electric field from measured electric
field amplitudes, it can, because of the symmetry of Maxwell’s
equations, also be used to calculate the phase angles of the
magnetic flux density B̄ from measured amplitudes of B̄.

III. RESULTS FROM SYNTHETIC ANALYTICAL DATA

A. Analytical Test Case With Infinitesimal Dipole

In the first example, field values calculated with an analytical
formula for a 50-Hz y-directed infinitesimal dipole were utilized
to test the PAGM. Calculated field amplitudes for three vertical
parallel planes in front of the source (see Fig. 1), were used
to calculate the phase angles. The infinitesimal dipole source
was centered and the right-angled distance between the centre
of the plane closest to the source, plane 1, and the infinitesimal
dipole was d1 = 5 cm. On plane 1, field values from 100 ×
100 measurement points were used and on the other planes
60 × 60 measurement points were used. Plane 1 was chosen
larger than the other planes, in order to increase the accuracy
in the calculations of the field on the other planes. The distance
between the points on each plane in x- and in y-directions was
Δx = Δy = 0.5 cm. Thus, the widths of the planes 1, 2, and 3
became I1 = 50 cm, I2 = 30 cm and I3 = 30 cm. From plane
1 to plane 2 and from plane 2 to plane 3 the distances were d2 =
5 cm and d3 = 2.5 cm, respectively.

Fig. 2 shows the phase angles obtained using the PAGM,
with the initial value zero for all the phase angles, and the
correct phase angles from the analytical formula, for the field
components tangential to the planes, Ex and Ey , on plane 1. The
difference between retrieved and correct phase is also shown in
the figure. It can be seen in Fig. 2(a), (b), (d), and (e) that
the PAGM gives phase angles that are similar to the correct
ones for both the tangential field components. Fig. 2(c) and
(f) illustrates that for both the field components the differences
between calculated and correct phase angles are small, with the
exception of some unimportant larger errors in areas near rapid
changes in the phase.

For here considered test case, the relevant distances are so
small compared to the wavelength that we do not expect any
observable phase shift due to propagation. There are, however,
π rad jumps in the phase, where the field components change
sign and take opposite directions. The large phase errors that can
be observed in Fig. 2 near those phase jumps are not important,
since the amplitudes of the field components near the places for
the sign changes are small. It is also reasonable that the phase
angle errors in such places are larger, since the errors in points
where the amplitudes are small do not change the minimized
functional much.

B. Different Initial Phase Distributions

To investigate whether the PAGM works well for different
initial values for the phase angles, the test case was run for some
different initial values. Fig. 3 shows the functional J as function



Fig. 3. Functional J as function of iteration number for seven different initial phase distributions. (a) The whole plot. (b) Zoomed in plot. (i) initial phase zeros,
(ii) random interval −0.04π rad to 0.04π rad around zero phase, (iii) random interval −0.2π rad to 0.2π rad around zero phase, (iv) initial phase random, (v) initial
phase random, (vi) random interval −0.1π rad to 0.1π rad around calculated phase, and (vii) random interval −0.5π rad to 0.5π rad around calculated phase.

of iteration number for seven different initial phase distributions.
One distribution with the initial value zero for all the phase
angles (i) was used. Random numbers were used in the other
distributions. For two of them, (ii) and (iii), the initial phase in
each point was a random number in an interval around zero. The
two initial phase distributions, (iv) and (v), had random phase.
For the last two phase distributions, (vi) and (vii), the initial
phase in each point was a random number in an interval around
previously calculated phase, that was obtained with initial phase
zeros for all the angles. It can be seen in the figure that the curves
for the various initial phase distributions start with different
values for J , but when the number of iterations becomes large
enough the curves reach similar values.

To quantify the results for the test case, the summed and
weighted phase angle error

φerror =

√√√√√
∑

n

(
|Ex | 2n

(
φ diff

x,n

)2
+ |Ey | 2n

(
φ diff

y ,n

)2
)

∑
n

(
|Ex | 2n + |Ey | 2n

) (9)

was calculated. Here, φ diff
x,n is the error in the calculated phase

angle for Ex in the measurement point on plane 2 or 3 with
number n and φ diff

y ,n is the corresponding error for Ey . The
average is weighted with the amplitudes, as it is more important
that errors are small in points where the amplitude is large,
than in points with small amplitudes. If an unessential constant
phase is added to all the obtained phase angles, the resulting
phase is neither better nor worse, but the resulting summed and
weighted phase angle error can become different. In order to get
a fair measure of how good the resulting phase is, the constant
phase that gives the smallest φerror if added to the calculated
phase, is numerically searched for. The φerror that is obtained
for the found constant phase, when it is added to the calculated
phase, is the value that then is used.

The obtained, summed, and weighted phase angle error for
the test case as a function of iteration number is shown in Fig. 4.
Here, the configurations for the initial phase distribution that
were used to get the results in Fig. 3 are considered. Since the
two initial phase distributions with random intervals around pre-
viously calculated phase were quite close to the correct phase,
the weighted phase angle errors for those distributions were rel-

Fig. 4. Obtained, summed, and weighted phase angle error as function of
iteration number, for different initial phase distributions: (i) Initial phase zeros,
(ii) random interval −0.04π rad to 0.04π rad around zero phase, (iii) random
interval −0.2π rad to 0.2π rad around zero phase, (iv) initial phase random, (v)
initial phase random, (vi) random interval −0.1π rad to 0.1π rad around calcu-
lated phase, and (vii) random interval −0.5π rad to 0.5π rad around calculated
phase.

atively small already in the beginning. The errors were initially
larger for the initial distributions with random phase, random
intervals around zero and zero for all the phase angles. It can,
however, be seen in Fig. 4 that all the curves reach approxi-
mately the same low, summed, and weighted phase angle error
that indicates that the method works well for the different initial
phase distributions.

C. Test Case With Off-Centered Dipole

Since transformers and other electromagnetic sources can be
modeled by a set of infinitesimal dipoles, a test case with a
centered infinitesimal dipole is a suitable case to start with.
However, in order to test the method further and to have an
idea of the possible dimensions of the radiating object under
test with the previous arrangement of measurement planes, it is
also interesting to investigate what happens if the dipole is off-
centered. Fig. 5 shows results for a case with the same settings
as the case in Section III-A, except that the source was moved
7 cm in the negative y-direction. It can be seen in Fig. 5(a), (b),
(d), and (e) that the PAGM gives phase angles that are similar
to the correct ones for both the tangential field components.



Fig. 5. Phase angles obtained with the PAGM for a test case with an off-centered infinitesimal dipole, correct phase angles and the difference between them.
(a) Retrieved phase for Ex . (b) Correct phase for Ex . (c) Phase difference for Ex . (d) Retrieved phase for Ey . (e) Correct phase for Ey . (f) Phase difference for
Ey . To facilitate comparison between retrieved and correct phase, all the axes for the phase and the colorbars in (a), (b), (d), and (e) have the same max and min.
The colorbars for (c) and (f) have maxima and minima that are chosen to make it possible to see how the differences vary.

Fig. 5(c) and (f) illustrates that for both the field components
the differences between calculated and correct phase angles are
small, with the exception of some unimportant larger errors
in areas near rapid changes in the phase. The summed and
weighted phase angle error was 0.095 rad which is small, but
not surprisingly it was larger than the corresponding error for
the centered dipole which was 0.048 rad. From these results,
it can be anticipated that high accuracy in the phase retrieval
can be obtained for centered test objects with dimensions up to
at least 15 cm, with the previously defined arrangement of the
measurement planes.

D. Volume Where the Field Can be Obtained

As the phase has been retrieved on a plane with finite size,
it is interesting to consider in how large volume the retrieved
phase can give calculated field with good accuracy. Therefore,
the field amplitudes on eight planes in front of the source, for
the test case in Section III-A, were calculated. The size of each
of these planes was 30 cm × 30 cm. The field was calculated
using the measured field and the retrieved phase on plane 1. The
separation between the different planes was 5 cm. The average
of the absolute value for the amplitude error Aaverage,error on
each of the planes with the size 30 cm × 30 cm was divided by
the largest amplitude on the plane Amax . This was done for each
Cartesian field component. The resulting error measure can be
written

Eaverage,error =
Aaverage,error

Amax
. (10)

Fig. 6. The average of the absolute value for the amplitude error on each of the
planes divided by the largest amplitude on the plane Eaverage ,error as function
of distance to plane 1.

The error Eaverage,error at different distances from plane 1 is
shown in Fig. 6.

The size of plane 1 for the here considered test case is 50 cm×
50 cm. We therefore conclude that it should be possible to obtain
accurate field prediction for numerical dosimetry applications,
with reasonable size for the measurement planes.

One way to avoid to use only the amplitudes and retrieved
phase on one finite plane in the calculation of the field in the
surrounding of the source, is to do measurements and phase re-
trieval on different sets of planes on different sides of the source.
Combining the measurements on various planes, amplitude and
phase could in principle be obtained on a closed surface around



Fig. 7. Field amplitudes for the three Cartesian components as functions of distance to plane 1. Both amplitude values calculated analytically |Ex |m eas , |Ey |m eas ,
|Ez |m eas and amplitudes calculated with retrieved phase |Ex |calc , |Ey |calc , |Ez |calc are shown. |Ex | is shown for measurement points on the different planes
with number 19 in x-direction and number 19 in y-direction. |Ey | is shown for measurement points on the different planes with number 30 in x-direction and
number 30 in y-direction. |Ez | is shown for measurement points on the different planes with number 30 in x-direction and number 20 in y-direction. For the field
components, measurement points with the x- and y-coordinates where the field amplitude had its largest value on plane 2 were chosen.

the source. Consequently, problems with the calculation of the
field far away from the source or in certain directions could be
avoided. In practice, however, it may in many situations be hard
to do field measurements on all sides of the source. Depending
on the situation it may be better to use one set of measurement
planes or a few sets of planes pointing in different directions.

Next, the variation of the field amplitudes is illustrated in
Fig. 7. The amplitudes for the three Cartesian field components
are shown as functions of distance to plane 1. Both amplitude
values calculated analytically |Ex |meas , |Ey |meas , |Ez |meas and
amplitudes calculated with retrieved phase |Ex |calc , |Ey |calc ,
|Ez |calc are shown. It can be seen that the calculated amplitudes
the retrieved phase gave agree very well with the correct field.
For each field component a measurement point where the value
of the amplitude on plane 2 had its largest analytically calcu-
lated value was chosen. The amplitude value in that point, i.e.,
(x′, y′, z1), and the amplitudes in the points with the same x
and y-coordinates on the planes further away from the source
(x′, y′, z = z2 , z3 . . . z14) are shown in Fig. 7.

IV. RESULTS FOR MEASURED FIELD VALUES

The PAGM was also tested with measured field values. Mea-
surements of the 50-Hz field component of the magnetic flux
density B̄ in front of a transformer was performed. The am-
plitudes for all three Cartesian components of the field were
measured. The measurements were performed with the mea-
surement instrument BMM-3, which has a measurement probe
with three perpendicular coils, one for each field component.
The diameters of the coils are approximately 0.1 m. The mea-
surement inaccuracy for the instrument is according to manu-
facturer data within ±5 %. A robot, ABB IRB1400, was used to

Fig. 8. Robot with measurement probe in front of a transformer.

move the measurement probe between the measurement points
in front of the transformer (see Fig. 8).

A. Phase Retrieval Based on Measured Magnetic Flux Density

Measurement values from three vertical parallel planes (see
Fig. 1), were used to calculate the phase angles. On plane 1, the
number of measurement points was 161 × 90 and on the other
two planes 151 × 80. Plane 1 was chosen larger than the other
planes, to increase the accuracy in the calculations of the field
on the other planes. The distances from plane 1 to plane 2 and
from plane 2 to plane 3 were 5 cm and 2.5 cm, respectively.
The distance between the points on each of the three planes in
horizontal as well as in vertical direction was 1 cm. The obtained
phase angles on plane 2 for Bx and By , the field components
tangential to the planes, are shown in Fig. 9.



Fig. 9. Calculated phase angles using PAGM. (a) Phase angles Bx . (b) Phase angles By .

Fig. 10. Ratios between the largest amplitude difference and the largest measured amplitude for Bx , By and Bz , as a function of distance between used
measurement points. (a) For plane 2. (b) For plane 3.

In this situation, we do not have the correct phase from any
analytical formula to compare with and the BMM-3 instrument,
that was used for the measurements, does not provide infor-
mation about the phase difference between the different mea-
surement points. If the phase angles, given by the method, are
similar to the correct ones, they should however give calculated
field amplitudes that are similar to the measured amplitudes.
Therefore, the phase angles that were obtained on plane 1, were
used to calculate the amplitudes of B̄ on the other planes. To test
the number of points needed to give a good result, the method
was tested for some different distances between the used mea-
surement points on the planes. By omitting measurement points,
the distance between the used points was varied.

The ratio between the largest amplitude difference and the
largest measured amplitude Aerror for a field component on a
plane can be defined as

Aerror =
|acalc − ameas |max

ameas,max
(11)

where acalc is calculated amplitude, ameas is measured ampli-
tude and ameas,max is the largest measured amplitude on the
plane. The value of Aerror on plane 2 are shown in Fig. 10(a)
for Bx , By and Bz , as a function of distance between used

measurement points. The corresponding ratios for plane 3 can
be found in Fig. 10(b). For the distances up to 7 cm stable
results with small errors are obtained, but the distance 10 cm
result in larger errors. In other sampling situations it can be so
that the maximum sampling distance depend on how large the
wavelength is. As mentioned before, however, the exponential
function in (5) can be approximated with 1, for situations where
the wavelength is much larger than the relevant distances. Thus,
the maximum sampling distance in this situation should not de-
pend much on the wavelength. It depends instead on how large
the spatial variation for the field is, but it is hard to formulate it
in any simple general sampling criteria.

B. Spatial Variation of the Magnetic Flux Density

For the distance 2 cm between used measurement points,
field amplitudes on another plane, plane 4, 2.5 cm further
away from the source than plane 3 were also calculated. The
measured amplitudes on this fourth plane were not used in
the calculation of the phase angles. Fig. 11 shows measured
|Bx | on planes 3 and 4. It can be seen that although the two
planes are not so far from each other there is a clear difference
(in terms of amplitude) between the measured field on planes
3 and 4.



Fig. 11. Comparison between the field on plane 3 and plane 4. (a) Measured |Bx | on plane 3. (b) Measured |Bx | on plane 4.

Fig. 12. Field amplitudes for the three Cartesian components as functions of distance to plane 1. Both measured amplitude values |Bx |m eas , |By |m eas , |Bz |m eas
and amplitudes calculated with retrieved phase |Bx |calc , |By |calc , |Bz |calc are shown. |Bx | is shown for measurement points on the different planes with number
31 in x-direction and number 13 in y-direction. |By | is shown for measurement points on the different planes with number 38 in x-direction and number 19 in
y-direction. |Bz | is shown for measurement points on the different planes with number 38 in x-direction and number 13 in y-direction. For the field components,
measurement points with the x and y-coordinates where the measured field amplitude had its largest value on plane 2 were chosen.

Fig. 13. Measured field amplitudes and differences between calculated and measured amplitudes on plane 4.

The variation of the field distribution with distance is also
illustrated in Fig. 12. The amplitudes for the three Cartesian field
components are shown as functions of distance to plane 1. Both
measured amplitude values |Bx |meas , |By |meas , |Bz |meas and
amplitudes calculated with retrieved phase |Bx |calc , |By |calc ,

|Bz |calc are shown. It can be seen that the calculated amplitudes,
the retrieved phase gave, agreed very well with the measured
field. For each field component a measurement point where the
value of the amplitude on plane 2 had its largest measured value
was chosen. The amplitude value in that point and the values



Fig. 14. Measured field amplitudes and differences between calculated and measured amplitudes on plane 4.

Fig. 15. Measured field amplitudes and differences between calculated and measured amplitudes on plane 4.

in the points with the same x- and y-coordinates on the planes
further away from the source are the field amplitude values that
are shown in Fig. 12.

In the Figs. 13–15, measured field amplitudes and the differ-
ences between calculated and measured amplitudes are shown
for the different field components on plane 4. It can be seen that
the differences between calculated and measured amplitudes
are small. The ratios between the largest amplitude difference
and the largest measured amplitude, as defined in (11), for Bx ,
By , and Bz for this fourth plane are 6.62%, 9.51%, and 6.40%,
respectively.

V. CONCLUSION

The results presented here together with previous ones in [14],
[22], [23] show that the PAGM is very versatile, since it can
be used for both high and low frequencies. The method gives
excellent results for the numerical test cases and the transformer
test case.

The numerical test cases showed that the method is very ro-
bust and that it works well even for test cases with plane sizes and
separations between the planes that are extremely small in terms
of wavelengths. It is quite insensitive to the initial guess for the
phase distribution and poorly dependent on the location of the
object under test with respect to the measurement planes. Such

robustness is far from being guaranteed for other phase-retrieval
techniques based either on functional minimization or iterative
reconstruction. As compared to the method in [19], where the
equivalent sources are found through successive comparison be-
tween the model predictions and the measurements, the PAGM
is more automated and the equivalent sources do not need to
be searched manually. Systematic trials have allowed determin-
ing experimental parameters of practical relevance such as the
sampling space, the plane to plane distances, the testing zone
as well as the reconstruction volume required to obtain a good
accuracy.

These results have been validated by measurements con-
ducted with the transformer test case at 50 Hz. The retrieved
phase angles on the measurement plane closest to the trans-
former gave calculated field amplitudes on other planes that
agree well with the measured amplitudes. The ratios between
the largest amplitude difference and the largest measured am-
plitude, as defined in (11), for Bx , By , and Bz for the fourth
plane are for example 6.62%, 9.51%, and 6.40%, respectively.

The PAGM is very useful for source modeling in situations
where an electromagnetic source is complex or time consum-
ing to make an accurate model of. It has the important ad-
vantage that it can be used for many different sources without
a priori knowledge of the details. Since it can be used for dis-
tances that are small compared to the wavelength, the method is



useful for both low-frequency EMC investigations and numeri-
cal dosimetry.
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elec), France, in 1963, and received the Ph.D. de-
gree on an hybrid numerical-experimental approach
to scattering in resonance domain from Paris-Sud
University, France, in 1971.

He is currently an Emeritus Professor at Paris-
Sud University. He became a Professor at Paris-Sud
University, in 1976. He received the Grade Emeritus
of SEE, in 1995. His research has been conducted
in the Electromagnetic Research Department of the
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