Relative Distance Measurement
using GPS and Internal Vehicle Sensors

Master of Science Thesis in the Master’s Programme Communication Engineering

AHMET IRKIN
SERKAN KARAKIS

Department of Signals and Systems

Division of Signal Processing and Biomedical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2011

Master’s Thesis 2011:15

MASTER’S THESIS 2011:15

Relative Distance Measurement
using GPS and Internal Vehicle Sensors

Master of Science Thesis in the Master’s Programme Communication Engineering

AHMET IRKIN

SERKAN KARAKIS

Department of Signals and Systems
Division of Signal Processing and Biomedical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2011

Relative Distance Measurement using GPS and Internal Vehicle Sensors

Master of Science Thesis in the Master’s Programme Communication Engineering
AHMET IRKIN
SERKAN KARAKIS

© AHMET IRKIN, SERKAN KARAKIS, 2011

Examensarbete / Institutionen for Signaler och System,
Chalmers tekniska hogskola, 2011:15

Department of Signals and Systems

Division of Signal Processing and Biomedical Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: + 46 (0)31-772 1000

Cover:
A visual of the Vehicle-to-Vehicle communications, of which this thesis work presents
one of the benefits: relative positioning of target vehicles.

Department of Signals and Systems |Goteborg, Sweden 2011

Kommentar [mp1]: If the report is
printed by for instance Chalmers
reproservice, this name should be inserted
here. If else the department name should
be given.

Relative Distance Measurement using GPS and Internal Vehicle Sensors

Master of Science Thesis in the Master’s Programme Communication Engineering
AHMET IRKIN

SERKAN KARAKIS

Department of Signals and Systems

Division of Signal Processing and Biomedical Engineering

Chalmers University of Technology

ABSTRACT

Each year a million people are being injured in traffic accidents. New active safety systems
have recently been introduced on the market that may significantly reduce the effect of collisions
and sometimes even avoid them (Ref City Safety). In order to prevent an accident there is a need to
first assess and understand the traffic situation around the vehicle. The current state of the art
active safety systems utilize radars, cameras and laser based sensors to support environmental
sensing, i.e., to position the neighboring vehicles in relation to the host vehicle and the
infrastructure (roads, intersections, etc.). Future safety systems will obtain additional information by
communicating with other vehicles and the infrastructure, also by including new sensors like a GPS
and a map. Such information may dramatically improve the accuracy of our understanding the traffic
situation, but as of now, the design of such systems has not been studied much.

This master thesis investigates how to combine information from several sensors including
GPS and internal vehicle sensors in order to position the ego vehicle and other objects around the
vehicle. Apart from designing the positioning systems, we also wish to identify difficulties and
understand different parts of the problem. These parts include sensor models, sensor fusion

algorithms and techniques to handle data that arrives with a time delay.

ACKNOWLEDGMENTS

We would like to thank our examiner Lennart Svensson from Chalmers and our supervisor
Henrik Lind from Volvo Car Corporation so much for bringing this interesting thesis work to us and
also for their continuous support throughout our work.

We also thank Volvo Car Corporation and especially Mats Lestander for making the thesis

work possible with providing everything we needed during the project.

TABLE OF CONTENTS

FAY o1 1 - ot AT TSSO PPTUSTOPPRPPT i
ACKNOWIEAGMENTS ...eeeeie ettt ettt ettt sab e e bt e s be e sateenbaesseeesbeesnbaesaeeensaesnsesssneans ii
Table Of CONTENTEScovviiiiiiiit bbb s iii
List OF ADDIrEVIATIONS ..cuvieiiierieeeee ettt sttt s sttt v
L] o1 Lo T T =SSR vi
1 INEFOTUCTION Levtiiiiiiieitereee et ettt sb e sbeene s nes 1
1.1 Thesis BaCKGrOUNG ..ccccuviiieiiiiiiiie ettt e e e st e e e abe e e s bbe e e satae e eareeas 1
1.2 AIM Of the ThESIS ettt sttt et et ne e 2
R N |V =T d g Vo Yo [o] o -4V 2
1.4 Description of Test Equipment and Configurations.........ccccceecveveeeieeeceesee s see e 2
1.5 LIMItAtIONS.coeiiiiiiiecc e 4
1.6 OULIiNE Of the REPOITiiieiiieiee e e be e e e ta e e e sarae s 5

2 TECHNICAl OVEIVIEW ...ttt sttt sttt s be et sae e b saa e besaeenes 6
0 R o 1 YT o] 1T o] € SRS 6

0 O 1 Y -7 V- 1 S 6
2.1.2 Determining Receiver POSItION.......cuiiiiiiiiiiiiiieiee et 7
2.1.3 GPS IMIESSAZES . uvvrriiieeiiiiiiiteeeesesiitreee e e s esaaaae e e e e s saabaae e e e s e e s btbaeeeeeesaabataeeeesanarraaes 8
2.1.4 GPS DAta ErTOr coeeeiiiiiiiicietecte ettt 12

2.2 COoOrdiNAte SYSTEIMS ..o.uvieiieeiiesieesiee et e seeeteese e te e et eesseeeteesneeesseeeseessreasseesnseenseesnsenns 12
2.2.1 Geographical Coordinate SYStEMi.......ccuievieriieinieeieerie et 13
2.2.2 Earth-Centered Earth-Fixed Coordinate System........ccccevvieeiiiiiecniieesiiee e 13
2.2.3 MaAp ProjECHiON....cciiiiiiiiciiie e 14
2.2.4 Elliptic Parameters of the Earth for GPS Applicationsccceeeeveveveeeceeneenennne 15

2.3 INterNal VEhiCle SENSOIS.....c..vii et ettt et e e e e e e e e e sraaaeen 16

2.4 SeNSOT FUSION SYSTEIMS ...ceiiiiiiiiiiiie ettt ettt ettt sb e e st e e et e e e sabe e e s eareeeeereee e 17
2.4.1 Inertial Navigation SYSTEMcuiiiiiiiiiiiiee ettt bre e e ree e 18
2.4.2 KAIMaNn FIlEEI weouieiiiieieeecee ettt sttt st 18

3 Mathematical Model of Algorithms and Configuration.........c.ccceevvecveveeeiceescie e, 21

3.1 Overview of the AlGOrtRM......ccuiiiiiiieceeee e e 21
3.1.1 Synchronization of GPS and Internal SENSOrScccvveiiiiiieeiiiiie e 22
3.1.2 Parameters of the Kalman Filter........cccoviieeiiniiie et 23
3.1.3 Detection of Signal Qualities for GPS and Internal SEeNnsors........ccccceeevveveerceernnnnn. 27
3.1.4 Relative Distance MeasuremMeNnt.......cccceevuerieiireriiesiesienee st s 28

4 RESUIES 1.ttt st 30
A1 TeSECASE = L.ttt e e s 30
4.2 TESE CASE = 2.ttt st e e 34

5 Conclusion and FULUIE WOTKc.couerieiiiiieieceeeee et s 43

23] o] oY== o] o 1Y 2O SRS 44

LIST OF ABBREVIATIONS

CAN Controller Area Network

ECEF Earth-Centered Earth-Fixed

GPS Global Positioning System

HS-CAN High Speed - Controller Area Network

Hz Hertz

IEEE Institute of Electrical and Electronics Engineers
INS Inertial Navigation System

ITS Intelligent Transportation Systems

LPF Low-Pass-Filter

NGA National Geospatial — Intelligence Agency
NIMA National Imagery and Mapping Agency
NMEA National Marine Electronics Association
SNR Signal to Noise Ratio

Vv Vehicle to Vehicle

WAVE Wireless Access for Vehicular Environments
WGS World Geodetic System

WLAN Wireless Local Area Network

[0} latitude

A longitude

h altitude

TABLE OF FIGURES

Figure 1.1 - Overview of deviCe CONNECLIONScccvievieeriieerie ettt sttt sre et e s saeesaeesaaeebeesaees 3
Figure 2.1 - Calculation of satellite diSTanCeccuivviriiririerieiere ettt 7
Figure 2.2 - Visualization of GPS POSItIONINGeeeiieciieiiierieeciese e ee e e e s 8
Figure 2.3 - ECEF and Geodetic COOrdiNates.......oouiiiiiiieiiieenieeiee ettt e 14
Figure 2.4 - Mercator ProJECTIONcouitii i ettt e et e e e sabe e e s snbeeseaneee e e 15
Figure 2.5 - Low pass filter applied t0 YaW rate......cccueiiiiiiiiiiiiiciieccec et 17
Figure 2.6 - Visualization of the Kalman Sain..........ccccveiiriiiinieiie et 19
Figure 3.1 - Overview of the Sensor fuSION SYSTEMcoiiiiiiiiririereeeeee e 22
Figure 3.2 - The Kalman filter algOrithmcooeeeieeeee e 25
Figure 3.3 - Relative distance MeasUr@mMeENTcoouiiiiiiii e seba e e saraee e 29
o= {0 R A 1Yy B 4 ol S 30
FIgUIe 4.2 - VENICIE SPEEAeiiiiciiiie ettt e e st e e s bbe e e s baee e sbaeeesabaeessaeaeenns 31
FIGUre 4.3 - Lateral diStAnCe.....cuiiieeeieeiie e eee et estee ettt e et e st e st e ste e e e aeessaeeteessseesseesrseesneeenseennen 31
Figure 4.4 - Longitudinal diStanCe.....cccuiiiiiiiiiiiii ettt e e b e e sabe e e aaeeeeas 32
o= (U R B R T = <1 A=Y o= S 32
Figure 4.6 - Lateral error NiStOZIramci ittt e et e e e b e e e sabeessaaeee e 33
Figure 4.7 - Longitudinal error hiStOZramc.cevieecieiie ettt see e seae e e nnne e 33
Figure 4.8 - Target angle error hiStOZramcccuvii i sebe e e s aaae e 34
= (U R e TR Y B 4 ol 0 SRS 35
Figure 4.10 - VENICIE SPEEUuiiieiiie ettt ettt e et e st a e e s baee e ebbeeesabaeesnbaeaenns 36
o= {U O B A T =Y =Y o 1 = o SRS 36
Figure 4.12 - Longitudinal diStanCe.......ccueeeieiriieeiierieeriee sttt saeeete e setesnnee e 37
FIGUIE 4.13 - TArEt ANEIE ..oueiiiieiieieeiete ettt ettt sttt e b st e bt et e b e s atesbe et e saeentesaeeneas 37
Figure 4.14 - AbSOIULE diSTANCE ITONuiiiiiiiiieiiee ettt ettt e e e bbe e e tae e e sbeeesnbeeessaaeeeas 38
Figure 4.15 - Lateral rror RiStOZrami......co i ittt st sttt st st 38
Figure 4.16 - Longitudinal error hiStOZramcociiecieiiieiiee ettt see e e see s saeeseaeeeeesaae e 39
Figure 4.17 - Target angle error NiSTOZramcouereeierieiie ettt sttt st sbe et e e 39
o=V g B R T €] Aol (o Yol Q= o o] USROS 42

vi

INTRODUCTION

In this section, the background of our thesis work will be introduced to the reader and the
goals will be defined. Technical equipments used in the project will also be briefly introduced. In
addition, the assumptions made, and the limitations put in the work will be presented. Finally, an

outline of the report is given at the end of the section.

1.1 Thesis Background

Today’s active safety systems utilize radars, cameras and laser based sensors to support
environmental sensing, i.e., to position the neighboring vehicles in relation to the host vehicle and
the infrastructure (roads, intersections, etc.). Systems capability is dependent on the limits of the
sensors which allow tracking of objects only in view of the sensors. Future safety systems will obtain
additional information by communicating with other vehicles and the infrastructure, also by
including new sensors such as a GPS. Such information may dramatically improve the accuracy of our
understanding the traffic situation and reduce possibility of accidents, but as of now, the design of
such systems has not been studied much.

In this thesis work relative distance calculation to support V2V communication is presented.
Considering the short distance between the cars driving on the road and using similar GPS receiver
products, it is practical to assume that they may have common errors (77C) and also vehicle specific
errors (77,) in their individual position estimations. Therefore, we can define the equation of the
position estimation for each vehicle as follows:

Xr=x+n+7,
Xz =X+, +1,

Our expectation was although each vehicle had erroneous position estimation with the model
defined above; differentiation could discard the common error w, included in both vehicle positions.
X—Xp=X—X+ 1 — 1,

To evaluate this idea, we logged and organized the necessary information and implemented a
system to make the best position estimations. In order to reduce the vehicle specific errors in the
calculations, other inputs (yaw rate, speed, gear, etc.) are also introduced to the system and
combined with a sensor fusion algorithm. There are different methods and algorithms such as

Kalman Filtering, Bayesian Networks, Dempster-Shafer Theory and etc. used to implement a sensor

fusion system for different applications. A Kalman filter is used for improving position and thereby

distance measurements in this master thesis work.

1.2 Aim of the Thesis

The target of this thesis work is to investigate the possible improvements in collision
avoidance systems that might become available with V2V communication. The main goals of our
work are determining the relative distance of a target vehicle with respect to the ego vehicle as they
share GPS and internal vehicle sensor information such as speed, yaw rate, steering angle and
analyzing the accuracy, dependencies and challenges of such a system.

As of now, several associations and corporations are working on V2V communication
standards. One of them, IEEE, has recently developed the 802.11p standard, the so-called Wireless
Access for Vehicular Environments (WAVE) for Intelligent Transportation Systems (ITS), which brings
a set of adjustments to the well-known 802.11 WLAN protocol [1]. However, during this thesis work,
although the vehicles did not have such built-in communication system physically, we assumed that

they had one and they could share the necessary information with each other.

1.3 Methodology

To design an accurate and efficient sensor fusion system, the principles of GPS and the vehicle
sensors are studied first. Once the strengths and weaknesses of each of them are grasped, the
necessary sensors are chosen to be inputs to the system. The next thing is to choose the sensor
fusion algorithm and define the equations to combine the inputs in a reasonable way. After the
equations are defined and the sensor fusion algorithm is developed, CANalyzer software to log
information from CAN bus of the vehicle is installed and a C++ code is written to record GPS
information. Small test data is logged to analyze and solve synchronization problem and once all the
information is synchronized, the sensor fusion algorithm is developed in MATLAB. When the
software and the hardware are prepared, test scenarios are created and thereby tests are done

according to them. Finally, results of the tests are analyzed and presented.

1.4 Description of Test Equipment and Configurations
Test vehicles that were used in our project are standard 2007 Volvo S80 sedan and 2008 Volvo
V70 station wagon. Both vehicles are equipped with GlobalSat BU-353 GPS receiver, standard

internal sensors (speed, yaw, gear) and only S80 had integrated Radar-Camera sensor.

GPS Receiver

GlobalSat BU-353 GPS receiver was used in this thesis work. GPS receiver is equipped with a
high performance SiRF Star Ill GPS chipset, which outputs the information in NMEA 0183 format
through its USB interface. We used GPRMC, GPGGA and GPGSV messages of NMEA 0183 output in

our project.

Table 1 - Sampling frequency of GPS data

Source Sampling Time Sampling Frequency

GPRMC GPS 1sec 1Hz

Latitude

Longitude

Speed

Time

GPGGA 1sec 1Hz

Number of Satellites

GPGSV 5sec 0.2 Hz

SNR

Controller Area Network (CAN) & Vector CANcaseXL

Controller area network (CAN) is a serial bus communication protocol suited for networking
sensors, actuators and other nodes in real time systems [2]. The protocol is widely used in the
automotive industry. CAN messages are kept in four different formats as data, remote, error and
overload. In our project, data messages are used. CAN message frame consists of Start of Frame
(SOF), Identifier, Remote Transmission Request (RTR), Control, Data, Cyclic Redundancy Checksum
(CRC), Acknowledgement (ACK) and End of Frame (EOF).

A 4

GPS Logger

CANCcase XL

A 4

CANalyzer

Figure 0.1 - Overview of device connections

3

‘ SOF ‘ Identifier ‘ RTR ‘ Control ‘ Data ‘ CRC ‘ ACK ‘ EOF

Vector CANcaseXL is a USB interface, which is capable of processing CAN messages. It is
possible to receive and analyze remote frames without any limitation. It is also capable of generating
and detecting error frames on the CAN bus [3]. CANcaseXL works with the Vector CANalyzer
software.

Vector CANalyzer is a software tool, which is used for analyzing and observing ECU networks
and distributed systems in vehicles. In this thesis work, we used CANalyzer tool in order to observe,
analyze and record data traffic in CAN.

We logged speed, gear and yaw rate information from High Speed Control Area Network (HS-

CAN). The sampling frequencies of these signals are shown in the table below.

Table 2 - Sampling frequency of sensor data

Source Sampling Time Sampling Frequency
Speed High Speed CAN 20 ms 50 Hz
Gear 20 ms 50 Hz
Yaw 20 ms 50 Hz
Distance Radar 100 ms 10 Hz
Yaw 20 ms 50 Hz

1.5 Limitations

In principal, the system that is developed in this thesis work relies on accuracy and efficiency
of the communication link between the vehicles. However, since we did not use an actual
communication system, we assumed existence of a link to share the information in between.
Therefore, the outcomes of this thesis work should be seen as the results obtained using a perfect
communication system with high data rate.

Another important assumption is the absolute accuracy of the reference data, with which we
compare our test results. We used the information from the radar enhanced with a camera in order
to obtain the true distance between the vehicles and compared our results with that information.

Consequently, the accuracy of our test results is relative to the accuracy of the radar information.

Moreover, since we used the radar-camera information as the reference and they required a
line of sight view within a narrow angle of the target vehicle for distance determination, we could
only test the cases where the vehicles were following each other or at least they drove in front of

each other.

1.6 Outline of the Report

The report starts with the aim of this thesis work and the theoretical background of the
problem we are dealing with. The hardware and the software equipments used in this job are
introduced and the limitations are given to assist the reader why we have made certain decisions in
the design.

After this brief introduction, a detailed overview of GPS and vehicle sensors including working
principles, technical specifications, strengths and weaknesses is presented. The formal sensor fusion
algorithm and the effects of its parameters are explained.

In the third chapter, an overview of the entire algorithm including inputs of the sensor fusion
system, solution to synchronization problem and vehicle dynamics equations is given.

Results obtained from the tests are shown in the results section; the comments and possible

work for the future are presented in the conclusion.

TECHNICAL OVERVIEW

In this section, some important background information is given to help the reader follow the
rest of the report easier. Main areas discussed are principles of the Global Positioning System (GPS),
coordinate systems, internal vehicle sensors and sensor fusion systems, particularly the Kalman

Filter which is used in our project.

1.7 Principles of GPS

Global positioning system (GPS) is a satellite based positioning system. GPS satellites convey
information data, which can be used to calculate the position of the receiver. GPS includes 28 active
satellites that are uniformly settled on six different circular orbits. Inclination angle of orbits from
the equator is 55° and orbits are seperated by 60° right accession from each other[4]. This
constellation provides global coverage and chance to operate 24 hours a day and in all weather
conditions. In theory three or more satellites in view is enough to calculate the location of the
receiver. Although receiver can calculate the position, the accuracy of positioning is dependent on

the number of satellites in view, signal qualities, weather conditions, etc.

1.7.1 GPS Signal
Each GPS satellite conveys navigation message, which is made of five major components [4].
1. Satellite AlImanac Data
Satellite Almanac Data includes orbital information for each satellite in the system. The
receiver uses Almanac Data to calculate the approximate location of each satellite at any time.
2. Satellite Ephemeris Data
Satellite Ephemeris Data gives much more accurate information about satellite locations.
Ephemeris data is conveyed from a particular satellite and it only includes location of that satellite,
and it is valid for only several hours [4].
3. Signal Timing Data
GPS data includes time tags, which are used to calculate transmission time of specific points
on the GPS signal. This information is needed to determine the satellite-to-user propagation delay
used for ranging[4].

4. lonospheric Delay Data

lonospheric delay data includes estimated amount of delay, when signal passes through
ionosphere.
5. Satellite Health Message

Satellite health message carries information about satellite operating status.

1.7.2 Determining Receiver Position

Each satellite transmits its exact orbital position and onboard clock time. The signal is
transmitted at speed of light (300 * 103 km/h). Time difference between the transmission of the
signal by the satellite and the received time by the receiver is called transit time. Distance between

the receiver and the satellite is then calculated by multiplying the speed of light and the transit time

(7).

d=1*cC
Satellite and Satellite and
receiver clock receiver clock
display: Oms display: 67,3ms

Oms Oms
‘i' 75ms 25ms
' ?5ms< 25ms
50ms = S0ms == T

Signal transmition (start time) Signal reception (stop time)
Figure 0.1 - Calculation of satellite distance
The distance from a certain satellite provides a range circle, which indicates all the possible
positions of the receiver. Each satellite points a different range circle. In an ideal case, the range
circles are represented with solid line circles shown in Figure 0.2. Intersection of these circles gives
the estimated receiver position. However, these range circles are sensitive to errors and considering
the fact that the signal propagates with speed of light, even small clock errors may cause large

positioning errors. For this reason, the GPS receiver clock and the satellite clock are synchronized to

7

provide accurate positioning. Although synchronized time reduces positioning errors, it does not fix
the errors caused by atmospheric conditions and multipath effects. These errors affect the transmit
time or the speed of the signal and it creates larger range circles which are shown in Figure 0.2 with

dash lines.

Y co-ordinates

X co-ordinates

\/

Figure 0.2 - Visualization of GPS positioning

In theory, the receiver needs three satellite distance information to determine the position,
however, today’s GPS receivers use information from at least four satellites to determine their
positions. Accuracy of positioning depends on the number of satellites in view and the quality of the

received signals.

1.7.3 GPS Messages
GPS receivers process the messages coming from GPS satellites. Processed message is given as
NMEA, SiRF, Garmin, Delorme format at output of the receiver. Most of the GPS receivers use NMEA
8

format, which is developed by National Marine Electronics Association. There are many kinds of
NMEA sentences. Some of them are listed below [5].

GPGGA - Fix information

GPGLL - Lat/Lon data

GPGSA - Overall satellite data

GPGSV - Detailed satellite data

GPRMC - Recommended minimum data for GPS

GPVTG - Vector track an speed over the ground

User needs at least one sentence from GPGGA, GPGGL or GPRMC in order to define the
position of receiver. In this master thesis report GPGGA, GPGSV and GPRMC are used.

GPGGA

GPGGA packets enclose fix data, which gives three dimensional location of the receiver[6].
GPGGA sentence looks similar to:

SGPGGA,101428.000,5741.1742,N,01158.7346,E,1,10,0.8,46.9,M,40.1,M,,0000*69

<1>,<2>,<3>,<4>,<5><6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>,<14>,<15>,<16>

Explanation of a GPGGA sentence is given below.

Field Example Comments
<1> Sentence ID SGPGGA
<2> UTC Time 101428.000 hhmmess.sss
<3> Latitude 5741.1742 ddmm.mmmm
<4> N/S Indicator N N = North, S = South
<5> Longitude 01158.7346 dddmm.mmmm
<6> E/W Indicator E E = East, W = West
<7> Position Fix 1 0 = Invalid, 1 = Valid GPS fix(SPS),

2 = Valid DGPS fix, 3 = Valid PPS fix

<8> Satellites Used 10 Satellites being used (0-12)

<9> HDOP 0.8 Horizontal dilution of precision
<10> Altitude 46.9 Altitude (WGS-84 ellipsoid)

<11> Altitude Units M M= Meters

<12> Geoid Separation 40.1 Geoid separation (WGS-84 ellipsoid)
<13> Separation Units M M= Meters

<14> Time since DGPS in seconds
<15> DGPS Station ID

<16> Checksum *69 always begin with *

GPRMC
GPRMC is a NMEA sentence, which keeps recommended minimum data for GPS [7]. It

includes position, velocity and time information. GPRMC sentence looks similar to:
SGPRMC,101427.000,A,5741.1742,N,01158.7346,E,0.02,29.49,060810,,*35
<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>

Explanation of a GPRMC sentence is shown below.

Field Example Comments
<1> Sentence ID SGPRMC
<2> UTC Time 101427.000 hhmmss.sss
<3> Status A A =Valid, V = Invalid
<4> Latitude 5741.1742 ddmm.mmmm
<5> N/S Indicator N N = North, S = South
<6> Longitude 01158.7346 dddmm.mmmm
<7> E/W Indicator E E = East, W = West
<8> Speed over ground 0.02 Knots
<9> Course over ground 29.49 Degrees
<10> UTC Date 060810 DDMMYY
<11> Magnetic variation Degrees
<12> Magnetic variation E = East, W = West
<13> Checksum *35

GPGSV

GPGSV sentences provide elevation and azimuth angles of each satellite as well as signal to
noise ratio (SNR) of each signal [7]. GPGSV sentence can include maximum four satellites
information thus the number of GPGSV sentences depends on the number of satellite numbers in

view. Generally, three sentences are necessary for full information. GPGSV sentence looks similar to:

10

SGPGSV,3,1,12,27,72,271,41,15,55,191,38,09,55,275,40,17,38,102,42*7A
SGPGSV,3,2,12,26,33,159,38,28,31,059,28,18,27,276,19,22,21,313,33*72
SGPGSV,3,3,12,12,11,223,30,11,09,042,24,24,01,326,,08,01,094,*74

<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>,<14>,<15>,<16>

Explanation of a GPRMC sentence is shown below.

Field Example Comments
<1> Sentence ID SGPGSV
<2> No. of messages 3 No. of messages in complete (1-3)
<3> Sequence no. 1 Sequence no. of this entry (1-3)
<4> Satellites in view 12
<5> Satellite ID 1 27 Range is 1-32
<6> Elevation 1 72 Elevation in degrees
<7> Azimuth 1 271 Azimuth in degrees
<8> SNR 1 41 Signal to noise ratio dBHZ (0-99)
<9> Satellite ID 2 15 Range is 1-32
<10> Elevation 2 55 Elevation in degrees
<11> Azimuth 2 191 Azimuth in degrees
<> Checksum *70

The text below is a part of NMEA-0183 data received from the GPS receiver in one of our tests

in Gothenburg.

SGPRMC,101427.000,A,5741.1742,N,01158.7346,E,0.02,29.49,060810,,*35
SGPGGA,101428.000,5741.1742,N,01158.7346,E,1,10,0.8,46.9,M,40.1,M,,0000*69
SGPGSA,A,3,17,15,27,26,22,28,18,09,11,12,,,1.5,0.8,1.3*36
SGPGSV,3,1,12,27,72,271,41,15,55,191,38,09,55,275,40,17,38,102,42*7A
SGPGSV,3,2,12,26,33,159,38,28,31,059,28,18,27,276,19,22,21,313,33*72
SGPGSV,3,3,12,12,11,223,30,11,09,042,24,24,01,326,,08,01,094,*74

11

1.7.4 GPS Data Error

There are several errors, which effect and reduce accuracy of GPS. Errors are grouped into five
subgroups. These are briefly explained under below:

1. lonospheric Propagation Error

lonosphere is the upper layer of the atmosphere. It consists of gases, which are ionized by
solar radiation. lonized gases affect the speed of the GPS signal because signal cannot propagate
with free space propagation speed when it passes through the ionosphere. This speed change causes
modulation delays and errors in pseudo range measurement.

2. Tropospheric Propagation Error

Troposphere is the lower layer of the atmosphere, which is composed of water vapor and dry
gases. Condition in troposphere lengthens propagation path, which causes tropospheric path delay.
Tropospheric delay is not frequency dependent; thereby frequency dependent methods cannot
cancel tropospheric errors. Standard model of the atmosphere at the antenna is used to reduce
errors that are caused by troposphere [4].

3. Multipath Effect Error

Objects or surfaces (ex: tall buildings) around the GPS receiver can reflect original GPS signals.
Reflected signals can create new propagation paths and intersect with original GPS signals. This
reflections increase propagation time and makes distortion on the amplitude and the phase of
signal, thereby causes errors.

4. Ephemeris Data Error

Each satellite conveys Ephemeris data, which gives information about the position of the
satellite. Difference between the computed satellite orbital position and the actual satellite orbital
position is called Ephemeris data error. Ephemeris data error is generally small and can be
eliminated by DGPS.

5. Receiver Clock Error

A receiver's built-in clock is not as accurate as the atomic clocks onboard the GPS satellites.

Therefore, it may have very slight timing errors [8].

1.8 Coordinate Systems
In positioning, in order to point an object on a reference frame, a coordinate system must be
introduced. A coordinate system includes a set of numbers to define the location on the frame. By

using these numbers, any point in the frame can be marked uniquely.
12

1.8.1 Geographical Coordinate System

The most common way of representing the locations on a spheroid is using geographical
coordinates. In geographical coordinates, there are three parameters defining the exact location of a
point on the Earth: latitude (o), longitude (1) and altitude (h). Former two are enough to determine
the position on the surface of the Earth without the height information, which in most cases is
satisfactory. Latitude is the angle between the equatorial plane and the line, which is drawn from
the center of the Earth to the corresponding point on the surface, while longitude is the angle
between this line and the prime meridian cross-section. Altitude is the normal distance of a point

from the surface of the Earth.

1.8.2 Earth-Centered Earth-Fixed Coordinate System

Earth-Centered Earth-Fixed (ECEF) coordinate system is a Cartesian coordinate system, which
is widely used in the GPS applications since it is considered to be a convenient way of locating a
point on the Earth [9]. The name of this system consists of two terms; Earth-Centered and Earth-
Fixed providing this convenience together. Earth-Centered means that the origin of this coordinate
system is the center of the Earth, which makes any point to be located almost uniformly that way.
The latter provides the coordinates rotate together with the Earth, which lets them stay constant
despite of this physical rotation. In this coordinate system, three parameters X, Y and Z are used to
determine the position on the Earth where X and Y axes appear to be on the equatorial plane and Z
axis lies perpendicular to them. According to this basis the coordinate set, (0, 0, 0) represents the
center of the Earth and (R, 0, 0) maps to the point where the prime meridian and the equator
intersect where R is the radius of the equator [10]. The relationship between the geodetic
coordinates and the ECEF coordinates is shown in Figure 0.3 and the mathematical conversions

between each other are shown below [11].

x=(N+h)cosgcosi /1=arctan§
. _ Z +er? b sin30
Y = (N + h)cos@sini Q= arctanm
_ (P - _ p
Z—(a2N+h)sm<p h= p—

where;

N (radius of curvature) = a/1— e?sin?¢
13

a = semi major earth axis (equatorial radius)

b = semi minor earth axis (polar radius)

p=VX2+Y2

Za
0 = arctan—
pb
z @ = latilude
Narth Pole A = longitude
— T —— a = major axs

o ;.-'

Prime Meridian | + n N,
{0® longituce) 1'(3l | W \._

Equator - /
(0° latitude)

Figure 0.3 - ECEF and Geodetic coordinates

1.8.3 Map Projection

The process of representing the surface of the Earth in a two dimensional plane is called map
projection. There are many projection methods in use and in all these methods the surface is
deformed with certain rules and parameters. In this thesis work Mercator projection is used to

position the GPS receiver on a two dimensional plane and the optimization algorithms are done on

this plane.

Mercator projection

Mercator projection is a conformal cylindrical projection presented by Gerardus Mercator in 1569,
which draws a set of horizontal lines representing the parallels and equally spaced vertical lines
corresponding to the meridians. Principle of the scaling in Mercator projection is shown in Figure

0.4. Conformality provides preserving the angle at any point of the Earth on the map. This is one of

14

the reasons that Mercator projection is widely used in navigation systems. However, while
preserving the accurate angle, the equal distances between the vertical lines cause the shape
distorted because the distance between the meridians actually varies depending on the latitude of
the point. The varying spaces between the horizontal lines provide the angles to be fixed with
respect to the actual angle of a direction while not helping the distorted size or the shape of the area

to be corrected [12].

Central meridian
(zelected by mapmaker}

Great distortion
in high latitudes

Examplez of rhumb lines
(direction true between
any two points}

Equator touches cylinder s
if cylinder is tangent LA e~

Reasonably true
shapes and distances
within 15° of Equator

B,

Figure 0.4 - Mercator projection

4

The mathematical expression of the x, y coordinates of the map is determined by [13]
x= 1= 1
and
=In (tan(g) + sec (¢))
A, Ao and @ are the longitude, the reference meridian and the latitude respectively. The first
equation provides equal distances between the vertical lines since x coordinates are calculated
regardless to the latitude information. The conformality is provided in the second equation by

scaling the distances along the meridians with respect to the latitudes.

1.8.4 Elliptic Parameters of the Earth for GPS Applications

The standard model used to determine the latitude, longitude and the altitude of a GPS
receiver is explained in a detailed way in World Geodetic System 1984 (WGS 84) by National Imagery
and Mapping Agency (NIMA) which is known with the name National Geospatial — Intelligence

Agency (NGA) currently [6]. The Earth is described as an ellipsoid in this model, which offers the
15

cross-sections parallel to the equator being circular while the ones normal to the equator being
ellipsoid. The semi-major axis of the ellipsoid, which is normal to the equator and centered at the
center of the Earth is equal to the radius of the equator and is taken 6,378.137 km. The semi-minor
axis of this ellipsoid, the so-called polar radius of the Earth, is 6,356.7523142 km according to WGS
84.

1.9 Internal Vehicle Sensors

In vehicle positioning or relative distance measurement, using GPS is usually not enough to
get accurate results [14]. As mentioned in 1.7.4, GPS receivers suffer from many errors caused by
different sources. In order to reduce the errors in the calculations, other inputs are introduced to the
system and combined with a sensor fusion algorithm. These inputs are the information received
from the internal sensors those expected to have a positive effect on the results. The sensors are
already sending information to the relevant parts of the system in the vehicle through CAN bus and
using this connection; the necessary information is forwarded to our sensor fusion system as well.
The sensors those are utilized in the system are listed and described in this chapter.

1. Vehicle Speed over Ground

Vehicle speed over ground is reliable sensor information indicating the instant speed of the
vehicle. It is useful for estimating the position of the vehicle or the distance to an object for a further
time instance.

2. Yaw Rate

Yaw rate is the information received from a sensor, which is able to determine the angular
velocity of the vehicle in degrees/second or radians/second. There are different kinds of sensors
capable of sensing angular velocity using different hardware and software. Yaw rate sensors are
usually considered to be too noisy thereby not very reliable when driving in low speeds. In that case,
steering angle information becomes important to make a better estimation of the actual turning
angle. We also applied a low-pass-filter to reduce the noise from the yaw rate information (see

Figure 0.5).

16

Amplitude Spectrum

Low-pass-filter
Yaw signal

[Yif

Frequency (Hz)

Figure 0.5 - Low pass filter applied to yaw rate

3. Reversed Gear
Reversed gear is the indicator for the gear position, which is important to decide whether the

vehicle is moving forward or backward.

Table 3 - Properties of sensor data

Sensor information Data type Min Max Resolution Unit

Vehicle speed float 0 320 0.01 km/h

Yaw rate float -75 74.9998 0.03663 °/sec
Gear level boolean 0 1

1.10 Sensor Fusion Systems
A sensor fusion system is a system that combines information from different sources to

achieve the least noisy result possible. The reason behind the necessity of sensor fusion systems in

17

many applications is the fact that each sensor has its own strengths and weaknesses, therefore one
sensor is usually not reliable itself.

There are different methods and algorithms such as Kalman Filtering, Bayesian Networks,
Dempster-Shafer Theory etc. used to implement a sensor fusion system for different applications
[15]. The strengths and weaknesses of each input are introduced to these algorithms and the
reliability of each input is determined according to the working conditions and the output is
optimized by this way. In this thesis work, a Kalman Filter is used for improving position and distance

measurements.

1.10.1 Inertial Navigation System

Inertial navigation system is a navigation that computes the further position of an object from
the given initial position using motion sensors such as speed and rotation according to the laws of
physics [16]. Every new position is calculated from the previously determined position by a process
known as dead reckoning. It is used in a wide range of applications including aircraft, spacecraft,
submarine, ship, mobile land vehicle and human navigation.

Due to the nature of this system the new position is always dependent on the previous one,

therefore the errors included in the previous calculations are also preserved in the new ones.

1.10.2 Kalman Filter

One of the most well-known methods for data/sensor fusion algorithms is the Kalman filter,
which is named after Rudolf E. Kalman who proposed a linear data filtering algorithm in his famous
paper (Kalman 1960) in 1960 [17]. The problem to which the Kalman filter finds a solution is
estimating the optimum state of a linear dynamic equation corrupted by white noise using relevant
measurements also containing white noise [18]. It is considered to be one of the biggest discoveries
in statistical estimation theory and has been studied widely for various applications since its
discovery.

In principle, the Kalman filter has two distinguished steps consisting of prediction and
correction [17]. In prediction, the states of the dynamics equation are estimated with a prediction
noise using pre-defined dynamic model of the process usually being a law of physics. The correction
step has the measurements of these states with a measurement noise. Prediction and measurement

noises are both normally distributed white noises and one should note that they are independent

18

from each other. The Kalman filter improves the predicted state using the measurement with a

weighted gain, which is calculated according to the noise covariance values [19].

Dbzervation
Dty

Figure 0.6 - Visualization of the Kalman gain

The Kalman filter algorithm

The Kalman filter does not require keeping the history of observations or estimations since it
is a recursive algorithm, which calculates the current estimation only from the latest estimated state
and the current observation. As mentioned in the introduction of the Kalman filter 1.10.2, the
algorithm can be divided into two parts where in the first one, the so-called prediction step, the
state is estimated from the previous time instance using a linear prediction equation; thereby the a
priori estimate of the state at the current time instance is computed. The a priori estimate is
improved with a noisy measurement feedback in the next step that is known as the correction step.

The specific formulas for these steps are presented below [17].

Priori state estimate
Prediction
Priori prediction error covariance

Residual)

Residual covariance

Kalman gain > Correction
Posteriori state estimate

Posteriori prediction error covariance)

where;
A is the state transition model,
B is the control-input model,

u is the control vector,
19

Q s the process error covariance,

zis the measurement,

H is the measurement transition model,
R is the measurement error covariance,

I is the unit matrix.

20

MATHEMATICAL MODEL OF ALGORITHMS AND CONFIGURATION

In this section, the implementation details of our work will be presented with the
mathematical equations defined and the algorithm flow-charts. Furthermore, solutions to certain

problems such as synchronization and dynamic signal quality detection are presented.

1.11 Overview of the Algorithm

The algorithms that we developed during this thesis work can be divided into three main
parts: information extraction, data synchronization and sensor fusion system. After the information
was simultaneously logged from the CAN bus and the GPS receivers in the two vehicles, first the
necessary data such as speed, yaw rate, latitude, longitude, SNR values and etc. were extracted by
the MATLAB codes we developed. However, neither in between the cars nor in the individual cars
among the GPS and the vehicle sensors, the information was synchronized; therefore, the next step
was synchronizing all the information. The detailed explanation of the way we followed in this part is
given in 1.11.1. Once the data is synchronized, two sensor fusion algorithms can work
simultaneously for the two cars and they can share the necessary information with each other

during the process shown below.

21

yaw) gear
p| LPF | fitered -, 1 --- speed
rate yaw rate o
1
Q
. vy
o~ | e mmm velocity. - _ [50 Jgq-,
1 H7
vy i
50 kY L '
H7z ! I
! 1
1 : 1
1
R == A ! 1
\4 ! !
! 1
1
1Hz _ _ . - 50 ___.
> Kalman Filter > ., direction
i
A 1%,y
GPS -
i
@- e e
T A
GPS =1 !
v : X,y
1Hz _ . 50 direction
» Kalman Filter ™ L
: 1
4] !
-1 I !
R yYy . 1
1 . 1
1
Xy ! 1
50 -—————————— = 1 .
Hz 1
L : :
______ ! Lo oo Velocity 50 |q-1
1 Hz
1
a at
[
. [
yaw filtered o !
rate —=%»] LPF | VawTate sear = ——— speed

Figure 0.1 - Overview of the sensor fusion system

1.11.1 Synchronization of GPS and Internal Sensors

In real time applications, data or signal synchronization is one of the most critical aspects that
should be designed and implemented carefully. In our case, although the tests were done offline,
the sensor fusion system requires synchronous information from different inputs in order to process
the output correctly. Moreover, the outputs of the sensor fusion systems running in individual

vehicles are supposed to be synchronous with each other too.

22

The timestamp information of the GPS messages was very sensitive, however there was no
exact match between the absolute time of the GPS and CAN messages. In order to calculate the
exact time difference between them, we took advantage of the cross correlation between the speed
signals received from both inputs. The position of the maximum correlation point with respect to the
reference point gave us the exact time difference between GPS and CAN; therefore, the inputs of the
sensor fusion system were synchronized by considering this difference.

After GPS and CAN signals were synchronized, the vehicles could be synchronized easily using
the timestamps of the signals from two receivers thanks to the precise time information in the GPS

messages.

1.11.2 Parameters of the Kalman Filter
In this section, the actual parameters that were mapped into the formal Kalman filter

algorithm described in 1.10.2 and the initialization of the states will be explained.

States and the transition models of the Kalman filter
The state matrix consists of only the position of the vehicle in our project; therefore, the matrixes
become scalar values. The state and the measurement transition models A and H are both equal to
1.
X, = Xyp_1 + Atvy,
where
At is 20ms in our system and vy is the velocity of the vehicle at the precise moment. The detailed
explanation of the derived formulas determining the velocity of the vehicle is given below in this
section.
The priori prediction error covariance becomes
P = Pr1 + 0
since A = 1.
As explicitly shown in the previous formula, the process error covariance Q does not
necessarily stay constant throughout the algorithm; contrarily it is updated at every time sample k
by a sub function according to the characteristics of the internal vehicle signals those take part in the

priori estimation step.

23

Once the priori estimates are calculated, the correction step starts with calculating the
residual between the measured and the priori estimated position. One should notice that H was
taken to be 1 earlier. Therefore the residual and the residual covariance are

Vi =2z — X
and
Sk =Py +Ry

Again, the measurement error covariance R is updated for each new GPS signal by a sub
function, which takes several properties such as number of satellites used in the position calculation
and the Signal to Noise Ratio (SNR) of the signals received from these satellites into account.

The Kalman gain is then calculated by the following equation;

K, = P;S;t

The posteriori state and the prediction error covariance estimations become

and

Initialization of the states

The Kalman filter recursively updates the states using the above mentioned formulas.
However, the states should be initialized before the first iteration in order to be updated in the
recursive algorithm.

The easiest way of initializing the states is probably setting all to 0 since they will be updated
later in the process anyway. However, we chose to initialize the position with the first received GPS
coordinates. On the other hand, the prediction error covariance P was set to 5 in the beginning,
which basically means that the first position is assumed to be including an error with a variance of 5

in the Cartesian coordinates.

24

Start

Read /
GPS and Sensor
Datti_/

direction =NOTSET |

A —

Initialize x, Q, P
Do
» k=1to
\ length of data
N
YES direction NO

Is ready to set

YES
I \difecﬁon?/ |
direction = SET

\

Compute £, Q

|

NO
X=x

Q = MAX

I |

.

Compute P
YES is GPS NO

y=0

Compute y, R R = MAX

Compute S, K, x, P

ac
Figure 0.2 - The Kalman filter algorithm

Inertial navigation formulas for priori position estimation
The priori position estimate of the vehicle was given as the following above in this section.

X = X—q + Atvy,
where
vy is the velocity of the vehicle. However, how the velocity is defined on a specific axis of the
Cartesian coordinate system has not been introduced yet. Obviously considering a two dimensional
Cartesian coordinate system, the velocity on the x or y axis depends on the direction of the vehicle’s
movement. In 1.9, the internal vehicle sensors used in this thesis work were briefly explained and in
this section, the specific formulas using the information from these sensors will be given.

Referring back to 1.9, yaw rate signal gives information on the angular velocity of the vehicle,
which means how many degrees the heading direction of the vehicle will change in a second.
Accordingly, a 0 degrees/second of yaw rate means that the vehicle is heading straight, a 10
degrees/second and -5 degrees/second indicate that the vehicle will make an anti-clock-wise 10
degrees and a clock-wise 5 degrees change in its heading direction in one second respectively. If the
current heading direction of the vehicle is known, it is always possible to determine the heading
using the yaw rate information continuously with the following equation.

dp =dp_q + AtQp_4

Once the direction of the vehicle is computed, the velocity on each axis on the coordinate

system can be calculated by combining the direction with the speed information.
Vy, = Si COS dy
vy, = S sindy

An important point in the velocity calculations is that it is a function of the direction and the
direction is updated recursively by adding the yaw rate at each time, which causes the errors
included in the yaw rate to be added to the direction in a cumulative manner. After a while, the
direction gets highly corrupted because of this motive. In order to reduce this effect, we
implemented a sub function, which periodically keeps track of the two latest positions when the
observations are available and computes the direction of the movement using a simple geometrical
formula shown below.

Y2 — Y1>

d =tan™! (—
X2 — X1

26

1.11.3 Detection of Signal Qualities for GPS and Internal Sensors

In 1.10.2, it was mentioned that the last decision on the output of the Kalman filter is made by
the Kalman gain factor, which depends on the noise covariance of the prediction and the
observation. Therefore, the key point is introducing the covariance of these processes correctly to
the Kalman filter.

We already cited in 1.11.2 that the error covariance varies by time in both steps. The necessity
behind this variation is the fact that the conditions affecting the noise variance of these processes
actually change by time. For instance, the observation in our system is the position calculated by GPS
receiver and accuracy of this position may change according to the quality of the signal received or
to the number of satellites that were used in calculations at that moment. Additionally the reliability
of the signals received from the vehicle sensors may also alter by the conditions at that moment.

Starting with the quality of the prediction, which is inversely proportional to the noise
variance of the sensors used in our system, which are speed and yaw rate, after careful analysis of
the logged information from these sensors, we deduced that speed could be considered very
accurate all the time, however yaw rate was quite noisy when driving at low speeds up to 20 km/h.
Since the prediction of the position is processing the combined information from both sensors, the
noisy yaw rate data affected the results. Therefore, the covariance of the prediction process Q was a
function of the speed of the vehicle.

On the other hand, it was more complicated to decide on the accuracy of the GPS position due
to the fact that there were many things affecting the calculations such as different noise sources,
number of visible satellites and SNR of the signals received from each satellite.

We discussed in 1.7 that there must be at least three visible satellites to be able to determine
the position of a GPS receiver on the surface of the Earth, and at least four satellites to manage that
with the height information as well. Based on these facts, an idea for estimating the GPS location
accuracy is counting the number of satellite signal SNRs that are higher than a certain threshold.
Using different thresholds to notice the number of satellite signals above those levels was one
method for understanding observation error covariance.

Another method we followed to determine the observation error covariance was calculating
the average SNR of all satellite signals that were used in the position calculations by the receiver.
Since the final result was affected by all the signals received from those satellites, it was practical to

estimate the accuracy of the position using this average SNR. We implemented and tested both

27

methods during our work and although the results were pretty similar, we came to a conclusion that
using average SNR provided slightly better results.

However, we discovered that in certain cases, although the SNR values of the signals were
relatively high, the accuracy of the GPS position could be considerably poor when the vehicle was
driving around tall buildings or passing under obstacles such as bridges. Our guess is multipath

effects caused the results to be corrupted without any significant decrease in the SNR.

1.11.4 Relative Distance Measurement

The final work to be done after determining the positions of the vehicles was measurement of
the relative distance between them. As we mentioned in 1.8.3, Mercator projection was used for
positioning the GPS receiver on a two dimensional plane and the optimization algorithms were done
on this plane.

The difference between the absolute positions on the universal plane only defines the
distance in north-south and east-west direction. However, in today’s safety systems, each vehicle
needs to determine the positions of the surrounding vehicles with respect to its own heading angle.
Therefore, each vehicle needs to define a new coordinate system, which is shown in Figure 0.3, sets
the vehicle’s heading angle as the primary horizontal axis indicated with x’. Since the vehicle may
constantly change its heading angle, the coordinate system is updated at every step of the algorithm
and the surrounding vehicles are positioned according to this dynamic coordinate frame
continuously.

The calculations that we made for the relative measurement at a certain time is given as
follows:

Dy=x3 —x;

Ay: Y2—01
f = tan"1(Ay/Ax)
L=a—6
Ax" =d xsinf
Ay' =d xcosfB

28

East

Figure 0.3 - Relative distance measurement

29

RESULTS

In order to understand the accuracy, challenges and dependencies of a real time relative
distance measurement system; we did several tests in different areas (urban, suburban) and
environmental conditions (weather, traffic conditions, etc.). Although results from only two tests are
covered comprehensively due to practical reasons, we nevertheless added a table of RMSE and

standard deviation of the errors for each test case at the end of this chapter.

1.12 Test case- 1
This is one of the tests that were done around Chalmers Johanneberg campus area. Below is

the description of this particular test that is studied.

_.O__Johaneberg‘,

Figure 0.1 - Test track 1

e Urbanarea
e Medium traffic
e Pursuit (30-40 meters)
e Both cars have varying speeds (15-40 km/h)
e Weather conditions: cloudy and rainy
30

speed (km/h)

Lateral distance (m)

45

Instant Speed

3B

30+

251

Vehicle-1
Vehicle-2

50 100 150 200 250 300 350

t(s)

Figure 0.2 - Vehicle speed

Lateral Distance

400

Radar-Camera

Kalman
GPS

0 s b] g
i }/‘r W Y .
| | 0
I R]
| \ Y
2 | -
b
4 -
6 -
3 | | | ! | |
0 50 100 150 200 250 300
time (s)

Figure 0.3 - Lateral distance
31

350

Lateral Error Histogram
25 T T

percentage (%)

meters

Figure 0.6 - Lateral error histogram

Longitudinal Error Histogram
3.5 T T T

percentage (%)

2

meters

Figure 0.7 - Longitudinal error histogram
33

Target Angle Error Histogram

percentage (%)

degrees

Figure 0.8 - Target angle error histogram

1.13 Test case - 2

The second test that will be covered in this section was done in a closed traffic path in

countryside. The description of the test is given below.

Countryside

Entry closed to traffic

Pursuit (2.4 sec)

Both cars have varying speeds (60-80 km/h)
Weather conditions: clear

Path: mostly straight — loop

34

o Véastra Lassby

Figure 0.9 - Test track 2

35

Speed(km/h)

Lateral distance {m)

90

Vehicle Speed

T
Can Speed Vehiclel
Can Speed Vehicle2

Gps Speed Vehicle2

— Gps Speed Vehicle1 | |

Figure 0.10 - Vehicle speed

Lateral Distance

Wy !

11

WM&M&M L%b-\ "-J\\,"J |
a | :

Radar-Camera
Kalman
GPS

il

Y

|
100 200 300 400 500
time (s)

Figure 0.11 - Lateral distance

36

600

700 800

900

Lengitudinal distance (m)

angle (degrees)

70

60

50

40

30

20

25

20

Longitudinal Distance

Radar-Camera
Kalman
GPS

| |
100 200 300 400 500 600 700 800
time (s)

Figure 0.12 - Longitudinal distance

Target Angle

900

Radar-Camera
Kalman
GPS

Y |
) s Y

| |
100 200 300 400 500 600 700 800
time (s)

Figure 0.13 - Target angle
37

900

Diference(m)

percentage (%)

Absolute Distance Error

T
— Difference Between Radarl

Camera Result & Kalman filter Result

Figure 0.14 - Absolute distance error

Lateral Error Histogram

35

x10*

2
meters

Figure 0.15 - Lateral error histogram

38

IS B S i S

percentage (%)

percentage (%)

Longitudinal Error Histogram
T T T

meters

Figure 0.16 - Longitudinal error histogram

Target Angle Error Histogram

degrees

Figure 0.17 - Target angle error histogram

39

Table 4 - RMSE and Standard deviation of errors

L Drivin Standard Standard
Case ; 'g Deviation lat Deviation lon
Conditions
(m) (m)
Case 1 Urban Varying 1.509937 1.463356 2.228135 1.801362
Speed
Countryside
Case 2 k 1.369821 1.517508 2.030176 1.814933
Varying speed
Case 3 Urban 1.483793 1.225087 2.231224 1.803487
Varying Speed
Countryside
Case 4 1.019622 0.879626 1.711952 1.317442
Constant speed
Countryside
Case 5 k 1.365131 1.304811 2.314364 2.007950
Varying speed
Countryside
Case 6 . 2.726428 2.671556 2.460274 2.222996
Varying speed
Countryside
Case 7 1.042331 0.892837 1.830348 1.426627
Constant speed
Countryside
Case 8 i 1.631389 1.489401 2.376652 2.114173
Varying speed
Case 9 Urban 1.529207 1.439083 2.271184 1.940336
Varying Speed
Case 10 Countryside 1.462437 1.259776 2.189806 1.910531

Varying speed

The results are analyzed and discussed according to the figures and the table above, however
one should consider that error analyses are done with the assumption of perfect accuracy of the
radar-camera information as mentioned before in 1.5, which is not true in reality.

We have mentioned before that due to the lack of true information on the absolute vehicle
positions; we were only able to do tests when target vehicle was in the field of radar-camera view.
However, this was not the only problem caused by non-existence of the true information. Another
thing was the difficulty of determining the error covariance of the GPS receiver positions. Since we
had no information on true positions, we could only use a limited number of experimental

information at known locations and only in immobile situations.

40

RMS errors and standard deviation of the errors show that sensor fusion system with GPS and
vehicle sensors could be a good way for relative distance measurement with around 1.5 and 2.2
meter average lateral and longitudinal RMSE respectively. By using more suitable models in the
sensor fusion system and refining the states of the filter, the errors could be even reduced.

First thing to be noticed from the lateral and longitudinal error histograms (see Figure 0.6,
Figure 0.7, Figure 0.15, Figure 0.16); their patterns do not have normal distribution. Main reason
behind this is the inaccurate models used in the fusion system, which are not optimal for non-linear
systems. The non-linearity of the motion and measurement models caused the error distribution to
reshape and have different characteristics. An Extended Kalman Filter, Unscented Kalman Filter or
Particle Filter could provide much better results.

Another interesting point is that the mean of the longitudinal errors is not zero, which we
think was caused by the assumption of constant velocity during one cycle of the fusion system.
However, in reality, the speed of the vehicles had rapid changes at some points of the test drives,
which actually led to varying speeds during a fusion cycle. This behavior changed the mean of the
errors to non-zero values.

As one of our goals was to understand the noise characteristics of GPS and errors
encountered by the receiver, we spent quite a lot of time to find a correlation between SNR values
of the GPS signals and the positioning errors. However, we could neither end up with certain
thresholds nor could notice distinct behaviors in that sense. In some tests, while the SNR values
were relatively high, the accuracy could still be poor. Interestingly, the opposite scenario was

possible too.

41

Instant Speed

90

a0

70

B0

@
=]

speed (km/h)

.
=]

30

20

Figure 0.18 - GPS clock error

Probably a more marked founding was the difference between two identical GPS receivers.
They could output very different SNR values at the same time, at the same place, which made the
situation even more complicated. On the other hand, one critical GPS receiver error that we noticed
was the clock-error. In a test drive, we located two same GPS products on one vehicle and wanted to
analyze the behaviors of them. Unexpectedly, there was 1 second difference in the time-stamps of
two receivers in one particular test (see Figure 0.18). Considering the fact that we heavily relied on
the time-stamp information of GPS, it is possible that we might have encountered the same
problems when they were positioned in different vehicles, which was impossible to notice in the
current design.

In summary, the results are not as good as it could be because of the simpler design choices,
but even in these conditions they could be considered encouraging. Better suited models and better

understanding of the GPS error distribution could improve the results significantly.

42

CONCLUSION AND FUTURE WORK

Considering the importance of the safety systems in road traffic, collision avoidance systems
are most likely going to be improved continuously. Environmental awareness will always be one of
the key figures in these systems, therefore relative distance measurements will be an important
feature and much more studies and developments should be expected.

The results obtained from our studies showed that it is practical to share GPS and sensor
information between the vehicles to accomplish relative positioning. However; although relative
position estimations have reasonable accuracy, we are not sure how much of the error was
eliminated using the differential equation defined in 1.1, since we do not know the extent of the
error in the absolute positions due to the lack of true position information.

First thing that might be refined to improve relative positions is the vehicle dynamics model
that is used in sensor fusion algorithm. There are already more accurate models used in cars for
different applications such as stability control, etc. The model used in our system is ignoring all the
factors that affect the raw movement such as weight and road slip.

Secondly, the sensor fusion algorithm we used in the calculations is actually not the optimal
solution for non-linear vehicle motion model and measurement model. The results could be
improved notably with a more suitable algorithm.

We used radar-camera information as reference since we did not have another option, but it
could actually be introduced to the sensor fusion system as well as with other potentially useful
sensors, so that the combined results could be improved even more.

Finally, many more tests and analyses should be done to get a better understanding of the

noise sources, dependencies of the problem and increase the accuracy of results.

43

BIBLIOGRAPHY

1. IEEE. /EEE 802.11 Official Timelines. [Online]
http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm.

2. Vehicle Applications of Controller Area Network. Johanson, Karl Henrik, Torngren, Martin
and Nielsen, Lars.

3. GmbH, Vector Informatic. Vector User Manual. 2006.

4. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews. Global Positioning Systems,
Inertial Navigation, and Integration. 2001.

5. Gps Information - NMEA. [Online] http://gpsinformation.org/dale/nmea.htm#nmea.

6. National Imagery and Mapping Agency, Department of Defence. World Geodetic System
1984 (WGS 84). 2000.

7. The Geodetic Survey Section of Survey and Mapping Office. [Online]
www.geodetic.gov.hk/smo/gsi/data/ppt/NMEAandRTCM.ppt.

8. State Water Resources Control Board. [Online]
http://www.swrcb.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/6120.pdf.

9. Stovall, Sherryl H. Basic Inertial Navigation. s.I. : Navigation and Data Link Section - System
Integration Branch, 1997.

10. Elliott D. Kaplan, Christopher J. Hegarty. Understanding GPS - Principles and Applications
Second Edition. 2006.

11. Understanding Coordinate Reference Systems, Datums and Transformations. Janssen, V.
2009.

12. Pennstate College of Earth and Mineral Sciences. Nature of Geometric Information.
[Online] https://www.e-education.psu.edu/natureofgeoinfo/c2_p29.html.

13. Snyder, John P. Map Projections - A Working Manual. 1987.

14. Tohid Ardeshiri, Sogol Kharrazi, Jonas Sjoberg, Jonas Bargman, Mathias Lidberg. Sensor
Fusion for Vehicle Positioning in Intersection Active Safety Applications. 2006.

15. Martin E. Liggins, David L. Hall, James Llinas. Handbook of Multisensor Data Fusion,
Theory and Practice, Second Edition. 2009.

16. Woodman, Oliver J. An introduction to inertial navigation. 2007.

17. Greg Welch, Gary Bishop. An Introduction to the Kalman Filter. 2001.

44

18. Mohinder S. Grewal, Angus P. Andrews. Kalman Filtering: Theory and Practice Using
MATLAB Second Edition. 2001.

19. James L. Crawley, Yves Demazeau. Principles and Techniques for Sensor Data Fusion.

20. http://www.swrch.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/6120.pdf.
[Online]

45

APPENDIX A. SOURCE CODES

A.1 CAN Data Extractor Script

% This script extracts the relevant data from vehicle CAN bus
% including internal sensors and radar/camera fused data.

close all
clear all
clc

% Get the local time before extraction starts
t0 = clock;

% Set file folder and file name to read
fileFolder " . -\\LogFiles\\";
fileName "Aug_20_CAN2_Case02.asc";
ful IFileName [fileFolder fileName];

% Read the file
CANFile = fopen(fullFileName, "rt");

% Requested signals

messagelDl = "71B-;

funcHandlel = @extract_radar_71B;
messagelD2 = "321°;

funcHandle2 = @extract_hs_can_speed;

% messagelD3
% FfuncHandle3

"837;
@extract_hs_can_gear;

% messagelD4
% FfuncHandle4

"94*";
@extract_hs_can_steering;

messagelD5 = "155°7;

funcHandle5 = @extract_hs_can_yaw;
messagelD6 = "600°;

funcHandle6 = @extract_radar_yaw;
messagelD7 = "71C";

funcHandle7 = @extract_radar_71C;
messagelD8 = "160°;

funcHandle8 = @extract_hs_can_revgear;

% messagelD9 = "321%;
% FfuncHandle9 = @extract_hs can_acceleration;

% Initialize indexes for each vector
46

[

NFPrrEFRrERI IR

[EN

% Maximum DLC value
maxDLC = 8;

% Line counter in the entire CAN log
lineCounter = 0O;

initialCapacity = 1000;

capacityExtension = 1000;

capacityl = initialCapacity;

capacity2 = initialCapacity;

% capacity3 = initialCapacity;

% capacity4 = initialCapacity;

capacity5 = initialCapacity;

capacity6 = initialCapacity;

capacity7 = initialCapacity;

capacity8 = initialCapacity;

% capacity9 = initialCapacity;

Can.radar71B = initializeRadar71B(capacityl);
Can.hsSpeedOverGround = zeros(1, capacity?);

% Can.hsGearlLeverPosition = zeros(1l, capacity3);

% Can.hsSteeringAngleSign
% Can.hsSteeringAngle

zeros(1l, capacity4);
zeros(1l, capacity4);

Can.hsYaw
Can.radarYaw

zeros(1l, capacity5);

zeros(1l, capacity6);
Can.radar71C initializeRadar71C(capacity7);
Can.hsRevGear zeros(l, capacity8);

% Can.hsAcceleration = zeros(1l, capacity9);

while ~feof(CANFile)

% Read the next line from the file
thisLine = fgetl (CANFile);

% % Increment the line counter
% lineCounter = lineCounter + 1;
% disp(sprintf(“"Line: %u®, lineCounter));

47

[tempToken, tempString] = strtok(thisLine);
tempTime = str2double(tempToken);

if tempTime >= 0
[tempToken, tempString] = strtok(tempString);

tempChannel = str2num(tempToken);
if ~isempty(tempChannel) && ishex(strtok(tempString))
[tempMessagelD, tempString] = strtok(tempString);

% Get data bytes from the current line
DataBytes = getDataBytes(thisLine);

% Is it Message 17
if strcmp(tempMessagelD, messagelD1)
if indexl == capacityl
Can.radar71B = extendRadar71B(Can.radar71B,
capacityExtension);
capacityl = capacityl + capacityExtension;
end
[Can.radar71B.targetRangeAcceleration(indexl),
Can.radar71B.targetRangeRate(indexl),
Can.radar71B.detectionSensor(indexl),
Can.radar71B.detectionStatus(indexl),
Can.radar71B.targetRange(indexl),
Can.radar71B.targetMotionClass(indexl),
Can.radar71B.targetld(index1),
Can.radar71B.targetWidth(indexl),
Can.radar71B.targetMoveableStatus(indexl),
Can.radar71B.targetAngle(index1)]
= funcHandlel(DataBytes);

indexl = indexl + 1;

% Is it Message 27
elseif strcmp(tempMessagelD, messagelD2)
if index2 == capacity?2
Can.hsSpeedOverGround = [Can.hsSpeedOverGround ...

zeros(1l, capacityExtension)];

capacity2 = capacity2 + capacityExtension;

end
Can.hsSpeedOverGround(index2) = funcHandle2(DataBytes);
index2 = index2 + 1;

% Is 1t Message 3?
elseif strcmp(tempMessagelD, messagelD3)
if index3 == capacity3

Can.hsGearlLeverPosition = [Can.hsGearlLeverPosition ...
zeros(l, capacityExtension)];

capacity3 = capacity3 + capacityExtension;
end

Can.hsGearLeverPosition(index3) = funcHandle3(DataBytes);

48

index3 = index3 + 1;

% Is it Message 47
elseif strcmp(tempMessagelD, messagelD4)
if index4 == capacity4

Can.hsSteeringAngleSign = [Can.hsSteeringAngleSign ...
zeros(1l, capacityExtension)];

Can._hsSteeringAngle = [Can.hsSteeringAngle ...

zeros(1l, capacityExtension)];

capacity4 = capacity4 + capacityExtension;
end
[Can.hsSteeringAngleSign(index4),

Can.hsSteeringAngle(index4)] =-%anHandle4(DataBytes);

index4 = index4 + 1;

% Is 1t Message 57?
elseif strcmp(tempMessagelD, messagelD5)
if index5 == capacity5
Can.hsYaw = [Can.hsYaw ...
zeros(1l, capacityExtension)];
capacity5 = capacity5 + capacityExtension;

end
Can.hsYaw(index5) = funcHandle5(DataBytes);
index5 = index5 + 1;

% Is it Message 67
elseif strcmp(tempMessagelD, messagelD6)
if index6 == capacity6
Can.radarYaw = [Can.radarYaw ...
zeros(1l, capacityExtension)];
capacity6 = capacity6 + capacityExtension;

end
Can.radarYaw(index6) = funcHandle6(DataBytes);
index6 = index6 + 1;

% Is it Message 77
elseif strcmp(tempMessagelD, messagelD7)
if Iindex7 == capacity7
Can.radar71C = extendRadar71C(Can.radar71C,
capacityExtension);
capacity7 = capacity7 + capacityExtension;
end
[Can.radar71C.targetRangeAcceleration(index7),
Can.radar71C.targetRangeRate(index7),
Can.radar71C.detectionSensor(index7),
Can.radar71C.detectionStatus(index7),
Can.radar71C.targetRange(index7),
Can.radar71C.targetMotionClass(index7),
Can.radar71C.targetld(index7),
Can.radar71C.targetWidth(index7),
Can.radar71C.targetMoveableStatus(index7),
Can.radar71C.targetAngle(index7)]
= funcHandle7(DataBytes);

index7 = index7 + 1;
49

% Is it Message 87
elseif strcmp(tempMessagelD, messagelD8)
if index8 == capacity8
Can.hsRevGear = [Can.hsRevGear ...
zeros(1l, capacityExtension)];
capacity8 = capacity8 + capacityExtension;

end
Can.hsRevGear(index8) = funcHandle8(DataBytes);
index8 = index8 + 1;
% % Is it Message 97
% elseif strcmp(tempMessagelD, messagelD9)
% if index9 == capacity9
% Can.hsAcceleration = [Can.hsAcceleration
% zeros(1l, capacityExtension)];
% capacity9 = capacity9 + capacityExtension;
% end
% Can.hsAcceleration(index9) = funcHandle9(DataBytes);
% index9 = index9 + 1;
end
end
end

end

Can.radar71B = removeAppendedFromRadar71B(Can.radar71B, indexl - 1);
Can.hsSpeedOverGround = Can.hsSpeedOverGround(1l : index2 - 1);
% Can.hsGearlLeverPosition = Can.hsGearLeverPosition(1l : index3 - 1);

% Can.hsSteeringAngleSign = Can.hsSteeringAngleSign(l : 2 : index4 - 1);
% Can.hsSteeringAngle = Can._hsSteeringAngle(1l : 2 : index4 - 1);

Can.hsYaw = Can.hsYaw(l : index5 - 1);
Can.radarYaw = Can.radarYaw(l : index6 - 1);

Can.radar71C = removeAppendedFromRadar71C(Can.radar71C, index7 - 1);
Can.hsRevGear = Can.hsRevGear(1l : index8 - 1);
% Can.hsAcceleration = Can.hsAcceleration(l : index9 - 1);

% Close the file
fclose(CANFile);

% Set the name of the binary file to save variables
matFileName = ["..\\Resources\\" fileName(l:end-3) "mat"];

% Save the variables
save(matFileName, "Can®);

% Calculate elapsed time for all process
elapsedTime = etime(clock, t0);
elapsedMinutes = floor(floor(elapsedTime) / 60);

50

elapsedSeconds = elapsedTime - (elapsedMinutes * 60);

disp(sprintf("Elapsed time for the operations: %2u min %5.2F sec\n”,
elapsedMinutes, elapsedSeconds));

A.2 GPS Data Extractor Script

% This script extracts the relevant data from GPS logs.

close all
clear all
clc

for gpsNo = 1:1
for caseNo = 2:3

% Set GPS file folder and file name

fileFolder " .. \\LogFiles\\";

fileName sprintf("Aug_20_GPS%d_Case%02d.txt", gpsNo, caseNo);
FfullFileName [fileFolder fileName];

% Read GPS file
gpsFile = fopen(fullFileName, "rt");

% Initialize the index for each different message

indexGPRMC = 1;

indexGPGGA = 1;

indexGPGSA = 1;

indexGPGSV = 1;

% Initialize GPGSV Struct for first time call to the function
Gps.gpgsv.elevation = 0;

Gps-gpgsv.-azimuth = 0;

Gps.-gpgsv.-snr = 0;

Gps.gpgsv.satPrnNo = 0;

% Flag ldentifiers for GPGSV message
LAST_MESSAGE_GPGSV = 1;
NOT_LAST_MESSAGE_GPGSV = 0;

% Index of the message IDs
messageldindex = 1:6;

% Extract GPS Information until the end of the file
while ~feof(gpsFile)

% Read the next line

gpsline = fgets(gpsFile);
if ~isempty(find(gpsline == "*", 1))

51

% Is it GPRMC?

it stremp("$GPRMC™, gpsline(messageldlindex))

% Extract GPRMC message

[Gps.gprmc.
Gps.gprmc.
Gps.-gprmc.
Gps.-gprmc.
Gps.-gprmc.
Gps.-gprmc.
Gps.-gprmc.
Gps.gprmc.

type(indexGPRMC, :),
time(indexGPRMC, :),
status(indexGPRMC, :),
latitude(indexGPRMC),
longitude(indexGPRMC B
speed(indexGPRMC),
angle(indexGPRMC),
date(indexGPRMC, :)]

= extract_GPS_gprmc(gpsline);

indexGPRMC

% Is it GPGGA?
elseif strcmp(

= indexGPRMC + 1;

"$GPGGA", gpsline(messageldindex))

% Extract GPGGA message

[Gps-gpgga
Gps.gpgga
Gps.gpgga
Gps.gpgga
Gps.gpgga
Gps.gpgga

-type(indexGPGGA,
-time(indexGPGGA,
-latitude(i1ndexGPGGA
-longitude(indexGPGGA
-FixQual ity (indexGPGGA
-noOfSat(indexGPGGA

o
o \o/ \o/ o/ o/

| e)

= extract_GPS_gpgga(gpsline);

indexGPGGA

= indexGPGGA + 1;

% % Is 1t GPGSA?
% elseif stremp("$GPGSA™, gpsline(messageldindex))

% % Extract GPGSA message
% Gps.gpgsa(indexGPGSA) = extract_GPS_gpgsa(gpsline);

% indexGPGSA

% Is it GPGSV?
elseif strcemp(

indexGPGSA + 1;

"$GPGSV*", gpsline(messageldlindex))

% Extract GPGSV message

[Gps-gpgsv

, Flag] = extract_GPS_gpgsv(gpsline,

Gps-gpgsv, -
indexGPGSV) ;

% Was it the last message?

if flag ==

LAST_MESSAGE_GPGSV

% Increase the index
indexGPGSV = indexGPGSV + 1;

end
end
end
end

52

% Close the file
fclose(gpsFile);

% Set the name of the binary file to save variables
matFileName = ["..\\Resources\\" fileName(1l:end-3) "mat"];

% Save the variables
save(matFileName, "GpsT);

clear Gps

end
end

A.3 Synchronization of GPS and CAN
function [Can, Gps] = synchronizeCanGps(Can, Gps)

% This function synchronizes the CAN and GPS messages by applying cross

% correlation on the speed signals received from both inputs.

% Length determination
lengthCan_ = length(Can.hsSpeedOverGround);
lengthGps_ = length(Gps.gprmc.speed);

% Synchronization setup

estimatedPoint_ = max(lengthGps_, lengthCan_);

corrResult_ = xcorr(Gps.gprmc.speed, Can.hsSpeedOverGround);
[maxVal_ maxPoint_] = max(corrResult);

shifting_ = estimatedPoint_ - maxPoint_;

% Synchronization of Gps and Can information
if shifting_ <0

Gps = removeFirstNFromGps(Gps, -shifting);
else

Can = removeFirstNFromCan(Can, shifting_);
end

return

A.4 Mercator Projection

function [x_, y_] = getMercator(lat_, lon_)
% This function calculates the mercator projection from the given
% geographic coordinates.

x_ = lon_;
y_ = rad2deg(log(tand(lat_) + secd(lat))));
return

53

A.5 Heading Update to Remove Bias in Yaw Rate

function heading_ = updateHeading(Can_, Y_, X_, k)
% This function updates the heading of a car using previous positions.
% Function should be called periodically to reduce the effects of yaw bias.

% Get distance in x and y coordinates between two previous consecutive
positions when GPS signal received.
Y_(k_ - 50) - Y_(k_ - 100);

%
y
x = X_(K_ - 50) - X_(k_ - 100);

% Calculate heading of the vehicle
heading_ = atand(y 7 x);

% If the angle is supposed to be in the 2nd or 3rd zone of the
% Cartesian coordinate system?
if x<0
heading_ = heading_ - 180;
end

% Add the heading change from the last time instant till now.
heading_ = mod(heading_ + sum(20e-3 .* Can_.hsYaw(k_-49:k)), 360);

return

A.6 Main Script for Sensor Fusion

close all
clear all
clc

% Case details

month = “Aug”;
day = 6;
caseNo = 11;

% Folder to access logged information
fileFolder = "._.\Resources\";

% Load synchronized GPS and CAN data from both vehicles
load([fileFolder sprintf("%s_%02d_GPS1 Case%02d_N.mat®, month, day,
caseNo)]);

load([fileFolder sprintf("%s_%02d_CAN1_Case%02d_N.mat", month, day,
caseNo)]);

load([fileFolder sprintf("%s_%02d_GPS2_Case%02d_N.mat", month, day,
caseNo)]);

load([fileFolder sprintf("%s_%02d_CAN2_Case%02d_N.mat", month, day,
caseNo)]);

% Common length of the arrays
len = length(Canl.hsYaw);

54

% Copy the latitude and longitude information to arrays

latlGps = Gpsl.gpgga.latitude;
lonlGps = Gpsl.gpgga.-longitude;
lat2Gps = Gps2.gprmc. latitude;
lon2Gps = Gps2.gprmc. longitude;

% Static memory allocation for the arrays

% Priori states

LatlHat = zeros(1, len);
LonlHat = zeros(1, len);
Lat2Hat = zeros(1, len);
Lon2Hat = zeros(1, len);

% Posteriori states

LatlOpt = zeros(1, len);
Lon10Opt = zeros(1l, len);
zeros(1l, len);
zeros(1l, len);

'_
Q
~
N
o
°
-
o

zeros(1, len);
zeros(1l, len);
zeros(l, len);
zeros(l, len);

>
H
o
©
~t
o nn

% Pre-defined error covariance values for different reliability levels

FULL_TRUST = 2 * 10e-5;
HIGH_TRUST = 5 * 10e-5;
HALF_TRUST = 10 * 10e-5;
LOW_TRUST = 15 * 10e-5;
NO_TRUST = 30 * 10e-5;

% Prediction processes error covariances
P1 = HALF_TRUST;
P2 = HALF_TRUST;

% Initialize the direction of the cars
% 0 -> East

% 90 -> North

% 180 -> West

% -90 -> South

directionl = 0; % Case 1 -> -1
direction2 = 0; % Case 1 -> 20

% Preprocessor constants for direction set
SET 1;
NOT_SET = 0;

% Reset direction set flags for the cars
directionFlagl = NOT_SET;
directionFlag2 = NOT_SET;

55

% Start sensor fusion
for k = 1:len

% IF¥ the direction of the first car determined?
if directionFlagl == SET

% Estimate the position of the first vehicle for the current time
% (Priori estimation)
directionl = getDirection(Canl.hsYaw(k), directionl);

% Calculate velocity on the latitude and the longitude

xVelocityl = calculatexXxVelocity(directionl,
Canl.hsSpeedOverGround(k), Canl.hsRevGear(k));

yVelocityl = calculateYVelocity(directionl,
Canl.hsSpeedOverGround(k), Canl.hsRevGear(k));

% Calculate a priori latitude and longitude estimates
[LatlHat(k), LonlHat(k)] = updatelLatlLon(LatlOpt(k-1), Lonl1Opt(k-1),
xVelocityl, yVelocityl);

% Determine sensor and GPS error covariances
Q1 = setSensorQuality(Canl, k);
R1 = setGpsQuality(Gpsl, Canl, k);

% Compute process error covariance
% (Priori estimation)
P1 = P1 + Q1;

% IT GPS is not available or not reliable at all
if mod(k, 50) ~= 1]| R1 == NO_TRUST

% Then, set residual = 0

ylLat = O;
yllLon = O;
% I¥ GPS is available and at least somewhat reliable
else
% disp(sprintf(*R1 = %f*, R1));

% Compute residual between observation and prediction
ylLat = latlGps(k) - LatlHat(k);
ylLon = lonlGps(k) - LonlHat(k);

% Update the direction periodically (every 5 seconds) if the
% requirements are fulfilled
if k > 250 && mod(k, 250) == 2 && ...
isempty(find(abs(Canl.hsYaw(k-100:k-1)) > 2)) &&
Canl.hsSpeedOverGround(k-100) > 15 && Canl.hsSpeedOverGround(k-50) > 15

disp(sprintf("Vli -> k = %d", k));
disp(sprintf("Previous direction = %f", directionl));
directionl = updateDirection(Canl, Y1Opt, X10pt, k);

56

disp(sprintf(“Updated direction = %f\n", directionl));
end

end

% Update measurement error covariance
S1 = P1 + R1;

% Calculate Kalman Gain
K1 = P1 / S1;

% Correct the estimated position

% (Posteriori estimation)

LatlOpt(k) = LatlHat(k) + K1 * yllat;
Lon10Opt(k) = LonlHat(k) + K1 * yllon;

% Update the error covariance
% (Posteriori estimation)
P1 = (1 - K1) * P1;

% IF the direction is not determined yet?
else

% disp(sprintf("V1 -> Flag Not Set! k = %d", k));
% Posteriori estimation is equal to the measurement
LatlOpt(k) = latliGps(k);
Lon10pt(k) lon1Gps(k);

% Check if the direction can be determined now?

if k > 4*50 && isReadyToSetDirection(Canl, Gpsl, k)
directionl = setDirection(Gpsl, k);
directionFlagl = SET;

end

end

% Get Mercator projected coordinates
[X10pt(k), Y1Opt(k)] = getMercator(LatlOpt(k), LonlOpt(k));

% IT¥ the direction of the first car determined?
if directionFlag2 == SET

% Estimate the position of the second vehicle for the current time
% (Priori estimation)
direction2 = getDirection(Can2.hsYaw(k), direction2);

% Calculate velocity on the latitude and the longitude

xVelocity2 = calculateXVelocity(direction2,
Can2._hsSpeedOverGround(k), Can2.hsRevGear(k));

yVelocity2 = calculateYVelocity(direction2,
Can2._hsSpeedOverGround(k), Can2.hsRevGear(k));

% Calculate a priori latitude and longitude estimates
57

[Lat2Hat(k), Lon2Hat(k)] = updatelLatlLon(Lat20pt(k-1), Lon20pt(k-1),
xVelocity2, yVelocity2);

% Determine sensor and GPS error covariances
Q2 = setSensorQuality(Can2, k);
R2 = setGpsQuality(Gps2, Can2, k);

% Compute process error covariance
% (Priori estimation)
P2 = P2 + Q2;

% IT GPS is not reliable at all?
if mod(k, 50) ~= 1]| R2 == NO_TRUST

% Residual = 0

y2Lat = O;
y2Lon = 0;
else
% disp(sprintf("R2 = %f*, R2));

% Compute residual between measurement and prediction
y2Lat = lat2Gps(k) - Lat2Hat(k);
y2Lon = lon2Gps(k) - Lon2Hat(k);

% Update the direction periodically if the requirements are
% fulfilled
if k > 250 && mod(k, 250) == 2 && ...
isempty(Find(abs(Can2.hsYaw(k-100:k-1)) > 2)) &&
Can2._.hsSpeedOverGround(k-100) > 15 && Can2.hsSpeedOverGround(k-50) > 15

disp(sprintf("V2 -> k = %d", k));
disp(sprintf(“Previous direction = %f", direction2));
direction2 = updateDirection(Can2, Y20pt, X20pt, k);
disp(sprintf("Updated direction = %f\n", direction2));
end
end

% Update measurement error covariance
S2 = P2 + R2;

% Calculate Kalman Gain
K2 = P2 / S2;

% Correct the estimated position

% (Posteriori estimation)

Lat20pt(k) Lat2Hat(k) + K2 * y2lLat;
Lon20pt(k) Lon2Hat(k) + K2 * y2lon;

% Update the error covariance
% (Posteriori estimation)
P2 = (1 - K2) * P2;

% If the direction is not determined yet?

58

else

% Posteriori estimation is equal to the measurement
Lat20pt(k) lat2Gps(k);
Lon20pt(k) lon2Gps(k);

% Check if the direction can be determined now?

if k > 4*50 && isReadyToSetDirection(Can2, Gps2, k)
direction2 = setDirection(Gps2, k);
directionFlag2 = SET;

end

end

% Get Mercator projected coordinates
[X20pt(k), Y20pt(k)] = getMercator(Lat20pt(k), Lon20pt(k));

% Difference between radar detection range and distance of the actual
GPS receiver positions
GpsBetwRadarLength = 5.1;

navigationDist(k) = calcDist(LatlOpt(k), LonlOpt(k), Lat20pt(k),
Lon20pt(k));
RelativeDist(k)

navigationDist(k) - GpsBetwRadarlLength;

if Can2.hsSpeedOverGround(k) == 0
estRadarAngle(k) = 0;
else
estRadarAngle(k) = calculateAngleBetweenCars(X10pt(k), Y10pt(k),
X20pt(k), Y20pt(k), direction2);
end

end

[LatDistFromRadar, LonDistFromRadar] =
calcLatLongDistance(((Can2.radar71B.targetAngle(13:end))),Can2.radar71B.tar
getRange(13:end));

[LatDistFromKalman, LonDistFromKalman] =
calcLatLongDistance(estRadarAngle(1:end-12), RelativeDist(l:end-12));

[RMSE_LAT, RMSE_LON, STD_LAT, STD_LON] =
calcErrorStatistics(LatDistFromRadar, LatDistFromKalman, LonDistFromRadar,
LonDistFromKalman);

disp(sprintf(“rmse Lateral = %f\nrmse Longitudinal = %f\n", RMSE_LAT,
RMSE_LON));

disp(sprintf(“std Lateral = %f\nstd Longitudinal = %f\n", STD_LAT,
STD_LON));

ARRAY_START = 1;
ARRAY_SIZE = len-12;
timeAxis = 20e-3 * [0:ARRAY_SIZE - ARRAY_START];

59

erasedLatDist = LatDistFromKalman;
erasedLatDist(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
LatDistFromRadar(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
figure

plot(timeAxis, LatDistFromRadar(ARRAY_START:ARRAY_SIZE));

hold on

plot(timeAxis, erasedLatDist(ARRAY_START:ARRAY_SIZE), “r");
legend("Radar-Camera®, “Kalman®);

xlabel ("time (s)");

ylabel ("Lateral distance (m)");

title("Lateral Distance®);

erasedLonDist = LonDistFromKalman;
erasedLonDist(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
LonDistFromRadar(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
figure

plot(timeAxis, LonDistFromRadar(ARRAY_START:ARRAY_SIZE));

hold on

plot(timeAxis, erasedLonDist(ARRAY_START:ARRAY_SIZE), “r");
legend("Radar-Camera®, “Kalman®);

xlabel ("time (s)");

ylabel ("Longitudinal distance (m)");

title("Longitudinal Distance®);

radarTargetAngle = Can2.radar71B.targetAngle(13:end);
erasedAngle = estRadarAngle;
erasedAngle(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
radarTargetAngle(find(Can2.radar71B.targetRange(13:end) == 0)) = NaN;
figure

plot(timeAxis, radarTargetAngle(ARRAY_START:ARRAY_SIZE));

hold on

plot(timeAxis, erasedAngle(ARRAY_START:ARRAY_SIZE), "r%);
legend("Radar-Camera®, “"Kalman®);

xlabel ("time (s)");

ylabel ("angle (degrees)®);

title("Target Angle®);

[LatHist, LatError] = hist(LatDistFromRadar (ARRAY_START:ARRAY_SIZE) -
erasedLatDist(ARRAY_START:ARRAY_SIZE), 100);

[LonHist, LonError] = hist(LonDistFromRadar (ARRAY_START:ARRAY_SIZE) -
erasedLonDist(ARRAY_START:ARRAY_SIZE), 100);

[AngHist, AngError] = hist(radarTargetAngle(ARRAY_START:ARRAY_SIZE) -
erasedAngle (ARRAY_START:ARRAY_SIZE), 100);

LatHist = (LatHist / sum(LatHist)) * 100;

LonHist = (LonHist / sum(LonHist)) * 100;
AngHist = (AngHist / sum(AngHist)) * 100;
figure;

bar(LatError, LatHist, 1.0);
title("Lateral Error Histogram®);
xlabel ("meters”);

ylabel ("percentage (%)");

60

figure;

bar(LonError, LonHist, 1.0);
title("Longitudinal Error Histogram®)
xlabel ("meters”);

ylabel ("percentage (%)");

figure;

bar(AngError, AngHist, 1.0);
title("Target Angle Error Histogram®)
xlabel ("degrees™);

ylabel ("percentage (%)");

61

