
MASTER’S THESIS

Resource allocation – a numerical study

Christoffer Strömberg

Department of Mathematical Sciences

CHALMERS UNIVERSITY OF TECHNOLOGY
GOTHENBURG UNIVERSITY
Göteborg, Sweden 2011

Thesis for the Degree of Master of Science

Resource allocation – a numerical study

Christoffer Strömberg

Department of Mathematical Sciences
Chalmers University of Technology and Gothenburg University

SE-412 96 Göteborg, Sweden
Göteborg, November 2011

Mathematical Sciences
Göteborg 2011

Abstract

We consider the performance of the most important algorithms for solv-
ing the continuous, separable, differentiable and convex resource allocation
problem with a singly resource constraint and lower and upper bounds on
the variables. We take advantage of earlier studies to modify the relaxation
algorithm such that it theoretical performs better than the earlier relaxation
algorithms. In the numerical study we consider large scale problems and we
compare four relaxation algorithms whereof our modified algorithms per-
form best, and four breakpoint algorithms whereof a generalization of an
algorithm applied on the quadratic knapsack problem performs best. We
finish up with comparing the best performing relaxation algorithm, break-
point algorithm and a quasi-Newton method. We conclude that our modi-
fication of the relaxation algorithm performs best in most cases. Moreover,
the result implies that the practical time complexity for the breakpoint al-
gorithm and the relaxation algorithm is linear.

Acknowledgments

Thanks to my tutor Michael Patriksson for advices, guidance and music.
Thanks to my dearest Sanna Larsson for endurance, care and love . Thanks
to Daniel Johansson for motivation and puns. Thanks to Svante for fire-
works and guitar solos. Thanks to friends, family, Pink Floyd, Lou Reed,
Steinbeck, Söderberg, Chalmers and animals.

Contents

1 Introduction 5

1.1 Objective . 6
1.2 Motivation . 6
1.3 Limitations . 8

2 Algorithms 9

2.1 Basic properties . 9
2.1.1 Inequality constraint 10
2.1.2 Equality constraints . 13
2.1.3 The pegging process 13

2.2 Relaxation algorithms . 16
2.2.1 The concept of relaxation algorithms 17
2.2.2 Algorithm: Primal determination with Implicit eval-

uation of the Relaxed problem (PIR) 21
2.2.3 Algorithm: Dual determination with Explicit evalua-

tion of the Relaxed problem (DER) 22
2.2.4 Algorithm: Dual determination with Implicit evalua-

tion of the Relaxed problem (DIR) 23
2.2.5 Algorithm: Dual determination modification with blended

evaluation of the Relaxed problem (DBR) 24
2.2.6 Convergence of the relaxation algorithms 25

2.3 Breakpoint algorithms . 29
2.3.1 The concept of breakpoint algorithms 29
2.3.2 Algorithm: Relax Upper bounds and Sort lower Break-

points (RUSB) . 31
2.3.3 Algorithm: Sort Breakpoints (SB) 33
2.3.4 Algorithm: Median search of Breakpoints (MB) . . . 34
2.3.5 Algorithm: Modified Median search of Breakpoints

(MMB) . 35
2.4 Numerical methods . 37

2.4.1 Zenios’ and Nielsen’s algorithm (ZN) 37
2.4.2 Issues with approximal solutions 39

2.5 Determination of the primal and dual variables 40

3 Method for evaluation of algorithms 41

3.1 Problem set . 41
3.2 Set up of problem instances 43
3.3 Design of problems . 44
3.4 Performance profiles . 44

3

3.5 Program language, computer and code 45

4 Computational experiments 46

4.1 Relaxation methods . 46
4.1.1 PIR vs DIR . 46
4.1.2 Explicit vs implicit evaluation 47

4.2 Breakpoint methods . 49
4.2.1 RUSB vs SB . 49
4.2.2 Sorting vs Median search 50
4.2.3 MBvsMMB . 52

4.3 A final comparison between breakpoint, quasi-Newton and
relaxation methods . 53

4.4 Future work . 57
4.5 Conclusion . 58

A CPU-times for the numerical experiments 63

A.1 The theory of search problem 63
A.2 The quadratic problem . 65
A.3 The stratified sampling problem 67
A.4 The negative entropy problem 69
A.5 The sampling problem . 71

4

1 Introduction

In this thesis the most successful algorithms for solving a separable, convex,
continuous and differentiable resource allocation problem with a single in-
equality or equality constraint are evaluated. A set of common objective
functions are set up and an exhaustive evaluation is made of the algorithms.

The problem formulated as in the survey [Pat08], that is the origin of this
approach: Let φj : R → R and gj : R → R be convex and differentiable.
Moreover, let b ∈ R and −∞ ≤ lj < uj ≤ ∞. Consider the problem:

minimize
x

φ(x) :=
n
∑

j=1

φj(xj), (1a)

subject to g(x) :=
n
∑

j=1

gj(xj) ≤ b, (1b)

lj ≤ xj ≤ uj, j = 1, ..., n. (1c)

We also consider the similar problem, where the inequality of constraint
(1b) is replaced by equality, i.e.

minimize
x

φ(x) :=
n
∑

j=1

φj(xj), (2a)

subject to g(x) :=
n
∑

j=1

ajxj = b, (2b)

lj ≤ xj ≤ uj, j = 1, ..., n, (2c)

where a 6= 0 and of the same sign. We assume that there exist a solution
and that it is bounded such that −∞ < φ∗ < ∞. We define J := {1, 2, ..., n}.

Section 1 considers the background of the thesis and the importance of
having access to fast algorithms solving the resource allocation problems
(1) and (2). The most important earlier works which motivate this thesis are
outlined.

Section 2 described the necessary theory behind the algorithms. First,
the essential theory of Lagrange relaxation and the Karush–Kuhn–Tucker
(KKT) conditions are briefly treated. This follows by the concepts of relax-
ation algorithms, four relaxation algorithms are posted. Further, the con-
cepts of breakpoint algorithms are described and primary four versions of
breakpoint algorithms are posted. Finally, we post a quasi-Newton method
for solving problem (2).

5

Section 3 describes the procedure for the numerical experiments; the
test problem set is specified. Methods for evaluate performance of similar
algorithms in earlier studies are reviewed and a performance profile is de-
fined. We also specify the computer language and the computer used in the
numerical experiments.

In Section 4, we show the results from the numerical experiments. The
structure is such that, first we compare the relaxation algorithms. Second we
compare the breakpoint algorithms and third we compare the best perform-
ing relaxation algorithm, the best performing breakpoint algorithm and the
quasi-Newton method. Finally we give some hints of future work and make
an overall conclusion.

In Appendix A, we show the cpu-times from the numerical experiments
of the best performing algorithms.

1.1 Objective

This thesis have its origin in Patriksson’s survey on the continuous nonlin-
ear resource allocation problem [Pat08]. Since the first algorithm reported
in 1957 ([CAA57]), many algorithms for solving the singly constrained re-
source allocation problem have been proposed, referring to the significant
bibliography in [Pat08]. Many of these might be out of date in the sense of
computational time and there are algorithms that have been ignored or for-
gotten. Hence, the objective is to evaluate and develop the most important
algorithms in the bibliography of [Pat08], of course we also consider articles
published after the publication of [Pat08]. From the evaluation we establish
the best performing algorithm solving problems (1) and (2).

1.2 Motivation

The separable, convex, continuous and differentiable resource allocation
problem with a singly resource constraint is very common and occurs in
many different areas, e.g. search theory [Koo99], economics [Mar52], strat-
ified sampling [BRS99], inventory systems [MaK93] and queuing manufac-
turing networks[BiT89]. Further, the continuous resource allocation prob-
lem occurs as subproblem in algorithms that effectively solve the integer re-
source allocation problem [BrS02], [IbK88, p.p. 72-75]. Moreover, problem
(1) and (2) can be used as a subproblem when solving resource allocation
problems with more than one resource constraint [FeZ83]. Also, problem
(1) and (2) are used as a subproblem to solve (1) and (2) with a nonsepara-
ble objective function φ [DSV07].

6

Efficient algorithms are required, since the problems (1) and (2) often
are very large and in the case where the problems are used as subproblems,
it has to be resolved several times. Next, a naive example clarifies the com-
plications that occur when a problem grows large.

Example 1. Suppose we want to search for a treasure. We know that the
treasure is buried on one of n islands. Additionally, we know that the trea-
sure is on island j with a specific probability mj and our only constraint is
that we have an excavator with petrol for b days. If we search xj days on
island j we will find the treasure with the probability 1− e−bjxj where bj de-
scribes the terrain on island j (the difficulty of finding the treasure on island
j). With this information the problem may be stated as follows:

maximize
x

n
∑

j=1

mj(1 − e−bjxj), (3a)

subject to
n
∑

j=1

xj = b, (3b)

0 ≤ xj ≤ uj, j = 1, 2, ..., n. (3c)

where uj is the time for exploring the entire island j. This problem is easily
solved with Matlab by the instrinct function fmincon. But when n grows
large the CPU-time tends to be large. Table 1 shows CPU-time for fmincon
(Setup to use interior-point) and the CPU-time for a simple implementation
of the classical Bitran–Hax–algorithm, [BiH81].

n CPU-time Bitran Hax [s] CPU-time fmincon [s]

100 0.00042 0.47
200 0.00062 1.62
300 0.00092 2.96
400 0.00066 5.84
500 0.00084 9.55
1000 0.0012 50.74

Table 1: CPU-time for fmincon and Bitran–Hax–algorithm [BiH81] imple-
mented in Matlab. Each CPU-time reported is the mean value of 5 com-
putations of problem (3). The parameters aj and bj were chosen randomly
with Matlabs function rand() and b = 1.

From Table 1 it is realized that Matlab’s predefined function fmincon
solves problem (3) relatively slow. Moreover, while Bitran’s and Hax’s al-
gorithm gives the optimal solution, fmincon only gives an approximal solu-
tion.

7

(fmincon uses an interior point method that standardize the inequality
constraints by adding a slack variable and add a penalty function to the
objective. Then fmincon tries to fulfill the optimality conditions (KKT) by
linearization of the KKT–conditions (Newton step). If this do not succeeds
fmincon uses a conjugate gradient method, i.e. the approximated function
is approximated by a quadratic function and the constraint are linearized in
a trust region.)

Many numerical studies in the field of resource allocation problem has
been done, for example see [KoL98], [NiZ92], [Kiw07], [BiH81], [Kiw08],
[Kiw08b] and [RJL92]. Beside [Kiw08], [Kiw08b] and [Kiw07] where the
quadratic knapsack problem is studied, none of the earlier approaches stud-
ies the large scaled version of problem (1) and (2). And there are, especially
two algorithms [Ste01], [NiZ92, Section 1.4] that according to the authers
are very promising that have not been evaluated properly for problems (1)
and (2). Hence, a review of these two algorithms is needed. Moreover, only
one earlier study [KoL98] evaluate different kind of percentage of the so-
lution that equals the lower or upper bounds (see Section 3.2), and this is
only done for n = 10, 000. From this we conclude that more numerical ex-
periments is needed to explore the algorithms for solving problems (1) and
(2).

1.3 Limitations

For the algorithms, we assume that the dual variable can be found in a closed
form. If that is not the case we need to implement a numerical method in
some of the steps e.g. a Newton method. We only consider customized algo-
rithms for the problem in hand since we assume that they performs better,
in the sense of CPU-time, than more general algorithms.

Due to time, we consider five different objective functions φ in the nu-
merical study. For all problems in the problem set we consider linear re-
source constraints since a non-linear resource constraint is not valid for
problem (2) if we want it to be convex.

8

2 Algorithms

The first article which considering customized algorithms for the continuous
resource allocation problem was published 1957, [Pat08]. Since then, sev-
eral algorithm have been developed for solving special cases of problem (1)
and (2) especially with the linear resource constraint gj(xj) = xj . The publi-
cation of such a huge amount of articles concerning the resource allocation
problem makes perfect sense since a small modification might imply a great
improvement, concerning to CPU-time etc. Many of the algorithms are very
similar, but there are mainly three fundamental algorithms, namely;

• Breakpoint methods; from the lower and upper bounds (1c) or (2c), a
set of breakpoints for the dual variable can be determined. From the
optimality conditions and the breakpoints, it is possible to determine
if a variable equals the lower or upper bound or not. So by a search
among the breakpoints it is possible to find an optimal solution.

• Relaxation methods; for problem (1) or (2), the lower and upper bounds
(1c) or (2c) are relaxed. The relaxed problem is solved and the lower
and upper bounds are considered again. If the optimality conditions
are satisfied, the solution is optimal; otherwise we fix either the vio-
lated lower or upper bounds and resolve the relaxed problem.

• Numerical methods; in this approach a Newton-like linesearch method
is applied; The resource constraint (1b) or (2b) is evaluated as a func-
tion of the dual variable. And since the dual variable belongs to R, it is
possible to apply a linesearch to find an approximal optimal solution.

In Section 2.1, we introduce some essential properties for the problems
(1) and (2), the KKT conditions are posted and from these an optimal solu-
tion is proposed.

Section 2.2, features the relaxation algorithm. Two algorithms similar to
earlier published algorithms and two modifications of these are post.

Section 2.3, contains mainly four breakpoint algorithms.
In Section 2.4, we present a quasi-Newton method for solving problem

(2). This method have been successful for the quadratic case in parallel
computations [NiZ92].

2.1 Basic properties

The analysis of problems (1) and (2) is quite similar, but there are some
fundamental difference that will affect the algorithms for each problem. In

9

Section 2.1.1 we treat the inequality problem i.e. problem (1) and in Section
2.1.2, we briefly point out what differs for the equality problem i.e. problem
(2).

2.1.1 Inequality constraint

To begin with consider the Lagrange function of problem (1):

L(x, µ, ρ, λ) =
∑

j=1

φj(x)+µ

(

∑

j=1

gj(xj) − b

)

+
∑

j=1

ρj(lj−xj)+
∑

j=1

λj(xj−uj),

where µ ∈ R+ and ρ, λ ∈ Rn
+ are the dual variables associated with con-

straint (1b) and (1c), respectively. The Lagrange multiplier refers µ∗, ρ∗ and
λ∗ are defined for the optimal solution φ∗ such that φ∗ ≥ infx∈X L(x, µ∗, ρ∗, λ∗).
Hence, instead of finding a solution to problem (1) we may find a lower
bound to φ∗ due to the Lagrangian relaxation of the problem, that is to

minimize
x

L(x, µ∗, ρ∗, λ∗). (4)

We need to find the optimal dual variables µ∗, ρ∗ and λ∗. We introduce the
Lagrangian dual function q(µ, ρ, λ) := minx∈Rn L(x, µ, ρ, λ) and the dual
problem takes the form:

maximize
µ≥0; ρ,λ≥0n

q(µ, ρ, λ). (5)

Further, if we assume that there exists a point x0 to problem (1) such that

g(x0) < 0 (Slater′s CQ)

holds then there exists an optimal solution q∗ to the dual problem (5) such
that φ∗ = q∗. This follows from the convexity of the problem and the as-
sumption that the optimal solution of problem (1) is bounded [AEP05, The-
orem 5.45].

However, we need to find the solution of problem (4) and we know from
fundamental calculus that if the derivative of a convex function equals zero
we have found an optimum. In other words we want the gradient for the
primal and dual variables in L(x, µ, ρ, λ) to equal zero. The optimality con-
ditions for L(x, µ, ρ, λ) can be stated as

φ′
j(xj) + µg′

j(xj) − ρj + λj = 0, for j = 1, 2, ..., n, (6a)

µ

(

∑

j=1

gj(xj) − b

)

= 0, (6b)

λj(xj − uj) = 0, for j = 1, 2, ..., n, (6c)

ρj(lj − xj) = 0, for j = 1, 2, ..., n. (6d)

10

Additional, we know from the dual problem (5) and primal problem (1) that

µ ∈ R+, (7a)

ρ, λ ∈ R
n
+, (7b)

∑

j=1

gj(xj) ≤ b, (7c)

lj ≤ xj ≤ uj, for j = 1, 2, ..., n. (7d)

The optimality conditions (6a)–(6d) and the feasibility conditions (7a)–(7d)
are in fact the KKT conditions for problem (1). If a convex problem is
considered, the KKT conditions are sufficient for global optimality [AEP05,
Theorem 5.45].

Assume first that µ>0, then constraint (7c) must hold with equality ac-
cording to (6b). Without loss of generality we assume that lj < uj since if
lj = uj we can set x∗

j = lj = uj and reduce the problem. The optimality
conditions (6a)–(6d) and (7a)–(7d) left us with three very interesting cases:

First, suppose that lj < xj < uj ; then, for conditions (6c) and (6d) to
hold we have that ρj = λj = 0. From condition (6a), we determine µ such
that

µg′
j(xj) = −φ′

j(xj) (8)

holds. Notice that if we can fulfill condition (7c) with equality, all the KKT
conditions (6a)–(6d) and (7a)–(7d) are fulfilled.

Second, suppose now that xj = lj , then (6c) implies that λj = 0 must
hold. Assume that ρj ∈ R+; From (6a), we have that

0 ≤ ρj = φ′
j(lj) + µg′

j(lj). (9)

Hence,
µ∗gj(lj) ≥ −φ′

j(lj). (10)

Similar to above, if we can fulfill condition (7c) with equality, all the KKT
conditions (6a)–(6d) and (7a)–(7d) are fulfilled.

Finally, assume that xj = uj , then (6d) implies that ρj = 0 must hold.
Assume that λj ∈ R+; From (6a), we then have that

0 ≥ −λj = φ′
j(uj) + µg′

j(uj). (11)

Hence,
µ∗gj(uj) ≥ −φ′

j(uj). (12)

Again, if we can fulfill condition (7c) with equality, all the KKT conditions
(6a)–(6d) and (7a)–(7d) are fulfilled.

11

To summarize, let x̄j(µ) be the solution of (6a) when ρj and λj = 0. Fur-
ther, if we can find µ∗ such that

∑

j=1 gj(xj(µ
∗)) = b where xj(µ) is defined

as the solution of (4) for a given µ, then we can find the optimal solution
from

xj(µ) =







x̄j(µ), if µg′
j(x̄j) = −φ′

j(x̄j),
lj, if µg′

j(lj) ≥ −φ′
j(lj),

uj, if µg′
j(uj) ≤ −φ′

j(uj),
(13)

ρj(µ) =

{

φ′
j(lj) +j (lj), if µg′

j(lj) ≥ −φ′
j(lj),

0, if µg′
j(lj) < −φ′

j(lj),
(14)

λj(µ) =

{

−φ′
j(uj) − µgj(uj), if µg′

j(uj) ≤ −φ′
j(uj),

0, if µg′
j(uj) > −φ′

j(uj),
(15)

or

xj(µ) =







x̄j(µ), if µ = −φ′
j(x̄j)/g

′
j(x̄j),

lj, if µ ≥ −φ′
j(lj)/g

′
j(lj),

uj, if µ ≤ −φ′
j(uj)/g

′
j(uj),

(16)

ρj(µ) =

{

φ′
j(lj) + µgj(lj), if µ ≥ −φ′

j(lj)/g
′
j(lj),

0, if µ < −φ′
j(lj)/g

′
j(lj),

(17)

λj(µ) =

{

−φ′
j(uj) − µgj(uj), if µ ≤ −φ′

j(uj)/g
′
j(uj),

0, if µ > −φ′
j(uj)/g

′
j(uj).

(18)

Theorem 1. If µ∗ > 0 for problem (1) then xj(µ), ρj(µ) and λ(µ) determined
from (16)–(18) satisfy all KKT conditions besides (6b) and (7c).

(Equivalently: For problem (2), xj(µ), ρj(µ) and λ(µ) determined from
(16)–(18) satisfy all KKT conditions besides (6b) and (7c).)

Proof. Conditions (6a), (6c), (6d), (7a), (7d) is trivially satisfied from the
discussion above. Consider condition (7b), we start with showing that ρj ∈
R+ for all j = 1, 2, ..., n. If µ < −φ′

j(lj)/g
′
j(lj) then ρj = 0 from (17). If

µ ≥ −φ′
j(lj)/g

′
j(lj) then from (17) we have ρj = φ′

j(lj) + µgj(lj) ≥ φ′
j(lj) −

φ′
j(lj) = 0 from (14). The proof for λj ∈ J for all j = 1, 2, ..., n is similar.

So the problem is reduced to finding µ such that
∑n

j=1 gj(xj(µ)) = b,
assumed that µ∗ > 0. This is in fact nothing else than to solve the dual
problem (5). To see this consider the derivative of q

q′(µ) =
∑

j=1

gj(xj(µ)) − b. (19)

If we like to determine xj(µ) from (16) several times for different µ. It
would be a waste of time to determine φ′

j(lj)/g
′
j(lj) and φ′

j(uj)/g
′
j(uj) every

time. So it make sense to define a set of lower and upper breakpoints such
that:

12

Definition 2 (Lower breakpoints). vl =
{

−φ′
j(lj)

g′j(lj)

}

j=1,2,...,n

Definition 3 (Upper breakpoints). vu =
{

−φ′
j(uj)

g′j(uj)

}

j=1,2,...,n

Assume now that µ = 0 is feasible, than we note that condition (7c) do not
have to be fulfilled with equality.

Theorem 4. If µ = 0 is feasible for problem (1), then µ∗ = 0 is optimal.

Proof. Assume µ = 0 is feasible i.e. we have x(µ) such that
∑

j=1 gj(xj(µ)) ≤
b. Hence, (6b), (7a) and (7c) are satisfied trivially. Conditions (6a), (6c), (6d)
and (7d) are satisfied from (13), (14) and (15).

Hence, we show that ρj, λj ∈ R+ for all j: For xj > lj we have ρj =
0 ∈ R+. For xj = lj we have from (14) that µ∗g′

j(lj) = 0 ≥ −φ′
j(lj) implies

0 ≤ φ′
j(lj) = ρj ∈ R+. Similar we can show that λj ∈ R+ for all j.

In Section 2.2.2, we will see that it is possible to determine the optimal
solution x∗ in a closed form for some special cases of problem (1).

2.1.2 Equality constraints

Let us now consider problem (2) where the inequality of the primal con-
straint is exchanged by an equality. For the problem to be convex, the re-
source constraint (2b) have to be affine such that constraint (7c) becomes:

∑

j∈J

gj(xj) :=
∑

j∈J

ajxj.

Additional, we will assume that ther exists a point x0 such that
∑

j∈J
ajxj =

b (Slater’s CQ) holds. Beside the resource constraint, the Lagrangian and
the KKT conditions will take the same form as in section 2.1.1 but with one
important difference, we will allow µ < 0 i.e.

µ ∈ R.

2.1.3 The pegging process

Assume that we have a lower µl and an upper limit µu for the optimal dual
variable µ such that µl ≤ µ∗ ≤ µu. Define J− := {j : µl ≥ −φ′

j(lj)/g
′
j(lj)

for all j ∈ J} and J+ := {j : µu ≤ −φ′
j(uj)/g

′
j(uj) for all j ∈ J}. Let

13

J
k := J \ {J− ∪ J+} and let bk = b −

∑

j∈J−
gj(lj) −

∑

j∈J+
gj(uj). Now we

can define a subproblem of problem (1) such that

minimize
x

φ(x) :=
∑

j∈Jk

φj(xj), (20a)

subject to g(x) :=
∑

j∈Jk

gj(xj) ≤ bk, (20b)

lj ≤ xj ≤ uj, j ∈ J
k. (20c)

Similarly we can define a subproblem of problem (2)

minimize
x

φ(x) :=
∑

j∈Jk

φj(xj), (21a)

subject to g(x) :=
∑

j∈Jk

ajxj = bk, (21b)

lj ≤ xj ≤ uj, j ∈ J
k. (21c)

Consider problem (20) and assume that µ∗ > 0 which, from Section 2.1.1,
implies that constraint (1b) has to be fulfilled with equality. Hence, the
reasoning for problem (20) will be analogue to problem (21) besides we
allow µ < 0 for problem (21).

For any given dual variable µk we can determine the primal solution
x

k of problem (20) from (16). We know from Section 2.1.1 that all KKT
conditions beside the resource constraint (7c) is satisfied. Substituting x

k

into the resource constraint leaves us with 3 cases, namely

∑

j∈Jk

gj(x
k
j) = bk, (22a)

∑

j∈Jk

gj(x
k
j) < bk, (22b)

∑

j∈Jk

gj(x
k
j) > bk. (22c)

Evaluate the optimality from (22a)–(22c) will be referred to as explicit eval-
uation.

If (22a) is fulfilled for x
k than all KKT conditions are met and the opti-

mal solution x
∗ = x

k. On the other hand, what if (22b) is fulfilled? Clearly
x

k is not feasible but we know that x∗ is such that
∑

j∈Jk gj(x
∗
j) >

∑

j∈Jk gj(x
k
j).

14

But the only thing we know about gj is that it is convex and differentiable.
That is not enough since gj can be increasing in one interval and decreasing
in another, e.g. gj(xj) = x2

j . Hence, we need gj to be either monotonically
increasing or monotonically decreasing. For problem (1), Bretthauer and
Shetty [BrS95] considered four cases equivalent to:

Case 1: For all j ∈ J; gj is decreasing and −φj(xj)/gj(xj) is increasing in xj .

Case 2: For all j ∈ J; gj is increasing and −φj(xj)/gj(xj) is decreasing in xj .

Case 3: For all j ∈ J; gj is decreasing and −φj(xj)/gj(xj) is decreasing in
xj .

Case 4: For all j ∈ J; gj is increasing and −φj(xj)/gj(xj) is increasing in xj .

The property that −φj(xj)/gj(xj) is increasing in xj implies that x(µ) deter-
mined from (16) is nondecreasing and vice versa.

Remark 1. For problem (2), only Cases 1 and 2 are feasible since gj(xj) =
ajxj where aj < 0 for all j respectively aj > 0 for all j. Cases 3 and 4 are
not feasible for problem (2) since if gj(xj) = ajxj where aj < 0 for all j and
xj(µ) is decreasing then φj must be concave since µ(xj) = −φ′

j(xj)/aj , but
φ′ is convex.

If we assume that one of the Cases 1, 2, 3 or 4 holds, we can state the fol-
lowing theorems about pegging. First, define J

k
+ := {j : µk ≤ −φ′

j(uj)/g
′
j(uj)

for j ∈ J
k}.

Theorem 5. If Case 2 holds for problem (1), if µ∗ > 0 and if (22b) holds,
then we can peg all x∗

j = uj for j ∈ J
k
+.

(Equivalently; If Case 2 holds for problem (2) and if (22b) holds, then
we can peg all x∗

j = uj for j ∈ J
k
+.)

Proof. From (22b) we have that
∑

j∈Jk gj(xj(µ
k)) < bk. From Case 2, gj is

increasing and xj(µ
k) is nonincreaing for all j which implies that gj(xj(µ))

is nonincreasing in µ for all j. Hence, we have that µk ≥ µ∗ which implies
that xk

j ≤ x∗
j for all j since xj(µ) is nonincreasing in µ for all j. Hence, for

j ∈ J
k
+, we can peg xk+1

j = uj = x∗
j .

Since we know that the optimal solution x∗
j = uj for j ∈ J

k
+, we can

reduce problem (20) such that J
k+1 = J

k \ J
k
+. Note that we have used a

part of the resource bk, hence bk+1 = bk −
∑

j∈Jk
+

gj(uj).

Further, define J
k
− := {j : µ∗ ≥ −φ′

j(uj)/g
′
j(uj) for j ∈ J

k}. We formu-
late the following theorem similar to Theorem 5:

15

Theorem 6. If Case 2 holds for problem (1), if µ∗ > 0 and if (22c) holds,
then we can peg all x∗

j = lj for j ∈ J
k
−.

(Equivalent; if Case 2 holds for problem (2) and if (22c) holds, then we
can peg all x∗

j = lj for j ∈ J
k
−.)

Proof. The proof is similar to the proof of Theorem 5.

Similarly to above we know that the optimal solution x∗
j = lj for j ∈ J

k
−.

Hence, we can reduce problem (20) such that J
k+1 = J

k \ J
k
− and bk+1 =

bk −
∑

j∈Jk
−

gj(lj).

An analogue reasoning will lead to the following theorems which can be
proved similar to Theorem 5.

Theorem 7. If Case 1 holds for problem (1), µ∗ > 0 and if (22b) holds, then
we can peg all x∗

j = lj for j ∈ J
k
−.

Theorem 8. If Case 1 holds for problem (1), µ∗ > 0 and if (22c) holds, then
we can peg all x∗

j = uj for j ∈ J
k
+.

If Case 3 or 4 holds, Bretthauer and Shetty establish that it is possible to
find a closed form of the optimal solution of problem (1). They states the
following theorem, (see [BrS02, Proposition 10]):

Theorem 9. (i) If Case 3 holds, then the optimal solution to problem (1) is
x∗

j = uj for all j ∈ J.
(ii) If Case 4 holds, then the optimal solution to problem (1) is x∗

j = lj for
all j ∈ J.

2.2 Relaxation algorithms

The first recursive relaxation algorithm [San71] was published 1971 [Pat08]
by Sanathan. The algorithm consider problem (2) with a strictly convex
and differentiable objective function and linear resource constraint g(x) :=
∑n

j=1 aixi = b. However, Sanathan’s algorithm includes both sorting of
2n breakpoints and an iterative solving of problem (2). Bitran and Hax
[BiH81] presented a relaxation algorithm that had no need for sorting. They
considered problem (2) with φj convex and differentiable and gj(xj) = xj

for j = 1, 2, ..., n.
In Section 2.1.3, we post the fundamental concept of relaxation alorithms.

In Section 2.2.2, we post an algorithm similar to Bretthauer’s and Shetty’s
algorithm in [BrS02, Section 2]. In Section 2.2.3 we post an algorithm sim-
ilar to the algorithm in [Ste01]. In Sections 2.2.4 and 2.2.5, we present two
new modifications of the relaxation algorithm.

16

2.2.1 The concept of relaxation algorithms

For problem (20), we assume that µ∗ > 0 which, from Section 2.1.1, implies
that constraint (20b) has to be fulfilled with equality. The reasoning for
problem (20) will be analogue to problem (21) besides we allow µ < 0 for
problem (21).

The idea behind a relaxation algorithm is to solve problem (20) with
relaxed lower and upper bounds. If the solution of the relaxed problem is
a feasible solution for (20) then it is optimal for problem (20). Otherwise
we peg variables that violate the lower or upper bounds and resolves the
relaxed problem. The relaxed problem is described by:

minimize
x

φ(xk) :=
∑

j∈Jk

φj(x
k
j), (23a)

subject to g(xk) :=
∑

j∈Jk

gj(x
k
j) ≤ bk, (23b)

Since we assume that µ∗ > 0, the solution of problem (23) is found from the
KKT conditions:

φ′
j(xj) + µg′

j(xj) = 0 j ∈ J
k, (24a)

µ





∑

j∈Jk

gj(x
k
j) − b



 = 0, (24b)

µ ∈ R+, (24c)
∑

j∈Jk

gj(x
k
j) ≤ b. (24d)

Let x̂k
j (µ

k) denote the optimal solution of the relaxed problem (23). Next
we consider the lower and upper bounds again. So for a moment we ignore
the resource constraint and evaluate x

k for the following expressions similar
to (16)–(18);

x∗
j(µ

∗) =







x̂j(µ
∗), if lj < x̂j(µ

∗) < uj,
lj, if x̂j ≤ lj,
uj, if x̂j ≥ uj,

(25)

ρ∗
j(µ

∗) =

{

φ′
j(lj) + µ∗gj(lj), if x̂j ≤ lj,

0, if x̂j > lj,
(26)

λ∗
j(µ

∗) =

{

−φ′
j(uj) − µ∗gj(uj), if x̂j ≥ uj,

0, if x̂j < uj.
(27)

17

One can easily show that x∗
j , ρ∗

j and λ∗
j defined by (25)–(27) satisfies all the

KKT condition for problem (20) beside condition (7c) and (6b), for proof
see [BrS95, proposition 1-5]. It is also possible to see that relation (16) is
equivalent to (25) by letting Φj(xj) := φ′

j(xj)/g
′
j(xj) operate on the condi-

tions in (25). It follows from Φj(x̂j(µ)) = −µ, Φj(lj) = φ′
j(lj)/g

′
j(lj) and

Φj(uj) = φ′
j(uj)/g

′
j(uj).

To check if the solution generated by (25) is feasible for problem (20), we
have to evaluate the resource constraint. This can be done from the explicit
evaluation (22a)–(22c) but for relaxation algorithms a similar method to
evaluate x

k is used frequently. For problem (23), we note that x̂
k will satisfy

the resource constraint with equality. When we determine x
k from x̂

k we
set xj to either lj or uj if x̂j violate the lower or upper bound and if not
xj = x̂j . Hence, if we assume that gj is either decresing for all j ∈ J

k or
increasingfor all j ∈ J

k, we can evaluate the resource constraint by consider
the summation of the violated lower and upper bounds. Define ∆k and ∇k

such that

∆k =
∑

j∈Jk
+

(

gj(x̂
k
j) − g(uj)

)

, (28a)

∇k =
∑

j∈Jk
−

(

g(lj) − g(x̂k
j)
)

, (28b)

where J
k
+ = {j : x̂k

j > uj for j ∈ J
k} and J

k
− = {j : x̂k

j < lj for j ∈ J
k}. We

can then evaluate x
k from

∆k = ∇k, (29a)

∆k > ∇k, (29b)

∆k < ∇k. (29c)

Evaluate the optimality from (29a)–(29c) will be referred to as implicit eval-
uation.

Theorem 10. If gj is monotonically increasing for all j ∈ J
k or if gj mono-

tonically decreasing for all j ∈ J
k, then the explicit evaluation (22a)–(22c),

is equivalent to the implicit evaluation (29a)–(29c) i.e. (22a) ⇔ (22a), (29b)
⇔ (22b) and (29c) ⇔ (22c).

18

Proof. First assume that for all j ∈ J
k, gj is increasing. Then we have:

∑

j∈Jk

gj(x
k
j) =

∑

j∈Jk\{Jk
+
∪Jk

−
}

gj(x̂
k
j) +

∑

j∈Jk
−

{

gj(lj) − gj(x̂
k
j) + gj(x̂

k
j)
}

+
∑

j∈Jk
+

{

gj(uj) − gj(x̂
k
j) + gj(x̂

k
j)
}

=
∑

j∈Jk\{Jk
+
∪Jk

−
}

gj(x̂
k
j) +

∑

j∈Jk
−

{

gj(lj) − gj(x̂
k
j)
}

+
∑

j∈Jk
−

gj(x̂
k
j)

−
∑

j∈Jk
+

{

gj(uj) − gj(x̂
k
j)
}

+
∑

j∈Jk
+

gj(x̂
k
j)

=
∑

j∈Jk

gj(x̂
k
j) + ∇k − ∆k

=bk + ∇k − ∆k

where the last equality follows from the fact that x̂
k is the solution of prob-

lem (23). Hence, x̂
k must satisfy the resource constraint (23b). From (28a)

and (28b) we know that ∆k,∇k ≥ 0 since gj is increasing. Hence, if ∆k = ∇k

then (22a) holds, if ∆k > ∇k then (22b) holds, and if ∆k < ∇k then (22c)
holds. The proof for gj decreasing for all j ∈ J is similar.

Example 2. Consider the quadratic knapsack problem with the following
parameters:

minimize
x

φ(x) := 4x2
1 +

1

2
x2

2 +
1

2
x2

3 − 2x2 − 2x3,

subject to
3
∑

j=1

gj(xj) = x1 + x2 + 2x3 = 4,

0.5 ≤ x1 ≤ 2,

0.5 ≤ x2 ≤ 3,

0 ≤ x3 ≤ 1.

We relax the lower and upper bounds and search for the optimal solution to
the following problem;

minimize
x

φ(x) := 4x2
1 +

1

2
x2

2 +
1

2
x2

3 − 2x2 − 2x3,

subject to
3
∑

j=1

gj(xj) = x1 + x2 + 2x3 = 4.

19

From optimality condition (24a) we compute x̂(µ1);

x1 = −µ1/8,

x2 = 2 − µ1,

x3 = 2 − 2µ1.

To find µ1, we use the resource constraint;

3
∑

j=1

gj(xj) = x1 + x2 + −2x3

= −µ1/8 + 2 − µ1 + 2(2 − 2µ1)

= 6 −
41

8
µ1 = 4

which gives µ1 = 16/41. Hence x̂(µ1) = (−8/41, 65/41, 49/41). Now con-
sider the lower and upper bounds, from (25) we have x

1 = (0.5, 65/41, 1).
We evaluate the solution x

1 implicitly;

∇1 = 0.5 − (−8/41) = 57/82,

∆1 = 49/41 − 1 = 8/41

implies that ∆1 < ∇1 and since gj is increasing and x(µ) is decreasing in µ
we peg x∗

1 = 0.5. Moreover, we reduce the problem such that

minimize
x

φ(x) :=
1

2
x2

2 +
1

2
x2

3 − 2x2 − 2x3,

subject to
2
∑

j=1

gj(xj) = x2 + 2x3 = 4 − x∗
1 = 3.5.

Still, we have that x2 = 2 − µ2 and x3 = 2 − 2µ2. Hence,

2
∑

j=1

gj(xj) = x2 + 2x3

= 2 − µ2 + 2(2 − 2µ2)

= 6 − 5µ2 = 3.5.

This gives µ2 = 1/2 which implies that x̂(µ2) = (1.5, 1). Notice that non of
the bounds are violated, hence x̂(µ2) = x

2 = (1.5, 1), ∇k = 0 and ∆k = 0.
We have ∇ = ∆ which implies that we have found the optimal solution. We
summarize and concludes that the optimal solution x

∗ = (0.5, 1.5, 1).

20

2.2.2 Algorithm: Primal determination with Implicit evaluation of the Re-

laxed problem (PIR)

We assume that Case 1 in Section 2.1.3 holds for problem (1). We post an
algorithm for problem (1) which is similar to the algorithms [BrS02, Section
2]:

Step 0: (Check if inequality feasible)
If µ = 0 feasible, set µ∗ = 0 and determine x

∗ from (13).
Initialization: J

k = {1, 2, ..., n}, bk = b, k = 1
Iterative algorithm:

Step 1: (Solve the relaxed problem)
Find x̂k

j by solving problem (23).
Step 2: (Calculate reference)

Determine J
k
+ and J

k
− from (25) while

computing ∆k = αk
+ − βk

+ and ∇k = βk
− − αk

−.
Step 3: (Evaluate)

If ∆k > ∇k, go to Step 4.
If ∆k < ∇k, go to Step 5.
If ∆k = ∇k, Set x∗

j = lj for j ∈ J
k
−, x∗

j = uj for j ∈ J
k
+

and x∗
j = xk

j for j ∈ J \ {Jk
− ∪ J

k
+}, stop.

Step 4: (Peg lower bounds)
Set x∗

j = lj for j ∈ J
k
−, bk+1 = bk − βk

− and J
k+1 = J

k \ J
k
−

If J
k+1 = ∅ then stop, else k = k + 1 goto Step 1.

Step 5: (Peg upper bounds)
Set x∗

j = uj for j ∈ J
k
+, bk+1 = bk − βk

+ and J
k+1 = J

k \ J
k
+.

If J
k+1 = ∅ then stop else k = k + 1 goto Step 1.

We need to clarify some of the steps in the algorithm. In Step 1, we solve
x̂

k+1 from, or partly from x̂
k e.g. assume that φj = xj log(xj/aj −1) and gj =

xj , then xk+1
j = ajδ

k+1 where δk+1 = bk+1/
∑

j∈Jk+1 aj = bk+1/(ω−
∑

j∈Jk
±

aj),

where ω =
∑

j∈Jk aj and we use J
k
+ if the upper bound was pegged in itera-

tion k and J
k
− if the lower bound was pegged in iteration k. Similar update

of x
k+1
j for the quadratic knapsack problem is done in [RJL92, Section 3],

[BSS96] and [Kiw08b]. In Step 2, αk
± =

∑

j∈Jk
±

gj(x̂j), β
k
− =

∑

j∈Jk
−

gj(lj) and

βk
+ =

∑

j∈Jk
+

gj(uj).

As in [Kiw08b], our algorithm will stop if ∆k = ∇k while the algorithm
in [BrS02, Section 2] stops if J

k
− ∪ J

k
+ = ∅ but not if ∆k = ∇k. Moreover, in

Step 4 and 5, we peg the variables that violate the bounds and calculate bk

explicit while [BrS02] add the index j for the violated bounds to J− or J+

21

and calculates bk from b −
∑

j∈J−
gj(lj) −

∑

j∈J+
gj(uj).

According to Theorem 5 and 6, if Case 2 in Section 2.1.3 holds, Step 3 in
the algorithm is modified such that

Step 3’: (Evaluate)
If ∆k > ∇k, go to Step 5.
If ∆k < ∇k, go to Step 4.
If ∆k = ∇k, Set x∗

j = lj for j ∈ J
k
−, x∗

j = uj for j ∈ J
k
+

and x∗
j = xk

j for j ∈ J \ {Jk
− ∪ J

k
+}, stop.

From Theorem 9, if Case 3 holds for problem (1) then x∗
j = uj for all

j ∈ J or if Case 4 holds for problem (1) then x∗
j = lj for all j ∈ J.

Remark 2. For the equality problem (2) we allow µ < 0. Hence, the algo-
rithm for problem (2) will be similar to above beside we ignore Step 0.

Remark 3. In Step 1 we have to calculate x̂j from (24a) |Jk| times. In Step
2 we need to find xj from (25) which needs at most 2|Jk| comparisons . We
also have to calculate ∇ and ∆ which implies 2|Jk

− ∪ J
k

+| operations.

2.2.3 Algorithm: Dual determination with Explicit evaluation of the Re-

laxed problem (DER)

Stefanov [Ste01] invented an algorithm similar to the algorithm in Section
2.2.2 but instead of evaluate xk

j from the primal variables (25) he evaluated
it from the dual variable (16). The consequence is that we have to calculate

the breakpoints vl =
{

φ′
j(lj)

g′j(lj)

}

j∈J

and vu =
{

φ′
j(uj)

g′j(uj)

}

j∈J

before starting the

algorithm. To evaluate a solution x
k he uses the explicit evaluation (22a)–

(22c) instead of the implicit (29a)–(29c), see Section 2.1.3.
For the algorithm to hold Stefanov shows that the objective functions

φj have to be twice differentiable and convex and gj has to be twice differ-
entiable, convex, g′

j > 0 and of the same form for all j ∈ J. This is not
as general as in [BrS95]. Since Stefanov’s modification is equivalent to the
reasoning in Section 2.1.3, it can be shown to hold for the same four cases
presented in Section 2.1.3.

In the algorithm, we need to calculate the dual variable µk of the re-
laxed problem (23). This is done by substituting x̂(µk) from (24a) into
∑

j∈Jk gj(x
k
j) = bk.

In the spirit of [Ste01], we modify the algorithm in Section 2.2.2: Assume
that Case 1 in Section 2.1.3 holds, if case 2 holds we modify the algorithm
similar as in Section 2.2.2. Steps 0, 4 and 5 are similarly to the algorithm

22

in Section 2.2.2. The other steps and the initialization are modified in the
following way:

Initialization: J = {1, 2, ..., n}, k = 1, bk = b, calculate vl and vu.
Step 1: (Find the dual variable for the relaxed problem)

Find the optimal dual variable µk of problem (23).
Step 2: (Calculate reference)

Determine J
k
+ and J

k
− from (16) and calculate

g(µk) =
∑

j∈Jk\{Jk
+
∪Jk

−
} gj(xj(µ

k)) + β− + β+

Step 3: (Evaluate δ(µk))
If δ(µk) = bk stop.
If δ(µk) > bk go to Step 4.
If δ(µk) < bk go to Step 5.

Notice that with this modification we do not have to calculate x̂k
j for

j ∈ J
k in each iteration and we do not have to calculate xk

j for j ∈ J
k
− ∪ J

k
+.

This might save us some operations and hence cpu-time. However, we have
to calculate the optimal dual variable µk in each iteration and vl and vu once
in the initialization.

Remark 4. In Step 1 we need to find µk from problem (23). In Step 2 we
need at most 2|Jk| comparisons from (25) and we need to calculate xk

j for
j ∈ J

k \ {Jk

− ∪ J
k

+}. For the evaluation we need to calculate δ(µk) which
implies |Jk| operations.

2.2.4 Algorithm: Dual determination with Implicit evaluation of the Re-

laxed problem (DIR)

In the previous two sections we have seen two versions of relaxation algo-
rithms. We motivated the advantage of evaluate the dual variable rather
than the primal. Now we consider the evaluation of solution xk for the peg-
ging process. In Section 2.2.3, we use the explicit evaluation (22a)–(22c) of
x

k while in Section 2.2.2, we use implicit evaluation (29a)–(29c) of x
k. Sup-

pose now that we use implicit evaluation for the algorithm in Section 2.2.3,
then it is not neccecary to compute xk

j for j ∈ J
k \ {Jk

+ ∪ J
k
−}. This might be

a great advantage. Hence, we can modify the initialization and Steps 1 and
2 of the algorithm in Section 2.2.2 such that:

23

Initialization: J = {1, 2, ..., n}, k = 1, bk = b, calculate vl and vu.
Step 1: (Find the dual variable for the relaxed problem)

Find the optimal dual variable µk of problem (23).
Step 2: (Calculate reference)

Determine J
k
− and J

k
+ from (16) while computing

∆k = αk
+ − βk

+ and ∇k = βk
− − αk

−.

Note that we determine J
k
− and J

k
+ from (16) instead of from (25).

Remark 5. In Step 1 we need to find the optimal dual µk solution from
problem (23). In Step 2 we need at most 2|Jk| comparisons of (25) but we
only need to calculate x̂j(µ) for j ∈ {Jk

− ∪ J
k

+}. For the evaluation we need
to calculate ∇ and ∆ which implies 2|Jk

− ∪ J
k

+| operations.

2.2.5 Algorithm: Dual determination modification with blended evalua-

tion of the Relaxed problem (DBR)

Consider the implicit evaluation; We have to calculate ∇k and ∆k from (28a)
and (28b) i.e. ∇k =

∑

j∈Jk
−

gj(lj) −
∑

j∈Jk
−

gj(x̂
k
j) and ∆k =

∑

j∈Jk
+

gj(x̂
k
j) −

∑

j∈Jk
−

gj(uj) which implies 2P |Jk

−∪J
k

+| operations were P is an integer asso-

ciated with the number of operation it takes to determine gj(xj). Moreover
we have to determine x̂j for j ∈ J

k

− ∪ J
k

+ implies Q|Jk

− ∪ J
k

+| operations
were Q is an integer associated with the number of operation it takes to
determine xj(µ).

Further, consider the explicit evaluation; We have to calculate δ(µk) =
∑

j∈Jk\{Jk
+
∪Jk

−
} gj(xj(µ

k)) +
∑

i∈Jk
−

gj(lj) +
∑

i∈Jk
+

gj(uj) which implies P |Jk|

operations. Moreover we have to determine x̂j for j ∈ J
k\{Jk

−∪J
k

+} implies
Q|Jk \ {Jk

− ∪ J
k

+}| operations
Hence, if (P + Q)|Jk| < (2P + 2Q)|Jk

+ ∪ J
k
−| or equivalent |Jk| < 2|Jk

+ ∪
J

k
−| then there will be less operations to evaluate explicit in Step 2 and it

would be more successful to use the algorithm in Section 2.2.3. On the other
hand, if |Jk| > 2|Jk

+ ∪ J
k
−|, then there will be less operations if we use the

algorithm in Section 2.2.4. So, we propose a new algorithm that evaluate
the cardinalities of the sets J

k,Jk
+,Jk

−. From the cardinalities we make the
decision whether to use explicit or implicit evaluation in Step 2. Consider
the following modification of algorithm in Section 2.2.2:

24

Initialization: J = {1, 2, ..., n}, k = 1, bk = b, calculate vl and vu.
Step 1: (Find the dual variable for the relaxed problem)

Find the optimal dual variable µk of (23).
Step 1.1: (Implicit or explicit)

Determine J
k
+ and J

k
− from (16).

If |Jk| < 2|Jk
+ ∪ J

k
−| then continue with algorithm in 2.2.3

else continue with algorithm in 2.2.4.

It is worth noting that both methods in Sections 2.2.4 and 2.2.5 are pos-
sible to apply to the four cases of problems in Section 2.2.2.

2.2.6 Convergence of the relaxation algorithms

The proof for convergence of the algorithm in Section 2.2.2 was done by
Bretthauer and Shetty in [BrS02, Proposition 3-9] for the inequality prob-
lem (1). The proof for the equality problem (2) is similar to the one in
[BrS02] besides Theorem 13 (corresponding to Proposition 8 in [BrS02])
and we do not have to prove that µ∗ ≥ 0.

Let k∗ be the iteration where the algorithm terminates. Then the algo-
rithm in Section 2.2.2 (PIR) generates the following optimal solution for
problem (2):

µ = µk∗

= −φ′
j(x

k∗

j)/aj ∀j ∈ J
k (38a)

ρj = φ′
j(l

k∗

j) + µk∗

aj ∀j ∈ J
− (38b)

ρj = 0 ∀j ∈ J
k∗

∪ J
+ (38c)

λj = −φ′
j(u

k∗

j) − µk∗

aj ∀j ∈ J
+ (38d)

λj = 0 ∀j ∈ J
k∗

∪ J
− (38e)

xj = lj ∀j ∈ J
− (38f)

xj = uj ∀j ∈ J
+ (38g)

xj = xk∗

j ∀j ∈ J
k∗

(38h)

We prove that the optimal solution generated by PIR (38a)–(38h) satisfies
all the KKT-conditions (6a)–(6d) and (7b)–(7d) where (7c) has to be ful-
filled with equality. The stop conditions of the pegging algorithm will ensure
that condition (7c) is fullfilled which also implies that (6b) is fulfilled. From
the evaluation of xk

j , condition (7d) is satisfied.

Theorem 11. The solution generated by the pegging algorithm (38) satisfies
KKT–conditions (6c) and (6d).

25

Proof. (i) Consider j ∈ J
k∗

, this implies lj < xk∗

j < uj . From (38c) and (38e)
we have ρj = λj = 0 and it follows that KKT–conditions (6c) and (6d) are
satisfied.

(ii) Consider j ∈ J
+, this implies ρj = 0 and xk∗

j = uj from (38g). We
have xk∗

j −uj = 0 and from (38c), KKT–conditions (6c) and (6d) are satisfied.
(iii) Consider j ∈ J

−, proof is similar to (ii).

Theorem 12. The solution generated by the pegging algorithm (38) satisfies
KKT–condition (6a).

Proof. (i) Consider j ∈ J
k∗

, we have φ′
j(x

k∗

j) + µk∗

aj − ρj + λj = φ′
j(x

k∗

j) +
−ajφ

′
j(x

k∗

j)/aj −0+0 = 0 from (38a), (38c) and (38e) implies condition (6a)
is satified.

(ii) Consider j ∈ J
+, from (38c) and (38g) and (38d) we have φ′

j(x
k∗

j) +
µk∗

aj − 0+λj = φ′
j(uj)+µk∗

aj −φ′
j(uj)−µk∗

aj = 0, implies (6a) is satisfied.
(iii) Consider j ∈ J

−, proof is similar to (ii).

KKT–conditions (7b) is left to prove. To do this we formulate three lem-
mata similar to [BrS02, Proposition 5, 6 and 7]:

Lemma 1. For problem (2) evaluated by PIR:
(a) If ∇k > ∆k, then µk+1 ≥ µk

(b) If ∇k < ∆k, then µk+1 ≤ µk

Proof. We have aj > 0 for all j. First consider (a):
We know ∇k > ∆k so we want to peg the lower bounds such that xk

j = lj
for j ∈ J

k
−. We have

∑

j∈Jk\Jk
−

ajx̂
k
j = bk −

∑

j∈Jk
−

ajx̂
k
j ,

≥ bk −
∑

j∈Jk
−

ajl
k
j ,

= bk+1 =
∑

j∈Jk+1

ajx
k+1
j .

We also know that Jk\Jk
− = J

k+1, so we have
∑

j∈Jk+1 ajx̂
k
j ≥

∑

j∈Jk+1 ajx
k+1
j .

We have that aj > 0 which implies that there exist j0 ∈ J
k+1 such that

xk
j0
≥ xk+1

j0
. φj is convex implies that x̂j(µ) is decreasing in µ for all j which

implies that µ(x̂j) = −φ′
j(x̂j)/a

′
j is decreasing in x̂j for all j. This implies

µk = −φ′
j0

(xk
j0

)/aj0 ≤ −φ′
j0

(xk+1
j0

)/aj0 = µk+1. (40)

(b) is proved similar as (a).

26

Lemma 2. For problem (2) evaluated by PIR:

(a) If ∇k > ∆k and ∇i < ∆i for i = k +1, k +2, ..., γ−1 where γ > k +1,
then µγ ≥ µk.

(b) If ∇k < ∆k and ∇i > ∆i for i = k +1, k +2, ..., γ−1 where γ > k +1,
then µγ ≤ µk.

Proof. First we consider (a): We have J
k \ J

k
− = J

k+1 from Theorem 5.
Hence, bk+1 = bk−

∑

j∈Jk
−

ajlj =
∑

j∈Jk\Jk
−

ajx̂
k
j +
∑

j∈Jk
+

ajx̂
k
j−
∑

j∈Jk+1 ajlj =
∑

j∈Jk+1 ajx̂
k
j −∇, we have

bk+1 =
∑

j∈Jk+1

ajx̂
k+1
j =

∑

j∈Jk+1

ajx
k
j −∇ (41)

where ∇ ≥ 0 since aj > 0 and x̂j ≤ lj . This implies that
∑

j∈Jk+1 ajx
k+1
j ≤

∑

j∈Jk+1 ajx
k
j . In other words there exist at least one j = j0 ∈ J

k+1 such that

x̂k+1
j0

≤ x̂k
j0

. We know from Lemma 1 that µk+1 ≥ µk and from that µ(xj) is

decreasing for all j, this implies that x̂k+1
j ≤ x̂k

j for all j ∈ J
k+1 which implies

that J
k+1
+ ⊆ J

k
+. This means that

∇k > ∆k =
∑

j∈Jk
+

(ajx̂
k
j − ajuj) ≥

∑

j∈J
k+1

+

(ajx̂
k
j − ajuj). (42)

Further, for k + 1 we have ∇k+1 < ∆k+1 which implies bk+2 = bk+1 −
∑

j∈J
k+1

+

ajuj =
∑

j∈Jk+1 ajx̂
k
j − ∇ −

∑

j∈Jk
+

ajuj =
∑

j∈Jk+2 ajx̂
k
j − ∇ +

∑

j∈J
k+1

+

(ajx̂j − ajuj). Repeating the same reasoning lead us to

bγ =
∑

j∈Jγ

ajx
k
j −∇k +

γ−1
∑

i=k+1

∑

j∈Ji
+

(ax̂k
j − ajuj) (43)

for γ = k+2, k+3, Now, consider bk+2 =
∑

j∈Jk+2 ajx̂
k+2
j =

∑

j∈Jk+2 ajx̂
k
j−

∇k +
∑

j∈J
k+1

+

(ajx̂
k
j − ajuj). It follows from (42) that

∑

j∈Jk+2 ajx̂
k+2
j ≤

∑

j∈Jk+2 ajx̂
k
j . Similar to above, there exist a j0 ∈ J

k+2 such that x̂k+2
j0

≤ x̂k
j0

.

Since µ(xj) is decreasing for all j we have that µk+2 ≥ µk and

x̂k+2
j ≤ x̂k

j for j ∈ J
k+2. (44)

Let us now consider b3 =
∑

j∈Jk+3 ajx̂
k+3
j =

∑

j∈Jk+3 ajx̂
k
j−∇+

∑

j∈J
k+1

+

(ajx̂
k
j−

ajuj) +
∑

j∈J
k+2

+

(ajx̂
k
j − ajuj). From the definition of Jk

+, the conditions

27

∇k > ∆k and ∇i < ∆i for i = k + 1, k + 2, ..., γ − 1 and (44) it is easy
to realize that Jk+2

+ ∪ Jk+1
+ ⊆ Jk

+ where Jk+2
+ ∩ Jk+1

+ = ∅. Similar to (42),

∇k > ∆k =
∑

j∈Jk
+

(ajx̂
k
j − ajuj) ≥

∑

j∈J
k+1

+
∪J

k+2

+

(ajx̂
k
j − ajuj),

gives that
∑

j∈Jk+3 ajx̂
k+3
j ≤

∑

j∈Jk+2 ajx̂
k
j which again implies that there ex-

ists j0 such that x̂k+3
j0

≤ x̂k
j0

which implies that µk+3 ≥ µk

If we repeat the same reasoning we can make the conclusion µγ ≥ µk.
The proof for (b) is analog to the proof of (a).

Lemma 3. For problem (2) evaluated by PIR:
(a) If ∇k > ∆k then µk∗

≥ µk.
(b) If ∇k < ∆k then µk∗

≤ µk.

Proof. Follows from Lemmata 1 and 2.

Theorem 13. For problem (2), the solution generated by PIR (38) satisfies
KKT-conditions (7b).

Proof. First we consider the dual variables ρj :
(i) For j ∈ J

k∗

∪ J
+, we have from (38c) that ρj = 0.

(ii) For j ∈ J
−, we have from (38c) that ρj = φ′

j(lj) + µk∗

aj . We know
that all j ∈ J

− was pegged in the iterations k where ∇k > ∆k. For these
iterations k we have x̂k

j ≤ lj . Further, from convexity of φj , we have that
µ(xj) = −φ′

j(xj)/aj is decreasing in xj . Hence

ρj

aj

=
φ′

j(lj)

aj

+ µk∗

≥
φ′

j(x̂
k
j)

aj

+ µk∗

= −µk + µk∗

≥ 0 (45)

since aj > 0. The last inequality follows from lemma 3 (a), µk∗

≥ µk.
(iii) For j ∈ J

k∗

∪ J
−, we have from (38c) that λj = 0.

(iiii) For j ∈ J
+, we have from (38e) that λj = −φ′

j(uj) − µk∗

ajuj . We
know that all j ∈ J

+ was pegged in the iterations where ∇k < ∆k. For these
iterations k we have x̂k

j ≥ uj . Further, from convexity of φj we have that
µ(xj) = −φ′

j(xj)/aj is decreasing in xj . Hence

λj

aj

= −
φ′

j(uj)

g′
j(uj)

− µk∗

≥ −
φ′

j(x̂
k
j)

g′
j(x̂

k
j)

− µk∗

= µk − µk∗

≥ 0 (46)

since aj > 0. The last inequality follows from lemma 3 (b).

The algorithms in Sections 2.2.3, 2.2.4 and 2.2.5 will also converge since
they are equivalent to PIR.

28

2.3 Breakpoint algorithms

We present two fundamental breakpoint algorithms. The first one, posted
in Section 2.3.2 relaxes the upper bounds and ranks the lower breakpoints.
Next it finds an optimal solution to the relaxed problem and then checks if
the upper bounds is violated, if that is the case, we peg the variables for the
violated upper variables x∗

j = uj and resolves the relaxed problem. This is
done recursively until the upper bounds is not violated. The second class
of breakpoint algorithms, described in Sections 2.3.3–2.3.5 finds the optimal
solutions from breakpoints at the lower and upper bounds. In Section 2.3.4,
we implement mediansearch. In Section 2.3.5, we implement a method that
simplifies reduces the comparisons of for determine xk

j .

2.3.1 The concept of breakpoint algorithms

The idea of breakpoint algorithms is to search for a dual optimal solution
among the lower vl and upper breakpoints vu. For any given µ, we can
determine from (16) if xj = lj , xj = uj or lj < xj < uj . This motivate us to
define a set of breakpoints:

Definition 14 (Breakpoints).

v = vl ∪ vu (47)

Further, define two subsets of v such that Il ∪ Iu = v and Il ∩ Iu = ∅.
Moreover, let all breakpoints vi ∈ Il be smaller or equal to the breakpoints
vi ∈ Iu, that is vk ≤ vp for all k ∈ Il and for all p ∈ Iu. Further, define µl such
that µl = max(vi : i ∈ Il) and define µr such that µr = min(vi : i ∈ Iu). Now
we can for the following theorem:

Theorem 15. Assume that gj(xj(µ)) is nonincreasing in µ. If Il 6= ∅ and
Iu 6= ∅ is such that

∑n

j∈J
gj(xj(vl)) > b and

∑n

j∈J
gj(xj(vr)) < b. Then

vl < µ∗ < vr. If Il = ∅ than µ∗ ≤ vr and if Il = ∅ than vl ≤ µ∗.

Proof. The proof follows from gj(xj(µ)) is nonincreasing in µ.

Note that Theorem 15 is valid for Case 1 and Case 2 in Section 2.1.3. Also
note that if Il = ∅ than from (16), we have x∗

j = uj for all j ∈ J. Similar if
Iu = ∅ than xj = lj for all j ∈ J.

Solving problem (1) (assumed that µ∗ > 0) or problem (2) boils down to
find Il and Iu. This can be done by first sorting the breakpoints v and ap-
ply an sequential search while evaluating the solution explicitly from (22a)–
(22c). Once we found µl and µr such that Theorem 15 holds, we can find the

29

dual optimal solution µ∗ from (16) and
n
∑

j∈J\J−∪J+

gj(xj(µ)) = b −
n
∑

j∈J−

gj(lj) −
n
∑

j∈J+

gj(uj), (48)

where J
− = {j : µl ≥ vl

j for all j ∈ J} and J
+ = {j : µr ≤ vr

j for all j ∈ J}.
Several methods for finding µl and µr of a sorted array od breakpoints have
been proposed e.g. sequential search [LuG75], bisection or Fibonacci search
[Zip80]. Another common approach for finding the optimal µl and µr is to
evaluate the median vm of the breakpoints v. From the evaluation of vm, we
can reduce the breakpoints by half and iteratively find the optimal µl and
µr. This method was first applied by Brucker [Bru84].

Example 3. Consider the quadratic knapsack problem with the following
parameters:

min
x

φ(x) := 4x2
1 +

1

2
x2

2 +
1

2
x2

3 − 2x2 − 2x3,

s.t.

3
∑

j=1

gj(xj) = x1 + x2 + 2x3 = 4,

0.5 ≤ x1 ≤ 2,

0.5 ≤ x2 ≤ 3,

0 ≤ x3 ≤ 1.

We can determine the breakpoints for the lower and upper bounds

vl =

{

−φ′
j(lj)

aj

}

j=1,2,3

= {−4, 1.5, 1},

vu =

{

−φ′
j(uj)

aj

}

j=1,2,3

= {−16,−1, 0.5}.

And from these breakpoints we form vi such that vi = {−16,−4,−1, 0.5, 1,
1.5, 2} as in (47). Now we like to check if µ1 = −16 is a feasible solution.
From (16) we have

x1
j =







xj, if µ1 = −16 = −φ′
j(xj)/aj,

lj, if µ1 = −16 ≥ −φ′
j(lj)/aj,

uj, if µ1 = −16 ≤ −φ′
j(uj)/aj,

(50)

which implies that x = (u1, u2, u3) = (2, 3, 1) since −16 ≤ φ′
j(uj)/g

′
j(uj) for

j = 1, 2, 3. Now, consider the optimality condition

3
∑

j=1

gj(xj) = 2 + 3 + 2 ∗ 1 = 7 ≥ 4.

30

Clearly, the solution is not feasible. Hence, we try µ2 = −4 which implies
that x = (0.5, 3, 1) which gives

3
∑

j=1

gj(xj) = 0.5 + 3 + 2 ∗ 1 = 5.5 ≥ 4.

Next, µ3 = −1 again gives x = (0.5, 3, 1). Further, µ4 = 0.5 gives that
vu

2 < µ4 < vl
2 which implies that we must compute x2 from µ4 = 0.5 =

−φ′
2(x2)/a2 = (2 − x2)/1 implies that x2 = 1.5. As we can see x2 = 1.5

is feasible since 0.5 ≤ x2 ≤ 2. We have x = (0.5, 1.5, 1), let us see if it is
feasible,

3
∑

j=1

gj(xj) = 0.5 + 1.5 + 2 ∗ 1 = 4.

So it is feasible and optimal since (16) and the feasibility of the resource
constraint ensure that all KKT-conditions are satisfied.

If we change the equality constraint
∑3

j=1 gj(xj) = x1 + x2 + 2x3 = 4

for a inequality constraint
∑3

j=1 gj(xj) = x1 + x2 + 2x3 ≤ 4, the optimality
condition µ ≥ 0 implies that we do not have to consider the negative values
of vi. This can save us much cpu-time.

2.3.2 Algorithm: Relax Upper bounds and Sort lower Breakpoints (RUSB)

Charnes and Cooper [ChC58] developed an algorithm, based on ranking of
breakpoints, for a special case of the theory of search problem (67) with a
linear resource constraint. The algorithm was extended to a more general
problem by Luss and Gupta [LuG75]. Their algorithm concerns problem
(2) with φj strictly convex, decreasing, defined on the positive orthant and
aj = xj for all j ∈ J. One should note that Sanathanan [San71] published an
article some years earlier with a similar algorithm and Srikantan [Sri63] used
a similar method for solving a resource allocation problem. However, Luss’
and Gupta’s algorithm is divided in two, one inner and one outer algorithm.
The inner algorithm solves problem (2) relaxed from the upper bounds, i.e.

minimize
x

φ(x) :=
∑

j∈N

φj(xj), (51a)

subject to g(x) :=
∑

j∈N

ajxj = bk, (51b)

lj ≤ xj, j ∈ N = {1, 2, ..., n}, (51c)

31

Since Luss’ and Gupta’s algorithm [LuG75] evaluate the dual variable
µ, it is only feasible for Case i in Section 2.5. Zipkin [Zip80] suggest to
evaluate the resource constraint (22a)–(22c) instead of the dual variable µ.
Then we do not need to determine µ from (48) in each iteration. Hence, we
only have to apply a numerical method in the last iteration when r − l = 1.
We present an algorithm similar to the one in [Zip80] but implemented with
bisectional search. The algorithm follows:

Initialization: (Find breakpoints)
Sort vN = {−φ(lj)/aj}j∈N

∪ {±∞} such that vN
i ≤ vN

i+1 for

i = 1, 2, ..., |N| + 2. Set l = 1, r = |N| + 2, k = 1, N′ = N.
Iterative algorithm:

Step 1: (Stopping test)
If r − l = 1 find xk

j from (16) and (48), stop.
Otherwise m = ⌈ r+l

2
⌉.

Step 2: (Compute explicite reference)
δ =

∑

j∈N′ ajxj(v
N
m) where xj(v

N
m) is determined from (16).

Step 3: (Optimality check)
If δ = bk, µ∗ = vN

m stop.
If δ < bk go to Step 4.
Otherwise (δ > bk) go to Step 5.

Step 4: (Update and fix)
r = minarg(i){i : vi = vm}, k = k + 1, go to Step 1.

Step 5: (Update and fix)
If vN

m ≥ vl
j then N

′ = N
′ \ {j}, bk+1 = bk − ajlj , x∗

j = lj .
l = maxarg(i){i : vi = vm}, k = k + 1, go to Step 1.

The outer algorithm consider the upper bounds, Luss and Gupta re-
ferred this algorithm to [Geo70]. Zipkin [Zip80] described this extended
algorithm explicitly. We post algorithm (RUSB):

Step 0: (Check if inequality feasible)
If µ = 0 feasible µ∗ = 0 and determine x

∗ from (13).
Initialization: Set N = {1, 2, ..., n} and J

+ = ∅.
Iterative algorithm:

Step 1: (Stopping test)

32

If N = ∅, stop.
Step 2: (Solve relaxed problem (51))

Use the inner algorithm to solve problem (51).
Step 3: (Find offended upper bounds)

Set J
+ = {j : x∗

j > uj, j ∈ N}
Step 4: (Optimality check or update)

If J
+ = ∅ stop.

Otherwise set x∗
j = uj for j ∈ J

+ and set N = N \ J
+.

Go to Step 1.

Remark 6. The algorithm need to sort an array of n elements (or less if
we remove records that are equal). If the problem has upper bounds, we
need to resolve the problem, probably several times. This might be time a
demanding process.

It is worth noting that Einbu [Ein81] published an extension of Luss’ and
Gupta’s algorithm. He proposed a numerical method for the update of the
dual variable. This was also mentioned by Zipkin [Zip80].

2.3.3 Algorithm: Sort Breakpoints (SB)

Year 1969, some years before the publication of Luss’ and Gupta’s article
[LuG75], Bodin [Bod69] had an article published about a ranking method.
He treated a separable resource allocation problem with φj strictly convex,
increasing and with the property φj(lj) > 0 for all j and 0 < lj < uj < 1.
The problem treated was not as general as Luss’ and Gupta’s problem but
he suggested another method for treatment of the upper bounds. Instead of
just rank the lower breakpoints, he also considered the upper breakpoints.

Bodin’s algorithms has been generalized and further developed by sev-
eral authors, e.g. see [FeZ83], [NiZ92], [Bru84], [Kiw07], [HKL80], [KoL98].
Assume that Case 1 in Section 2.2.2 holds for problem (1), we present an al-
gorithm (SB) which is a mixture of the authors mentioned above:

Step 0: (Check feasibility of µ = 0)
If µ = 0 is feasible then µ∗ = 0, determine x∗ from (13) and stop.

Initialization

Compute vl and vu and sort vk = {−∞, vl, vu,∞} such that

33

vk
i ≤ vi+1 for i = 1, 2, ..., 2n + 2.

Set l = 1, r = 2n + 2, k = 1, bk = b, J = {1, 2, ..., n}
Iterative algorithm

Step 1: (Stopping test)
If r − l = 1, goto Step 6.
Otherwise m = ⌈ r+l

2
⌉,

Step 2: (Compute explicit reference)
Determine δ =

∑

j∈J:vu
j <vm<vl

j
gj(xj(vm)) + β+ + β− where xj is

determined from (16).
Step 3: (Evaluate)

If δ > bk, go to Step 4.
If δ < bk, go to Step 5.
Otherwise (δ = bk) set µ∗ = vm and goto Step 6.

Step 4: (Update and fix lower bounds)
For j ∈ J, if vm ≥ vl

j then J = J \ {j} and x∗
j = lj .

Set l = maxarg(i){i : vi = vm}, bk+1 = bk − β−, k = k + 1 and go to Step 1.
Step 5: (Update and fix upper bounds)

For j ∈ J, if vm ≤ vu
j then J = J \ {j} and x∗

j = uj .
Set r = minarg(i){i : vi = vm}, bk+1 = bk − β+, k = k + 1 and go to Step 1.

Step 6: (Find the optimal x∗)
Find optimal x∗ from (16) and (48).

In Step 2, βk
− =

∑

j∈J:vl
j≤vm

gj(lj) and βk
+ =

∑

j∈J:vu
j ≥vm

gj(uj).

For the Cases 2, 3 and 4 in Section 2.1.3 the algorithm is modified similar
as in Section 2.1.3. For problem (2), the algorithm is similar besides Step 0
is vanished.

2.3.4 Algorithm: Median search of Breakpoints (MB)

Since sorting of an array might be a very time demanding task, we may skip
the sorting of the breakpoints v for the algorithm in Section 2.3.3. Instead
we can apply a median search function in Step 2. This was first done by
Brucker [Bru84]. With this modification the algorithm in Section 2.3.3 takes
the following form, (Steps 0, 2, 3 and 6 are similar to the algorithm in Section
2.3.3):

34

Initialization:

Compute vl
j , vu

j and let vk = {vl, vu}, µl = −∞ and µr = ∞.
Set k = 1, bk = b, J = {1, 2, ..., n}

Iterative algorithm:

Step 1: (Stopping test)
If vk = ∅, goto Step 6.
Otherwise vm = median(vk).

Step 4: (Update and fix lower bounds)
If vm ≥ vl

j then J = J \ {j} and x∗
j = lj .

Set vk = {vk : vm < vk}, bk = bk − β−, k = k + 1 and µl = vm.
Go to Step 1.

Step 5: (Update and fix upper bounds)
If vm ≤ vu

j then J = J \ {j} and x∗
j = uj .

Set vk+1 = {vk : vm > vk}, bk = bk − β+, k = k + 1 and µr = vm.
Go to Step 1.

In the algorithm, µl and µr is a lower and an upper bound such that µl <
µ∗ < µr.

2.3.5 Algorithm: Modified Median search of Breakpoints (MMB)

For the quadratic knapsack problem (63), Kiwiel [Kiw08, Section 3] applies
a method for determine if xk

j ∈ [lj, uj]. We generalize Kiwiel’s method.

In each iteration the ranking algorithm helps us give a better estimate
of the optimal dual variable µ∗. As we have seen this is done by setting vm

to either a lower or an upper bound for the optimal dual variable µ∗. Let
us denote the lower bound µl and the upper µr. Let µl and µr be such that
µl < µ∗ < µr. We like state the following theorem:

Theorem 16. Assume that Case 2 holds in Section 2.1.3 i.e. −φ′
j(xj)/g

′
j(xj)

is decreasing in xj for all j. If j is such that µl, µr ∈ [vu
j , vl

j] then lj < xj < uj .

Proof. Assume that µl < µr and that µl, µr ∈ [vu
j , vl

j] holds for some j. Since
−φ′

j(xj)/g
′
j(xj) is decreasing in xj for all j, we have vu

j = −φ′
j(uj)/g

′
j(uj) ≤

µl < µ∗ < µr ≤ −φ′
j(lj)/gj(lj) = vl

j . From (16) we have that if −φ′
j(uj)/g

′
j(uj) <

µ∗ < −φ′
j(lj)/gj(lj) then lj < xj < uj .

Similar we can prove the following theorem:

Theorem 17. Assume that Case 1 holds in Section 2.1.3. If j is such that
µl, µr ∈ [vl

j, v
u
j] then lj < xj < uj .

35

From Theorem 16 and 17 it is possible to modify algorithm MB. Let us
define a set M = {j : µl, µr ∈ [vu

j , vl
j]}. Hence, j ∈ M implies that lj <

x∗
j < uj . So if it is determined in iteration k that j ∈ M we do not have

to use (16) to determine if xj violate the bounds. This might save us some
operations. But we should have in mind that determine j ∈ M need some
extra operations.

To determine if j ∈ M we need some initial values for µ1
l and µ1

r . If
µ1

l = −∞ and µ1
r = ∞ then µ1

l , µ
1
r /∈ (vu

j , vl
j). After the first iteration µ2

l = µ1
l

or µ2
r = µ1

r implies µ2
l , µ

2
r /∈ (vu

j , vl
j). So there is no need to check if j ∈ M

after the first iteration. In fact there is no need to check if j ∈ M before
iteration k such that µk

l ≥ µ1
l and µk

r ≤ µ1
r .

We now post an algorithm that applies the use of M where Steps 0, 3 are
similar to SB in Section 2.3.3:

Initialization:

Compute vl
j , vu

j , let vk = {vl, vu}, µl = −∞ and µr = ∞.
Set k = 1, bk = b, J = {1, 2, ..., n} and M = ∅.

Iterative algorithm:

Step 1: (Stopping test)
If vk = ∅, goto Step 6.
Otherwise vm = median(vk).

Step 2: (Compute explicit reference)
Determine δ =

∑

j∈J:vu
j <vm<vl

j
gj(xj(vm)) + γ(vm) + β+ + β− where xj

is determined from (16).
Step 4: (Update and fix lower bounds)

For j ∈ J: If vm ≥ vl
j then J = J \ {j} and x∗

j = lj .
If vl, vr ∈ [vu

i , vl
i] then J = J \ {i}, M = M ∪ {i}, update γ.

Set vk+1 = {vk : vm < vk}, bk+1 = bk − β−, k = k + 1 and µl = vm.
Go to Step 1.

Step 5: (Update and fix upper bounds)
For j ∈ J: If vl ≥ vl

i then J = J \ {i} and x∗
j = uj .

If vl, vr ∈ [vu
i , vl

i] then J = J \ {i}, M = M ∪ {i}, update γ.
Set vk+1 = {vk : vm > vk}, bk+1 = bk − β+, k = k + 1 and µr = vm.
Go to Step 1.

In the algorithm γ(µ) =
∑

j∈M
gj(xj(µ)) which may be determine partly in

Steps 4 and 5 e.g. consider the negative entropy function, φj = xj log(xj/aj−
1) and gj = xj , then

∑

j∈M
gj(x

k
j) =

∑

j∈M
aje

−µ = de−µ i.e. we update γ in

Steps 4 and 5 such that if vl, vr ∈ [vu
i , vl

i] then d = d + cj . A similar approach
for the quadratic knapsack problem is done by Kiwiel [Kiw08, Section 3].

36

2.4 Numerical methods

In non-smooth optimization, methods based on the derivative of the objec-
tive function f ∈ C0\C1 is not valid. The reason is that the classical gradient
is not defined at points x0 ∈ R where ∇f(x0 + ǫ) 6= ∇f(x0 − ǫ) where ǫ ∈ R

and ǫ → 0.
For a function f ∈ C0 with a gradient ∇f(x) defined almost everywhere,

except for in a finite number or infinite number of points, denote these
points as breakpoints. Since the classical derivative is not defined in the
breakpoints, another definition is needed. Let < ·, · > denote the inner
product and define a subdifferiential of f such that:

Definition 18 (Subderivative).

∂f(x) := {s ∈ R
n : f(y) − f(x) ≥< s, y − x > ∀y ∈ R

n}. (52)

If the subdifferential f is differentiable at x then ∂f(x) = ∇f(x) and
∂f(x) is said to be a singleton. If f convex and 0 ∈ ∂f(x0) than x0 is a
minimum point, [BGLS03, Section 7.1].

Example 4. Consider the L1-norm ‖x‖ for x ∈ R1 which has a kink in x = 0.
The related subdifferential due to Definition 18 would be

∂f(x) =







1, if x > 0 ,
-1, if x < 0 ,
[-1,1], if x = 0.

(53)

Note that 0 ∈ [−1, 1], implies an extreme point. Also, note that the subdif-
ferential is identical to the derivative everywhere except for in x = 0.

A common stop criterion for smooth optimization is ‖∇f(xk)‖ ≤ ǫ for
ǫ ∈ R. This is not always a proper criterion. Consider Example 4 for in-
stance, s ∈ ∂f(x) is such that s = ±1 if x 6= 0. Assume now that we are
using a constant step length. The algorithm will only stop if we choose a
starting value such that we end up in the kink.

2.4.1 Zenios’ and Nielsen’s algorithm (ZN)

Nielsen and Zenios [NiZ92] developed a quasi-Newton method for finding
the dual optimal solution µ∗ of problem (2). It is assumed that the objective
φj is a strictly convex and separable with a derivative φ′

j(xj) which range
is R. They compare their numerical method with three breakpoint algo-
rithms and their results shows that their numerical method always performs
well compared with the other algorithms. They implement their algorithms

37

in a massively parallel computer. This is not our intention. But since the
algorithm seems to perform well on parallel computers it makes sense to
evaluate it on non-parallel computers.

Now, let fj(x) be the inverse of φ′
j(xj) such that:

φj(fj(µ)) = µ ∀µ ∈ R. (54)

From (25) we can conclude that

xj(µ) = max {lj, min {fj(ajµ), uj}}. (55)

The heart of the algorithm is again to find µ such that the primal constraint
(1b) is fulfilled, in other words find µ such that

Ψ(µ) = b −
n
∑

j=1

ajxj(µ) = 0. (56)

Zenios and Nielsen [NiZ92, Section 1.4] defines two functions Φ+
j and Φ+

j

similar to (55):

Φ+
j (µ) =

{

min {fj(aµ), uj}, if aj > 0,
max {lj, fj(ajµ)}, if aj < 0

(57)

and

Φ−
j (µ) =

{

min {fj(aµ), uj}, if aj < 0,
max {lj, fj(ajµ)}, if aj > 0.

(58)

Note that if aj > 0 and fj is concave and increasing then Φ+
j is concave and

if aj > 0 and fj is decreasing and convex then Φ−
j is convex. Further, set up

two set of indices such that H
+ := {j|aj > 0} and H

− := {j|aj < 0}. It is
now possible to define two approximation of Ψ such that

Ψ+(µ) = b −
n
∑

i=1

ajΦ
+(µ)

= b −
∑

j∈H+

aj min {g(aµ), uj} −
∑

j∈H−

max {lj, g(ajµ)} (59a)

and

Ψ−(µ) = b −
n
∑

i=1

ajΦ
−(µ)

= b −
∑

j∈H−

aj min {g(aµ), uj} −
∑

j∈H+

max {lj, g(ajµ)}. (60a)

38

Now, notice that if a > 0 and fj is concave then is Ψ+ will be convex and if
a > 0 and fj is convex the Ψ− is concave. Define the sub- and superdiffer-
entials Ψ± for Ψ,

∂Ψ+(µ) = {d ∈ R|(Ψ+(µ′) − Ψ+(µ) ≥ d(µ′ − µ) ∀µ′ ∈ R}, (61a)

∂Ψ−(µ) = {d ∈ R|(Ψ−(µ′) − Ψ−(µ) ≤ d(µ′ − µ) ∀µ′ ∈ R}. (61b)

Further, define µ∗
ǫ and x

∗
ǫ as the approximal dual and primal solution such

that |Ψ(µ∗
ǫ)| < ǫ where ǫ ∈ R. The algorithm follows ([NiZ92, Linesearch

4]):

Initialization: Set ǫ ∈ R, k = 0, µk ∈ R.
Iterative algorithm:

Step 1: (Compute step size).
If Ψ(µk) > ǫ :

∆µk+1 = −Ψ(µk)
dk where dk ∈ ∂Ψ+(µk), goto Step 2.

else if Ψ(µk) < −ǫ :

∆µk+1 = −Ψ(µk)
dk where dk ∈ ∂Ψ−(µk), goto Step 2.

else
Set µ∗

ǫ = µk and determine x
∗
ǫ from (16).

Step 2: (Dual variable update)
Set µk+1 = µk + ∆µk+1.

Step 3: k = k + 1 Go to Step 1.

The algorithm converges to µ∗ such that Ψ(µ∗) = 0 if the objective func-
tion components φj is such that the corresponding function Ψ+(µ) is convex
or if the corresponding function Ψ−(µ) is concave [NiZ92, Proposition 8].
For some problem, the inverse of the derivative might result in imaginary
values. One solution of this problem is to consider the equivalent maximiza-
tion problem of (1) i.e. maximizex −φ(x).

2.4.2 Issues with approximal solutions

If the problem is convex and the optimal dual variable is determined, ex-
actly the primal solution will also be exact. A problem might occur if the
dual optimal solution µ∗

ǫ is approximated with a given tolerance ǫ > 0 such
that |µ∗

ǫ − µ∗| = h(ǫ) = δ > 0 for a function h. The map from the dual space
to the primal might not be linear. Hence, if x∗

ǫ is the primal optimal solu-
tion computed from µ∗

ǫ , then there is no guarantee for the error of x∗
ǫ to be

less than δ. The primal error might in fact be much larger than δ such that

39

|x∗
ǫ −x∗| >> δ. However, there is methods for generating primal optimal so-

lutions from any Lagrangian dual vector see for example [LMOM07]. Also,
we can use µ∗

ǫ as a initial value for a relaxation or breakpoint algorithm.

2.5 Determination of the primal and dual variables

We post three critical cases depending on the character of φj(xj) and gj(xj):

Case i: We can find an explicit closed form of x̂j(µ) in (24a). Than it is pos-
sible to determine xj analytically from (25) for all j ∈ J. Additional,
we can find a closed form of µ from

∑

j∈J

gj(x̂j(µ)) = b. (62)

Case ii: We can find an explicit closed form of x̂j(µ) in (24a) and we cannot
find a closed form of µ from (62).

Case iii: We cannot find an explicit closed form of x̂j(µ) in (24a) and we
cannot find a closed form of µ from (62).

If Case ii holds, x̂ has to be determined numerically in Step 1 for the relax-
ation algorithms in Sections 2.2.2–2.2.5. If Case iii holds, x̂ and xj has to be
determined numerically in Step 1 respectively in Step 2 for the relaxation
algorithms in Sections 2.2.2–2.2.5 . For example a Newon method may be
applied.

If Case ii holds for the breakpoint algorithms in Sections 2.3, we have to
determine µ numerically only one time for determine µ∗ in Step 6. If Case
iii holds, xj has to be determined numerically in Step 2.

40

3 Method for evaluation of algorithms

To achieve a fair comparison between the performance of the algorithms,
we need to set up a proper set of test problems. This is done in Section 3.1.
In Section 3.2 a brief review of earlier numerical experiments in the same
area is presented. With inspiration from these, the properties of the test
problem set are set up. Some theory for how the design a problem follows
in Section 3.3.

Since it is a diffuse task to decide the goodness of an algorithm, we need
a proper measure. In Section 3.4 we give a brief review of Dolan’s and
Moré’s [DoM02] performance profiles. Finally, in Section 3.5, the program-
ming language is presented.

3.1 Problem set

For the numerical study, we consider five common, special cases of problem
(2). The reason for evaluating the equality problem (2) is that the algorithm
is identically for the inequality problem (1) if µ∗ > 0. The case where the
optimal solution of problem (1) is such that µ∗ ≤ 0 or if Cases 3 or 4 in
Section 2.1.3 holds, the algorithm is not of interest since it terminates in
Step 0. The five problems are briefly specified:

Quadratic problem: The convex separable quadratic problem is described
by

φj(xj) =
wj

2
x2

j − cjxj (63)

where wj, cj > 0. Algorithms for problem (63) is widely explored [Kiw07],
[Kiw08],[Kiw08b],[NiZ92].

Example 5. Suppose we want to invest an amount of assets, over a fixed
period of time, in a given set of n assets. Let xj be the relative amount
invested in asset j. Let rj denote the expected return of asset j and qj the
covariance of security j. The problem takes the following shape:

minimize
x

n
∑

j=1

qj

2
x2

j − θrjxj,

subject to
∑

xj = 1,

0 ≤ xj ≤ uj

where θ is a weight for the importance of the expected value in contrast to
the covariance. So, if we want to take a larger risk we increase the value of θ.

41

This is nothing else than a simplification of the classical portfolio selection
problem developed by Markowitz [Mar52]. The theory was simplified by
Sharpe [Sha63], he neglected the interrelation between the assets.

Another example of application of problem (63) is minimization of the
Euclidean norm.

Stratified sampling If we have a large population and would like to per-
form a statistical research among the population it is practically infeasible
to examine every single individual in the population. Instead we can stratify
the population into n strata. Example of a stratum might be people in a cer-
tain ages. Let M be the number of individuals in the entire population and
Mj the number of individuals in strata j. If we want to minimize the vari-
ance of the entire population we need to allocate the number of samples xj

from each strata from:

φj(xj) = ωj

(M − xj)ρ
2

(M − 1)xj

(65)

where ωj = Mj/M and σj is an estimate of the variance for strata j. From b
in the resource constraint we specify the total sample size.

Sampling The stratified sampling problem (65), among other samplings
problems can be transformed [BRS99] into

φj(xj) = cj/xj. (66)

A similar problem is used for determine optimal sample size in air pol-
lution problems; let us assume that we divide an area in n subareas than we
consider the objective φ(x) :=

∑

j∈J
cj/(xj −1) where cj is the related to the

emission, [KIM79].

The theory of search In the theory of search problem, we consider how a
resource b of time should be spent to find an object with the largest proba-
bility. It is assumed that we know the probability mj for an object to be at
area j. The objective φj describes the probability of finding the object and
takes the form:

φj(xj) = mj(1 − e−bxj). (67)

The problem is possible to apply at a large variation of search problems e.g.
searching for refugees fleeing from Cuba [Sto81].

42

Negative entropy function We also consider the negative entropy func-
tion,

φj(xj) = xj log (
xj

aj

− 1). (68)

3.2 Set up of problem instances

“However, not testing the algorithm on a large number of
functions can easily lead the cynical observer to conclude that
the algorithm was tuned to particular functions” [MGB81]

Moré, Garbow and Hillstrom [MGB81] discuss the complications of test-
ing optimization software and stresses the importance of a proper set of
problems. They conclude that a large number of test problems are needed,
see quotation above.

In [KoL98], Kodialam and Luss solves a problem with lower bounds
lj = 0 and no upper bounds. In the numerical experiments, they consider
one specific problem of size n = 10000 with randomly chose parameters.
They divide the set of test problems into 11 groups, considering the percent-
age of active activities x∗

j for the optimal solution i.e. let H = {j | x∗
j > lj for

j = 1, 2, ..., n} the percentages is then determined by |H|/n. Several com-
putations of each groups is made and the overall CPU time is determined
from the average of these computations. Theirs computational results shows
significant differences among the groups.

In [Kiw07], Kiwiel consider 3 different classes of problems; uncorre-
lated, weakly correlated and strongly correlated parameters belonging to
the objective function and the resource constraint for the continuous quadratic
problem (63). The results show no obvious differences between uncorre-
lated and correlated problems. On the other hand, for the integer problem
of (1), a significant difference in CPU-time for the correlated and uncorre-
lated problems is noticed in [MaT90, Chapter 2.10 and 3.5] and [BrS02]. The
integer problem is harder to solve when there exist a correlation between
the parameters of the objective and the resource constraint, [MaT90]. Ac-
cording to Kiwiel’s result it seems not to hold for the continuous quadratic
problem (63). Additional, Kiwiel do his numerical experiments for n =
50, 000 − 2, 000, 000.

With inspiration and wisdom from the earlier approaches, we divide our
set of test problems into groups containing different percentage of the ac-
tivities within the lower and upper bounds for the optimal solution i.e. let
H = {j ∈ J | lj ≤ x∗

j ≤ uj} the percentage is then determined from
|H|/n. We include 6 different numbers n of activities for the problems. Fur-
ther, in each group 10 random instances are to be solved and the average is

43

evaluated, see Appendix A. To motivate the set of test problems, we refer
to the variance of CPU-time for different percentage of active activities in
[KoL98]. Moreover, the theoretical CPU-time for different algorithms vary
from O(n) to O(n2)). This motivate the evaluation of different n.

3.3 Design of problems

We need to design problems such that |H|/n = y where y ∈ [0, 1]. From (16)
it is possible to fix an optimal dual variable µ∗ such that |J+| = r, |J−| = p
and |J| = q, where r + p = y and r, p, q integers such that r, p, q ≥ 0 and
r + p + q = n. When µ∗ is fixed we need to compute the resource parameter
b. This can be done from (16) and the resource constraint

∑n

j=1 gj(x
∗
j) = b.

For the problem set, we randomize the parameters lj , uj and all the pa-
rameters associated with φj and gj . In the numerical study we use a linear
resource constraint such that gj(xj) = ajxj , where aj > 0 for j = J. This
simplifies the design of the problem set, since φj is convex and lj < uj for all
j ∈ J. Equation (16) becomes

x∗
j =







x∗
j if µ∗ = −φ′

j(x
′
j)/aj

lj if µ∗ ≥ −φ′
j(lj)/aj ≥ −φ′

j(uj)/aj

uj if µ∗ ≤ −φ′
j(uj)/aj) ≤ −φ′

j(lj)/aj

(69)

By using the properties of (69), we can determine r, p and q such that
|H|/n = y for any y ∈ [0, 1]. This is done by randomizing lj , uj , aj and the
parameters associated with φj , determine vl and vu, then fix µ∗, find x

∗ from
(16) and determine b from the resource constraint fulfilled with equality.

3.4 Performance profiles

Dolan and Moré [DoM02] discuss the complications that occur, associated
with evaluating optimization software. Because of the issues they propose a
performance profile for evaluation of optimization software.

We want to evaluate a set of algorithms A that consists of na various
algorithms. For the evaluation we have a problem set P that consists of
np problem instances. The method Dolan and Moré propose is as follows:
We define a set of cpu-times tp,a, were tp,a is equal to the time it takes for
algorithm a to solve problem p. A performance ratio is introduced:

rp,a(tp,a) =
tp,a

min{tp,l : l ∈ A}
. (70)

For a problem p, the performance ratio is a measure for how fast algorithm
a is relative to the fastest algorithm solving problem p. Fix a constant rM

44

such that rM ≥ rp,a for all p ∈ P, a ∈ A and let rp,a = rM if algorithm a fails
to solve problem p. Further, we introduce the distribution ρa

ρa(τ) =
1

np

|{p ∈ P : rp,a ≤ τ}|, (71)

for each algorithm, where | · | denote the cardinality of a set and τ ∈ [1, rM].
For algorithm a, the distribution ρa describes the percentage of problem in-
stances that are solved faster or equal fast as τ times the fastest algorithm
for problem p. The distribution ρ(τ)a has some nice properties: First, ρa(1) is
the percentage for algorithm a being fastest. ρa(1) < ρa′(1) does not guaran-
tee that algorithm a is better than algorithm a′ since algorithm a might be a
horrible for all the problems where it was not fastest. Second, limτ→rM

ρs(τ)
is the probability that algorithm a will solve a problem in P. Third, if we
have a large problem set P then ρa(τ) will not be affected much by a small
change in P [DoM02, Theorem 1]).

3.5 Program language, computer and code

The algorithms are implemented in Fortran 95 compiling with gfortran un-
der UNIX.

Sorting and searching For the sorting procedure in the breakpoint algo-
rithms we use quicksort implemented similarly to the one in [Knu98, Sec-
tion 5.2.2]. Quicksort has a worst-case running time of O(n2) and an average
O(n log(n)) where the constants in O(n log(n)) are small ([CLRS09]). For
large n, quicksort is often the best choice in practice ([CLRS09], [PTVF92,
Section 8.2]).

For the median search method we use an algorithm that operates simi-
larly to quicksort. We implement the search method similarly as in [PTVF92,
Section 8.5]. The algorithm has a worst-case running time of O(n).

45

4 Computational experiments

We show the results from numerical experiments of the problems in Section
3.1. The problem set is evaluated for n = 50, 000 – 2, 000, 000.

For the theory of search problem (67), the parameters was randomized in
the following intervals: mj ∈ [0.5 − 8], bj ∈ [0.1, 3], aj ∈ [1, 3], lj ∈ [0, 0.1]
and uj ∈ (0.1, 5].

For the quadratic problem (63), the parameters was randomized such that
aj ∈ [1, 30], wj ∈ [1, 20], cj ∈ [1, 25], lj ∈ [0, 3] and uj ∈ (3, 11].

For the stratified sampling problem (65), the parameters was randomized
such that aj ∈ [1, 30], mj ∈ [5, 30], cj ∈ [1, 4], lj ∈ [1, 3] and uj ∈ (3, 15].

For the negative entropy problem (68), the parameters was randomized
such that cj ∈ [50, 250], lj ∈ [20, 100] and uj ∈ (30, 210].

For the production problem (66), the parameters was randomized such
that aj ∈ [1, 4], cj ∈ [5, 30], lj ∈ [0, 3] and uj ∈ (3, 6].

In Section 4.1 we present performance profiles for the relaxation algo-
rithms described in Section 2.2, in Section 4.2 we present the performance
profiles for the ranking algorithms described in Section 2.3. In Section
4.3, the best performing relaxation algorithm and breakpoint algorithm are
compared with the numerical algorithm in Section 2.4.

4.1 Relaxation methods

The four algorithms in 2.2 are compared successively. All the four algo-
rithms are programmed uniformly i.e. the only things that differs the algo-
rithms is the evaluation of the dual or primal variables and the stop crite-
rion.

4.1.1 PIR vs DIR

We compare algorithm (PIR) in Section 2.2.2 and algorithm (DIR) in Sec-
tion 2.2.4. Remember, PIR determines the primal variable and evaluates
the solution implicitly while DIR determines the dual variable and evalu-
ates the solution explicitly.

46

As we can see in Figure 1, DIR is fastest or equally fast in 91.7% of the
solved problems, while PIR is faster in 8.3% of the solved problems. This is
due to the negative entropy problem (68), see Figure 2.

This result is what we can expect from the theory since DIR does not
need as many operations in Step 1, see Sections 2.2.2 and 2.2.4. The reason
for PIR to be faster in many cases for the negative entropy problem is due
to the easy expression of the primal variables xk

j (µ
k) =

aj
P

j∈Jk cj
while the

dual variable is evaluated from µk = log
∑

j∈Jk cj − log b. But still, DIR is
faster in most of the solved negative entropy problems, see Figure 2.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

PIR
DIR

Figure 1: Performance profiles for PIR and DIR. The numer-
ical experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 and for the prob-
lems in Section 3.1. The algorithms were implemented uniformly.

Summary: For the problem set, it is more profitable to evaluate the dual
variable even if we have to compute all the breakpoints in the beginning of
the algorithm. Hence, DIR seems to outperform BI.

4.1.2 Explicit vs implicit evaluation

We consider the performance profiles of the CPU-times for the three relax-
ation algorithms described in Sections 2.2.3 (DER), 2.2.4 (DIR) and 2.2.5
(DBR). The results are in favour of DIR and DBR, see Figure 3. DIR is
fastest in 49.1%, DBR is fastest in 56.9% and DER is fastest in 1.4% of the
problems solved.

47

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

PIR
DIR

Figure 2: Performance profiles for PIR and dual DIR. The nu-
merical experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 for the negative en-
tropy problem (68). The algorithms were implemented uniformly.

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

DER
DIR
DBR

Figure 3: Performance profile for DER, DIR and DBR. The nu-
merical experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 for the problems in
Section 3.1. The algorithms were implemented uniformly.

Figure 3 shows that the performance of DIR and DBR is very similar.
DIR is more often faster than DBR. DIR is never more than 1.20 times

48

slower than the fastest algorithm while DBR is never 1.10 times slower than
the best performing algorithm. As we can see, in average DBR perform just
a little better than DIR.

Summary: For the problem set, the results shows that in most cases it more
profitable to evaluate a solution x

k of iterate k implicitly from (29a)–(29c)
rather than explicit from (22a)–(22c).

The small difference between the performance profiles in Figure 3, im-
plies that in most cases |Jk| > 2|Jk

− ∪ J
k
+|. We conclude that DBR performs

slightly better than DIR. This agrees with the theory in Section 2.2.5.

4.2 Breakpoint methods

Step by step the performance of the algorithms in Section 2.3 are com-
pared. Since the algorithms are programmed uniformly we eliminate the
algorithms that perform just a little bit worse than another. But one should
note that this might hold only for the problems in our problem set.

4.2.1 RUSB vs SB

In Sections 2.3.2 and 2.3.3 we showed two fundamental breakpoint algo-
rithms for solving problem (1), RUSB that relaxing the upper bounds and
sorting a sequence of size n and SB that sorting a sequence of 2n break-
points. We evaluated these two algorithms for the problem set in Section
3.1 for n = 50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000. The results show
a significant advantage for SB since RUSB is, on average, 2.7 times as slow
and more than 4 times as slow in 10% of the cases, see Figure 4.

RUSB is faster in 2.8% of the cases and this is especially when none of
the optimal variables x∗

j violate the upper bounds, i.e. xj < uj for all j ∈ J.
However, SB is never more than 30% slower than RUSB.

Summary: SB is generally much faster than RUSB. The reason is that
RUSB have to resolve the problem several times. Hence, it more profitable
to sort an array of size 2n and solve the problem one time than sort a se-
quence of size n and resolve the problem relaxed from the upper bounds
several times. It is expected that RUSB should be faster in the cases where
J

+ = ∅ since the algorithm do not resolve the relaxed problem.

49

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

SB
RUSB

Figure 4: Performance profile for SB and RUSB. The numer-
ical experiment was done according to section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000 and for the problems in
Section 3.1. On average, the cpu-time for RUSB is 2.7 times slower then
SB. The algorithms were implemented uniformly.

4.2.2 Sorting vs Median search

In Section 2.3 we presented two different versions of a bisection search. The
first method was to sort the sequence of breakpoints vi which needs to be
done only once. The second method was to find the median of vi which
requires to be done log2 n times for a reduced sequence of size n/⌊2k⌋ for
k = 1, 2, .., ⌊log2 n⌋.

In Figure 5 the performance profile for sorting an array of size n and
the median function are shown. The CPU-time for the median function
was evaluated for log2 n arrays of decreasing order. As we can see, it is
approximated 2.7 times faster to use median search.

To ensure that the algorithms are implemented such that median search
is faster than quick sort, we present the performance profile for one ranking
algorithm using sort (SB) and one using median search (MB), see Figure
6. The performance profile shows that median search is to prefer in front
of sorting. The CPU-time differs approximately from being 1.2 to 2.0 times
as large in favour for the median search. This is a decrease compared with
Figure 5. The reason is obvious: the sorting/median search is weighted with
the other part of the algorithms.

50

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

Median search
Quicksort

Figure 5: Performance profile for median search and quicksort. The sorting
was done only once, while the median search was done log2 n times where
the array was reduced by half in each iteration. In numerical experiments
1200 randomized arrays of size n = 100, 000 − 8, 000, 000 was used.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

SB
MB

Figure 6: Performance profile for MB and SB. The numeri-
cal experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 and for the prob-
lems in Section 3.1. The algorithms were implemented uniformly, i.e. the
only thing that separated the algorithms was the method for finding the
median.

51

Summary: We should prefer median search in front of sorting since it per-
forms better for all the solved problems. In [Kiw08], Kiwiel compare a
ranking algorithm in the spirit of MB, Brucker’s classic algorithm [Bru84],
a modification of Brucker’s algorithm, a ranking algorithm with approxi-
mal medians and the ranking algorithm in [CaM87]. He consider the the
quadratic problem (63) and n = 50, 000 − 2, 000, 000. Kiwiel’s results shows
that the ranking algorithm in the spirit of MB perform better than all the
other algorithms.

4.2.3 MBvsMMB

We compare MB as in Section 2.3.3 with MMB as in Section 2.3.5. Remem-
ber, MMB evaluates if xk

j ∈ (lj, uj). Figure 7 shows that MMB is faster in
99% of the cases. We can see that in the few cases where MB is faster, MMB
is almost as fast. From the results it seems like it repay to determine M. This
is not very strange since when determining M, we do not need to determine
xj from (16) for j ∈ M and we do not have to compute

∑

j∈M
ajxj(µ

k) in
each iteration.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

MB
MMB

Figure 7: Performance profile for MB and MMB. The numer-
ical experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 and for the prob-
lems in Section 3.1. The algorithms were implemented uniformly.

52

4.3 A final comparison between breakpoint, quasi-Newton and

relaxation methods

In this section we compare the best performing relaxation algorithm DBR,
the best performing breakpoint algorithm MMB and the numerical New-
ton method ZN in Section 2.4.1. For the numerical method we use the
stopping criteria |

∑

j∈J
ajxj − b | / | b |< 0.1/n. This will of course

give us an approximal optimal solution. The initial value is set to µ0 =
(
∑

j∈J
φj(lj)/aj +

∑

j∈J
φj(uj)/aj)/(2n). If the algorithm does not converge

within 100 seconds, we start over and tries µ0 = (
∑

j∈J
φj(lj)/aj)/n and

µ0 = (
∑

j∈J
φj(uj)/aj)/n. If the algorithm is not solved within 300 seconds

we break the algorithm and consider the problem as unsolved.
Figure 8 shows the performance profile for the algorithms. In general,

we can see a significant advantage of using the DBR since it is fastest for
95.0% of the solved problems. Moreover, DBR is never more than 1.25
times as fast as the best performing algorithm, which is quite impressive if
we compare with the cases when ZN is starting with an initial value µ0 close
the approximated optimal solution µ∗

ǫ .

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

DBR
ZN
MMB

Figure 8: Performance profile for DBR, MMB and ZE. The nu-
merical experiment was done according to Section 3.2 for n =
50, 000; 100, 000; 200, 000; 500, 000; 1, 000, 000; 2, 000, 000 for the problems in
Section 3.1.

The breakpoint algorithm MMB, is fastest in 2.4% of the solved prob-
lems. This is due to the theory of search problem (67) where MMB is fastest
in 25.0% when |H|/n < 0.3. MMB was never faster than DBR for prob-

53

lems (63),(65), (66) and (68). MMB can compete with DBR when |(H)|/n
is small for problem (67), see Appendix A.

For the solved problems, ZN is never fastest. ZN performs well for
the theory of search problem (67) and the stratified sampling problem (65)
when |H|/n > 0.8. ZN was not very successful for the quadratic problem
(63), the negative entropy problem (68) and the sampling problem (66). We
can see from the performance profile that in 50% of the cases, ZN is more
than 4 times slower than the fastest algorithm. In 6.2% (186/3000) of the
cases the algorithm did not solved the problem and this was mostly due to
the stratified sampling problem (65) when |H|/n < 0.3, but also for some
logarithmic (68) problems when |H|/n < 0.3, see Appendix A.

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ a

DBR
ZN
MMB

Figure 9: Performance profile for DBR, MMB and ZE.
The numerical experiment was done according to Section 3.2
but with 2 problem instances for each group and for n =
4, 000, 000; 6, 000, 000; 8, 000, 000; 10, 000, 000; 15, 000, 000; 20, 000, 000;
25, 000, 000; 30, 000, 000 for the problems in Section 3.1.

Comparing Figure 8 and 9, we can see that they are very similar. In other
words, relative to each other, the performance of the algorithms seems to be
almost constant for different sizes of problems n.

For the MMB, the result shows that the cpu-time decreases when |H|/n
increases for the problems in the problem set. The difference in cpu-time
for solutions belonging to |H|/n > 0.90 is approximal 2.2 times as long as
for solutions belonging to |H|/n < 0.10. For the DBR, the result shows no
clear dependent of |H|/n. But we note that, the fastest solution group and
the slowest solution group, differ in approximal 10%.

54

Concerning the numerical method ZN it the opposite holds, i.e. the cpu-
time increases when |H|/n increases, see Appendix A.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.5

1

1.5

Size of problem [n]

A
ve

ra
ge

 c
pu

−
tim

e
[s

]

MB th. of search
DBR th. of search
MB quadratic
DBR quadratic
MB stra. samp.
DBR stra. samp
MB neg. entropy
DBR neg. entropy
MB production
DBR production

Figure 10: The average cpu-time is plotted as a function of the size of the
problem n for DBR and MMB.

0 0.5 1 1.5 2 2.5 3

x 10
7

0

5

10

15

20

25

Size of problem [n]

A
ve

ra
ge

 c
pu

−
tim

e
[s

]

MB th. of search
DBR th. of search
MB quadratic
DBR quadratic
MB stra. samp.
DBR stra. samp
MB neg. entropy
DBR neg. entropy
MB production
DBR production

Figure 11: The average cpu-time is plotted as a function of the size of the
problem n for DBR and MMB.

In Figure 10 and 11, we can see that the CPU-time for MMB and DBR
is as good as linear for n ∈ [50, 000; 2, 000, 000] respectively n ∈ [50, 000;

55

30, 000, 000]. This is impressive since MMB have a theoretical time com-
plexity of O(n log(n)) and DBR have a time complexity of O(n2). Also note
that all problems, besides the theory of search problem (67), is solved almost
equally fast.

Summary: Even if the stopping criteria for ZN is quite loose (|
∑

j∈J
ajxj−

b | / < ǫ where ǫ ≈ 10−4), ZN is outperformed by DBR and MMB. Hence,
we see no reason to evaluate stronger stopping criteria for ZN nor evaluate
methods for finding the optimal solution x

∗ from the approximated solution
x
∗
ǫ generated by ZN. When |H|/n is small, a large part of the x∗

j equals the
lower and upper bounds which implies that ZN has to operate in an area
where the gradient of (60) and (61) is non-continuous in many directions.
Clearly this area is difficult for ZN in a numerical sense, see the cases when
|H|/n in Appendix A. Also in many cases, ZN fails to solve the stratified
sampling problem (65). This is probably due to the stiffness of the prob-
lem. We should have in mind that ZN just generate an approximal solution.
Hence, to be fair against MMB and DBR, we like to note that we need
some additive method for ZN to find the optimal solution. But again, since
ZN do not perform very well, not even for a loose stop criteria we do not
investigate such a method.

Opposite to ZN, MMB perform very good for problems where |H|/n is
small. This is much due to the pegging process, since we peg a large part
of xk

j ∈ J
k in each iteration, the problem is reduced in next iteration. This

follows from the reduction of breakpoints by half in each iteration. Hence,
in contrast to the relaxation algorithm we can guarantee that a large part
xk

j ∈ J
k is pegged in each iteration. This might be the reason for MMB to

be faster than DBR in some of the cases when |H|/n is small. However,
DBR performs best in most of the cases. It is worth noting that DBR never
performs poor, see Appendix A.

Agreement with earlier approaches: In [Kiw08b], Kiwiel compare a relax-
ation algorithm similar to PIR with a ranking algorithm similar to MMB. He
consider the quadratic problem (63) for n = 50, 000 – 2, 000, 000. The results
show that the relaxation algorithm is slightly faster. Similar results is shown
in [RJL92], but for n = 100 – 4, 000. The results in [Kiw08b] and [RJL92]
agrees with our results if we compare the the performance PIR relative to
DIR in Figure 3 and the MMB relative to DBR in Figure 8

Kodialam and Luss [KoL98] compare a relaxation algorithm, a break-
point algorithm using quicksort and a hybrid of these two. In their numeri-
cal experiments they consider 110 instances of a problem with an exponen-

56

tial objective function with a non-linear resource constraint for n = 10, 000.
They conclude that the relaxation algorithm performs best. Hence, their
result is coherent with ours.

Zenios and Nielsen [NiZ92] compare their numerical method ZN with
a breakpoint algorithm (using quicksort and no pegging) for the quadratic
problem. They implement the algorithms on massively parallel computers.
Five classes of the quadratic problem are solved. In the results it is shown
that ZN performs better than the breakpoint algorithm in 4 of 5 classes
problems. In [NiZ92], the over all stop criterion is set to |

∑

j∈J
ajxj −

b |< 10−4 which is similar to our stop criterion. Clearly, ou results do not
agree with the results in [NiZ92]. But we like to stress that there are two
important differences in our numerical experiments compared to Zenios’
and Nielsen’s; We do not use parallel computers and we use a more effective
breakpoint algorithm. Moreover, it’s not clear what kind of initial values
Zenios and Nielsen use.

It is worth noting that Bitran and Hax [BiH81] compared their algorithm
similar to BH with Luss’ and Gupta’s algorithm [LuG75] similar to MMB
but with a sequencial search instead of median search and without pegging.
In their numerical experiments they concluded that the CPU-time for the
relaxation algorithm is comparable by the time for compute the derivatives
and sort them, which is done in the initialization of Luss’ and Gupta’s al-
gorithm. However, they considered a set of test problems similar to our
test set but for n between 50 and 200. After many years development of
the breakpoint algorithm we can still see it outperformed by the relaxation
algorithm. But the differences in CPU-time is not so large anymore.

4.4 Future work

For the numerical experiments in this study, we have assumed that we can
find a closed form of the dual variable µ(x). If that is not the case we need
to add a numerical method for finding µk in each iteration for the relax-
ation algorithms. We note that breakpoint algorithm MMB, do not need
a closed form of µ besides in the last iteration. However, in [KoL98], a
primal breakpoint algorithm, a dual breakpoint algorithm and a relaxation
algorithm are compared for a non-linear problem of size n = 10, 000. The
relaxation algorithm and the dual breakpoint algorithm uses a numerical
method to determine µk in each iteration. In their numerical experiment
the primal breakpoint algorithm performs best. As far as we know, this is
the only approach that has been done for problems where µk does not have
a closed form. Hence, an intersting future work is to evaluate problems

57

where µ does not have a closed form where also a Newton-like method is
considered.

4.5 Conclusion

Our results, as well as the results in [Kiw08b],[RJL92] and [KoL98], im-
plies that we should prefer to use a relaxation algorithm when we can find a
closed form of µ(x).

What distinguish the results in our study from earlier is that we showed
that our new implementations (DIR and DBR) of the relaxation algorithm
outperforms the earlier used algorithms (PIR and DER). In other words,
the results shows that we should evaluate the dual variable for the relax-
ation algorithms i.e. DIR outperforms PIR. Moreover it is more profitable
in theory, as well as in practice, to apply blended evaluation i.e. DBR out-
perform DER and DIR. We also showed that both DBR and MMB perform
better than the Newton-like algorithm ZN. Finally, according to the results,
MMB and DBR have a time complexity of O(n) for large n in practise.

References

[AEP05] N. Andréasson, A. Evgrafov, and M. Patriksson, A n Introduction
to Continuous Optimization, Studentlitteratur, Lund, 2005.

[BGLS03] J.F. Bonnas, J.C. Gilbert, C. Lemaréchal and C.A. Sagastizábal,
Numberical Optimization; Theoretical and Practical A spects,
Springer-Verlag, Berlin Heidelberg, 2003.

[BiH81] G. R. Bitran and A. C Hax, Disaggregation and resource-
allocation using convex knapsack-problems with bounded vari-

ables, Management Science, 27 (1981), pp. 431-441.

[BiT89] G. R. Bitran and D. Tirupati, Tradeoff curves, targeting and bal-
ancing in manufactoring networks with queueing networks, Oper-
ational Research, 37 (1989), pp. 547-564.

[Bod69] L. Bodin, Optimization procedures for the analysis of coherent
structures, IEEE Transactions on Reliability, R-18 (1969), pp.
118-126.

[BrS02] K. M. Bretthauer and B. Shetty, A pegging algorithm for the non-
linear resource allocation problem, Computers & Operations Re-
search, 29 (2002), pp. 505-527.

58

[BrS95] K. M. Bretthauer and B. Shetty, The nonlinear resource alloca-
tion problem, Operations Research, 43 (1995), pp. 670-683.

[BRS99] K. M. Bretthauer, A. Ross, and B. Shetty, Nonlinear integer pro-
gramming for optimal allocation in stratified sampling, European
Journal of Operational Research, 116 (1999), pp. 667-680.

[BSS96] K. M. Bretthauer and B. Shetty, A. Syam A projection method
for integer quadratic knapsack promblem. Journal of Operational
Research, 47 (1996), pp. 457-462.

[Bru84] P. Brucker,A n O(n) algorithm for quadratic knapsack problems,
Operations Research Letters, 3 (1984), pp. 163-166.

[CAA57] C. W. Churchman, R. L. Ackoff, and E. L. Arnoff, Introduction
to Operations Research, John Wiley & Sons, New York, NY, first
ed., 1957.

[CaM87] P. H. Calamai and J. J. Moré, Quasi-Newton updates with bounds,
SIAM Journal on Numerical Analysis 24 (1987) pp. 1434-1441.

[ChC58] A. Charnes and W. W. Cooper, The theory of search: Optimal
distribution of search effort,Management Science, 5 (1958), pp.
44-49.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduc-
tion to A lgorithms, 3rd ed. The MIT press (2009) Massachusetts
Institute of Thechnology

[DoM02] E. D. Dolan and J. J. Moré, Benchmark ing optimization software
with performance profiles, Math. Program., Ser A 91 (2002) pp.
201-213.

[DSV07] K. Dahiya, S. K. Suneja and V. Verma, Convex programming with
a single separable constraint and bounded variables, Comput Op-
tim. Applic, 36 (2007) pp. 67-82.

[Ein81] J. M. Einbu, Extension of the L uss-Gupta resource allocation al-
gorithm by means of first order approximation techniques, Oper-

ations Research, 29 (1981), pp. 621-626.

[FeZ83] A. Federgruen and P. Zipkin, Solution techniques for some alloca-
tion problems, Mathematical Programming, 25 (1983), pp. 13-24.

59

[Geo70] A. M. Geoffrion, Elements of large-scale mathematical program-
ming. part II: Synthesis of algorithms and bibliography,Manage-
ment Science, 16 (1970), pp. 652-691.

[HKL80] R. V. Helgason, J. L. Kennington, and H. Lall,A polynomially
bounded algorithm for a singly constrained quadratic program,

Mathematical Programming, 18 (1980), pp. 338-343.

[IbK88] T. Ibaraki and N. Katoh, Resource A llocation Problems: A lgo-
rithmic A pproaches, no. 4 in Foundations of Computing Series,
The MIT Press, Cambridge, MA, 1988.

[KIM79] N. Katoh, T. Ibaraki, and H. Mine, A polynomial time algorithm
for the resource allocation problem with a convex objective func-

tion, Journal of the Operational Research Society, 30 (1979), pp.
449-455.

[Kiw07] K.C Kiwiel, On L inear-Time A lgorithms for the Continuous
Quadratic knapsack problem , Mathmatical programming, Ser. A,
Vol. 134, No 3. pp. 149-154, 2007

[Kiw08] K.C Kiwiel, Breakpoint searching algorithms for continuous
quadratic knapsack problem , , Vol. 112, No 2 pp. 473-491, 2008

[Kiw08b] K.C Kiwiel, Variable Fixing A lgorithms for Continuous

Quadratic Knapsack Problem , J Optim Theory Appl 136,
pp. 445-458, 2008

[Knu98] D. E. Knuth, Sorting and Searching, 2nd edn. The A rt of Com-
puter Programming, vol. III. Addison-Wesley, Reading (1998)

[KoL98] M. S. Kodialam and H. Luss, A lgorithms for separable nonlinear
resource allocation problems, Operations Research, 46 (1998),
pp. 272-284.

[Koo99] B. O. Koopman, Search and Screening. General Principles With
Historical A pplications, Military Operations Research Society,
Alexandria, VA, revised ed., 1999.

[LMOM07] T. Larsson, J. Marklund, C. Olssone, M. Patriksson, Convergent
L agrangian heuristics for nonlinear minimum cost network flows,

Operations Research, 189 (2008) pp. 324-346.

[LuG75] H. Luss and S.K. Gupta, A llocation of effort resources among
Competing A ctivities, Operation Research, 23 (1975) pp. 360-366

60

[MaK93] B. M. Maloney and C. M. Klein Constrained multi-item inventory
systems: A n implicit approach, Computations and Operational
Research, 20 (1993), pp. 639-649.

[Mar52] H. M. Markowitz, Portfolio selection, Journal of Finance 7
(1952), pp. 77-91.

[MaT90] S. Martello and P. Toth, Knapsack problems: algorithms and com-
puter implementations, New York: Wiley, 1990.

[MGB81] J. J. Moré, B. S. Garbow and K. E. Hillstrom Testing Uncon-
strained Optimization Software, ACM Transactions on Math.
Softwares, vol 7, No.1 (1981), pp. 17-41.

[NiZ92] S.S Nielsen and S. A. Zenios, Massively parallel algorithms for
singly constrained convex programs, ORSA Journal on Comput-
ing, 4 (1992), pp. 166-181.

[Pat08] M. Patriksson, A survey on the continuous nonlinear resource al-
location problem , European Journal of Operational Research,
Volume 185, p.1-46, 2008 Press, Princeton, NJ, 1970.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery Numerical Recipes in Fortran, 2nd ed. Cambridge Univer-
sity Press (1992).

[RJL92] A. G. Robinson,N. Jiang and C. S. Lemke , On the continu-
ous quadratic knapsack problem,Mathematical programming 55
(1992) pp. 99-108.

[San71] L. Sanathanan, On an allocation problem with multistage con-
straints, Operations Research, 18 (1971), pp. 1747-1663.

[Sha63] W. F. Sharpe, A simplified model for portfolio analysis, Manage-
ment Science, 9 (1963), pp. 277-293.’

[Sri63] K. S. Srikantan, A problem in optimum allocation, Operations
Research, 18 (1963), pp. 265-273.

[Ste01] S. M. Stefanov, Convex separable minimization subject to
bounded variables, Computational Optimization and Applica-
tions, 18 (2001), pp. 27-48.

61

[Sto81] L.D. Stone Review (Untitled) , (Review of Searching an Screen-
ing: General Principles with Historical Applications) SIAM Re-
view vol. 23 No. 4 (1981)

[ZeC91] S. A. Zenios and Y. Censor, Massively parallel row-action algo-
rithms for some nonlinear transportation problems, SIAM Jour-
nal on Optimization, 1 (1991), pp. 373-400.

[Zip80] P. H. Zipkin, Simple rank ing methods for allocation of one re-
source,Managemant Science, 26 (1980), pp. 34-43.

62

A CPU-times for the numerical experiments

We post the results for the computatinal experiment for DBR, MMB and
the quasi-Newton method. The exponentials denotes the number of prob-
lem instances that where unsolved by the algorithm.

A.1 The theory of search problem

Table 2: CPU-times for MMB for solving problem (67). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0184 0.0396 0.0798 0.2098 0.4163 0.8528

10 − 20% 0.0205 0.0432 0.0870 0.2195 0.4536 0.9157

20 − 30% 0.0231 0.0477 0.0985 0.2522 0.5017 1.0350

30 − 40% 0.0252 0.0532 0.1090 0.2804 0.5635 1.1361

40 − 50% 0.0285 0.0583 0.1194 0.3108 0.6377 1.3069

50 − 60% 0.0321 0.0656 0.1384 0.3512 0.7188 1.4672

60 − 70% 0.0351 0.0723 0.1504 0.3930 0.8011 1.6047

70 − 80% 0.0382 0.0798 0.1659 0.4254 0.8739 1.7491

80 − 90% 0.0416 0.0859 0.1804 0.4652 0.9487 1.9048

90 − 100% 0.0453 0.0934 0.1956 0.5036 1.0218 2.0885

Average 0.0308 0.0639 0.1324 0.3411 0.6937 1.4061

63

Table 3: CPU-times for DBR for solving problem (67). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0222 0.0467 0.0939 0.2389 0.4651 0.9546

10 − 20% 0.0226 0.0481 0.0967 0.2403 0.4800 0.9649

20 − 30% 0.0235 0.0486 0.0985 0.2450 0.5032 1.0075

30 − 40% 0.0239 0.0499 0.1017 0.2544 0.5230 1.0526

40 − 50% 0.0246 0.0516 0.1055 0.2605 0.5419 1.1001

50 − 60% 0.0252 0.0533 0.1099 0.2756 0.5683 1.1263

60 − 70% 0.0259 0.0543 0.1116 0.2800 0.5799 1.1681

70 − 80% 0.0262 0.0537 0.1116 0.2860 0.5855 1.1714

80 − 90% 0.0258 0.0534 0.1143 0.2853 0.5806 1.1651

90 − 100% 0.0253 0.0528 0.1079 0.2798 0.5557 1.1118

Average 0.0245 0.0512 0.1051 0.2645 0.5383 1.0823

Table 4: CPU-times for ZN for solving problem (67). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.7418 4.1150 3.1260 9.3488 21.4246 42.2321

10 − 20% 0.2524 0.4186 1.2671 2.9730 4.5789 12.4133

20 − 30% 0.1955 0.2749 0.5175 1.7088 3.4769 7.4375

30 − 40% 0.1491 0.2781 0.5414 1.5100 2.7338 5.4466

40 − 50% 0.1087 0.2181 0.4349 1.4146 2.5865 6.7664

50 − 60% 0.0948 0.2057 0.4212 1.1176 2.4756 5.0269

60 − 70% 0.0760 0.1591 0.3184 0.8111 1.8395 3.8852

70 − 80% 0.0754 0.1418 0.2986 0.8252 1.5393 3.4454

80 − 90% 0.0612 0.1240 0.2307 0.6251 1.4669 2.6413

90 − 100% 0.0432 0.0887 0.1800 0.4901 0.9935 1.9442

Average 0.1798 0.6024 0.7336 2.0824 4.3116 9.1239

64

A.2 The quadratic problem

Table 5: CPU-times for MMB for solving the quadratic problem (63). Each
value is the mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0129 0.0273 0.0564 0.1535 0.3106 0.6549

10 − 20% 0.0146 0.0309 0.0677 0.1746 0.3834 0.7860

20 − 30% 0.0168 0.0355 0.0734 0.2017 0.4306 0.8471

30 − 40% 0.0188 0.0391 0.0840 0.2208 0.4627 0.9055

40 − 50% 0.0205 0.0433 0.0942 0.2448 0.5204 1.0727

50 − 60% 0.0232 0.0476 0.1037 0.2697 0.5768 1.1659

60 − 70% 0.0248 0.0518 0.1125 0.2958 0.6299 1.2380

70 − 80% 0.0264 0.0564 0.1228 0.3293 0.6865 1.3808

80 − 90% 0.0295 0.0612 0.1315 0.3526 0.7287 1.4749

90 − 100% 0.0327 0.0691 0.1505 0.3981 0.8096 1.6547

Average 0.0220 0.0462 0.0997 0.2641 0.5539 1.1181

65

Table 6: CPU-times for DBR for solving the problem (63). Each value is
the mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0099 0.0199 0.0446 0.1163 0.2457 0.5025

10 − 20% 0.0100 0.0207 0.0439 0.1184 0.2366 0.4926

20 − 30% 0.0100 0.0203 0.0435 0.1144 0.2449 0.4840

30 − 40% 0.0103 0.0207 0.0448 0.1136 0.2403 0.4840

40 − 50% 0.0100 0.0217 0.0450 0.1178 0.2403 0.4632

50 − 60% 0.0106 0.0212 0.0430 0.1143 0.2393 0.4949

60 − 70% 0.0101 0.0219 0.0452 0.1083 0.2373 0.4599

70 − 80% 0.0101 0.0214 0.0454 0.1167 0.2435 0.4883

80 − 90% 0.0102 0.0201 0.0459 0.1121 0.2218 0.4737

90 − 100% 0.0098 0.0202 0.0424 0.1026 0.2122 0.4088

Average 0.0101 0.0208 0.0444 0.1134 0.2362 0.4752

Table 7: CPU-times for ZN for solving the problem (63). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0796 0.3027 1.2227 2.8052 5.2094 10.0891

10 − 20% 0.0515 0.0892 0.2025 0.5031 1.3150 2.3668

20 − 30% 0.0337 0.0726 0.1416 0.5276 0.8453 1.9715

30 − 40% 0.0324 0.0609 0.1434 0.4307 0.7762 1.6162

40 − 50% 0.0290 0.0623 0.1353 0.3424 0.7638 1.3782

50 − 60% 0.0265 0.0562 0.1152 0.3303 0.6331 1.2935

60 − 70% 0.0229 0.0514 0.1123 0.2863 0.5983 1.1649

70 − 80% 0.0228 0.0476 0.1003 0.2792 0.5523 1.0738

80 − 90% 0.0192 0.0419 0.0893 0.2333 0.4558 0.9815

90 − 100% 0.0186 0.0393 0.0810 0.2052 0.4331 0.8531

Average 0.0336 0.0824 0.2343 0.5943 1.1582 2.2789

66

A.3 The stratified sampling problem

Table 8: CPU-times for MMB for solving problem (65). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0179 0.0417 0.0791 0.2108 0.4372 0.9604

10 − 20% 0.0200 0.0436 0.0902 0.2289 0.4731 1.0263

20 − 30% 0.0221 0.0467 0.0980 0.2581 0.5285 1.1010

30 − 40% 0.0227 0.0493 0.1051 0.2754 0.5697 1.1414

40 − 50% 0.0250 0.0537 0.1131 0.2941 0.6133 1.2642

50 − 60% 0.0270 0.0560 0.1222 0.3135 0.6672 1.3309

60 − 70% 0.0285 0.0612 0.1324 0.3451 0.7041 1.4412

70 − 80% 0.0318 0.0658 0.1416 0.3745 0.7620 1.5477

80 − 90% 0.0330 0.0701 0.1543 0.3975 0.8275 1.6631

90 − 100% 0.0362 0.0765 0.1676 0.4324 0.8857 1.7934

Average 0.0264 0.0565 0.1203 0.3130 0.6468 1.3270

67

Table 9: CPU-times for DBR for solving problem (65). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0105 0.0220 0.0459 0.1195 0.2433 0.4854

10 − 20% 0.0109 0.0231 0.0480 0.1227 0.2473 0.5095

20 − 30% 0.0110 0.0236 0.0495 0.1267 0.2590 0.5210

30 − 40% 0.0116 0.0240 0.0496 0.1291 0.2649 0.5365

40 − 50% 0.0117 0.0246 0.0522 0.1305 0.2666 0.5447

50 − 60% 0.0121 0.0246 0.0518 0.1350 0.2699 0.5505

60 − 70% 0.0127 0.0270 0.0542 0.1361 0.2836 0.5672

70 − 80% 0.0132 0.0265 0.0550 0.1372 0.2837 0.5596

80 − 90% 0.0130 0.0267 0.0551 0.1385 0.2851 0.5479

90 − 100% 0.0122 0.0246 0.0510 0.1283 0.2610 0.5457

Average 0.0119 0.0247 0.0512 0.1303 0.2664 0.5368

Table 10: CPU-times for ZN for solving problem (65). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.20902 0.67562 0.83131 2.36245 3.65346 22.96212

10 − 20% 0.15233 0.20885 0.42535 1.02483 6.40865 10.78052

20 − 30% 0.09522 0.46743 1.08343 1.93782 2.66994 13.13524

30 − 40% 0.07706 0.33764 0.31826 1.76523 3.44115 3.58355

40 − 50% 0.19756 0.34715 0.92396 0.83895 3.80293 6.40663

50 − 60% 0.17151 0.20704 0.68095 0.74111 3.07161 9.66006

60 − 70% 0.09992 0.2489 0.47421 1.69952 1.85112 8.88212

70 − 80% 0.1024 0.3224 0.4062 1.9369 2.1858 4.0281

80 − 90% 0.0868 0.2742 0.6412 1.1045 1.6544 6.4222

90 − 100% 0.0186 0.0367 0.3077 1.9830 1.6323 3.3603

Average 0.1210 0.3126 0.6092 1.5394 3.0371 8.9221

68

A.4 The negative entropy problem

Table 11: CPU-times for MMB for solving problem (68). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0171 0.0364 0.0751 0.1983 0.4022 0.8353

10 − 20% 0.0183 0.0400 0.0823 0.2108 0.4354 0.9031

20 − 30% 0.0199 0.0416 0.0873 0.2308 0.4698 0.9661

30 − 40% 0.0214 0.0448 0.0921 0.2457 0.5192 1.0337

40 − 50% 0.0230 0.0470 0.0971 0.2648 0.5338 1.0962

50 − 60% 0.0240 0.0512 0.1049 0.2794 0.5752 1.1640

60 − 70% 0.0256 0.0534 0.1104 0.2955 0.6088 1.2398

70 − 80% 0.0263 0.0559 0.1160 0.3103 0.6405 1.3191

80 − 90% 0.0277 0.0584 0.1218 0.3266 0.6831 1.3833

90 − 100% 0.0298 0.0612 0.1297 0.3468 0.7243 1.4910

Average 0.0233 0.0490 0.1017 0.2709 0.5592 1.1432

69

Table 12: CPU-times for DBR for solving problem (68). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0128 0.0265 0.0545 0.1454 0.2948 0.6159

10 − 20% 0.0135 0.0281 0.0579 0.1510 0.3111 0.6308

20 − 30% 0.0141 0.0288 0.0593 0.1563 0.3222 0.6604

30 − 40% 0.0144 0.0298 0.0611 0.1596 0.3354 0.6831

40 − 50% 0.0150 0.0304 0.0637 0.1679 0.3444 0.6728

50 − 60% 0.0151 0.0308 0.0635 0.1691 0.3387 0.6866

60 − 70% 0.0154 0.0310 0.0635 0.1703 0.3413 0.6934

70 − 80% 0.0146 0.0309 0.0649 0.1641 0.3421 0.7115

80 − 90% 0.0154 0.0302 0.0612 0.1632 0.3334 0.6906

90 − 100% 0.0138 0.0307 0.0605 0.1562 0.3162 0.6486

Average 0.0144 0.0297 0.0610 0.1603 0.3280 0.6694

Table 13: CPU-times for ZN for solving problem (68). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.2851 0.3737 1.4003 2.3651 6.8572 11.5980

10 − 20% 0.0758 0.1422 0.2610 1.3356 1.5343 4.1492

20 − 30% 0.0541 0.1104 0.1951 0.6915 1.5987 2.4485

30 − 40% 0.0387 0.0958 0.1938 0.5216 0.9344 2.3886

40 − 50% 0.0331 0.0706 0.1859 0.4051 1.0056 1.4386

50 − 60% 0.0301 0.0514 0.1427 0.3526 0.7266 1.5795

60 − 70% 0.0259 0.0559 0.1209 0.2851 0.6340 1.3041

70 − 80% 0.0266 0.0512 0.1030 0.2838 0.6065 1.1961

80 − 90% 0.0218 0.0458 0.0952 0.2682 0.5302 1.1000

90 − 100% 0.0201 0.0418 0.0865 0.2202 0.4389 0.8910

Average 0.0611 0.1039 0.2784 0.6729 1.4866 2.8094

70

A.5 The sampling problem

Table 14: CPU-times for MMB for solving problem (66). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0138 0.0288 0.0627 0.1729 0.3557 0.7382

10 − 20% 0.0146 0.0318 0.0684 0.1848 0.3849 0.7910

20 − 30% 0.0162 0.0334 0.0721 0.1948 0.4116 0.8382

30 − 40% 0.0175 0.0369 0.0778 0.2048 0.4416 0.8853

40 − 50% 0.0189 0.0396 0.0815 0.2217 0.4658 0.9470

50 − 60% 0.0199 0.0416 0.0879 0.2345 0.4903 1.0052

60 − 70% 0.0208 0.0443 0.0928 0.2510 0.5165 1.0584

70 − 80% 0.0220 0.0467 0.0981 0.2600 0.5408 1.1074

80 − 90% 0.0233 0.0491 0.1031 0.2780 0.5788 1.1707

90 − 100% 0.0245 0.0522 0.1121 0.3017 0.6281 1.2494

Average 0.0191 0.0404 0.0856 0.2304 0.4814 0.9791

71

Table 15: CPU-times for DBR for solving problem (66). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.0098 0.0199 0.0454 0.1263 0.2845 0.5844

10 − 20% 0.0101 0.0215 0.0471 0.1358 0.2846 0.5959

20 − 30% 0.0109 0.0215 0.0473 0.1302 0.2827 0.5729

30 − 40% 0.0112 0.0230 0.0493 0.1296 0.2882 0.5762

40 − 50% 0.0113 0.0226 0.0474 0.1304 0.2760 0.5708

50 − 60% 0.0111 0.0231 0.0477 0.1320 0.2751 0.5626

60 − 70% 0.0115 0.0224 0.0472 0.1254 0.2665 0.5553

70 − 80% 0.0114 0.0229 0.0471 0.1283 0.2747 0.5515

80 − 90% 0.0113 0.0235 0.0472 0.1253 0.2587 0.5213

90 − 100% 0.0109 0.0239 0.0467 0.1231 0.2438 0.4947

Average 0.0109 0.0224 0.0472 0.1286 0.2734 0.5586

Table 16: CPU-times for ZN for solving problem (66). Each value is the
mean of 10 randomized computations.

card(H)/n 50000 100000 200000 500000 1000000 2000000

0 − 10% 0.27003 0.68801 1.27401 4.23002 5.58692 18.58611

10 − 20% 0.23251 0.54131 1.15201 2.3728 6.05672 15.37342

20 − 30% 0.3014 1.2775 0.91262 2.6608 8.32842 8.6787

30 − 40% 0.5222 0.7717 2.1255 3.9237 14.70291 18.0526

40 − 50% 0.2517 0.9015 1.4935 5.1415 7.6900 13.4152

50 − 60% 0.3143 0.7356 1.5437 5.8396 8.6370 15.0744

60 − 70% 0.2532 0.9033 1.4728 2.4379 8.0379 12.4096

70 − 80% 0.2584 0.5863 1.7102 2.5334 8.0650 12.9497

80 − 90% 0.1048 0.2808 0.5144 1.0797 3.3580 5.5380

90 − 100% 0.0200 0.0409 0.0940 0.2349 0.8587 0.9559

Average 0.2528 0.6727 1.2293 3.0454 7.1321 12.1033

72

