

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, October 2011

Single point of Control for a Distributed System
Centralized Control of a Real-Time Ethernet Measurement System

Master of Science Thesis in Networks and Distributed Systems

FERNANDO FERRI VIDAL

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Single Point of Control for a Distributed System
Centralized Control for a Real-Time Ethernet Measurement System

FERNANDO FERRI VIDAL

© FERNANDO FERRI VIDAL. October 2011

Examiner: JAN JONSSON
Supervisior: JONAS LEXT
Co-worker: FATEMEH AYAT

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2011.

 3

Abstract

TCN Analyzer is a design and analysis tool that allows the user to create a model of a network
to be analyzed. It provides a prediction of the maximum forwarding time in the network for a
concrete flow and some other properties such as the guarantee of non-packet drops. The
development of TCN Analyzer is still in a stage where it is needed to verify that the
mathematical formulas used in the schedulability analysis make correct predictions about the
forwarding times of each frame.

In order to verify the predictions, at the start up of this project the company had a manual
measurement procedure formed by several manual tasks. It needs to be automated and
improved in this project.

 Finally, at the end of this project, a centralized entity that automate the measurement system
is developed successfully, allowing the user to obtain the timing results just by executing the
developed measurement tool.

Keywords: Distributed System, Ethernet Measurement System, Time Critical applications,
Real-Time scheduling, TCN Analyzer, Network design.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 4

Acknowledgements

This has been a very intensive project and I would like to thank all the people that directly or
indirectly participated in it. It has been carried out under supervision of Jan Jonsson and Jonas
Lext, whose guidance and encouragement have been crucial to finish this project successfully.

To start I want to give my best gratitude to Fatemeh Ayat, my friend and co-worker in this
project, without who this would not have been possible and who contribute to make this
project an enjoyable experience. As well I want to thank Mohammad Ibrahim for his help and
advices at the time of programming the boards.

This has been the first time I worked in a project for a company and I would like to thank Lars
Bröhne, Jonas Lext and Thomas Lundqvist for their support and for giving me the chance to
take part in it. They were very helpful and understanding, which made working with this
project a lot more enjoyable.

Finally, and not less important, I want to thank my friends and family strongly for the support
and affection given to me during my thesis period and these two years of my Master studies I
have spent abroad.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 5

Table of Contents

ABSTRACT	 3	

ACKNOWLEDGEMENTS	 4	

TABLE	 OF	 CONTENTS	 5	

LIST	 OF	 FIGURES	 7	

0.	 METHOD	 8	

1.	 INTRODUCTION	 9	
1.1	 ETHERNET	 VS.	 CAN	 IN	 TIME	 CRITICAL	 SYSTEMS	 9	
1.2	 TCN-‐ANALYZER	 TOOL.	 12	
1.3	 PURPOSE	 OF	 THESIS	 WORK	 14	

2.	 PRE-‐STUDY	 PHASE	 15	
2.1	 SYSTEM	 OVERVIEW	 15	
2.1.1	 TRAFFIC	 FLOW	 GENERATION	 16	
2.1.2	 MANUAL	 MEASUREMENT	 PROCEDURE	 18	
2.2	 DIFFERENT	 INTERFACES	 22	
2.2.1	 REAL-‐TIME	 ETHERNET	 MEASUREMENT	 CARD	 INTERFACE	 22	
2.2.2	 WIRESHARK	 INTERFACE	 (SECOND	 FILE	 CONVERSION	 PROCESS)	 24	
2.2.3	 CLICK	 INTERFACE	 25	
2.3	 SCENARIOS	 AND	 EXAMPLES	 OF	 MEASUREMENTS.	 26	
2.3.1.	 SCENARIO	 1	 26	

3.	 DESIGN	 &	 IMPLEMENTATION	 30	
3.1.	 MAKE	 STREAMANALYZER	 WORK	 ON	 WINDOWS.	 30	
3.2	 CREATE	 HILSCHER-‐CONTROL	 SOFTWARE.	 31	
3.3	 AVOIDING	 FORMAT	 CONVERSION	 32	
LIMITATIONS	 SOLVED	 TILL	 NOW	 33	
3.4	 CREATE	 COORDINATOR	 SOFTWARE	 AND	 NETWORK	 DESIGN	 34	
3.4.1	 CREATE	 COORDINATOR	 SOFTWARE	 34	
3.4.2	 DESIGN	 SEPARATE	 CONTROL	 AND	 MEASUREMENT	 NETWORKS	 39	
ROUTING	 TABLE	 SETUP	 42	
3.5	 EXTEND	 THE	 ARCHITECTURE	 BY	 ADDING	 CEC	 BOARDS	 43	
ADD	 BOARD	 TRAFFIC	 GENERATORS	 43	
BOARD	 SPECIFICATIONS	 AND	 PROGRAM	 43	
INTEGRATING	 BOARDS	 INTO	 THE	 COORDINATOR	 PROGRAM	 44	
FINAL	 TOPOLOGY	 OF	 THE	 SYSTEM	 45	

4.	 EXECUTION	 AND	 RESULTS	 46	
COMPARING	 THE	 MEASUREMENTS	 RESULTS	 WITH	 THE	 TCN-‐ANALYZER	 PREDICTION.	 49	
GOAL	 OF	 THE	 COMPARISON	 50	

	

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 6

5.	 FUTURE	 WORK	 51	

6.	 CONCLUSIONS	 53	

7.	 TERMINOLOGY	 AND	 ABBREVIATIONS.	 54	

8.	 REFERENCES	 55	

9.	 APPENDIX	 56	
APPENDIX	 A	 -‐	 MEASUREMENT	 SETUP	 BEFORE	 THE	 THESIS	 PROJECT	 56	
APPENDIX	 B	 -‐	 NETWORK	 ARCHITECTURE	 59	
APPENDIX	 C	 -‐	 COORDINATOR	 PROGRAM	 62	

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 7

List of Figures

	

Figure 1: TCN-Analyzer tool GUI ___ 12
Figure 2: Network topology __ 15
Figure 3: Traffic flow ___ 17
Figure 4: Hilscher ’s Measurement Card Interface (GUI) __________________________ 23
Figure 5: Wireshark format conversion ___ 24
Figure 6: Click interface, program code executed at the terminal ____________________ 25
Figure 7: Flow from h1, forwarding time _______________________________________ 27
Figure 8: Serialization pattern at max. forwarding time interval _____________________ 28
Figure 9: Jitter at max. inter-arrival time period _________________________________ 29
Figure 10: structure of the binary file with .hea format ____________________________ 32
Figure 11: Measurement Network ___ 39
Figure 12: Control Network __ 40
Figure 13: Office Network ___ 41
Figure 14: Complete Network topology ___ 41
Figure 15: Different networks interacting in the Measurement System ________________ 45
Figure 16: TCN-Measurement tool, execution environment _________________________ 46
Figure 17: Measurement results __ 47
Figure 18: Analysis performed by StreamAnalyzer ________________________________ 48
Figure 19: TCN-Analyzer GUI __ 59
Figure 20: Network topology, view 1 ___ 59
Figure 21: Network topology, view 2 ___ 60
Figure 22: Network topology, view 3 ___ 61

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 8

0. Method

This section pretends to describe the method in which the tasks and requirements were
established for the development of this project.

Due that this is a project for a company, which aims to solve a specific need, a meeting with
the managers of the company took place in order to find out the requirements and define
which tasks to perform.

This is reflected in the Introduction section. It pretends to describe the company’s product,
TCN Analyzer, in the subsection TCN Analyzer tool, and define the problem that this project
has to face in the subsection Purpose of the thesis work.

First of all, it was decided to do a pre-study of the system, described in section 2. The aim of
this was to obtain a clear insight about the initial system in order to define properly the
requirements of this project.

 After the pre-study phase all the manual steps of the manual measurement process were
clearly defined. This was really important in order to decide which tasks to do for performing
the automation of the measurement system, the aim of this thesis project.

Finally, together with the managers of the company it was decided the road map of this
project. It is described in section 3, Design and Implementation, and it is structured in two
parts:

A) Software Development: develop a coordinator program, which will interact with the

different parts of the system and provide the results.

For this section it was defined a set of specific tasks to be done in order to overcome
some issues:

• Avoid moving the capture file between computers. (3.1)
• Overcome the need of format conversions. (3.3)
• Avoid the need of interact with graphical interfaces, GUIs. (3.2)

 After the commitment of these tasks, the main limitations for the automation of the system
would be solved. This will make possible to develop the coordinator program, which will
control all the tasks needed for performing and analysing a measurement.

 B) Provide a suitable system architecture: define and develop the appropriate network
architecture, separating the control part from the measurement part.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 9

1. Introduction

This section focuses on two different protocols used for transmitting into a communication
medium from the point of view of time critical systems, CAN and Ethernet (1.1). Finally it
introduces TCN Analyzer tool, related to the design and development of Ethernet networks
(1.2) and it concludes explaining the purpose of the thesis work (1.3).

1.1 Ethernet vs. CAN in time critical systems

Hosts need a protocol to define how to transmit into a communication medium, being a bus, a
coaxial cable used for Ethernet or another technology. These protocols handle how and when
to initiate the transmission in shared medium, defining the properties in which data is
transmitted and which measures are taken in order to provide reliable services such error
detection or fault tolerance.

The Controller Area Network (CAN) is a vehicle bus communication protocol created
originally for Robert Bosch in 1983 for the transmission of data in critical applications in
which was required fault tolerance, allowing microcontrollers and devices to communicate
within a vehicle without the interaction of any computer. It supports distributed real time
control with a very high level or security [17].

 These are some of the most important CAN propieties:

• Priorization of messages
• Guarantee of latency times
• Multicast reception with time synchronization
• Error detection and error signalling
• Automatic retransmission of the messages that are corrupted
• Fault tolerance management and confinement. Defect nodes are switched off.

 CAN is used mainly in automation and as well is being used in other sectors as trains or
airplanes where fault tolerance and safety constrains are a major issue. In order to achieve
these powerful measures for error detection, signalling and detection of faults are
implemented in every CAN node.
It ensures that the message with higher priority is always sent when several units try to
transmit at the same time. This is called priority based bus arbitration, where the flow with
higher priority is allowed to transmit. Other units, which transmit lower priority flows, detect
it. Therefore higher priority flows are transmitted first and the others will wait.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 10

CAN is used in embedded systems and automotion systems [8], being possible find it in:

• Trucks control systems
• Train systems
• Marine systems
• Industrial automotion
• Elevators
• Medical equipment

CAN is a protocol used in time critical environments where integrity, fault tolerance and
latency constraints are required. In case of not fulfil these requirements safety could be
compromised and it could be a risk for human lives.

 On the other hand CAN protocol has some limitations and propieties:

• Low bit rate, where maximum velocity is 1 Mbit/sec.
• Throughput depends on bus length, achieving the maximum velocity up to 30 m.
• It has a non-destructive arbitration when more than one node pretends to transmit. The

node with highest priority still will be able to transmit their message.

 CAN limitations, specially the low bit rate or velocity in which data can be transmitted and
the relatively short length of the buses used for transmission brings up the necessity of
replacing this protocol which is the one used nowadays mainly in the automotive industry for
a better and more efficient protocol.

On the other hand, Ethernet is a networking protocol for Local Area Networks (LAN),
introduced in 1980 and standardized in IEEE 802.3 [12].

It provides better propieties such a higher data rate than CAN, increased from 10 Mbits/ sec
originally to 1000 Mbits/sec.

Nevertheless Ethernet does not provide by itself fault tolerance or integrity services except
allowing discarding corrupted frames if any is detected. It just provides the service doing the
best effort for it. In case of some data is corrupted or does not reach the destination, other
higher-level protocols such is TCP should be used for allowing a reliably transmission
system.

 In this case the length of the medium is not a problem, being able to transmit up to very long
distances.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 11

The main propieties to highlight about Ethernet are:

• Maximum bit rate 10/100/1000 Mb/sec, higher bit rates can be achieve with new
technological improvements such as Gigabit Ethernet [13].

• Source and destination for a message, not only broadcast.
• Arbitration is destructive; if more than one node transmits at the same time no useful

data can be recovered.

 In industry there is interest in find out the actual capacity, reliability and usability of Ethernet
Networks in the industrial control area. The article authored by Jeff Nowling , Industrial
Automotion Engineering Consultant [18], focuses on this questions, how fast is possible to
communicate via Ethernet, the effects on reliability and determinism. This article highlight
that a good network throughput depends on the network design, bit rate, speed in which data
is transmitted and remains in the network and other devices used in the network.

Nevertheless it concludes that a properly planned and installed Ethernet network should be
capable of providing fast, reliable and deterministic transmission of data in industrial control
applications.

There are many reasons for adopting Ethernet standard in these applications [18]:

• Ethernet is nowadays a technology very widespread, operating in reasonable good
costs.

• It has a good performance in terms of bandwidth and bit rate, transmitting big amounts
of data at high speed.

• Interoperability and convergence. It allows multiple services on a single cable.
• Standards well widespread and adopted. It would bring the advantage in interacting

with another systems or networks, due that most of them operate in Ethernet no
conversion system would be needed.

On the other hand, industrial Ethernet would be lacking certain propieties that are significant
for industrial applications.

These are:

• Guarantee that frames are transmitted within a certain time bound (latency).
• Fault tolerance and redundancy mechanisms that act when a unit fails.
• Determinism always is predicted the same results certain circumstances, there are not

undefined status.

New technology is available nowadays that tries to solve these issues. TCN-Analyzer
overcomes these restrictions. TCN tool provides determinism to the standard Ethernet with
latency, jitter and packet-drop guarantees.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 12

1.2 TCN-Analyzer tool.

 TCN-Analyzer tool is a tool developed by Time Critical Networks AB. TCN's prototype
design- and analysis tool, TCN Analyzer, takes advantage of schedulability analysis theory
for store-and-forward, multi-hop Ethernet networks [1].

Instead of performing measurements on a network comprised of many switches and populated
with many different flows, TCN advocates the following approach to network design- and
analysis:

 1. Perform measurements on different types of components in the network in isolation.
 2. From these measurements, create timing models that describe how the component

behaves under different circumstance.
 3. Incorporate the timing models into TCN Analyzer were one can construct a complete

network using virtual switches and flows and then compute upper bounds on the
forwarding time of individual frames, for example, an UDP frame in a data flow sent
from one host-computer to another.

 It allows the user to define a network adding virtual links, flows, switches and hosts where it
is possible to define their timing propieties such as link speed or size of the flow packets.

The GUI of this program is shown in Figure 1, where are defined four hosts and two Redfox
Switches all together with the links that connect the network and the flow definition.

 Figure 1: TCN-Analyzer GUI

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 13

 Once the virtual network is created and their propieties are set up, the program will be ready
for performing the timing analysis. This timing analysis, which is the aim of this tool,
provides an estimation of the maximum time needed for a packet or a flow to reach their
destination. TCN-Analyzer calculates an upper bound of the transmission delay or the
maximum forwarding time. The tool makes a prevision of this upper bound time and
guarantees that any packet of the flow do not exceeds this estimated time. In case that the
system does not guarantees that all the packets are schedulable, the designer can make
changes in the system modifying the links speed, priorities and the topology until the
schedulability is verified by TCN-Analyzer.

This upper bound time is what users are interested to know in order to ensure and verify that
their time-critical applications in the network meet the latency requirements. TCN-Analyzer
makes their prediction for Ethernet networks.

Nowadays most of time-critical networks, like the control networks in a car, use CAN as a
transmission protocol. Nevertheless, CAN has certain limitations as described.
It is considered in industry that most of the time critical applications using CAN will be
replaced by Ethernet networks [9][10].

TCN-Analyzer pretends to be a verification tool for this promising technology, taking
advantage about the lack of applications that work in this field and the growing interest about
using Ethernet networks in time-critical systems such as in automation.

Facts which confirm the growing interest that industry put into this technology are the project
performed by CPAC Systems, company dependant of Volvo, together with Time Critical
Networks AB aiming to check the feasibility or replacing CAN with standard Ethernet [11]
and the research groups of BMW that test the use of Ethernet in their systems.

BMW engineers tested the use of IP applications, using Ethernet protocol- to network
automotive controllers in the engine control unit, founding that IP-Ethernet could suit well the
real-time requirements even for safety-critical applications. It is considered that modern cars
incorporate over 70 embedded computers networked by a host of different systems.
Automotive industry turns their attention to Ethernet as a common backbone for the car
network, offering an important simplification of the automotive networking jungle [9].

In conclusion, it is predicable that Ethernet will be the transmission protocol used in a not so
far future in time critical applications, which use CAN nowadays. Most of the tools currently
available for verifying the timing constraints and correctness of the networks used in time-
critical applications are developed for CAN networks.

Therefore TCN-Analyzer, which is a tool for designing and verifying the timing correctness
in Ethernet networks has chances to be a successful tool for the usage of Ethernet networks in
this field as described, where there is a lack of products that deal with Ethernet in time-critical
network analysis.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 14

1.3 Purpose of Thesis Work

The aim of this thesis work is not related directly with the main tool previously described,
TCN- Analyzer. However this project focuses on designing and implementing a Centralized
control for a real-time Ethernet Measurement System, which will provide the tool (software)
and the infrastructure (networks) needed for performing the verification of the timing
predictions provided by TCN-Analyzer. It pretends to be an automatized measurement
system, where the results could be obtained with the minimum user interaction.

 A measurement system was available at the start up of this project, nevertheless this
measurement system needed of several tasks to be done sequentially in order to perform a
single measurement. These tasks were manual, including interaction with different computers,
where the data obtained in a computer needed to be sent manually to another computer in
order to perform the next task, in the same single measurement. Furthermore, these tasks
included interaction with GUIs, graphical interfaces with mouse usage and help of some
externals programs for converting some files to another format.

This procedure made the measurement not user friendly, a difficult process and not really
efficient to obtain measurements, where it could take several minutes to perform the set of
manual tasks for a single measurement.

Next section gives an overview of the TCN’s initial measurement system and its individual
components.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 15

2. Pre-study phase
The aim of this section is to provide a big picture about the initial measurement system, which
are the different units and how they interact between them defining the interfaces and
describing the different tasks that needed to be done for performing a measurement.

2.1 System Overview
The development of this project takes place in TCN’s office, where a private lab network,
also called measurement network separated from the office network have been created
exclusively for the project development.

Next figure, Figure 2 shows the network topology:

Figure 2: network topology

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 16

The router, R0, is the gate that separates networks, the lab network with interface eth2 and the
office network with interface eth1. To eth1 is connected the router DLink that provides
connection to all hosts in the office network.

 On the other hand, eth2 is connected the Redfox switch, to which are connected the different
hosts (h1, h2, h3) used for generating and collecting the packets and the real-time NetAnalyzer
card, which measures the packets forwarding time in the previous switch.

 This is the basic architecture of the network created for the project start up and it has been
improved and redesigned according to the project development.

2.1.1 Traffic flow generation
In order to generate the traffic flow in hosts h1 and h3 located at the lab network, an external
computer located at the office network (mercury) is used.

 Through SSH in mercury we access to the hosts that generate the traffic flow. The hosts in
the lab network, called as well measurement network, use the open source project Click [2], a
configurable software router developed and managed by a research group at a university in
USA. The TCN Click engine has been slightly improved with a custom C++ class that
simulates the IP-stack of a normal computer. When a Click-script calls this class it can
generate idealized bursts of maximum sized Ethernet packets corresponding to what large
UDP-frames would have been fragmented into by the IP-stack of a normal computer. These
Click-machines are, unfortunately, currently not good at producing flows of minimum sized
Ethernet frames without substantial jitter.

 The destination of the flows is the host h2, which is running the Click project and a script
that counts the number of packets received from h1 and h3. This host provides the possibility
of accessing to it through a own terminal (keyboard and screen) located in the lab network,
therefore it is not necessary access to it through SSH from the office network.

Flow description:
Host h1 sends packets that are captured by the NetAnalyzer card, adding a time stamp and
sending them later to the switch. The forwarding time at the switch is calculated when the
packets are sent back to the NetAnalyzer card using the previous time stamp.
Next, the packets are stored in a hard disk, where different format conversions have to be
done before the data is sent to the Stream-Analyzer for calculating the forwarding time.
Furthermore, all packets are sent to the host h2, where they are classified and counted
depending of which host they come from.

At the same time, it is possible to generate another data flow in the host h3. This will
introduce another data flow competing for forwarding time in the switch making the packets
being stored into a queue before being forwarded. Figure 3 shows the packet flow in the
system.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 17

Figure 3: Traffic flow

In Figure 3 is shown how are connected the hosts in order to measure the packet flow
providing from h1. In this case h3 has been introduced for generating traffic that could
interfere in the switch and increase the switch forwarding time.
The NetAnalyzer card has four interfaces as is shown in its GUI provided in the section 2.2.1.
This can be observed here looking at the four arrows that have as a source or destination the
NetAnalyzer card in Tellur (host windows computer).

The first interface belongs to the flow that we pretend to measure, in this case h1. So in this
first step the packets that came from h1 are stamped with a time mark by the NetAnalyzer
card and send back to the switch through the second interface. Next interface, the third one
sends the packets coming from the switch back to the card, where the messages previously
tagged with a time stamp are detected and its forwarding time is calculated.
Finally the messages are sent to the sink or destination through the forth interface.

Once that all the different components of the system have been introduced, the next step is to
describe the procedure of obtaining the forwarding times, which it includes: generating the
data flow, how it is captured at the destination and how it is captured and analysed by Stream-
Analyzer after several format conversions by the different units, describing the different
inputs and outputs in this procedure. This is by now done manually, which automation is the
aim of this master thesis.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 18

2.1.2 Manual measurement procedure

The setup configuration for the network, including issues such as routing table configuration
and system setups are included in the Appendix A. Notice that this settings need to be done
manually each time the system is started in order to performing measurements. The aim is to
avoid these manual procedures at the end of this project and provide a centralized
measurement control system that performs all the tasks without needing the user interaction.

A) Boot lab network
Start the machines r0, which act as a router, h1, and h3, which act as a traffic
generators and h2, which acts as a receiver of the data-flow.

It is important before starting the capture of packets make a Ping call to all
different hosts in the system, make a Ping from h1 and h3 to h2 and vice versa.
This is done for updating the switch table and avoid that packets are broadcasted
if the switch does not have stored from which port number is reachable the
desired host. This is done in every machine, what implies a considerable time
waste.

B) Start the packet capture using the Card- Analyzer GUI.
The traffic delivered by h1 goes directly to host Tellur, containing the Real-
Time network card, which captures the packets, add a time stamp before
forwarding them to the switch.
This card only provides a graphical interface (GUI) where it has to be pressed
the button START for initiating the capture of packets.

Before generating the packet flow in h1 and h3 is necessary to press the button
START from the GUI, then the NetAnalyzer driver routine will start saving the
capture measurement in the file C:\ Default.hea.

C) Collect packets at sink host
Host h2 is the sink node, which collects all packets sent from h1 and h3. Host
h2 is operated directly via the connected keyboard and monitor.

Therefore this needs a manual interaction with the computer h2 in order to
execute the commands that will enable the sink click program which will
receive and count the packets.
This steps include access to the Click folder, where the next command have to
be executed in order to start collecting the packets (run the Click program that
capture the packets): click-install /root/click/sink_cec.click.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 19

D) Generating the traffic using Click
Once that all hosts are accessible after setting up the routing tables and checking
that all hosts are accessible using PING, Mercury, the host placed in the office
network is used for accessing through SSH to the hosts h1 and h3 (traffic
generators) placed in the lab network.

Through Mercury, computer placed in the office network we log on to h1 placed
in the measurement network with the command SSH root@192.167.0.1 (h1 IP
address) using the corresponding password.

Through SSH we access to the Click folder, where we should execute the script
FastUDPSource.click. This script contains the setup for sending certain number
of packets, data rate and packet length. This is done by the command: click-
install FastUDPSource.click. This command will start the traffic generation
from h1.

At the same it is possible to create another data flow from the host h3 in the
same way, login on from Mercury to h3 using SSH with the command
root@192.167.0.3 with the corresponding password. The aim of this data flow is
to cause collisions between the traffic from h1 and h3, where some packets
should be stored into the switch queue increasing the forwarding time. Later on
in the analysis will be possible to analyse in which moment collisions take place
and what is the forwarding time for these packets.

E) Stop the packet capture using the Card- Analyzer GUI.
Once it has been decided that enough traffic have been captured in order to
perform the analysis, it needs to be pressed the STOP button at the NetAnalyzer
GUI. It will stop capturing packets and the capture will be available in a binary
file with extension . hea.

F) Obtain number of packets received in sink
Next, at the end of the capture and after being pressed the stop button, we will
be able to obtain how many packets have been received in h2 executing the
script that counts the received packets from h1 and h3:
cat /click/count_from_h1/count /click/count_from_h3/count

This command will print in the first line the number of received packets from h1
and in the second line the number of received packets from h3.

In order to turn off Click after using it the next command can be executed:
click-uninstall.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 20

G) First Format Conversion.
NetAnalyzer’s driver stores the capture file in a propietary format, a binary file
with .hea extension. Next step is to convert the format to .pcap [14] using the
option Convert in the menu of the application provided by Hilscher (Figure 4).
The same application (GUI) allows to start, stop a capture and convert the
resulting file to .pcap, a format that is readable by Wireshark [15]. This new file
in .pcap format can be readed with Wireshark, which shows all the captured
packets during the measurement.

H) Second Format Conversion.
To analyse the measurement with Stream-Analyzer the previous file in .pcap
format must be translated to .csv format. This is done by the option Export file at
the graphical interface of Wireshark (Figure 5). This .csv format is more
readable from a human point of view and it is the format used by Stream-
Analyzer, program developed in C++ by Jonas Lext in order to process the
capture and obtain the timing results such as the maximum forwarding time that
we are interested.

I) Move capture files to a Linux machine that runs Stream-Analyzer
Once this last format translation is done, the resulting file containing the
measurement have to be moved using some manual method such as mail or
Dropbox to another Linux machine that runs the Stream-Analyzer using the
captured data in .csv format for performing the forwarding time analysis.

One of the aims of this project is to avoid such format transformation and file
movement from different hosts in order to perform the system automation.

J) Analysing the measurement with Stream Analyzer
After obtaining the measured data from the Measurement card, it is time to
analyse the data and find out about the desired features of the flow, like the
forwarding times in the switch. This is done by StreamAnalyzer program, which
is a C++ program, which runs only in Linux machines. So after the capture file
is obtained, several format conversions are done, obtaining finally the .csv file,
which is readable by StreamAnalyzer. Now we can use StreamAnalyzer in order
to classify the packets and separate them into different applications flows
depending on protocol, source and destination address etc. Furthermore, it can
compute the forwarding times of the packets that passed the two taps of the
measurement card and can produce different types of plots.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 21

In this way, the StreamAnalyzer program use two files when it runs. The
command to run the StreamAnalyzer is:

$streamanalyzer -ub 100 -fw 70 -sas <scriptfile>.sas <measuredfile>.csv

The .scv file, contains the captured flow and the script file .sas, contains the
instructions of the desired analysis. This script tells the StreamAnalyzer about
what we are looking for and which graphs are desired. Basically, we are looking
for these features:

● Forwarding time for the Ethernet packets from TapA (interface 1
and 2 of the NetAnalyzer card) to TapB (interface 3 and 4).

● Serialization of the packets from h1 and h3 at the maximum
forwarding time in TapB.

● Maximum inter-arrival time. The difference in inter-arrival time
causes the jitter delay. So we are looking for the flow behaviour
when this inter-arrival time increases.

A current bottleneck is that the file produced by the measurement card must be
converted manually twice, first from the propietary Hilscher binary file format
into the .pcap binary format. Then again from .pcap to .csv, which is a simple
text-based format. Finally, StreamAnalyzer reads the text file after being moved
manually to a Linux machine in which StreamAnalyzer can be executed.

 Hilscher documentation should explain the structure of the Hilscher binary file
format, so StreamAnalyzer should be able to read this format directly in an
advanced stage of the project.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 22

2.2 Different Interfaces

2.2.1 Real-Time Ethernet Measurement card Interface
To capture streams of Ethernet packets, we use a NXANL 50-RE measurement card from
Hilscher [3]. The card passively analyses the data in a network communication link and
captures the incoming Ethernet frames. Before sending each captured frame to a file on the
hard drive, the card inserts a time stamp with nano second resolution into the packet header.
By tapping the Ethernet packets just before they enter a switch, and again as soon as they
leave the switch, it is possible to compute the forwarding time of the packet through the
switch.

The data capturing process must be configured and started via the NetAnalyzer software that
comes with the card and which is installed on a Windows XP PC. However, from Hilscher we
have acquired documentation that briefly explains what functions are available in the card
driver that is residing on the machine. This documentation should be enough to be able to call
the driver functions from a custom developed application. Thus, it should be possible to write
an application that allows remote starting and stopping of a capturing session. Currently,
analysis of the captured stream is done off-line using the application StreamAnalyzer
discussed in the next section.

The interface, which is used for the measurement card, is called NetAnalyzer software. There
exists a graphical interface shown in Figure 4. This is used to start and stop capturing packets
and also configuring the filters. This graphical interface is compatible with Windows XP,
Vista and 7 operating systems, so we used Windows XP PC for the Measurement card
interface. The captured data is saved on the machine hard disk in .hea format, but the interface
has the option to convert it to other formats like .pcap to be readable with other programs like
Wireshark.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 23

GUI used for the user in order to generate a capture (Start button) , to stop capturing packets
(Stop button) and converting the format (Convert button) :

Figure 4: Hilscher ’s Measurement Card Interface (GUI)

The filter settings can be used to accept or reject packets from special source and destination
MAC addresses. The settings can be saved and used later as well.
There exist two analysing options, one is for capturing packets and save them on the hard
disk, so they can be used later to analyse the time and other features. The second option is the
timing analysis.
In this project as mentioned in section 2.1, we are going to estimate the Forwarding time in
the Switch, so we use the Capture Data for capturing every packet, being stored later into a
file which we convert to .pcap format to use it later in Wireshark and get the timestamps of
the packets before and after the switch.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 24

2.2.2 Wireshark Interface (second file conversion process)

Next figure shows the graphical interface of Wireshark, program that is needed in order to
perform the second file conversion process.

The first conversion process is done through netAnalyzer GUI shown in Figure 4 as
described. It converts the capture file from .hea format to .pcap format, understandable by
Wireshark.

Finally in this second conversion process using Wireshark, the .pcap file is converted to .csv
format as it is shown in Figure 5, which is readable by StreamAnalyzer, concluding the file
conversion procedures.

Figure 5: Wireshark format conversion

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 25

2.2.3 Click Interface

The Click software is used to generate the packet flow. In this way, there is no graphical
interface, and we use the Unix terminal and Click-install script as an interface to generate the
desired flow. For instance, there is a function called FastUDPSource as shown in Figure 6
which can set the flow parameters like rate, number of packets, length, address and port of
source and destination, etc. By running the click-install script on this function, the flow will
be generated on the network.

Figure 6: Click interface, program code executed at the terminal

On the other hand, at receiver we use the other function as an interface to categorize and
count the number of packets that are sent from different sources. As an example, we use the
click-install script to start the function sink.click, which categorize the packets from different
sources and count the number of packets received from each source.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 26

2.3 Scenarios and examples of measurements.

This section contains one predefined scenario for a measurement. According to the
parameters defined, the data flow is generated in the network. After all, the measured data is
analysed by StreamAnalyzer. Plots and numerical statistics are generated providing the timing
results of the analysis.

2.3.1. Scenario 1

These are the parameters for the packet flow generation, which define flow propieties as size
of the traffic packets generated and amount of traffic to generate:∗

Rate 2027

Limit 100.000

Length 61

MAC_O 00:0C:F1: CD:42:BE

SINK 192.168.0.1

Frame size 1500

MAC_D 00:11:11:0E:7E:80

DstIp 192.168.0.2

DPort 1500

Checksum true

Interval 1

This data is stored by a Click program, which creates the desired traffic.

Once the previous click program is executed for generating the traffic, the packet capture is
started by pressing the button Start in the Measurement Card’s GUI presented in the previous
point. The resulting file containing the capture needs of several format conversion processes
until the file is in .csv format. Finally it is analysed using StreamAnalyzer, obtaining the
following results: plots with the forwarding time and numerical statistics.

∗ The analysis of the timing and traffic parameters is out of scope.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 27

The hosts involved in this measurement are described in the Figure 3. In the next figure,
Figure 6 we see the traffic flow generated from h1 to h2. As it is noticeable, the forwarding
time is about 8 microseconds at the beginning, because the other flow from h3 to h2 is not
started yet. So after a while the forwarding time increases. It seems there should be some
collisions and queuing at the switch because of the two flows (h1 and h3 acting as a traffic
generators and h2 as a sink), and at the worst case it reaches about 15 microseconds.

Figure 7: Flow from h1, forwarding time

The numerical statistics about forwarding time provided by StreamAnalyzer are as followed:
Forwarding time statistics:∗

∗ The analysis of the obtained timing results and parameters is out of scope.

maximumFT = 15.2587890625 µs
averageFT = 8.3169497884 µs
minimumFT = 7.6293945312 µs
maxJitter = 7.6293945312 µs
iBurstMaxFT = 8849
iBurstMinFT = 3763
iPacketMaxFT = 0
iPacketMinFT = 0

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 28

In Figure 8 is shown the plot that contains the serialization pattern at maximum forwarding
time. It shows up that certain packets from h1 and h3 are serialized at same time in this
period, and that seems to make a collision, which might increase the forwarding time in the
switch.

Figure 8: Serialization pattern at max. forwarding time interval

In this plot is possible to observe in which time instant are delivered the packets of each flow
at the maximum forwarding interval time. As it is shown in the figure 3, which illustrates the
flow generation, there are two flows generating traffic: host h1, whose packets are captured in
red colour, and host h3, whose packets are captured in green colour. All of them have as a
destination host h2.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 29

Figure 9 contains the plot in which is observed that there is not constant delivery of packets
and the jitter varies.

Figure 9: Jitter at max. inter-arrival time period

Finally StreamAnalyzer program provides numerical results about jitter timing analysis:∗

∗ The analysis of the obtained timing results and parameters is out of scope.

Computing forwarding times ...

TapA stream interarrival time statistics:
maximumIT = 988.2450103760 µs
averageIT = 493.4716271237 µs
minimumIT = 107.0499420166 µs
maxJitter = 881.1950683594 µs
iBurstMaxIT = 4996
iBurstMinIT = 108
iPacketMaxIT = 0
iPacketMinIT = 0

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 30

3. Design & implementation

 In this section are described the tasks needed for performing the automation of the system.
The aim is to have at the end of this section a software and an architecture including new
networks and devices in order to obtain a centralized control for generating measurements and
obtaining the results without more need of human interaction than the needed for executing
this tool. It should perform all the actions previously described in the distributed system for
generating the traffic flows and provide the analysis results.

3.1. Make StreamAnalyzer work on Windows.

After analysing the possibilities for automatizing the system, we arrived to the conclusion that
is better to have the program that captures the data and the program that analyses it in the
same machine. It will avoid unnecessary movements of files with considerable size.

However, the issue is that the output file of the card containing the captured data, generated in
a window system have to be moved in a manual way to another computer running on Linux in
order to be analysed by the StreamAnalyzer program, which is compatible with Linux
Systems. To solve this, we adapted the StreamAnalyzer program to work in Windows.

In this process we had to deal with some problems due to some functions do not behave in the
same way in Linux and Windows, such as the function that provides the path and the function
used to read from a file. Another issue is the way the path is defined in the program to find the
desired files, and also the way they tokenize the names. So the program should be placed in a
directory whose path does not contain spaces. Indeed, there should be no space in phrases
used in python programs (python is used for generating plots in StreamAnalyzer).

Using the correct version of python and its libraries to plot the graphs was an issue, which is
solved by installing python 2.6, pylab and other related programs.
On the other hand, to deal with the problems to set the system, we had to set the environment
path according to the different programs, which deal with using StreamAnalyzer such as C++
compiler for windows, python and pylab.

This task seems a simple one at the first glance, but testing and debugging the program to find
out the problems is not straightforward. After all we succeed creating the Windows adapted
version, which provides same results and plots as the Linux version.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 31

3.2 Create Hilscher-control software.

The way to interact with the card manually to start and stop capturing is done through the
graphical interface, which is not suitable for automated systems. In this way, we decided to
implement control software to interact with the card through C++ API, which is provided by
Hilscher. In this program we will run start and stop capturing without using the graphical
interface. So there will be no need of manual human interaction in this way.

In order to achieve this, the following functions defined in the API [4] are used:

● netana_driver_information: This function gets the driver´s information and
its current state. Furthermore it says if there is some error accessing to the
driver.

After getting access to the driver and checking that there is not any error it is necessary to
define the parameters for the capture. The next functions are used:

● netana_set_filelist: This function activate capturing data into a .hea -file.
 It defines the file path, file name, number of files to be created and file size.

● netana_start_capture: This function defines parameters to start capturing
such as capture mode, capture reference time and etc.

Ring Buffer Mode
The latest version of the measurement card driver supports ring buffer mode, which allows to
store captured data in more than one file. Each file size is fixed to 1 GB, so if the maximum
amount of packets that fits into a file is reached, it will continue storing packets in the next
file until the capture is finished or there is no more file to continue storing. In order to work in
ring buffer mode, it needs to be specified before starting the capture. The function
netana_set_filelist defined in the API [4] allows to define how many files have to be created.
This will limit the maximum data that it can be stored. Also it is necessary to set up ring
buffer mode in the function netana_start_capture, which starts the capture.

 In this case it has been decided not to enable the ring buffer mode, which it will imply that
StreamAnalyzer will needed to process more than one file and some extra time should be
dedicated for this. On the other hand the capture size is up to 1GB and it has been considered
as enough data to be processed in order to perform the analysis.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 32

3.3 Avoiding format conversion

As mentioned, the StreamAnalyzer program is not designed to read the .hea file and it needs
some conversion to be done. In this step, to reduce this inconvenient way of reading the
captured data, we try to read directly from the binary file, .hea, in StreamAnalyzer program.
The .hea file structure is described in the NetAnalyzer API [4]. As it is shown in Figure 10,
each file has a header part, which is followed by captured packets.

Figure 10: structure of the binary file with .hea format

The file header contains basic information of the capture such as the start time, file number
and data size, which are useful to find out related capture files, the sequence of files, and
where is the end of the captured data in file.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 33

Sequentially, after the header part (which is 32 bytes), all the captured packets are placed until
the data size is reached. In this part, the program should parse the packet. It is noticeable that
each packet is padded to 32 bits and it should be considered to calculate the packet size, as it
is not included in packet length. Each packet has a header, which contains the card port
number, packet length and the time stamp.

After the header part, the packet fields should be extracted according to network headers
structures like MAC header, IP header and UDP header. It should be mentioned that card
driver such as packet header in big endian format and the data adds the network data and file
header are in little endian format. So it should be considered to convert the network format,
which is big endian. The first 14 bytes related to MAC header are discarded, and the
following part is the IP header. In this part, due to the optional part of the IP header, we need
to calculate the size of the IP header including the padding to know where the UDP packet
starts.
Also, the protocol field is important, to be able to discard the packets which are not UDP.
After all, the source and destination IP addresses are obtained from the IP header. The UDP
packet starts after the IP header (including options). So the remaining fields including UDP
source and destination ports are obtained in this part.
This process continues for all packets till the total data size (obtained from file header) is
reached.

Limitations solved till now
 After adapting StreamAnalyzer or being executed in Windows (3.1), creating the software
that starts / stops the capture without needing interaction of the user through its GUI (3.2) and
finally in this section (3.3) after reading directly from the .hea file, which is the format in
which NetAnalyzer card's driver stores the capture, several manual steps can be omitted. It
includes all conversions steps and the steps in which the user needed to move the file after the
conversion to another machine in order to be processed by StreamAnalyzer.

At this point the capture is created without needing interact with any GUI, being stored in the
local Windows machine that contains NetAnalyzer Card and being possible to run
StreamAnalyzer directly from this machine and reading the original .hea file in order to
obtain the desired results.

 This implies an important improvement in order to achieve the total automation of the
system and as well a reduction of the time needed for performing a capture and its
corresponding analysis.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 34

3.4 Create Coordinator software and network design

 Once we have created the tools for initiate a capture without needing human interaction in the
previous sections, avoiding to use GUIs, format conversions and manual movement of files, it
is possible to design and implement a centralized control unit which will take care of all the
actions needed for performing every step in this process in order to make a measurement.

 It is also considered networks improvement and the adaptation of new devices, which need
to be added to the system. Furthermore this process includes modifying and improving several
of the steps that were executed as isolated before.

3.4.1 Create Coordinator software
This section is the main target of the project, to implement a centralized program to
coordinate the whole process. This program called the Coordinator, executed in a Linux
machine at the office network, will do all the tasks described below interacting with the
different computers and transferring the results of the execution to the machine running the
coordinator program. Therefore there is not needed any other manual contact with other
machines to obtain the result of the analysis. The different tasks are:

● Connect to the switch to set the parameters according to the configuration file,
which should be same as TCN-Analyzer configuration.

● Create traffic generator click scripts according to the flow parameters defined
in configuration files for h1 and h3.

● Connect to different computers, such as traffic generators, sink and
capture/stream-Analyzer machines.

● Start/Stop sink program on computer h2.
● Start/Stop traffic flows from h1 and h3.
● Start/Stop capturing with NetAnalyzer card, which is installed on Windows

computer.
● Analyse captured data by StreamAnalyzer on Windows computer.
● Stop traffic generators and sink click scripts.
● Transfer results (numerical statistics and plots of the capture) from Windows

machine to coordinator machine.

The coordinator computer is decided to be a Linux machine in office network, which is more
convenient to start SSH connections from there to other Linux computers. Also, to make a
connection to the Windows system, an SSH server is required to be already installed and listen
to SSH clients. So, the FreeSSHd application [5] is used, which provides the SSH server for
Windows operating system. In this way, the Linux machine can make a connection to
Windows system, in order to execute the Capture and StreamAnalyzer programs remotely.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 35

Choosing best programming language / architecture for the coordinator
software

The coordinator program is decided to be shell scripting because this program is mainly
connecting and executing commands on different machines which is simpler to handle this
process in shell scripts, where it is possible to execute commands directly. Furthermore,
expect scripting which is explained in [5] is useful for interacting with connected systems
and execute programs through the SSH and SFTP connections remotely without manual
interaction. For instance, when we create a SSH connection, the user does not need to type the
password manually, because we can expect the system is requesting the password and send it
automatically. In other words, the different outputs of the system can be expected and replied
according to that specific output automatically.

In this way, there are several expect scripts that are used for connecting to other machines
through SSH or SFTP, in other words connecting through some interactive protocol. One the
other hand there is several bash scripts, in concrete the main program is a bash script which
execute commands in the local machine and also other scripts such as the expect scripts that
contact remotely with other machines and also executes another bash scripts that execute
some sequences of commands for a same functionality, like updating the local routing table.

In this case shell scripting is a better option for our project than another alternative
approaches such as it could be socket programming, in which a program should be written in
each machine listening in one port for performing an action. Socket programming will not be
interesting for our project, due that it would require start manually the server program
previously wrote in C/C++ in each machine waiting for requests, and afterwards send
messages to that servers in the coordinator. We look for performing the control of the system
in a centralized way interacting only with one machine, in this case called the coordinator.
Due to this it is obvious that socket programming is not the best option, and shell scripting fits
more in our requirements.

Anther important point is the software maintenance / extension, in which we want to add
some functionality or modify some part of the program. In case of having socket
programming it would be needed to modify the program in each machine due that for
performing one task more than one machine is needed.

 On the other hand in shell programming is not needed generally to modify the code in each
machine interacting in the process in case of any desired change. The control program is
written in the coordinator and it includes all the actions performed for each computer, first the
connection with the desired computer and later on the commands executed for the remote
computer.

Therefore, it turns out that shell scripting is a better option in terms of system usage (not
needed any manual interaction with other machines) and also in terms of maintenance and

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 36

programming in which the main code that control the global interaction is placed in the
coordinator program.

Next it is shown a list of tasks, which are executed sequentially in the main script that runs all
the different components needed in the system for providing the desired functionally:

#Define variables
Define local variables that will be used in subscripts like time stamp for creating the folder
with results named with the current data (year / month / day-time). Also some predefined
directories are written in this part.

#add entries to local routing table
Here it is executed a bash script which need to login as a root for executing the commands for
updating the routing table. It will add the necessary entries for finding the measurement
networks and the control network in every machine of the office network where in which is
executed this program. As it has been commented before, the only prerequisite is to use a
Linux machine for running the coordinator program, which is obviously due that the
coordinator program is written in shell-scripts. This is done with the bash script:
routingTable.sh.

#Ping to different machines involved in the process
Here the program will ping the different machines involved in the process in order to update
the switch and router entries. It will avoid to have later on ARP messages in which is trying to
bind the requested IP address with the desired host MAC address which is used for
transmission. This is done directly by the main coordinator program (placed at the office
network). Furthermore, it is needed to invoke another expect subscripts, which connect via
SSH to the sink hosts placed in a different network (measurement network) and ping from
there the traffic generator hosts. This is executed by the subscript pingFromSink.sh, which
receive as a parameter the IP address of the remote sink to connect with. Finally the selected
sink host will ping all the traffic generators machines.

 #Configure the Switch
Next it runs a expect script which connects with the Westermo switch which is connected in
the measurement network. It will setup the configuration in the switch according to the
parameters defined in a local file named: switch_param.conf. The expect scripts will read all
the parameters from the file and it will intact with the switch sending the specific commands
for interacting with the switch are defined in the Switch Management guide [6] , adding the
previous obtained parameters and waiting the interactive (prompt) answer from the device,
which indicates that the command have been received and it is possible to send the next one.
After this the program will wait during a short predefined time interval (2 seconds) while the
switch will be applying the previous configuration

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 37

#Create Click scripts that generate traffic on h1 and h3,
In similar way than the previous step, in this part it is executed a expect script which connects
to the traffic generators machines h1 and h3 through SSH, moving to the correct folder where
are placed the click scripts that generate the traffic once they are being executed. Next, it will
read as before the parameters from a predefined file named: traffic_config1.conf and
traffic_config3.conf , which contains the parameters that define the characteristics of the flow
that have to be generated for the hosts h1 and h3 respectively.
In short, it contacts with the machine h1 and h3 where it writes down the desired click script,
which will be executed later in order to generate the traffic flows. This SSH connections with
h1 and h3 to do the described work are done in parallel.

traffic generator CEC-boards set up (Added in point 3.5 as a new functionality)
In an initial step in this point we were connecting through SSH to the windows computer
which has connected the boards and downloading the board’s code each time into the boards
after reading from a file the propieties of the desired flow. This was considered as a non-
practical way of proceeding. Therefore, this procedure was redesigned, not being needed to
read from any file the properties of the desired flow and not being needed to download the
traffic into the card each execution time.

To achieve this, every card is constantly receiving requests. The coordinator executes a java
program, which sends an UDP message to each board with the propieties of the desired flow,
being possible different properties for each board.
Finally, every board that has received the propieties of the desired flow will be waiting for the
order of start generating the traffic flow.

#Start sink
In this step the coordinator connects with the Sink machines through SSH in the same way
than before using the expect script: sink.sh. This expect script execute the click script which
will be listening for packets. Furthermore it is defined a time which is supposed that have to
last the capture and after expiring this time it will stop the click-script which listen for packets
and will turn down the SSH connection with h2.

#Start capturing packets in NetAnalyzer measurement card (windows machine)
This step is done executing the expect script: capture.sh . It connects through SSH with the
Windows machine containing the NetAnalyzer card and executing the exec file, generated in
the section 3.2, which starts capturing packets in the measurement card.

It is defined a predefined time value, which is supposed to last the capture. Therefore, after
expiring this time, the capture is stopped (previously needed to press the button STOP.
 Next it is executed StreamAnalyzer, which analyse the previous capture and calculate the
timing plots and statistics. To finish, it will move all the resulting files to a folder named with
the current data (year / month / day-time) in in which the capture was made.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 38

Make sure the capturing and sink programs are ready before generating the traffic
In this case it has been decided to wait during some seconds to make sure that the
NetAnalyzer measurement card and the Sink machine are ready for receiving packets.

#Generate traffic flows in H1 and H3
Next it is run a expect script which connects to the traffic generators machines H1 and H3
through the specific control interface in the Control network for avoiding another packets
interferences in the measurement network. The expect script that contains this functionality is
named trafficGenerator.sh. These two connections with H1 and H3 are done in parallel.

#Generate board traffic (Added in section 3.5 as a new functionality)
 In this case it was requested to generate simultaneously traffic in every board. It implies that
every board receives the START message at the same time instant. To achieve this, it connects
through SSH to one machine connected directly to the measurement network, in this case
Mercury. From this machine it is broadcasted the START message, which will be received for
every card and the traffic generation will start. Done in subscript broadcast.sh.

#Transfer results to local machine

After waiting for the previous tasks have finished, it is executed an expect script named:
transferResults.sh, which creates an sftp connection with the Windows machine and it will
transfer to the coordinator machine the timing analysis and the statistics of the current
capture. After this procedure the desired job is done, the capture has been started from a
coordinator machine and it has obtaining the results of that capture without being needed any
manual interaction with another machine.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 39

3.4.2 Design separate Control and Measurement networks

As it is described in section 2, there is only one network domain for both measurement and
control traffic so the coordinator makes connection to different computers in the same
network as the measurement card wants to capture specific traffics, which is generated by H1
and H3. In this way, those control packets related to control network might interfere the
desired traffic in the switch and change the measurement results for queuing and forwarding
time.
Therefore, it is decided to have separate networks for each purpose:
One network is dedicated for measurement purpose. The second network is designed to
control the different parts of the system, called control network. The third, the office network,
is used by the persons at the office for connecting to Internet and to run the measurement
program.

The measurement network (with IP: 192.168.0.0 netmask: 255.255.255.0) contains the
netAnalyzer card, Westermo switch and h1, h3 and h2 hosts on their first network interface
cards which is connected to this network. This part of network design is shown in Figure 11
So the traffic generated by h1 and h3 to h2 are the desired flows, which will be captured by
measurement card in this network.

Figure 11: Measurement network

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 40

On the other hand, the control network (with IP: 192.0.3.0 netmask: 255.255.255.0) is
supposed to be used by the coordinator to connect to different machines and run the control
commands through this connection. This network also contains h1, h3 and h2, but with their
second network interface which is assigned to 192.0.3.0 network. In this way the control flow
is not passing through the switch of measurement network and won’t make any interference in
the measurement process.

The office network (with IP: 172.16.3.0 netmask: 255.255.255.0) , shown in Figure 13 is used
to connect to Tellur (Windows) and Mercury (Linux) machines. As described before, Mercury
computer or any other Linux computer in office network can run the coordinator program to
run the whole system process. Tellur computer is the one that runs netAnalyzer and
StreamAnalyzer programs.

Figure 12: Control Network

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 41

The complete network design is found in Figure 14. As you can see the router (r0) is used to
divide the network domains and connect them to each other. A better resolution picture is
placed in Appendix B.

Figure 13: Office Network

Figure 14: Complete Network Topology (higher resolution version at Appendix B)

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 42

Routing table setup

Once the installation of the new network is done, including the assignation of new IP
addresses for the new devices, it is needed to modify the routing tables of the different hosts
involved in the transmission in order that the control packets are sent through the control
network, avoiding any control packet to interfere in the measurement going through the
measurement network.

 Especially since the routing table of the hosts (traffic generators) h1 and h2 only contains
entries for the measurement network and for the control network, some problem can happen
to reply the requests from the coordinator placed in the office network.

When we connect through SSH from the coordinator computer placed in the office network,
the messages arrive to h1 and h3 as it is expected. The issue comes with the reply of SSH
packets in hosts h1 and h3. The office network is not defined in their routing table due that it
contains only two, one for the measurement network and one for the control network.
Therefore it is needed to set the default route (route used when the destination is not defined
in the route table) as the router IP address of the control network interface. This will force the
reply of the control messages go through the control network.

 Finally when the reply messages arrive to the router they will be delivered to the office
network and to the coordinator computer avoiding any interference in the measurement
network as it was expected, separating the SSH control messages from the traffic in the
measurement network.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 43

3.5 Extend the architecture by adding CEC boards

Add board traffic generators
To extend the system to have different kind of traffic generators, CEC boards, which were
used as CAN to Ethernet Converters, are programed to be used as Ethernet traffic generators.
According to Ibrahim experiments that explained in [8], these boards can provide constant
traffic flow, where the Click traffic generators are not able to provide that. Initially these
boards were configured for generating CAN data traffic with [7], which was converted later
on to Ethernet traffic. This has been omitted in this project and we generate Ethernet traffic
directly programming the cards through a special framework provided by IAR [20].

Board specifications and Program
The testing board is a development kit made by IAR Systems [21]. It contains ARM-based
microcontroller, LCD, different kind of ports for different applications, and USB port for
download program on it and also provides power for the board. The driver is compatible with
Windows, so the boards should be connected to Windows machine (Tellur) in our system.

To program the boards, the project is designed to assign specific IP to each board, and to be
ready to send the UDP traffic when required. So the board is listening on a port to incoming
packets and if it gets the UDP packet contains “START” message, the board starts the UDP
traffic.

IAR-Systems provides a basic program for interacting with the board and providing a basic
functionality. This program is written in C/C++ and was modified to be a CAN to Ethernet
Converter by Ibrahim which is used in his Master thesis [8], but it this project, it is set to send
UDP traffic with out CAN interaction, and also we adapted it according to our project
requirements. According to our modification, the traffic configuration is not specified in the
code, so it can be given according to each traffic specification and network design.

There were two approaches to do this step. First, the traffic specification parameters could be
read from a file with the board program. In this way, the coordinator computer should edit the
configuration file and transfer it to Windows machine, allowing the board to read the
parameters from the file.
In second approach, the flow parameters are sent in a UDP packet with “SET” message. In
this way the program can set the traffic according to the parameters before generate the
traffic, being needed to download the code into the board each execution time. The first
approach is not efficient. Each time the configuration file is changed the board program

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 44

should read the new parameters and download the code in every card, which takes some
seconds. Furthermore, this does not allow assign different flow propieties to every board.
 So finally, the followed approach in this project has been to download the program into the
board just one time, being listening for requests. According to this way of proceeding,
different traffic propieties can be sent to different cards. The cards will be waiting for a SET
message, which will set the flow propieties. Later on, it will wait for a START message, which
will trigger the flow generation.

As it has been described, the program listen to the incoming messages forever, and when it
gets the SET message, the card set up the flow configuration propieties according to the
values received in the SET message. Afterwards the START message is broadcasted to every
board. This is done in order to allow every board start sending messages simultaneously, due
that if the START message is sent sequentially, the boards might be operating in different
phase.

Integrating boards into the Coordinator Program
The coordinator should be able to communicate with the boards in order to run the program
and send the START message to start the traffic generation. The card is not designed to be
able to connect through SSH or other communication programs, it is not possible to program it
in these ways. The boards are connected through USB port to Windows machine, which is
used to download the program and also power it.

As it has been described, once the program is downloaded into the boards they will be waiting
for the reception of the SET and START message that will configure the flow and trigger the
traffic generation.

In this way, we use Java socket programming on the Coordinator side, which communicate
with the board on specified port sending the SET message containing the parameters and the
START message. On the board’s side, is used socket programming but in this case with C
programming language due that the basic program provided for IAR for interacting with the
boards is written in this language. This java program reads the flow propieties from the file in
which the user has written them, sending the SET messages later on to each board.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 45

Final topology of the System

After adding the CEC-boards to the resulting topology is shown in figure 15.

Here are highlighted the three different networks. The office network contains the different
machines, PC and laptops that are used by everybody in the office. It has been decided that
the coordinator program, the program that controls the whole system, can be installed in any
machine connected to the office network (Linux dependant). This makes easier to use the
system by different users at the office in their own computers.

It was decided to create a new network for sending the messages from the coordinator to the
other hosts in the system for controlling and performing the different tasks of the system. The
main reason for a different network is to avoid having control messages interfering in the
measurement network.

Finally the measurement network contains the different units that will create traffic and
measure it. It includes advanced switches, a real time measurement card, CEC-boards that
will generate traffic and certain hosts that can generate or receive traffic (sinks).

Figure 15: Different networks interacting int he Measurement System

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 46

4. Execution and Results

The aim of the project has been to create a centralized control environment that allows the
user to define the required traffic flows, run the system and obtain the results of the
measurement some seconds afterwards without being needed to interact manually with any
other computer of the system. Here is presented the developed tool result of this project.

In Figure 16 is shown the system interface. The coordinator program that will launch the
measurement consists of two folders. All the files that are the heart of the system are placed in
the 'Coordinator' folder, which includes the main program and all the secondary scripts
created in order to perform specific functions.
The user just need to access to the folder called TCN-TestFlows (renamed later on to TCN-
Measurement tool) where there is a text file in which the user needs to define the flows to be
generated and their propieties.

Once the user has written the flows propieties, it is possible to execute the system by running
the file ”run.sh” in the same folder. It is possible to run it by doing double click with the
mouse on the file or executing it directly from the terminal. In this last case will be possible to
observe the out prints that the system generate, which can help the user to make an idea which
tasks are being executed in each moment and in which part of the system.

Figure 16: TCN-Measurement tool, execution environment

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 47

When the execution has finished the results are available in the folder ”capture-results” in the
desktop.

As it has been said, the results of the capture analysis are provided in the folder ”capture-
results”, in which a different folder is created for each execution of the system. Each folder is
named with the date and time in which the execution has been done.

The results consist in different files that define the characteristics of the flows and several
plots that are the result of performing the timing analysis of the generated traffic. As well one
text file containing the statistics (timing results) that are possible to be observed in the plots is
created for simplifying the task of comparing the results of the execution.

Figure 17: Results of the measurement

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 48

Figure contains the files created as a result of an execution which are stored into a folder with
the time in which was performed the measurement.

It contains the file in which the user defined the flows characteristics, so it is possible to
compare the timing analysis provided for a certain flows setup, with different flow number,
packet size, priorities and period.

 Furthermore three plots are created in which it is possible to observe which is the maximum
forwarding time in the system, in other words the maximum forwarding time it takes the
system to deliver the packets. These results can be observed as well in a statistics file that
includes some extra information.

As it seen it has been avoided any extra manual interaction. Just is needed to run the main
program, which will take care of executing and processing the local outputs that before
needed to be take in consideration manually. After this the results will show up at the same
machine where we executed the program.

Figure 18: Resulting analysis performed by StremAnalyzer

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 49

Comparing the measurements results with the TCN-
Analyzer prediction.

 As it has been described before, TCN-Analyzer is the main tool or product developed at the
company Time Critical Networks AB. This tool is an interactive program in which the user
defines the components of system to be analysed and the flows desired in it. It takes
advantage from the scheduling algorithms developed at the company and improved by Meng
Liu’s thesis project [19].

Figure 19 shows a non-final version of the TCN-Analyzer GUI in which it is possible to
define the network propieties, here it is shown that four hosts have been defined and two
Redfox switches. The traffic characteristics have been defined in the lists above the picture.

When TCN-Analyzer performs the analysis, it predicts the maximum forwarding time, in the
worst case. This is what companies and potential customers using the TCN-Analyzer tool are
interested in.

 Figure 19: TCN-Analyzer GUI

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 50

Goal of the comparison

On the other hand the aim of this thesis has been the development of the Centralized
Measurement Control described in previous sections.
The centralized measurement tool developed in this project, TCN-Measurement, preforms
measurements in the Distributed System presented before according to the traffic defined at
the TCN-Analyzer tool and performs a timing traffic analysis.

The goal of this is to compare the timing prediction provided by the TCN-Analyzer tool and
the timing results obtained with the TCN-Measurement tool in order to be sure that TCN-
Analyzer tool provides an adequate time prediction that customers can trust.

Therefore TCN-Analyzer is a tool that provides a prediction of the maximum forwarding time
in which the packet flows are delivered to its destination.
For performing this action TCN-Analyzer takes in consideration worst-case response time
analysis. More information about the TCN-Analyzer tool and the algorithms used for
calculating the maximum forwarding time can be found at Meng’s Master thesis [19].

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 51

5. Future Work

 Every system is always ready for improvements or new tasks and functionalities that could
complement it. This system is not different and several improvements and new tasks have
been performed at the last period when the systems seemed to be already finished.
One point to make improvements is to achieve major integration of the TCN-Analyzer with
the TCN-Measurement system.

As it has been described, TCN-Analyzer performs a prediction of the worst forwarding time
after the user has created in their graphical interface the virtual model of the network to
analyse. Next, in order to verify the correctness of the prediction it is needed to run the TCN-
Measurement tool described in the previous part developed in this project.

 The first improvement is to consider how both programs are executed, not existing
interaction between them.
Due that the user defines the flows propieties at the same time that creates the model of the
network using the GUI of TCN-Analyzer, it should be possible to send this information to the
measurement system without being needed the user to rewrite the flows propieties in a text
file as it is described in section 4.
Another improvement could be to plot in the same graph the prediction made by TCN-
Analyzer and the value calculated by TCN-Measurement system of the worst forwarding
time.

 Regarding to the research, this pretends to extend section1, Introduction, where it is
described the main propieties of CAN and Ethernet as a protocols for transmitting data into a
link. Furthermore it is discussed why industry is interested in applying Ethernet technology
when they currently use CAN bus commutation and how TCN-Analyzer takes advantage of
the lack of tools that perform timing analysis, design and verification of Ethernet networks.

As it has been described, most of applications in industry operate with CAN and the programs
currently available for design and verify networks in these time critical systems operate using
CAN networks. Thus this tool pretends to be leader in the promising technology of using
Ethernet in time critical applications such automotion and controls for vehicles.

Next there are three products that try to solve same or similar problems than TCN Analyzer:

• Symtavision [22]
• INCHRON [23]
• Real-Time at Work (RTAW) [24]

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 52

 However they use different techniques like simulation instead of worst-case response time
analysis that is used in TCN-Analyzer. In the case that they use the same technique, they are
targeting CAN networks and/or task scheduling in ECUs (Electronic Control Units) in vehicle
networks instead of Ethernet.

As it has been described in section 1, TCN product, TCN- Analyzer focuses on creating a
network model by means of an interactive GUI, being able of performing afterwards the
analysis and prediction of the timing constraints of the virtual Ethernet network created.

Many companies and institutions are already showing interest about adding Ethernet to their
time critical systems, creating research projects in order to validate that standard Ethernet can
be used in this time critical applications without major changes.

In fact, as described in section 1, research project of BMW conclude that IP-Ethernet could
suit well the real-time requirements even for safety-critical applications [9].
Furthermore, TCN and CPAC, a company of Volvo group have already verified the
possibility of replacing partially or completely CAN bus with Ethernet without major
changes. Another company that shows interest into the field is Siemens Automation, the
largest company in the world in this segment, has recently started a project intending to verify
Ethernet usage in time critical applications [16].

There is no doubt that the usage of Ethernet in time critical applications will be a reality not
far away in time, and TCN-Analyzer product together with TCN-Measurement tool developed
during this project for testing and verifying TCN-Analyzer’s predictions will be well placed
in the new market of this applications.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 53

6. Conclusions

 This report claims to give an insight into the current protocols used for transmitting data into
a communication link from the point of view of time critical applications.

It points out the growing industries’ interest in Ethernet protocol for time critical applications.
It provides better throughput and do not have certain limitations such as the previous ones
described about CAN.

TCN-Analyzer tool allows designing Ethernet networks and verifying the time correctness of
time critical applications giving a prediction of the maximum forwarding time for a flow in
the network.
During this project has been developed TCN-Measurement tool. It create traffic flows and
measure the time it takes to the flows to reach the destination, being able to compare the
prediction done by TCN-Analyzer with the real measurement performed by TCN-
Measurement tool.

At the end of this project, it has been possible to perform a measurement just executing the
tool developed in this project, obtaining the timing results in few seconds. On the opposite, in
the previous system version it was needed to execute manually several tasks on different
computers and moving by manual methods the processed results between machines involved
in the process. This took several minutes for obtaining the timing results, which TCN-
Measurement tool obtains in several seconds without needing any interaction except the
execution of the start command.

To conclude, comment about the good commitment of the development process. It was
planned to develop and perform the automation of at least one part of the measurement
process and finally at the end of the project we achieved the automation of the complete
measurement process.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 54

7. Terminology and abbreviations.

This section explains different abbreviations and protocols used during this document [25].

• SSH: Secure Shell. Allows to access to a remote terminal in a secure way.
• Ping: Utility that uses ICMP protocol for testing the reachability of a host in the

network.
• Python: Programming language.
• Pylab: numeric computation environment with plot functions.
• SFTP: SSH File Transfer Protocol.
• ARP: Address Resolution Protocol.
• MAC address: Media Access Control Address.
• Switch: Network device that connects networks segments.
• Driver: Program that allows higher-level programs to interact with a hardware device.
• Routing table: table stored in a network device that lists the routes to network

destinations.
• UDP: User Datagram Protocol.
• USB: Universal Serial Bus.
• TCN: Time Critical Networks.
• TCN-Analyzer: TCN’s product.
• StreamAnalyzer: TCN’s analysis program, which obtains the timing results.
• IP: Internet Protocol.
• LCD: Liquid crystal display.
• C: Programming language.
• C++: Programming language.
• Java: Programming language.
• CEC: CAN to Ethernet Converter.
• CAN: Controller Area Network.
• GUI: Graphical User Interface.

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 55

8. References

[1] Björn Andersson and Jonas Lext, Guaranteeing Hard Real-Time Communications Over
Standard Ethernet Networks
[2] Eddie Kohler, The Click Modular Router, Ph.D Thesis
[3] Hilscher Gesellschaft für Systemautomation mbH, User Manual netANALYZER NXANL
50-RE
[4] Hilscher Gesellschaft für Systemautomation mbH, Driver Manual netANALYZER API
Windows 2000/XP/Vista/7 V1.3
[5] Expect homepage: http://expect.sourceforge.net/
[6] Westermo OS Management Guide. RedFox Series Wolverine Series 6101-3201. Version
4.2.0-15841
[7] PCAN-View: http://www.peak-system.com/Product-
Details.49+M5d31ea5c82c.0.html?&L=1&tx_commerce_pi1[catUid]=10&tx_commerce_pi1[
showUid]=32
[8] Mohammad Ibrahim, Ethernet in Steer-by-wire Applications, M.Sc., KTH Royal Institute
of Technology, July 2001.
[9] Industrial Ethernet advisory group: http://www.industrial-ethernet.org/ethernet-protocols-
technologies/a-universal-network-for-in-car-control-systems/
[10] Wilfried Voss, President esd electronics, Inc USA. The Future of CAN / CANopen and
the Industrial Ethernet Challenge:
http://www.rtcgroup.com/whitepapers/files/TheFutureofCAN.pdf
[11] TCN news post:
http://www.timecriticalnetworks.com/index.php?option=com_content&view=article&id=4&It
emid=5
[12] Ethenet standard IEEE 802.3: http://standards.ieee.org/about/get/802/802.3.html
[13] Gigabit Ethernet:
http://www.cisco.com/en/US/tech/tk389/tk214/tech_brief09186a0080091a8a.html
[14] Pcap file format: http://www.fileinfo.com/extension/pcap
[15] Wireshark tool page: http://www.wireshark.org/
[16] Workshop event: http://www.timmo-2-use.org/events/OpenWorkshop2011.html
[17] CAN protocol: http://www.can-cia.de/fileadmin/cia/specifications/CAN20A.pdf
[18] Jeff Nowling, Industrial Automation Engineering consultant. How fast is Ethernet:
http://www.cross-automation.com/TechCenter/AppNotes/Supplier/Ethernet.pdf
[19] Meng Liu, Response Time Analysis of Ethernet Flows with Fixed Priority - Evaluation
and Improvement of TCN Analyzer Scheduling Analysis Theory. M.Sc. Chalmers University.
[20] IAR framework: http://www.iar.com/en/Products/IAR-Embedded-Workbench/
[21] IAR Systems: http://www.iar.com/en/
[22] Symtavision, http://www.symtavision.com/
[23] Inchron, http://www.inchron.com/
[24] Real Time at Work, http://www.realtimeatwork.com/
[25] Wikipedia, http://www.wikipedia.org/

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 56

9. Appendix

Appendix A - Measurement Setup before the thesis project
This section contains specific setup information that was only valid for the initial network
architecture previous to the start up of this project.
After the development of this project this information is not needed anymore, being all the
tasks automated and the network architecture updated.

Boot lab network
Start the machines r0, h1, h2, h3, the voltage source, which drives the Redfox switches, and
the netGear switch, for control network.

Click
The hosts in the lab network uses the open source project Click, which enables them to
function as, e.g., a flow source.

Route to the lab network
TCN's office computers are attached to the Chalmers office network, which is shared with
all the other incubator companies on sixth floor. The office network address is
172.16.3.0/255.255.255.0.
TCN's lab network on the other hand, contains two networks; measurement network and
control network. Measurement network has the address 192.168.0.0/255.255.255.0 and
Control network has the IP address 192.0.3.0/255.255.255.0. The three networks are
connected via one of the Click-machines, r0, which acts as a router. To tell the computer
how to access the lab network use either the route command or a system tool:

Route Command
route add -net 192.168.0.0 netmask 255.255.255.0 gw 172.16.3.225
route add -net 192.0.3.0 netmask 255.255.255.0 gw 172.16.3.225

Now, this step is done in script routingTable.sh, so, it is not needed to do this step manually.

Set the Internal Clock
The internal clocks of hosts h1 and h3 will probably be wrong at boot time. This leads to a
compiler warning when compiling the Click module and possible that not all files are
recompiled. The right time can be set with the command date:
date - set "2010-04-20 15:32:00"

File Exchange
If one needs to transfer, for example, a new click-script or Click elements from argon, the
scp command could be used:
scp -r tcnflowsrc.* username@192.168.0.1:/home/username/click-
1.5.0/elements/linuxmodule/

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 57

Click scripts and measurement procedure
The following section describes how the initial measurements in setup have been performed
and some experiences.

The Click-script that is used to generate traffic during the tests have been called
FastUDPSource.click on both h1, h2, and h3. In these, we set the rate parameter high in h3,
so it works as "stress flow". The script sink.click on h2 acts as a sink for both the flow from
h1 and h3 and the number of packets received from each flow can be read by running cat:

cat /proc/click/count_from_h1/count
cat /proc/click/count_from_h3/count

Log in with SSH to the sources h1 and h3. FastUDPSource.click can be started on them
without the SSH connection hangs.

Download filter in NetAnalyzer by selecting File » Filter Settings and select Load. Select
the file C:\Documents and Settings\All Users\Documents\net_analyzer_filter_reject_h3.nff.
This filter rejects all packets coming from host h3 by matching against the 'Source MAC
Address'.

Sink h2
h2 should be operated via the directly connected keyboard and monitor because SSH
connection hangs when running click-script on this computer:
• Login as root.
• Start the click by issuing the command click-install /root/click/sink.click
• Go to the folder /click
• We can now check how many packages the sink accepted by giving the command cat
count_from_h1/count count_from_h3/count

NetAnalyzer on Tellur
Tellur is the Windows computer with the Hilscher NetAnalyzer card installed.
• Start the application NetAnanlyzer from the Windows Start Menu
• Ensure that all tap ports are active
• Start NetAnalyzer measurement by clicking Start
• Start the packet generator scripts (see below)

Source h1
By running the click script through the bash script run_source, we can avoid the SSH
connection hanging forever. This script uninstalls the click-script after 30 seconds after it
finished running.

On h1: drive click-install FastUDPSource.click
On h3: drive click-install FastUDPSource.click

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 58

Start at NetAnalyzer then convert, double-click the file to start wireshark.

• Wait until all / enough packets have passed. Press Stop
• The NetAnalyzer driver routine now saves the measurement in the file C:\Default.hea
• Press Convert in NetAnalyzer GUI to translate this file to the format .pcap with a suitable
filename.
• Double-click the new .pcap file. This will start wireshark, which shows all the captured
packets during the measurement.
• In order to allow StreamAnalyzer to process the capture file, we must translate the file
again to the format .csv (Comma Separtated Values). In wireshark, select File » Export »
File. Enter the same filename as the pcap file, but change the extension to .csv. Select file
format .csv.

Misc
• To edit scripts use for example the application nano: nano FastUDPSource.click
• A click-install scripts can be stopped with the command click-uninstall
• Through the tests that found that the Click element FastUDPSources can send packets with
the length parameter is <= 1518th In all cases took Basin in h2 receive as many Ethernet
frame sent. Should actually theoretical upper limit be 1514 bytes. According to a note in the
Click script will, however, the measurement card to protest when LENGTH> = 1515, which
agrees with the theory. Could be of interest to some time to examine where the four extra
switches will be added. Could it be that the extra bytes are inserted into the header to match
the second Ethernet headers than the basic version?

Network Shutdown
SSH root@192.168.0.1 shutdown -h 0
SSH root@192.168.0.2 shutdown -h 0
SSH root@172.16.3.225 shutdown -h 0

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 59

Appendix B - Network Architecture

Figure 20: Network Topology, view 1

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 60

Figure 21: network topology, view 2

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 61

Figure 22: network toplogy, view 3

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 62

Appendix C - Coordinator Program

Next it is shown the code of the main script in the coordinator program, which calls different
modules for providing the desired functionality.

#Define variables
capturingTime=30
((auxTime=capturingTime+6))
timestamp=$(date +"%y%m%d"_"%H%M%S")
resultDirectory=($HOME/Desktop/d$timestamp)

#add entries to local routing table
./routingTable.sh

#ping to the different hosts involved in the process
./pingFromSink.sh 192.0.3.12
(local pings not included)

#Configure the Switch
./switch.sh 192.168.0.253
sleep 2

#Create Click scripts on h1 and h3, reading the parameters from trafficConfig1/3.txt
./createScript.sh 192.0.3.11 traffic_config1.conf&
./createScript.sh 192.0.3.13 traffic_config3.conf&
wait

#Set up traffic generator boards (reads from file flow param. and send SET)
java UDPClient

#Start sink
./sink.sh 192.0.3.12 $auxTime &

#Start capturing packets in NetAnalyzer measurement card (windows machine)
./capture.sh 172.16.3.103 $timestamp $capturingTime&

Make sure the capturing and sink programs are ready before generating the traffic
sleep 4

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 63

#Generate traffic
./trafficGenerator.sh 192.0.3.11 $auxTime &
./trafficGenerator.sh 192.0.3.13 $auxTime &

#broadcasts the START message
./broadcast.sh

#TRANSFER RESULT TO LOCAL MACHINE
mkdir $resultDirectory
./transferResults.sh 172.16.3.103 $timestamp $resultDirectory

Centralized	 Control	 for	 a	 real-‐time	 Ethernet	 Measurement	 System	
	

	 	 	 	 	 	 Computer	 Science	 and	 Engineering	 	 -‐	 M.Sc.	 Networks	 and	 Distributed	 Systems	 	 	 	 	 	 64

