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Optimisation of Composite Structures Using a Growth Algorithm 

Master’s Thesis in the Master’s programme in Advanced Engineering Materials  

MUHAMMAD ABDULLAH BEG 

Department of Applied Mechanics 

Division of Material and Computational Mechanics Chalmers University of 

Technology 

 

ABSTRACT 

This thesis work deals with the development of an algorithm that works together with 

the finite element method to optimize the fibre orientation and ply thickness of a 

composite material. The algorithm is developed for symmetric lay-up of orthogonal 

plies so that the coupling matrix is zero, i.e., there is no extension-twisting or 

bending-shearing coupling. The results in the report are shown for composites made 

of orthogonally held graphite fibres and an epoxy matrix. Properties of the composite 

material are calculated using Rule of Mixture (ROM) and classical laminate theory. 

The thickness and fibre orientation inside each element are considered as independent 

variables. The fibres are aligned in the principal stress directions in every element. 

The maximum strain criterion is used to control the fibres amount, or in other words, 

increase in the element thickness. This algorithm is inspired from the natural bone 

growth in a living organism in which only the certain parts of the bone grow and 

densify that are under a high state of stress. The thesis work in carried out using the 

MATLAB based finite element tool “CALFEM” and the optimisation algorithm is 

also written in MATLAB. The algorithm is then tested against several load cases and 

the results are discussed.  

Key words: Fibre orientation; Topology optimization; Finite Element Method; 

Symmetric lay-up; Classical Laminate Theory 
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1 Introduction 

Composite materials are replacing metallic counterparts in many structural 

applications. This is due to their low weight together with high strength and high 

stiffness. Their properties can be tailored for specific design requirements due to their 

anisotropic properties. This can be achieved by changing the stacking directions, 

changing stacking sequence and/or thickness of fibres at a particular position in a 

component. However due to increase number of design variables, the mechanical 

complexity of such material will also increase. The mechanical behaviour of such a 

material is more challenging to determine and model than that of conventional 

materials, i.e. failure mechanisms in composites such as fibre breaking, matrix cracks, 

fibre compressive failure and matrix crushing and different couplings of normal force, 

shear force and moments will change due to different stacking sequences.  

Optimisation is one such problem in which the techniques used for isotropic materials 

may not be effective in the case of composite materials. For instance, gradient 

methods are suspected to fail in case of composite materials. The reason is that 

gradient methods consider the design variable as a continuous variable whereas the 

number of plies in a composite is a discrete variable. Moreover, for gradient methods, 

the initial guess should be good enough so that the method should converge to the 

global minimum which is difficult for composites. The reason for these problems in 

composite materials is the multiple ply directions. For complex load cases plies need 

to be rotated in every element. Plies in a certain direction minimize the objective 

function locally for an element but not globally. Unfortunately, increasing the number 

of design variables also increases the number of local minima and methods such 

gradient methods, Genetic algorithm and Simulated annealing may fail to provide 

optimal values.  

1.1 Literature Review 

Optimisation is a science to determine best possible solutions using set of 

mathematical equations that represent a physical system. There are numerous 

examples of intrinsic optimisation of physical systems in our daily life i.e. a droplet of 

water, under zero gravity, is a perfect sphere which has the smallest surface area for a 

given volume, arrangement of atoms in a unit cell to have minimum energy level, 

selection of material of an aircraft wing and scheduling of flights by an airline. An 

optimisation problem in engineering applications is generally a set of independent 
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variables defined in form of an equation or a set of equations called “objective 

function”. In an optimisation problem the purpose is to maximise or minimize the 

value of objective function. There can be restriction on the objective functions which 

are known as constraints. Consequently, an optimisation problem is all about 

maximisation or minimisation of an objective function, which is an equation in terms 

of an independent variable, with certain constraints on the values of the independent 

variable [1, 2, 3, 4]. An optimisation problem with constraints can be represented 

mathematically as: 

                                                 (1.1) 

                                

                              

where      is the objective function to be minimized and       is constraint function 

and together they form the problem function. The problems in which there are no 

constraints on objective function are called unconstraint problems [2, 3] and can be 

represented as: 

                                                                                                                    (1.2) 

  
       

      

where   
 and   

  are upper and lower bounds on the design variable. Optimisation 

problems can also be characterized according to the structure of the problem. Convex 

optimisation problem is one in which both the objective function and the constraints 

form a convex set. An optimization problem can be a convex problem if minimization 

objective function,     as well the space,  , in which the independent variable,  , is 

defined are convex function and convex set respectively [4]. Mathematically: 

                                                                                                                          (1.3) 

                    

For convex problems, if a minimum exists then it is a global minimum and for strictly 

convex problems if there exist a minimum then it is unique. Linear programming is 

one of the most important branches of convex programming which consists of various 

problems in which both the objective functions and the constraints are linear functions 

of independent variable. In these problems every constraint defines a line which 

divides feasible and infeasible regions. All the points inside the feasible region satisfy 

all the constraints of the problem [3]. These problems can be solved using using 

Simplex method. The method requires introduction of slack variables to convert the 
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problem into a standard form. This method searches for the minimum value of the 

objective function along the boundaries of the feasible region and terminate when a 

minimum value or an unbounded edge is reached [3]. Integer linear program is a 

variant of linear programming in which the design variable can only have integer or 

discrete values. Such problems that can take values of only 0 and 1 can be solved by 

implicit enumeration. Methods that can be used to solve mixed integer problems are 

Branch and Bound algorithms, Genetic algorithm, Gomory cut method and Simulated 

Annealing [3]. For constrained linear problems, it is necessary to satisfy Karush, 

Kuhn and Tucker (KKT) condition [3].  

For nonlinear problem different types of methods are employed which can 

broadly categorized as (i). Direct search methods, (ii). Gradient methods and (iii). 

Second order methods. Direct search methods are methods that are use for problems 

which have discontinuous objective function,      and where it is assumed a 

continuous, gradient discontinuous, or a complex function of design variables. These 

heuristic search methods are based on geometric intuition which provides no 

performance guarantees other than comparison of results. Theoretically, direct search 

techniques are based on mathematical foundation and provide convergence under 

restricted conditions. S
2
 or simplex search method is a heuristic search method. One 

of the techniques is to divide the search space into regular grids and different 

techniques are used to shrink the search area around the solution. The problem with 

this technique is the computational time. A modified version of this technique is to 

consider a base point in the search space and consider the performance criteria of 

points with respect to the base point. Another important heuristic direct search 

technique is Hooke-Jeeves pattern search method which searches for optimal design 

variable in fixed set of directions. In this method one variable is chosen at a time and 

the design space is search in the coordinate direction. It works fine for the objective 

functions with spherical symmetry but not for functions which are distorted or 

elongated- in that case it doesn’t converge even after infinite number of shorter and 

shorter steps. Powell’s conjugate direction method is one of the most successful direct 

search method which is based on the quadratic nature of the objective function. Since 

a quadratic function is the simplest type of nonlinear objective function and nonlinear 

functions can be approximated as quadratic functions using Taylor’s expansion near 

the optimal design variable, Powell’s method converges to optimality in finite number 

of searches. However like other direct search methods this method is also slower than 
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gradient based methods [2]. Some other direct search methods are Spendley, Hext and 

Himsworth’s method, Nelder and Mead’s, Davidon’s cubic interpolation method and 

Fibonacci search. Details about these can be studies in [3, 5]. Setoodeh et al. [7] used 

a Quadratic programming technique to design variable stiffness laminates. 

For first order gradient methods it is assumed that the first derivative of 

objective function       exists. The general form of gradient based iteration process 

is [6]: 

                                                                                                       (1.4) 

where       is the updated objective function,       is the previous value of the 

objective function        is the gradient of objective function at    and        is 

the search direction. Steepest descent method or Cauchy’s method is a simple gradient 

method technique. The gradient        represent the direction of the most locally 

increasing direction, while         represents the direction of the most locally 

decreasing direction. This is quite clear since [3]  

                                          
 
                              (1.5) 

and the new point is given using,                 , where   is the step size in 

the search direction chosen in such a way that      minimizes the function’s value 

      in the direction of        . Each search direction is orthogonal to the previous 

direction which gives a zigzag and thus slower convergence rate [3]. Another reason 

of slower convergence is that magnitude of gradient decreases with every iteration [2]. 

The method is good when the condition number of the Hessian matrix     is closer to 

unity or in other words the contours of objective function are circular [2, 3]. Thus the 

steepest descent method fails for highly nonlinear problems. A example of this 

drawback is shown by Herrmann [8] performing a test on Rosenbrock Banana 

function. Further details about steepest descent method can be found in [2, 3].  

Second order methods are used in order to get a better global direction than 

steepest descent method. These methods employ second order Taylor series to get a 

quadratic approximation of objective function. This approximation is used to 

determine a next iteration point      for which the gradient of approximation is zero. 

This type of iterative method is called Newton’s method. The next point in the search 

direction is calculated as [2] 

                                                .                             (1.6) 
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 Since a quadratic approximation is used, Newton’s method converges faster than first 

order methods. However, the method may not converge to the global optimal unless 

the starting point is close to optimum. The reason are that for highly nonlinear 

problems even the quadratic approximation may be a poor approximation and if the 

Hessian at   ,         is singular or not positive definite than approximation 

function may not have a minimum, i.e. a saddle point or a flat function. One method 

to overcome this problem is modified Newton method is which a step size parameter 

   is introduce, as in Cauchy’s method. The new iteration point is then given as 

                                                                                (1.7) 

Marquardt’s method is another modification that could be applied when the Hessian 

matrix is singular. It incorporates Cauchy’s method when the iteration point is far 

from optimum and then uses Newton’s method near the optimum. The new search 

direction becomes 

                                                                  (1.8) 

where   is used to control both direction of search and   is identity matrix. The value 

of   is chosen larger than the absolute minimum Eigen value of Hessian,         [6]. 

Quasi-Newton methods like Davidon-Fletcher-Powell or DFP method and 

BFGS(Braydon, Fletcher, Goldfarb and Shanno) method approximate the curvature of 

nonlinear functions without actually calculating the Hessian and instead use the first 

order information of the objective function. A detailed study about second order 

gradient methods can be found in [1, 2, 3, 6]. Modified feasible direction is a modified 

steepest descent method which keeps track of gradient of objective functions, 

constraints and search directions in the previous iteration. Topal and Uzman [9,10] 

have used modified feasible direction method for optimising the laminated plates for 

buckling loads. Lindgaard and Lund [11] also used gradient based method to optimise 

composite structures against buckling loads. 

Simulated annealing (SA) is a generalization of Monte Carlo simulation. It is a 

direct search method which is based on annealing of metals and glasses to relieve 

them from residual stresses. A general SA problem can be represented as 

                                                                                (1.9) 

                                  

 Annealing is process in which metal or glass parts are heated to a certain high 

temperature and then cooled in a controlled environment in order to allow the atoms 
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to rearrange themselves in a lower energy state and attain stable equilibrium. For a 

thermodynamics system, the probability of change in energy state for a given 

temperature,   is given by Boltzmann’s probability distribution function 

                  
   

                                    (1.10) 

where    is the activation energy,   is temperature and   is Boltzmann’s constant. In 

an optimisation problem, an initial state of temperature, which is analogous to design 

variable is set a very high value and the Boltzmann’s constant,    is set to a value, and 

may be chosen as 1. A vector of step sizes is chosen to find change in energy level, 

which is analogous to objective functions, along the coordinate directions. At each 

temperature the change is objective function is calculated along the coordinate 

directions. If the change shows a decrease in function value, it is accepted and the new 

design variable is calculated at that function value. If the function value is shows an 

increase in function value it is accepted if the probability of its occurrence is less than 

a certain desired value. This allows the optimisation problem not to get stuck to local 

minima. At the end of iteration the step size is updated. In order to apply this 

technique, one has to describe initial temperature, the state space, the acceptance 

probability function, energy/neighbour generator function, annealing schedule and 

number of iterations at each temperature. The difficulty is that there is no general way 

to find the best choices of factors and these choices are different of different 

problems. Akbulut and Somez have used an SA technique from minimum thickness of 

composite laminates [12]. A detailed discussion on Simulated Annealing (SA) is 

given [3]. 

Genetic algorithm (GA) is nature based optimisation technique. It is a 

computational technique that simulates the evolution process of genetic reproduction- 

the strategy is that the fittest shall survive. This technique can be used for discrete as 

well as continuous design variables. This technique can converge to a minimum even 

when the design domain is very large. The general form for an optimisation problem 

is given in the same way as for an SA optimisation problem. In a GA problem each 

variable    is encoded as a binary code of some specific number of bits, say m. The 

feasible interval of variable    is divided into 2m-1 intervals. In the first step an initial 

population is created using attaching the binary values of each variable’s bit value end 

to end with those of other variables. The bit size of each member of the population is 

then m*n, where m is the bit size of variable and n is the number of design variables. 
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The size of the population to be generated is a matter of experimentation. In the next 

step, each of the members is decoded and the objective function values for them are 

evaluated. The function values are referred to as fitness values in GA. Once the 

population’s fitness values are determined, the next step is to make a pool of mating 

parents. The selection of the genes for reproduction is carried by replacing the weaker 

members, members with low fitness values, using stronger members. There are 

several ways in which this replacement can be done. One of the schemes could be a 

simulated roulette wheel which randomly replaces the weak members using stronger 

members. The selected parents are then crossover. One of crossover technique is to 

replace a variable at a certain position in a parent’s genes with a corresponding 

variable in the other mating parent’s genes to give birth to two offspring. Some 

researchers have used this technique with more than two parent genes as well. Once a 

suitable population of children members in produced, it is checked if the children are 

too identical to each other. If they are too identical, they will slow down or even stop 

the evolution. This is prevented by mutation. The purpose of mutation is to introduce 

diversity in the population. Every bit in a child is given a random value which 

determines whether or not the bit will be modified in the process. This type of 

mutation is called biological point mutation. Other mutation techniques are also 

available such as, floating point mutation, inversion, scramble and swap. After 

mutation the population is evaluated. Now, once again of each member of the 

population is evaluated on the basis of their fitness values. Like before the highest the 

fitness value, the fittest the member is for next generation. This step is referred to as 

Evaluation. If the number of populations to be generated is reached then process is 

stop, other using the new population as parent population the process is started over 

again. This process is continued until the preset number of populations to be 

generated is reached. However there are problems with GA as well. First of all, it has 

no theoretical background and at times the experimental results challenged the 

accuracy of this technique. Furthermore there is a divided opinion about the 

preference of crossover and mutation. Different parameters such as population size, 

crossover probability and mutation probability have effects on the final results. 

Composite structures are optimised using GA Herrmann, Naik et al., Legrand et al., 

Almeida and Awruch and Paluch el al. [8, 13, 14, 15, 16]. Details about GA can be 

studied from [17]. 
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1.2 Micro and Macro mechanics of laminates 

A laminate is made up of several lamina stacked in the thickness direction. Thus to 

understand the behaviour of a laminate one first needs to have knowledge about the 

micromechanics of a single lamina. The properties of lamina depend upon a variety of 

variables such as the volume fraction of fibre and matrix. These properties are 

affected by the voids present inside the composite material. e.g. lower shear stiffness 

and strength, compressive strength, transverse tensile strength, fatigue resistance and 

moisture resistance. There are four independent elastic constants for a unidirectional 

transversely isotropic ply: 

 Longitudinal or axial Young’s modulus, E11 

 Transverse Young’s modulus, E22 

 In-plane shear modulus G12 and 

 Major Poisson’s ratio, v12. 

There are different models to calculate these elastic constants. Rule of mixture 

is a good approximation for longitudinal direction, while the Reuss model (which 

assumes equal transverse stresses in fibre and matrix) is good to calculate transverse 

moduli. However, both of these models are not suitable for transverse or shear moduli 

as they underestimate the mechanical properties in transverse direction. Semi-

Empirical model like Halphin-Tsai is widely used obtain in plane shear and transverse 

moduli. Details about different models can be studied in any book on composite 

mechanics, e.g. [18, 19, 20]. In the algorithm developed in this thesis strength of 

material approach or rule of mixture is used to calculate the elastic constants. Once 

the elastic constants are determined, compliance matrix for an orthotropic composite 

material in the local coordinate system (axial and transverse fibre directions) is given 

as: 

       

 
 
 
 
 
 
 
     

    
  

 
    

  
 

    
  

       
 

    
  

 

                                       
                                       

    
  

 
    

  
      

  
 

 
 
 

 
 
 

 
 
 

                    
       

   
 

        
       

      
        

   
 

     

       
       

     
   

  
 
 
 
 
 
 
 

 ,    (1.11) 

where   ,    ,    ,    ,     are out of plane elastic constants. Assuming that the 

thickness of the composite material is small, plane stress approximation is used to 

calculate stresses and strains. This approximation simplifies the calculations by 
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ignoring the out-of-plane stress. In such a case the reduced compliance matrix is given 

as 

                                          

 
 
 
 
     

    
  

  

    
  

  
  

  

       
   

  
 
 
 
 

 .                                  (1.12) 

Thus strain-stress relationship can be written in the form: 

                                                         

  
  

   

      

  

  

   
 ,                                            (1.13) 

where   ,   ,     and   ,   ,     are stresses and strains in axial, transverse and shear 

directions respectively. Conversely,  

                         

  

  

   
      

  
  

   

 ,                                          (1.14) 

              , 

where     is the stiffness matrix of the composite lamina. The stresses and strains can 

be transformed in global coordinates using transformation reduced stiffness,    , and 

compliance matrices,     , respectively, such that 

                      

  

  

   
       

  

  

   
                                              (1.15) 

      

            
            
            

           

             
        
       
          

  

                      

Conversely,  

             

  

  

   
        

  

  

   
            (1.16) 

                        , 

where     is the transformation matrix and   is the rotation angle of fibres with 

respect to the global coordinate system. The rotation of coordinate system from local 

to global is shown in Figure 1.1. Further details about stiffness and compliance 

matrices and there transformation can be found in [18, 19, 20]. 
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Figure 1.1 Rotation of coordinate system and sign convention for rotation angle 

Since it is hard to find any use for a single ply composite the composites are 

usually multiply laminates. Thin composite laminates can be model using two 

dimensional theories. The simplest of these theories is Classical Laminate Theory 

(CLT), which is an extension of Kirchhoff plate theory and, ignores the out-of-plane 

stresses and strains. Thus it cannot be used for thick plates where out-of-plane strains 

are significant and at the edges of the thin plates. Consequently, this theory cannot 

take delamination into account. CLT is based on following assumptions 

 Each ply is linearly elastic and orthotropic 

 Laminates are perfectly bonded together 

 Strain are small 

 Through thickness strains are negligible  

 Laminate thickness is constant and small as compared to in-plane dimensions 

of the plate 

The response of composite material to in-plane forces and moments is 

determined by extensional stiffness matrix,     coupling stiffness matrix, [B] and 

bending stiffness matrix, [D]. Extensional stiffness matrix,     relates the in-plane 

forces,   ,     and    , to the mid-plane strains,   
 ,   

  and   
  

, and is calculated 

as 

                         
 
   .                              (1.17) 

Bending stiffness matrix, [D] relates the in-plane moments,   ,    and    , to 

curvatures,   ,    and    . It is calculated as 
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   .                        (1.18) 

Coupling matrix, [B] relates in-plane forces,   ,     and    , to the curvatures   , 

   and     and moments,   ,       , to mid-plane strains,   
 ,   

  and   
  

, and 

is calculated as 

        
 

 
           

      
   

   .                        (1.19) 

Here in the three above equations      is the stiffness matrix of kth 
lamina, zk and zk-1 

are the distances of upper and lower surface of the lamina from the mid-plane or 

reference plane and n is the number of lamina in the plate. The notation is illustrated 

in Figure 1.2. The above three equations can be written together in matrix form as 

      
 
 

   
  
  

   
 

 
                                 (1.20) 

           

  

  

   

 ,    

  

  

   

      

  
 

  
 

  
  

     

  

  

   

 .  

In case of symmetrical laminate there is no coupling effect so that the coupling matrix 

becomes zero,        Consequently the in-plane moments will not produce any 

strain in the mid- plane and the in-plane stresses will not wrap or twist the mid- plane. 

 

Figure 1.2 Laminate code used for a symmetric lay-up 

In the algorithm developed in this thesis work a symmetrical laminates is 

considered. The affect of different lay-up strategies on    ,     and     are discussed 

in detail in [18,19].  
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1.3 Failure criteria for composite materials 

Composite materials can fail under different failure modes, i.e. fibre buckling, fibre 

breakage, matrix cracking, delamination or a combination of these failure modes. 

Several theories have been proposed in order to predict failure and its mode in 

composite materials but, so far, they are complicated and none of them is of practical 

interest. Instead, strength failure theories are used. These are simple and easy-to-

implement theories. These theories include Qaudratic failure criterions like Tsai-Wu 

and Tsai-Hill failure criteria, maximum stress criterion and maximum strain criterion. 

These criteria have following limitations: 

 These theories only predict the first ply failure. It is not necessary that the 

material will fail since other plies may redistribute the load. As the load will 

increase the rest of the plies will failure until the load is high enough to cause 

rapid failure. 

 Mode of failure is not predicted 

 Each criteria is applicable under certain limitations 

 Some of the data required for these criteria are difficult to measure 

 The criteria are applicable away from discontinuities e.g. holes, delamination, 

notches and edges. 

 Maximum stress and maximum strain failure criteria for composites is not 

equivalent to those for isotropic materials. The reason is that stress and strain 

components along the orthotropic direction at a point in a composite material 

are compared with the allowable stresses and strains respectively and they are 

not necessarily maximum stresses and strains at that point.  

 Maximum stress criterion is not equivalent to maximum strain criterion for 

composites. 

Detailed discussion and mathematical representations about different failure 

criteria are given in [18, 19]. Due to ease of application and its validity for orthotropic 

materials under plane-stress conditions, maximum strain failure criterion is used in the 

algorithm developed in this thesis.  

1.4 Finite element analysis of composite 

Finite element method is a numerical technique to solve differential equations using 

certain approximation. The differential equation or equations represent a certain finite 

domain of a physical system. In a mechanical system finite element methods are used 
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to calculate stresses and strains in the system. The process consist of dividing the 

whole structure into small domains, called elements, is called meshing. Stiffness 

matrix     for each element is calculated and a global stiffness matrix     is 

constructed using all the element stiffness matrices. The boundary conditions, loads   

and constraints, applied to the structure are transferred to the nodes. The 

displacements   at nodes are calculated using the following equation:  

           .                                                      (1.21) 

The displacements are used to find displacements inside an element using 

approximation functions [N], also called shape functions, by the following 

relationship: 

           ,                                                    (1.22) 

where   is the nodal displacement vector of the element. The nodal displacements can 

also be used to calculate element strain as 

                                                                      (1.23) 

where   is the strain-displacement matrix and is the first derivative of element shape 

function with respect to the displacement variables. 

                                                                 (1.24) 

Element strains are then used to calculate stresses inside an element using Hooke’s 

law 

                                                                  (1.25) 

where   is the stiffness matrix of the material. 

Depending on the problem, the structure is divided in 1-D spring elements or 

beam elements, 2-D plate or 3-D brick elements. Sometimes, in order to simplify 3-D 

problem is solved as a 2-D problem using assumptions of plane stress or plane strain. 

Details about finite element methods can be studied in [22].  

For thin composite materials under plane stress conditions it is typical to use 

2-D four node quadrilateral element. However these elements cannot determine out-

of-plane stresses and strains and thus can’t be used to model the stress-strain state 

near and on free edges. Consequently, these elements can only be used in the regions 

where Classical Laminate Theory is valid. These elements are susceptible to shear 

locking which makes them excessively stiff and affects the accuracy of the results for 

plates with higher span-to-thickness ratio [23]. One of the techniques to over this 

problem is reduced integration which can result in another problem, hour glassing 
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modes. Hour glassing can be reduced using finer mesh or higher order elements [23, 

24]. Details about different types of elements used in composite materials can be 

found in [24].  
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2 Method 

In this thesis we develop an growth algorithm, which takes the idea from the growth 

of natural tissues such as bones and trees in which a bone is strengthened in the 

loading direction according to its loading conditions. In this study, a finite element 

code is coupled with this algorithm and provides information about the stress-strain 

state at element level. The growth algorithm adds ply material in each element in 

principal stress directions in discrete steps. To stop the optimisation loop maximum 

strain failure criteria is used as a design constraint. The amount of fibre in each 

direction is proportional to the stress state inside an element as well as related to the 

overall stress state of the material. After each step, another finite element calculation 

step is performed to obtain updated stress-strain state in the material. If the maximum 

strain in the material is below the maximum allowable strain then the algorithm 

returns the thickness values in each element and stops; otherwise, the procedure 

continues until the failure criteria is fulfilled in all elements. This is a kind of 

modification of Last Ply Failure method in which ply thickness is increased until the 

last ply is safe from failure. In this algorithm composite material is assumed to be free 

of all defects and carbon fibres are assumed to be uniformly distributed in a ply. Finite 

element calculations are done using MATLAB based FE-tool called CALFEM that is 

developed at University of Lund. The optimisation algorithm is written in MATLAB, 

where some of the original CALFEM files are modified to handle the element 

thicknesses as a vector. The structure is meshed using 4-node quadrilateral elements 

with 2 degrees of freedom at each node and linear shape functions are used for finite 

element approximations. As a consequence of plate element, either out-of-plane stress 

or strains cannot be calculated. This is not a problem in this case since Classical 

Laminate Theory (CLT) is employed here which ignores both out-of-plane stresses 

and strains. As a result this algorithm is valid for region away from the free 

boundaries. The opinion about region of validity of a 2-D analysis of a composite is 

divided. According to theoretical results of Pipes and Pigano that were later confirmed 

experimentally by Pipes and Daniels that for a symmetric angle-ply laminate the inter-

laminar stresses are valid in a region of width equal to the laminate thickness from the 

free edges [24]. However the opinion is divided from 1 to 5 times the laminate 

thickness from the free edge depending upon the loading conditions and lay-up. 
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Firstly the structure to be optimised is modelled and the number of elements 

required along the two opposite sides is also defined here. This data is transferred to 

CALFEM meshing tool meshes the structure and divides the design domain into 

desired number of elements. It also provides the data regarding element degree of 

freedom, in-plane coordinates of the nodes in global coordinate system and degrees of 

freedom along the boundary of the design domain. Due to limitations on the 

CALFEM meshing tool only 4 sided polygons can be modelled and they need to be 

merged together to form other shapes. The coordinates of the elements are used to 

define the area of each element. Material properties for matrix defined in global 

coordinates which are isotropic macroscopically and are not affected by changing the 

coordinate system. However, since fibre composites are anisotropic in nature their 

properties will change with direction and are defined in local coordinates. The values 

of properties used for the analysis are given in the Table 2.1. 

Table 2.1 Physical properties of Carbon fibre and epoxy 

Mechanical properties of Carbon fibre 

Axial Modulus, Ef1 230 GPa 

Transverse Modulus, Ef2 22 GPa 

Major Poisson’s ratio,  f 0.3 

In-plane Shear Modulus, Gf 22 GPa 

Axial tensile strength, σ1t 2067 MPa 

Axial compressive strength, σ1c 1999 MPa 

A very small thickness is taken for the first isotropic FE analysis. The effect of 

thickness of the initial isotropic layer is explained later in the discussion. Next, the 

desired boundary conditions are applied on the nodes. A four node plane element is 

used for the analysis along with plane stress assumption. Due to these assumptions 

stresses normal to the plane are ignored which will have implications later when 

anisotropy is introduced. Using material properties of resin and plane stress 

assumption an isotropic material model is calculated for each element using the 

function “plani4e_optimization”. This function is a slightly modified version of a 

CALFEM’s function “plani4e”. The element stiffness matrices are combined to form 

global stiffness matrix using the “assem” function. The FE system is now solved 

Mechanical properties of Epoxy Resin 

Axial Modulus, Em 3.4 GPa 

Poisson’s ratio,   m 0.3 

Shear Modulus, Gm 1.308GPa 
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using “solveq” to get nodal displacements and reactions at the boundaries. The nodal 

displacements are used to calculate element displacements using function “extract” 

which are used to calculate element stresses and strains using another function 

“plani4s_optimization”. Integration rule 3 is used to find stresses and strains in 

each element. This is another function which is a modified version of CALFEM’s 

function “plani4s”. Element stresses are used to calculate principal stresses and their 

directions in each element which are simply the Eigen values and Eigen vectors of the 

element stress matrix. In a 2-dimensional analysis, two principal stresses are obtained 

which are orthogonal to each other. 

Once the principal stresses and their directions are known, anisotropic ply 

thickness increment is added according to the stress state in every element. To 

increase the ply thickness a linear growth factor is employed. Since the plies are 

anisotropic in nature they can change the initial stress state in the structure. In order to 

avoid too much distortion of the stress-strain state, in the beginning a small amount of 

ply thickness is introduced along the principal directions. Both Principal stresses, 

depending upon their direction, are compared to the fibre strength in tension or 

compression. Then an anisotropic ply consisting of thickness equal to 1% of the 

thickness of isotropic layer times the ratio of principal stress to composite strength is 

added. Ply thickness increment can be mathematically represented as: 

        
        

  
  

                                     (2.1) 

                                                           
        

  
  

  , 

where     and     are thickness increment in first principal direction,   is the percent 

growth factor used for ply thickness increment,   is the current time step,      is the 

total thickness in the previous time step,    and    are tensile or compressive stresses 

in first and second principal directions and    allowable axial strength in tension or 

compression of the composite. Two growth factors, 1% and 100% are used for each 

case studied in this thesis and the results are compared. The contribution of 

orthogonal ply in one direction on ply increment in other direction is not considered 

as transverse strength of fibre, so ply’s transverse strength, is very low as compared to 

axial strength. In the beginning, when anisotropic ply is introduced,      is equal to 

the thickness of isotropic layer. The material model for the anisotropic layers is 

determined using classical laminate theory. Since only in-plane deformations are 
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considered, only transformed reduced stiffness matrix      is needed to be calculated. 

Rule of mixture is used to determine elastic moduli in different directions. Each ply is 

assumed to consist of 60% carbon fibre by volume and 40% epoxy by volume. This 

assumption is made due to manufacturing constraints on very high fibre volume in a 

composite. Thus the overall percentage of the fibre in the anisotropic layer is 60%. 

This also means that plies are assumed to be added symmetrically about the mid-

plane. The stiffness model for the anisotropic plies is calculated using the function 

“constitutivemodel”. Once the material model for plies is obtained it is added with 

that of isotropic middle plane according to following linear relationship 

                 
  

  
         

  

  
                                  (2.2) 

                  

where    is the material model of the orthogonal anisotropic plies,       is the stiffness 

model of element for previous time step which, e.g. is isotropic material model for the 

first step,     is material stiffness of the whole element,    is the thickness of 

orthogonal anisotropic plies,      is thickness of element in the previous time step 

(which in first step is equal to the thickness of isotropic layer) and    is total 

thickness. The step is schematically represented for an arbitrary element in Figure 2.1.  

 Figure 2.1 Introduction of anisotropic plies for an arbitrary element  
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Here tisotropic is thickness of the isotropic layer, Δt1/2 and, Δt2/2 are one half 

thicknesses of anisotropic plies in first and second principal directions respectively 

and Mid-plane is the plane of symmetry. Since the layup is symmetric the other halves 

of the ply thicknesses are above the mid-plane. The global coordinate system is 

represented using X-Y. Now this material model is used to calculate element stiffness 

matrix for elements using the function “plani4e_optimization”. Element stiffness 

matrices are combined to form the global stiffness matrix using function “assem”. The 

FE system is again solved using the boundary conditions similar to that of isotropic 

FE analysis. Nodal displacements and reactions at boundary nodes are obtained using 

“solveq” for the anisotropic analysis. It is observed that due to increased stiffness 

there is a decrease in nodal displacements. Once again, the nodal displacements are 

used to determine the element displacement using “extract”. These displacements 

are then used to determine element stresses and strains in global coordinate system 

using function “plani4s_optimization”. The stresses and strains in the local 

coordinate system which are eigen values of the stress and strain matrix respectively 

using function “eigs”. These stresses and strains are the new principal stresses and 

strains of the structure. Maximum absolute value of the principal strain in the domain 

is compared to the maximum allowable strain. If the maximum strain for all elements 

is less than the maximum allowable strain then the process is stopped and the ply 

thickness in both principal directions and their orientations for all the elements are 

returned. If the failure criterion is not satisfied, current principal stresses are used to 

increase the ply thickness along the principal stress direction. The same procedure is 

employed to increase the ply thickness as before. The FE system is solved and 

principal stresses, their directions and principal strains are calculated. Maximum 

absolute strain of the system is compared to the maximum allowable strain. If the 

failure criterion is satisfied the code returns the values of ply thickness in each 

direction and their orientation otherwise the code continues to add material until the 

criterion is satisfied. The method used here for optimisation of ply thickness is 

exemplified using the flow diagram shown in Figure 2.2. 
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Figure 2.2 Flow chart of the optimisation process 
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3 Numerical Experiments 

In this section a number of numerical experiments will be described. These consist of 

 Square plate under uniaxial tension and compression 

 Square plate under point loading 

 Trapezoidal plate under uniaxial tension 

 Square plate under pure shear load 

 Plate with a hole in the middle under uniaxial tension 

 Square plate under mixed loading 

3.1 Plate under uniaxial loading 

In this case a square 5x5cm plate under uniaxial tension and compression is 

considered to benchmark the algorithm. Due to symmetry conditions only a quarter of 

the plate is considered for analyses. A uniform force of 500kN is applied on the right 

side of the plate while the plate is constraint in x-direction on left side and in y-

direction at the bottom as shown in Figure 3.1. Initial principal stress state for this 

loading condition for coarse mesh is also shown in Figure 3.1. Table 3.1 shows the 

number of elements used for the analyses, applied load, the maximum and minimum 

thicknesses obtained from each analysis, total volume and computation time for 

uniaxial tension and uniaxial compression using a small growth factor (in first two 

analyses) and uniaxial tension with 100% growth factor(in last analysis) with 25 

elements. The results for these analyses are shown in Figure 3.2-Figure 3.4. An 

element in Figure 3.2 is marked ‘a’ which shows rotation of principal stresses. The 

reason for this behaviour is discussed in Chapter 4, Analysis. 

Table 3.1 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a square plate 

under uniaxial loading 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 
tmin [mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

25 1% 500000N 15.94 15.94 9.98 119 

25 1% -500000N 16.00 16.00 10.01 103 

25 100% 500000N 15.94 15.94 10.08 3 
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Figure 3.1 Boundary conditions and initial stress state in the plate 

 
 

 
Figure 3.2 Thickness distribution plot for uniaxial tension with a growth factor of 

1%. 

P 

a 
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Figure 3.3 Thickness distribution plot for uniaxial compression with a growth 

factor of 1%. 

 

 
Figure 3.4 Convergence plot for plate under uniaxial tension 
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Figure 3.5 Thickness distribution plot for uniaxial tension with a growth factor of 

100%. 
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3.2 Plate under point loading 

In this case a vertical point load of 1kN is applied on a 25x25mm square plate at the 

node on its upper right corner. The analyses are performed for two mesh qualities, one 

with 25 elements and the other with 100 elements. Figure 3.5 shows the boundary 

conditions and initial principal stress state in the isotropic material for coarse mesh. 

Table 3.2 shows the number of elements used for the analyses, applied load, the 

maximum and minimum thicknesses obtained from each analysis, total volume and 

computation time for both mesh qualities using a slower growth factor in first two 

analyses and fast growth (100% growth factor) in the third analysis. Figure 3.7 and 

Figure 3.8 show the final thickness distribution for coarser and finer mesh. There are 

areas marked ‘a’ and ‘b’ in these figures which will be discussed in the next chapter, 

Analysis. 

Table 3.2 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a square plate 

under point load 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 
tmin [mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

25 1% -1000N 0.48 0.0121 0.12 388 

100 1% -1000N 1.35 0.0011 0.18 2849 

100 100% -1000N 1.40 0.0030 0.19 8 

 

 

F 

Figure 3.6 Boundary conditions and initial stress state in the plate 
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Figure 3.7 Thickness distribution plot for coarse mesh with a growth factor of 1%. 

 

 
Figure 3.8 Thickness distribution plot for fine mesh with a growth factor of 1%. 
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Figure 3.9 Convergence plot for plate under point load with coarse mesh 

 

 

Figure 3.10 Thickness distribution plot for fine mesh with a growth factor of 100%. 
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Figure 3.11 Convergence plot for plate under point load with 100% growth factor 
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3.3  Trapezoid under uniaxial loading 

In this case the algorithm is tested on a trapezoidal plate with length of two vertical 

parallel sides as 40cm and 24cm. The horizontal distance between them is 40cm. Due 

to symmetry conditions only a quarter of the plate is considered in calculations. 

Figure 3.9 shows the symmetry conditions, applied load on the plate and initial 

principal stress state for isotropic material. A uniform load of 50kN is distributed over 

the right edge of the plate and the left and bottom sides are constraint in horizontal 

and vertical directions respectively. Three analyses are performed, i.e. i.)Considering 

a slow growth factor and a coarse mesh, ii.) Considering a slow growth factor and a 

fine mesh and iii.) Considering fast growth factor with fine mesh. Table 3.3 represents 

the applied load, maximum and minimum thicknesses from each analyses, total 

volume and computation time required for each analysis. 

Table 3.3 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a trapezoidal 

plate under uniaxial tension 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 
tmin [mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

25 1% 50000N 0.81 0.19 9.46 124 

100 1% 50000N 0.87 0.13 9.80 478 

100 100% 50000N 1.61 0.49 17.11 5 

 

 

P 

Figure 3.12 Boundary conditions and initial stress state in the plate 
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Figure 3.13 Thickness distribution plot for coarse mesh with a growth factor of 1%. 

 

 
Figure 3.14 Thickness distribution plot for fine mesh with a growth factor of 1%. 
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Figure 3.15 Convergence plot for trapezoidal plate under uniaxial load 

 

 

Figure 3.16 Thickness distribution plot for fine mesh with a growth factor of 100%. 
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3.4 Plate under pure shear loading 

In this case the algorithm is tested for a 25x25mm square plate under pure shear. 

Figure 3.13 represents the boundary conditions and initial direction of principal 

stresses. The plate is fixed on left side and shear load of 100kN is applied on rest of 

the three sides of the plate is such a way that a state of pure shear is obtained. The 

algorithm is tested for three different conditions similar to those used for earlier cases. 

The results of the analyses are presented in Table 3.4. 

Table 3.4 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a square plate 

under pure shear 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 

tmin 

[mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

25 1% F=100000N 22.22 22.17 13.87 357 

100 1% F=100000N 22.32 22.23 13.91 1220 

100 100% F=100000N 54.27 34.11 26.86 7 

 

 
Figure 3.17 Boundary conditions and initial stress state in the plate 
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Figure 3.18 Thickness distribution plot for coarse mesh with a growth factor of 1%. 

 

 
Figure 3.19 Thickness distribution plot for fine mesh with a growth factor of 1%. 
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Figure 3.20 Convergence plot for plate under pure shear 

 

 

Figure 3.21 Thickness distribution plot for fine mesh with a growth factor of 100%. 
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Figure 3.22 Convergence plot for plate under pure shear with 100% growth factor 
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3.5  Plate with hole under tension 

Here the algorithm is used to optimise ply thickness of a 20x20cm plate with a central 

hole of 10cm diameter. Due to symmetry conditions only a quarter of the plate is 

considered for calculations. A load of 50kN is applied on the right of the plate, 

displacement constraints and initial principal stress state for the isotropic material is 

presented in Figure 3.17. Results for coarse and fine mesh with slow growth and fine 

mesh with fast growth are presented in Table 3.5. There are areas marked ‘a’, ‘b’ and 

‘c’ in these Figure 3.24 and Figure 3.25 which will be Analysed in chapter 4. 

Table 3.5 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a square plate 

with a central hole under pure shear 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 
tmin [mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

50 1% 50000N 8.72 0.11 11.72 1244 

200 1% 50000N 11.82 0.011 15.63 4910 

200 100% 50000N 8.51 0.23 18.54 10 

 

 
Figure 3.23 Boundary conditions and initial stress state in the plate 

P 
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Figure 3.24 Thickness distribution plot for coarse mesh with a growth factor of 1%. 

 
 

 
Figure 3.25 Thickness distribution plot for fine mesh with a growth factor of 1%. 
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Figure 3.26 Convergence plot for plate with a hole under uniaxial load 

 

 

Figure 3.27 Thickness distribution plot for fine mesh with 100% growth factor 
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Figure 3.28 Convergence plot for plate with a hole under uniaxial load with 100% 

growth factor 
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3.6  Plate under multiple loads 

In the last benchmarking problem the algorithm is tested on a 5x5cm square plate 

under multiple loads. In this case a uniform compressive load of 500kN is applied on 

the right side of the plate and a point load of 1kN is applied on the upper right node of 

the plate. The analyses are performed using a coarse mesh with 25 elements and a 

finer mesh with 100 elements with a small growth factor and 100 elements with 100% 

growth factor. The boundary conditions and initial state of principal stresses in the 

isotropic layer is shown in Figure 3.21. The results for the three analyses are 

presented in Table 3.6. 

Table 3.6 Number of elements, applied load, maximum thickness, minimum 

thicknesses, total volume and computation time for each calculation for a square plate 

under mixed load 

Number 

of 

elements 

Growth 

factor,   Load 
tmax 

[mm] 
tmin [mm] 

Volume 

[mm
3
] 

Computation 

time 

[seconds] 

25 1% 

F= -

1000N 

P= -

500000N 

16.29 15.74 10.02 101 

100 1% 

F= -

1000N 

P= -

500000N 

16.70 15.711 10.13 357 

100 100% 

F= -

1000N 

P= -

500000N 

16.99 16.56 10.44 4 
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Figure 3.29 Boundary conditions and initial stress state in the plate 

 

 
Figure 3.30 Thickness distribution plot for coarse mesh with a growth factor of 1%. 
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Figure 3.31 Thickness distribution plot for fine mesh with a growth factor of 1%. 

 

 
Figure 3.32 Convergence plot for plate under mixed loading 
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Figure 3.33 Thickness distribution plot for fine mesh with a growth factor of 100%. 
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4 Analysis 

In the first case study a 10x10cm square plate is loaded with uniaxial tensile force. 

Due to symmetry conditions, only a quarter of the plate is considered for analysis as 

shown in Figure 3.1. The initial principal stress orientation is also shown in this 

figure. For this case the main principal stress is at 0
o
 and the second principal stress 

equals zero for all the elements. As a consequence all the fibres are orientated along 

the main stress direction and the thickness of all the elements is equal due to 

homogeneous stress state in the plate, Figure 3.2. In elements marked as a, a rotation 

of 180
o
 could be observed which due to numerical scatter that come while calculating 

the principal stress direction. It should be noted that the vectors inside the elements in 

Figure 3.1 and Figure 3.2 represent the orientation of principal stresses and not their 

directions. The results for this case are verified analytically as follows: 

                                                                               . 

As it is known for the uniaxial case, stresses in the second principal direction are zero 

and the strain in this direction is not considered in calculations. So, 

          
 

  
      

 

     
  

                                                                . 

There is a minor difference in between the analytical and computational result. It is 

due to the fact that the stiffness of the isotropic layer is ignored in calculation of the 

stiffness which slightly changes the elements of     matrix. The maximum allowable 

strain for composite strength,     , and stiffness in axial direction, E11, the allowable 

strain is 0.88% which is rounded off to 0.9% in the algorithm. The algorithm is also 

evaluated for optimisation of the thickness using a 100% growth factor. It takes one 

ply increment loop to converge and the thickness distribution is shown in Figure 3.5. 

In the case of faster growth it is observed that the thickness is equal to the case when 

slow growth factor is employed to optimise the plate thickness. 

In case of unaxial compression, the direction of the main principal stress is the 

same but with opposite sign. Like for the uniaxial tensile loading, fibres are aligned in 

the main direction only. Since the composite strength is lower in compression than in 

tension, the elements are thicker in this case than for the case of unaxial tension for 

the same load as shown in Figure 3.3. As the stress state inside the plate is 
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homogeneous for uniaxial tension and compression, increasing the number of 

elements will not affect the results.  

In the second case studied here, a point load is applied at one of the nodes to 

represent a cantilever loading. The boundary conditions and initial principal stresses 

orientation is shown in Figure 3.6. Figure 3.7 shows the total thickness distribution, 

that is thickness due plies in main principal stress as well as plies in second fibre 

direction, for a coarser mesh of 25 elements. The result for a finer mesh with 100 

elements is shown in Figure 3.8. As could be expected, thickness distribution is more 

refined in this case. A region of thicker elements forming a shape of a ‘7’ can be 

noticed in this figure. It is also shown in Figure 3.7 and Figure 3.8 that there are 

elements, marked as a and b, in which the principal stresses rotate by 90
o
. These 

elements are either in the vicinity of highly loaded elements or in the regions where 

the strains decrease very rapidly when the thickness of highly strained elements 

increases. The convergence for both coarse and fine mesh is obtained in 198 and 297 

iterations respectively and the convergence plot for the case of coarser mesh is shown 

in Figure 3.9. The algorithm is then used to optimise the plate thickness using 100% 

growth factor. The result of thickness distribution and convergence are shown in 

Figure 3.10 and Figure 3.11. On comparison between Figure 3.8 and Figure 3.10 it is 

observed that smaller growth factor gives well defined difference in thickness 

between highly stressed regions than compared to the higher growth factor.  

The third case is the application of uniaxial load on a trapezoidal plate. Due to 

symmetry conditions, one quarter of the plate is considered for calculations. Since a 

constant pressure is applied on smaller side of the trapezoid, the elements near the 

centre of the shorter side are thicker than the rest of the plate as they undergo 

maximum strain. This is evident from analyses using both coarse and fine mesh of the 

plate as shown in the total thickness plot of Figure 3.13 and Figure 3.14, respectively. 

The plot representing maximum absolute strain versus number of iterations is shown 

in Figure 3.15. As for previous cases the algorithm is then used to optimise the plate 

thickness using 100% growth factor and its result of thickness distribution is shown in 

Figure 3.16. For this case it takes one iteration loop to convergence when the growth 

factor is 100%. 

Next the algorithm is tested for the case of a plate under pure shear. The 

boundary conditions and the initial principal stress state are shown in Figure 3.17. In 

this case both principal stresses will be equal and oriented at +45
o
 and -45

o
 from the 
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x-axis respectively. Therefore the plies thickness in both directions should be equal. 

In an ideal situation the thickness plot should have shown uniform thickness 

distribution as the stress-strain state in the plate is homogeneous. But due to shear 

locking effect of lower order 4-node quadrilateral element difference in element 

thickness is obtained as shown in Figure 3.18 and Figure 3.19; See also Section 1.4. 

The decrease in maximum absolute strain with increasing ply thickness is shown in 

Figure 3.20. As for previous cases the algorithm is then used to optimise the plate 

thickness using 100% growth factor and its results of thickness distribution and 

convergence are shown in Figure 3.21 and Figure 3.22. 

In the next step the algorithm is used to optimise the ply thickness of a plate 

with a hole in its centre. Thickness distribution for fine and coarse meshes is shown in 

Figure 3.24 and Figure 3.25 respectively. As could be seen in the encircled regions in 

Figure 3.24 and Figure 3.25, there are elements where the principal stresses change 

their directions very abruptly. These elements are in regions with very low stress and 

the stress here decrease rapidly when thickness of the highly stressed elements nearby 

increases. However, the main stress direction in the highly stressed elements does 

change the direction. Decrease of maximum absolute strain with every iteration is 

shown in Figure 3.26. Results for the case of 100% growth factor are shown in Figure 

3.27 and Figure 3.28. As could be seen from Figure 3.25 and Figure 3.27, the result 

of slower growth rate shows distinct region of minimum thickness such as regions a, b 

and c in Figure 3.25. However in case of higher growth factor the thickness 

distribution in Figure 3.27 shows a higher material density in the same places as 

regions a, b and c. 

The last case for which the algorithm is benchmarked is a case of mixed load 

where a vertical point load acts at the top right node and a uniaxial compressive load 

is applied on the right side of the plate as shown in Figure 3.29. The results for 

thickness distribution for coarse and fine mesh are presented in Figure 3.30 and 

Figure 3.31 respectively. The elements with the minimum thickness are at the top of 

the plate, except the one at which vertical point load is applied. This is due to the 

cancelling effect of compressive stress due to uniaxial compression and tensile stress 

due to the point load on these nodes. The stress-strain state in the plate and position of 

element with maximum thickness is highly dependent upon the proportions of the 

applied loads. It is found that the element with maximum thickness is thicker when 

multiple loads are applied than in case of adding the thicknesses for the same element 
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by applying different loads separately. The decrease of strain with increasing iteration 

loops is shown in Figure 3.32. The load case is also tried with 100% growth rate and 

it takes one increment loop to converge. The result of thickness distribution is 

presented as Figure 3.33. 
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5 Discussion and Conclusions 

The algorithm developed in this thesis optimises the ply orientation and its thickness 

according to the stress state in the structure. The structure is optimised for quasi-static 

conditions and not for dynamic loading such as fatigue and vibration loads. Since 

classical laminate theory is used to model the composite material, only in-plane 

deformations are considered. As a consequence, the method is unable to consider the 

influence of out-of-plane stresses, free edge effects and delamination at the free edges 

due to large interlaminar shear stresses. Although the maximum strain failure criterion 

is used as a design constraint, principal stresses are used to increase the ply thickness. 

The reason is that for unidirectional cases the stresses in the second principal direction 

is zero. Hence, if the principal stresses alone are used to increase the ply thickness, no 

ply will be added along the second principal direction. However, based on strains, the 

algorithm will consider the non-energy strains in the second principal direction as 

well and add plies in that direction. It is also observed that, for a general stress state, if 

principal strains are used to increase ply thickness, the amount of plies added along 

the main direction decreases and increases in the other direction.  

The algorithm is sensitive to the rate of increase in thickness, especially in the 

beginning when the first anisotropic ply is introduced, since the principal stresses in 

an isotropic material are compared with composite strength. Except for the case of 

uniaxial tension, when a growth factor of 100% is used to increase ply thickness, the 

final thickness of the individual elements is higher and final strains are much lower 

than the failure criteria. The reason is that extra material is added during each 

increment loop. It should be noted that, in case of 100% thickness increments with 

respect to the initial stress state, apart from uniaxial loading cases, the convergence 

took more than one step for the rest of the load cases. If instead of thickness of the 

element in the previous step,    , thickness of the isotropic layer,     , is used in 

evolution, the results obtained are more refined. However this will make the algorithm 

computationally very expensive.  

Due to shear locking, the results are affected when large shear stresses are present in 

the structure as in the case of pure shear; See also Section 3.4. In case of mixed 

loading the thickness obtained dependent upon the overall stress distribution of the 

structure. This could possibly the reason that the thickness of the most loaded element 
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in the mixed mode is not equal to the sum of thicknesses for the same element when 

the loads are applied separately; See Sections 3.1, 3.2 and 3.6.  

From above discussion it can be concluded that 

1. The algorithm has a linear convergence, i.e. C
0
 convergence 

2. Reasonable results are obtained for different loading cases 

3. It is sensitive to the initial thickness of the isotropic layer 

4. Growth factor has an important effect on final results 

5. Element type effects the thickness distribution of the element 

6. Results for mixed loading are different from the case when loads are applied 

separately 

7. Linear convergence make the algorithm computationally expensive, especially 

for complicated problems 

8. Number of iterations depend upon the load for a particular case 

9. Computation time for a particular case with a given load depends upon the 

number of elements 

10. One way to avoid long calculation time could be to calculate thickness 

distribution for small loads and scale them for larger loads 
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6 Future work 

Based on the discussion and conclusions some areas of future work are recommended. 

Test could be conducted to validate the results obtained from algorithm. Element 

exclusion and re-meshing can give more refined results. More accurate calculation of 

transverse modulus and in-plane shear can be done using empirical model like Halpin-

Tsai. This will result in better results in form of less ply thickness in a given direction. 

Use of higher order composite theories to incorporate shear deformation between 

composite layers and transverse shear strain in the calculations like first order shear 

deformation theory. Use of higher order plate or shell elements to considers the out-

of-plane deformations. Use of such elements and with higher order composite theories 

will determine the stress-strain state more accurately for complicated load cases and 

thus improve the results. This algorithm could be used as adhoc method to calculate 

ply thickness using 100% growth rate. As seen from the convergence plots the 

decrease in maximum absolute strain is faster in the beginning of the algorithm. It is 

also noticed that the principal stress direction for highly stressed elements doesn’t 

change with increase in ply thickness. Thus the thickness distribution for first 20-40 

iterations with constant ply angles can be used as an initial guess for finding an 

optimum thickness distribution using a gradient method. Once the algorithm is 

matured enough it can be imbedded in a fibre/tape placement equipment to place tows 

on a base material. 
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