

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, November 2011

Automatic generation of OpenDrive roads from road

measurements

Master of Science Thesis in the Programme Computer Science-Algorithms,

Languages, Logic

HAN SHI

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg store

the Work electronically and make it accessible on the Internet.

Automatic generation of OpenDrive roads from road measurements

Han Shi

shhan@student.chalmers.se

Examiner: Graham Kemp

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

The picture shows the inside of the simulator at VTI, There is a big screen in front of the car.

One can drive on the road that displayed on the screen. The road is generated by OpenDRIVE

file. It is described in detail at page 4, section 2.2.

Department of Computer Science and Engineering

Göteborg, Sweden November 2011

Abstract

VTI, Swedish National Road and Transport Research Institute is an independent,

research institute in the transport sector. Human Behaviour Analysis in the transport

system is VTI's most important responsibility. VTI is developing auto driving system,

which needs road information for the simulator. The only data format that the

simulator supported is OpenDRIVE data format, unfortunately we do not have an

existing data source which is OpenDRIVE data format. Therefore one needs to

convert the other kind of GPS data source to OpenDRIVE data format. Then GPS data

from OpenStreetMap has been chosen as the source of this project. What the

program needs to do is tracing road that described in OpenStreetMap data and

converting map information to OpenDRIVE data format. The result is reasonable and

good enough so that VTI could use this way and program to generate OpenDRIVE file

that they want.

Contents

1. Introduction .. 1

1.1 Background .. 1

1.2 Objectives ... 1

1.3 Limitations ... 2

2. Background .. 3

2.1 Least squares .. 3

2.2 OpenDRIVE .. 5

2.3 OpenStreetMap .. 6

2.4 Bézier Curves .. 7

2.4.1 Linear curves ... 8

2.4.2 Quadratic curves .. 8

2.4.3 Higher-order curves ... 9

2.5 Coordinate systems .. 10

2.5.1 Global coordinate system ... 10

2.5.2 Local coordinate system ... 10

2.5.3 Track coordinate system .. 11

2.6 Other solutions ... 11

2.6.1 Line .. 11

2.6.2 Spiral ... 12

2.6.3 Arc .. 13

3. Program design .. 15

3.1 Goals of design .. 15

3.1.1 Get OpenDRIVE file ... 15

3.1.2 Number of geometries ... 15

3.1.3 Error Control ... 16

3.1.4 Smoothness .. 16

3.2 Read/Write .. 16

3.2.1 Overview ... 16

3.2.2 Read OpenStreetMap file .. 16

3.2.3 Write OpenDRIVE file .. 18

3.3 Road separation ... 18

3.3.1 Lat/Lon conversion .. 18

3.3.2 Error evaluation ... 19

3.3.3 Coordinates conversion .. 20

3.4 Geometry calculation ... 21

3.4.1 Start orientation ... 22

3.4.2 Length of geometry ... 23

3.4.3 Coefficients ... 24

3.5 Summary of conversion process ... 26

3.5.1 Goals of design .. 26

3.5.2 Road separation ... 26

3.5.3 Geometry calculation ... 26

4. Results ... 28

4.1 Datasets ... 28

4.2 Testing environment .. 28

4.3 Test Result .. 28

5. Future improvements .. 32

5.1 Road Separation ... 32

5.2 Junction ... 32

5.3 Other features ... 32

5.4 Bézier Curve fitting ... 33

6. Conclusion .. 34

References ... 35

Figures

Figure 1.1 standard spiral and cubic polynomial .. 12

Figure 1.2 jerks between two segments of road .. 13

Figure 2.1 difference between total least squares and partial least squares 4

Figure 2.2 header of OpenDRIVE file. .. 6

Figure 2.3 road and plan view. ... 6

Figure 2.4 Map of Gothenburg exported from OpenStreetMap .. 7

Figure 2.5 information of node that is described in OpenStreetMap file 7

Figure 2.6 linear Bézier curve generation ... 8

Figure 2.7 quadratic Bézier curve generation .. 9

Figure 2.8 fourth-order Bézier curve generation .. 10

Figure 2.6 fourth-order Bézier curve generation .. 11

Figure 3.1 road information in C++ data structure ... 17

Figure 3.2 node information in C++ data structure .. 17

Figure 3.3 geometry information in C++ data structure ... 18

Figure 3.4 earth in global coordinates system. ... 19

Figure 3.5 coordinate transformations .. 20

Figure 3.6 start orientation of G2 ... 22

Figure 3.7 numerical integration of midpoint rule.. 24

Figure 4.1 curve of the original road. .. 29

Figure 4.2 curve of the original road(red) and generated road(green) n = 10. 29

Figure 4.3curve of the original road(red) and generated road(green) n = 2. 30

Tables

Table 4.1 error of each segment (n = 20) .. 30

Table 4.2 error of each segment (n = 2) .. 31

1

1. Introduction

1.1 Background

National Road and Transport Research Institute (VTI) is an independent research

institute in the transport sector. Human Behaviour Analysis in the transport system is

VTI's most important responsibility. Driving simulators offer a unique opportunity to

study the interaction between man and machine. VTI have used simulators since the

1970s.

VTI uses a standard format which is called OpenDRIVE to describe and generate

paths including road, highway, motorway, river etc. in their driving simulators. This

style uses a path following coordinate system, i.e. Non-linear.

OpenDRIVE is an open format specification that is used to describe traffic information

including paths tracing and road network’s logic in certain area. The main objective of

OpenDRIVE is to standardize the traffic description in order to make conversion

between different driving simulators convenient (1). It is a XML format specification

which was developed and maintained by a team of simulation professionals with

large support from the simulation industry.

Today there are a lot of map data available in electronic form, which should be used,

to generate both roads and surrounding landscape. However, since only OpenDRIVE

data format file could be used in the simulator at VTI, so other kinds of map data

format should be converted to OpenDRIVE before it is used. Unfortunately it is not an

easy job to do the conversion between two different kinds of data formats, basically it

requires good algorithms for converting from linear coordinates to another

coordinate system.

1.2 Objectives

The main purpose of this thesis is generating OpenDRIVE roads automatically based

on the data sources, so I need to choose the most suitable data source and convert it

to OpenDRIVE data format.

2

The simulator needs to generate roads in the real world, so we need to have some

GPS data source which could give us information of those roads. Firstly we need to

decide which kind of data source shall be used in the project, here we use data source

from OpenStreetMap which provides free geographic data of xml or png version to

anyone who wants them. OpenStreetMap is a free editable map of the whole world.

One can export .xml file which contains information of all the roads within choosing

area. The road in OpenStreetMap.xml file is described with a series of consecutive

nodes, and each node has its unique location in the map.

However, the road in OpenDRIVE.xml file is described with a series of geometries, it

separates a long road into several segments, and each segment can be described with

a geometry. There are four kinds of geometries that OpenDRIVE could support: Line,

Spiral, Arc, Cubic polynomials, we decide to describe all the segments with cubic

polynomials, i.e. y = a + b*x + c*x^2 + d*x^3 (the reason will be mentioned in 1.4).

But the road in OpenStreetMap is described with nodes, so we need to fit those nodes

into geometries.

Based on what I said before, the main purposes of this thesis are:

 Choose suitable GPS data source for the project (OpenStreetMap data source

is selected here).

 Separate the road into several segments by a reasonable way.

 Construct curves that has the best fit to a series of nodes in OpenStreetMap

for each segment

 Generate OpenDRIVE format file with chosen data source.

1.3 Limitations

Some road features that defined in OpenDRIVE format file like “elevationProfile”

(elevation of road), “crossfall”(cross fall of road) need information of altitude, i.e.

three dimensional coordinates system. But until now, all the GPS data sources that I

could get are two dimensional, including the data sources that is using in the project,

so the project cannot implement elevation of the road with the current data sources.

We cannot generate landscape also for the same reason.

http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Data

3

2. Background

This chapter goes through some of the concepts and techniques that readers need to

know to read the rest of the report.

 Least squares: Least squares method is used to do curve fitting, i.e. plot

geometry with nodes described in OpenStreetMap.

 OpenDRIVE: the only data format that could be used in the simulator, the

target file that the project wants to generate.

 OpenStreetMap: GPS data source that provides road information.

 Bézier Curves: another possible solution that could be used to do curve fitting.

 Coordinates systems: these three coordinates systems would be used during

the conversion process.

2.1 Least squares

“The method of least squares is a standard approach to the approximate solution of

over determined systems” (2). Least squares method can solve the problem when

there are some unknowns that you need to calculate based on some given

equations(number of equation must be no less than unknown). The main goal of

least squares method is adjusting the parameters of a model function to fit a given

data set and minimizing the sum of squared error simultaneously. Error here means

the difference between actual value and the fitted value that calculated by the model.

Besides constructing model, it is also used to estimate the error with which

parameters were calculated.

Here is an simple problem statement of Least squares problem: A given n nodes data

set: {(xi, yi), i = 1,2,...n}, xi is independent variable and yi is dependent variable. An

unknown model function f(x, v), v is a vector which consists of all the parameters that

should be calculated. The objective is to set all the parameters to fit the nodes in the

give data set. The least squares method can find the optimum solution by minimizing

squared errors:

E = 2

1

n

i

i

e




ei = yi – f(xi, v)

http://en.wikipedia.org/wiki/Overdetermined_system
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics

4

Least squares problems can be separated into two categories: linear least square and

non-linear least squares. What the project mentioned is the linear least-squares

problem. A problem is a linear least squares problem when the parameters of model

function are linear, i.e.

f(xi, v) =
1

()
m

i j i

j

v x




φj are the coefficients of functions of xi, it is the partial derivative of model function:

()j ix =
(,)i

i

f x v

v





Let all the partial derivatives be zero, we can get m linear equations, substitute them

into model function f(x, v), we will get all the parameters that we want.

Least squares could also be separated into partial least squares and total least

squares. “Partial least squares regression (PLS regression) is a statistical method that

bears some relation to principal components regression; instead of finding

hyperplanes of maximum variance between the response and independent variables,

it finds a linear regression model by projecting the predicted variables and the

observable variables to a new space”(3). “Total least squares regression is a least

squares data modeling technique in which observational errors on both dependent

and independent variables are taken into account” (4). Figure 2.1 shows the

difference between total least squares and partial least squares

Figure 2.1 difference between total least squares and partial least squares

As shown in the figure, the main difference between total least squares and partial

least squares is the mode of error evaluation, error in total least squares is defined as

the absolute distance between node and curve, yet error in partial least squares is

http://en.wikipedia.org/wiki/Non-linear_least_squares
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Principal_component_regression
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Predicted_variable
http://en.wikipedia.org/wiki/Observable_variable
http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Least_squares

5

defined as the distance between node and curve in y-axes(5). Obviously the error in

total least squares is more precise, so what the project uses is total least squares, the

error mentioned in the report is always based on total least squares.

2.2 OpenDRIVE

OpenDRIVE was developed as an interface of the databases with auto driving traffic,

since there are many simulators which use different kinds of data format, so

VIRES(an acronym for Virtual Reality and Simulation) developed a way of

standardizing the road description to facilitate the data exchange between different

simulators(6).

The OpenDRIVE file format provides the following features:

“XML format

hierarchical structure

analytical definition of road geometry(plane elements, elevation, crossfall, lane width

etc.)

various types of lanes

junctions incl. priorities

logical inter-connection of lanes

signs and signals incl. dependencies

signal controllers (e.g. for junctions)

road surface properties

road and road-side objects

user-definable data beads” (7)

Each OpenDRIVE file describes the transportation services in a certain area. Here is a

simple example of OpenDRIVE data format and comments explain attributes that the

project mentioned is shown in figure 2.2:

6

Figure 2.2 header of OpenDRIVE file.

Each OpenDRIVE file contains a header mainly describes the basic information like

boundary of the map, name of the file, OpenDRIVE version, etc, like figure 2.3

Figure 2.3 road and plan view.

This part describes the plan view of all roads that are contained in the map. For each

road, OpenDRIVE file stores name, ID and length of the road. Each plan view consists

of several consecutive geometries

2.3 OpenStreetMap

OpenStreetMap is a free editable map of the whole world. “OpenStreetMap (OSM)

follows a similar concept as Wikipedia does, but for maps and other geographic

facts”(8). People from all around the world could upload their location data from

mainly GPS devices. Of course the uploaded data can be modified and corrected by

anybody else who has the good reason, usually facts missing or errors.

Here is the main webpage of OpenStreetMap: http://www.openstreetmap.org/. You

can get map information like figure 2.4 shows:

http://www.wikipedia.org/
http://www.openstreetmap.org/

7

Figure 2.4 Map of Gothenburg exported from OpenStreetMap

Figure 2.4 shows transport information in Gothenburg area, including road, highway,

railway, motorway, river, etc. One can export information of this area as PNG format or

XML format. What the project use is XML data format.

In the exported XML data format file, each road consists of a series of nodes which are

defined as figure 2.5 shows:

Figure 2.5 information of node that is described in OpenStreetMap file

There are nine attributes for each node, yet what the project uses are first three

attributes, i.e. id, lat, lon. Each node has a unique ID number, lat means latitude of this

node, lon means the longitude of this node. Obviously all nodes are located by a

unique combination of latitude and longitude.

2.4 Bézier Curves

Bézier Curves method, which was developed by the French engineer Pierre Bézier, is

highly useful and convenient. So it is widely used in Computer Aided Design systems

to build smooth curves, especially graphics packages and drawing/painting packages.

Generally, a Bézier Curve section is fitted by a series of control points, Let’s say we

have n control-point: pi = (xi, yi)(i = 0,2,...n-1), and here we define Bézier Curve of

8

degree n recursively, it is expressed as a linear interpolation between two Bézier

curves of degree n – 1 (9):

Let’s define Bp1p2..pn as Bézier curve from p1 to pn. Then we can get

Bk, n(t) = (1-t)Bk,n-1(u) + tBk-1,n-1(t), (n > k >= 1).

Then we can construct Bézier curves by this expression, here are some examples of

how to construct Bézier curves:

2.4.1 Linear curves

According to the expression, the curve is given by

B(t) = p0 + t(p1 – p0) = (1-t)p0 + tp1, t ∈ [0, 1]

Obviously it is equivalent to linear interpolation. So B(t) describes a straight line

from p0 to p1 in this case. Figure 2.6 describes the procedure of generating a linear

Bézier curve(10):

Figure 2.6 linear Bézier curve generation (from http://en.wikipedia.org/wiki/B%C3%A9zier_curve)

2.4.2 Quadratic curves

For quadratic Bézier curves one can construct curves recursively, first get two points

q0 and q1 in the following way:

q0 varies from p0 to p1

q1 varies from p1 to p2

Clearly both q0 and q1 describe a linear Bézier curve, and we also have q0, q1 ∈ [0, 1].

Then we can get point B(t) varies from q0 to q1 just like linear curves, these series of

points generate a quadratic Bézier curve. Figure 2.7 describes the procedure of

generating a quadratic Bézier curve.

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Linear_interpolation

9

Figure 2.7 quadratic Bézier curve generation (from http://en.wikipedia.org/wiki/B%C3%A9zier_curve)

2.4.3 Higher-order curves

For higher-order curves one needs more intermediate points just like q0 and q1, and

more recursive layers . The following example describes a fourth-order curves.

First layer: get four points q0, q1, q2 and q3 in the following way:q0 varies from p0 to p1,

q1 varies from p1 to p2, q2 varies from p2 to p2, q3 varies from p3 to p4. Clearly, q0, q1 q2

and q3 describe a linear Bézier curve.

Second layer:

As said before, q0, q1, q2, and q3 describe a linear Bézier curve, and we also have q0, q1 ,

q2, q3 ∈ [0, 1]. Then we can get point r0(t) varies from q0 to q1, r1(t) varies from q1 to

q2, r2(t) varies from q2 to q3. r0(t), r1(t) and r2(t) describe quadratic curves.

Third layer:

We can get point s0(t) varies from r0 to r1, s1(t) varies from r1 to r2, r0(t), s0(t) and s1(t)

describe quadratic curves. s0(t) and s1(t) describe cubic curves.

Fourth layer:

we can get point B(t) varies from s0 to s1, these series of points generate a fourth –

order Bézier curve. Figure 2.8 describes the procedure of generating a fourth-order

Bézier curve.

10

Figure 2.8 fourth-order Bézier curve generation (from http://en.wikipedia.org/wiki/B%C3%A9zier_curve)

2.5 Coordinate systems

2.5.1 Global coordinate system

The global coordinates system is a right-handed coordinate system, its axes point to

the following directions:

X: forward

Y: left

Z: up

For geographic reference, the following convention applies

X: east

Y: north

Z: up

2.5.2 Local coordinate system

The local coordinate system is a right-handed coordinate system with the axes

pointing to the following directions:

X: forward

Y: left

Z: up

11

The local system could only be used in space tracing, and one needs to provide the

full track coordinates system and orientation of its origin.

2.5.3 Track coordinate system

The track coordinate system applies along the reference line of a road. It is a right-

handed coordinate system with the axes pointing to the following directions:

s: position along reference line, measured in [m] from the beginning of the

track, calculated in the xy-plane (i.e. not taking into account the elevation profile of

the track)

t: lateral position, positive to the left

h: up

Figure 2.9 shows s and t direction.

Figure 2.9 fourth-order Bézier curve generation (from OpenDRIVE menu, V 1.3)

2.6 Other solutions

As listed before, there are four kinds of geometries that OpenDRIVE could support:

Line, Spiral, Arc, Cubic polynomial. This section evaluates the pros and cons of the

other three geometries.

2.6.1 Line

Line describes a straight line as part of the road’s reference line. This record has no

arguments.

Benefits

 Easy to be set arguments.

12

Cons

 Obviously almost all roads cannot be described as straight line, so Line is

definitely out of the table.

2.6.2 Spiral

Spiral describes a spiral as part of the road’s reference line. This record has two

arguments.

curvStart: curvature at the start of the geometry.

 curvEnd: curvature at the end of the geometry.

For this type of spiral, the curvature changes from curvStart to curvEnd linearly.

Benefits

 Fewer arguments: compare with Cubic poly(y = a + b*x + c*x2 + d*x3, four

arguments), Spiral has just two arguments, curvature at the start/end of the

element.

 Good performance in some cases: actually many roads are built roughly as

spiral because of safety reason. So spiral can perform very well in some

certain segments.

Cons

 To many geometries are needed: here are the figures standard of spiral and

cubic polynomial:

Figure 2.10 standard spiral and cubic polynomial (from http://en.wikipedia.org/wiki/Spiral)

According to the figure 2.10, you can notice that cubic polynomial could

describe two curves which spiral cannot, that means you need to separate a

long road into much more geometries if you want to describe it with spiral but

13

not polynomial. The disadvantages of excess geometry will be described in

section 3.1

2.6.3 Arc

Arc record describes an arc as part of the road’s reference line. This record has just

one argument.

 curvature: constant curvature throughout the geometry.

Benefits

 Easy to implement: arc has just one argument need to be set, and it could be

calculated in an easy way.

Cons

 Bad accuracy: arc could not perform as good as spiral and cubic poly.

 Jerks: arc could lead to jerk between two geometries. Jerk means a sudden

change of curvature of road at one point.

Our previous program was coded with matlab, it chose geometry arcs to

describe the road. two consecutive arcs with different curvatures may lead to

jerks like figure 2.11:

Figure 2.11 jerks between two segments of road

The road shown in the picture above consists of two segments and both of

them are described with arcs. However, these two arcs have different radius of

curvature, segment a has a very big value of radius of curvature, which means

the road is very smooth in segment a, but it turns to steep immediately after

point p, i.e. the intersection of segment a and b, which would lead to an

http://www.nciku.cn/search/en/curvature

14

embarrassing problem: driver need to turn the steering wheel abruptly when

he drive to the point a because there has a jerk in that place. That is of course

not a good phenomenon. Obviously, the road generated by the program should

be more continuous so that the driver can drive the vehicle easier. Continuity

in here means derivative of the road changes smoothly, and the rate of change

of curvature of the road is smooth.

15

3. Program design

This chapter describes the details of how the program is designed. The most essential

part of the program is the conversion from OpenStreetMap data format to

OpenDRIVE data format.

3.1 Goals of design

There are some constraints that an effective road generating system must or should

comply. In this section, I will review some of the basic and special requirements that

the program must implement, and I will also explain how could they have influenced

the design choices.

3.1.1 Get OpenDRIVE file

Of course the basic goal of the project is generating OpenDRIVE data format file. The

main problem here is a series of nodes defines the layout of the road's reference line

in OpenStreetMap format file, but the road in OpenDRIVE format file is described by a

sequence of road geometry records. So substantially, what the project needs to

implement is generating road’s plan view which is defined by a sequence of road

geometry records with a series of nodes.

3.1.2 Number of geometries

The file is going to generate a road which is used in the simulator. Then the simulator

will do the automatic driving simulation for the car. One important thing is that the

simulator needs to run many simulations in parallel. More geometry will increase the

processing period dramatically, so we need to try to minimize the number of

geometry.

On the other hand, we also need to try to get a precise result, i.e. minimize the error.

The project uses cubic polynomial to describe the geometry, i.e. y = a*x^3 + b*x^2 +

c*x + d. Since the expression has four coefficients, so a cubic polynomial could hit any

four points with no error. Suppose there is a road which consists of n nodes in

OpenStreetMap file. Therefore, technically no extra errors would be introduced if the

project describes the road with n/4 geometries in OpenDRIVE format. But as

mentioned before, the number of geometries is clearly so big that do not fulfill our

goals of design. So we need to find the balance point between geometry limitation

and error control.

16

3.1.3 Error Control

The previous project that was developed with matlab did an experiment and

generated a 14km road. There was an error of around 400 meters at the end of the

road, which is intolerable for the simulator. For a long road, some small rounding

deviation at the beginning of the road may lead to very big error at the end of the

road. Instead of a big error occurred at the end of the road, it is better for the project

to separate the big error at the end of the road into smaller one and assign them to

each segment of the road evenly. The second step that the project needs to do is

trying to minimize the error in each segment.

3.1.4 Smoothness

As mentioned before, road generated from our previous program has jerks at the

junction point of two geometries. The new program should try to avoid this problem.

3.2 Read/Write

3.2.1 Overview

The first step that the program needs to do is reading information from

OpenStreetMap file, mainly attributes of nodes, then store them into structure of

C++. Of course the last thing should be finished is generating the OpenDRIVE file

with all the attributes that are calculated by the project. Since both OpenStreetMap

data source and OpenDRIVE format are XML data format, so the program used

tinyXML package to process these file. “TinyXML is a small C++ XML parser, it can be

easily integrating into other programs, and it is a simple, stable, basic XML parser

used by many open source and commercial products” (11).

3.2.2 Read OpenStreetMap file

First of all, the program should read information of all the ways which are stored in

OpenStreetMap file. The data structure of way in C++ is defined in figure 3.1:

17

Figure 3.1 road information in C++ data structure

The most important member in this structure is infoOfNodes . This stores all the

nodes which are in this road. One can easily trace the whole road with this member.

Secondly, read information of nodes which are composed of every road respectively.

The data structure of node is shown in figure 3.2:

Figure 3.2 node information in C++ data structure

As said before (2.3), the most important three members are ID, lat and lon.

18

3.2.3 Write OpenDRIVE file

After finish calculating, the program should generate a OpenDRIVE file according to

the result, mainly information of geometries. The structure of geometry in C++ is

defined in figure 3.3:

Figure 3.3 geometry information in C++ data structure

Geometry in OpenDRIVE data format is described with:

<geometry s="" x="" y="" hdg="" length="">

One can generate all attributes with members in the structure.

3.3 Road separation

As mentioned in section 3.1.2, we need to find the balance point between geometry

limitation and error control, then we can easily find out that how to separate road is a

very important problem.

3.3.1 Lat/Lon conversion

There are three coordinate systems that are described in OpenDRIVE data format,

but nodes in OpenStreetMap file are located by Latitude/Longitude coordinates

system that we cannot use directly in OpenDRIVE, so we need to convert it to global

coordinates system firstly, i.e. XY-Coordinates system. Since the roads in Sweden are

usually no longer than 500 km, so the error that may arise in the conversion process

should be very small, and what our program needs to get is nothing to do with high

absolute accuracy but relative accuracy. Therefore, we can just use two simple

formulas to do the conversion:

y = lat_Radian * (40007000 / (2.0 * PI))

x = lon_Radian * (40075000 / (2.0 * PI)) * cos(lat_Radian)

19

These two formulas simply regard the whole earth as the global coordinates system.

lat_Radian and lon_Radian are latitude and longitude respectively, x and y are X and Y

in global coordinates system. The length of equatorial radius is 6378.137km, and the

length of polar radius is 6356.752km, so it could easily calculate that the equatorial

circumference of the earth is roughly 40075000 meters and the polar circumference

of the earth is roughly 40007000 meters. One can regard the earth as figure 3.4 by

using the formulas above.

Figure 3.4 earth in global coordinates system.

3.3.2 Error evaluation

According to the goals of design for the program, the road shall be separated based

on two rules:

1. Each segment of the road shall be described by cubic polynomial while the

introduced error is as small as possible.

2. The number of segments should be as few as possible.

This is a very difficult problem since a smaller error means the road should be

separated to more segments, meanwhile less segments will of course introduce more

error. It is very hard to find the balance point between these two rules. The method

that the project uses now is (12):

20

1. Start a new segment, for the first n (n could be any number) nodes in this

segment, do least squares fitting and store the value of error.

2. Introduce n more nodes, do least squares fitting for all the nodes in this segment

again and compare the error with the last one.

3. Stop adding new node if the error has a dramatic increase, then start a new

segment and do step one again, or stop the algorithm if all the nodes have already

been processed. If the error increases gently, store the new error and do step two

again.

This is a greedy algorithm, which could find a relatively good result but not optimal

result. Since this problem may not have an optimal result, (we do not know how

much error could “equal” to one more segment) and this algorithm could be easily

designed and implemented. So we decided to use this algorithm to solve problem.

3.3.3 Coordinates conversion

Every cubic polynomial is described in the unique local u/v coordinate system of the

starting point. For each local coordinate system, starting point is the origin of

coordinates, u pointing in the s direction in track coordinate system and v pointing in

the t direction in track coordinate system. Each local coordinate is calculated by

vlocal = a + b*du + c*du2 + d*du3.

“The conversion of u/v co-ordinates into x/y co-ordinates can be performed easily by

simple geometric transformations, (i.e. one translation and one rotation) relative to

the starting point” (13), as shown in figure 3.5:

 A B

Figure 3.5 coordinate transformations

21

In figure 3.5A, if we want to do transformation from xy-coordinates system to x’y’-

coordinates system, we need to do rotation for the angle ð. The formula is:

x’ = xcos(ð) + ysin(ð)

y’ = -xsin(ð) + ycos(ð)

In figure 3.5B, if we want to do transformation from xy-coordinates system to x’y’-

coordinates system, we need to do translation for the vector v(p, q). The formula is:

x’ = x + p

y’ = y + q

So if we do translation and rotation respectively, the formula is:

x' = x * cos(ð) + y * sin(ð) - p * cos(ð) - q * sin(ð)

y' = -x * sin(ð) + y * cos(ð) + p * sin(ð) - q * cos(ð)

3.4 Geometry calculation

This is the most important part of the program. According to the goals of design, the

project needs to separate the error at the end of the road is not that big. That requires

the curve of geometry should hit the starting and ending points for each segment of

the road. In this way one can ensure that the error in current segment would not be

brought to the next segment.

All attributes of the geometry shall be calculated. The geometry information in

OpenDRIVE format is split into a header which is general to all geometric elements

and a subsequent bead which contains the actual geometric element’s data

(depending on the type of geometric element, in our project it is cubic polynomial, so

the element’s data are a, b, c, and d).

There are four attributes for each geometry header:

s: length from beginning

x, y: global coordinates of the starting point

hdg: start orientation of geometry

length: length of geometry

And there are four attributes for each subsequent bead:

22

a: constant coefficient

b: linear coefficient

c: quadratic coefficient

d: cubic coefficient

The first two attributes of geometry header could be easily calculated, length from

beginning means length from the first node of the whole road to starting node of the

current geometry. It is equal to the sum length of geometries before the current one.

Attribute x and y indicates has already been stored in structure nodes (in section

3.3.3). However, we need to find the corresponding method to calculate the other

attributes.

3.4.1 Start orientation

This attribute indicates the start orientation of the current geometry in local

coordinate system, i.e. v-axis in local coordinates system. According to the definition,

the angle contained by local coordinates system and global coordinates system is the

start orientation. According to the goals of design, it needs to be set in a reasonable

way so that no jerk would be introduced at the junction point of two geometries.

Figure 3.6 start orientation of G2

In figure 3.6, p1 is the ending point of geometry G1, it is also the starting point of G2.

u1v1-Coordinates system and u2v2-Coordinates system in the figure are local

23

coordinates system of geometry G1 and G2 respectively. v1-axis and v2-axis are start

orientation of G1 and G2. In the program, the direction of v2-axis is defined by the

derivative of G1 in point p1 in u1v1-Coordinates system. The second geometry will

start with the same direction of the first geometry ended if we define starting

orientation in this way. It could ensure the road tracing continuously, especially at

the junction point between two geometries.

Suppose expression of G1 is v1 = a1 + b1*u1 + c1*u1
2 + d1*u1

3 ,and p1 in G1’ s local

coordinates system locates at (s, t). Firstly we derivation of the expression, get v1
’ =

u1 + 2*c1*u1 + 3*d1*u1
2. Then we can get the derivative in point p1 by inserting (s, t):

derivative = u1 + 2*c1* s + 3*d1* s 2. However, this derivative is in u1v1-Coordinates

system, we need to convert it into the global coordinates system, since the angle

contained by u1v1-Coordinates system and global coordinates system is A, so we can

easily get orientation of v2 = arc tan (derivative) + A.

In conclusion, start orientation of the current geometry is equal to arc tan of

derivative plus start orientation of previous geometry.

One interesting thing is for each y = a + b*x + c*x2 + d*x3, we have y’ = b + 2*c*x +

3*d*x2, the derivative at the starting point (0, 0) is always b, it is like a static potential

start orientation for cubic polynomial, which could also lead to jerks between two

segments. The solution of this problem will be described in 3.4.3.

3.4.2 Length of geometry

This attribute indicates the length from the starting point to ending point of the

geometry, there is unfortunately no close form expression for the arc length of a

cubical polynomial. One resort is to do numerical integration of the expression, i.e.

y= a * x^3 + b * x^2 + c * x + d.

Length of curve = ()
b

a
f x dx = 21 ()

b

a

dy
dx

dx


y’ = 3a*x^2 + 2b*x + c.

So we have Length of curve = 2 23 * 2 *1 ()
b

a
a x b x c dx  

24

Unfortunately, we do not have such a ready formula that can solve fourth-degree

integration, so the project uses midpoint rule of numerical integration to solve it.

Suppose there is a continuous function f(x), x is the variable. The goal of the Midpoint

rule is computer ∫f(x)dx over interval from a to b. Estimate integral by M = (b-

a)*f(c), where c=(a+b)/2 According to the midpoint rule, firstly the curve shall be

separated into n segments with the same length h, like figure 3.7:

Figure 3.7 numerical integration of midpoint rule

Length of curve = 0 1 11 2() () () ... ()
2 2 2

b
n n

T n T
a

x x x xx x
f x dx h f f f R M R  

       
 



In the formula:

b a
h

n


 ()k

k
x a b a

n
  

2()
''(),

24
T

b a h
R f a b


    

RT is the truncation error (14).

3.4.3 Coefficients

This attribute indicates coefficients of cubic polynomials, i.e. a, b, c, d in expression y

= a + b*x + c*x2 + d*x3. As mentioned before, the project needs to construct a curve

(here this curve is a mathematical function of cubic polynomials) , that has the best

fit to a series of nodes, and it could be solved by least squares fitting methods. There

are several mathematical packages which can be used to implement least squares

fitting problem, like: Levenberg-Marquardt(15), ALGLIB, MINPACK(16), etc.

ALGLIB is a cross-platform numerical analysis and data processing library which is

used in the project. There are some good reasons that we choose this package for our

project:

1. It has an easy to use linear least squares fitting application package that could be

used conveniently in the project.

2. It supports C++ programming language and Windows operating system, our

project is coded by C++ and run in Windows operating system,

http://en.wikipedia.org/wiki/Curve
http://www.ics.forth.gr/%7Elourakis/levmar/
http://people.sc.fsu.edu/%7Ejburkardt/cpp_src/minpack/minpack.html

25

3. It supports least squares fitting with constraints, as mentioned before, our fitting

case has two constraints, i.e. each curve of geometry needs to hit the starting

point and ending point perfectly.

The package contains a function ”lsfitlinearc” for solution of the constrained linear

least squares problems. The function is defined as (17):

lsfitlinearc(Y, Fmatrix, Cmatrix, N, M, K , info, C, Rep)

Definition of input parameters:

 Y: array[0..N-1] Function values in N points.

Fmatrix: a 2D matrix of basis functions values, array[0..N-1][0..M-1]. FMatrix[i, j]

means value of jth basis function in ith point.

Cmatrix: a 2D matrix that is used to define constraints, array[0..K-1][0..M]. ith row of

CMatrix corresponds to ith linear constraint, the constraint is defined in this way:

CMatrix[I][0]*C[0] + ... + CMatrix[I][M-1]*C[M-1] = CMatrix[I][M]

N: number of points that are used. N = {1, 2, 3,…. ∞}.

M: number of basis functions, M = {1, 2, 3,…. ∞} .

K: number of constraints, K = {1, 2, 3,…. M}.

Definition of output parameters:

Info: return error code.

C : a linear matrix that is used to store decomposition coefficients, array[0..M-1]

Rep: return all types value of error.

Suppose we have n nodes in one segment, (x1, y1), (x2, y2),… (xn, yn), then we have:

2 3
11 1 1

2 3
22 2 2

2 3

1

1

.. . . .

1 nn n n

yax x x

ybx x x

c

ydx x x

    
    
     
    
    
      

Yet according to the 3.4.1, each cubic polynomial has a potential static start

orientation of b, so here we always set b to 0, then no jerks will be introduced at the

junction node. Therefore, we can form matrix as follows:

26

2 3
11 1

2 3
22 2

2 3

1

1

.. . .

1 nn n

yx x
a

yx x
c

d
yx x

   
    
    
    
     

    

One can get coefficients a, b, c, d from output parameter C, and get value of average

error from output parameter Rep.AvgError.

3.5 Summary of conversion process

3.5.1 Goals of design

There are four goals for the program designing.

1. Generate OpenDRIVE file with OpenStreetMap data source.

2. Try to control the number of geometry separated by the road.

3. Try to control the error appeared in the fitting process.

4. Generate the road as smooth as possible.

3.5.2 Road separation

Before geometry calculating, the program should separate a long road into several

geometries.

1. Do conversion from lat/lon system to global coordinates system.

2. Separate road into geometries according to a greedy algorithm.

3. Do conversion from global coordinates system to local coordinates system for

each geometry.

3.5.3 Geometry calculation

There are eight attributes should be calculated, four of them are in the header of

geometry.

1. s: start position in s-coordinate, could be easily calculated by summing

previous length of geometries.

27

2. x, y: start position in xy-coordinates system, could be easily set by information

of node stored in the structure.

3. hdg: start orientation. It is defined by the derivative of last geometry at the

ending point.

4. length: length of the geometry’s reference line. It is calculated by numerical

integration of midpoint rule.

The other four attributes are in the subsequent bead, for the cubic polynomial they

are a, b, c, d, i.e. coefficients of expression. These attributes are calculated by least

squares fitting method.

28

4. Results

This chapter assessed how well the solutions I have developed are performing on the

data sets, i.e. OpenStreetMap data source. Since the focus of the work has been to how

the error it is, so there are two ways that can test my program.

4.1 Datasets

To measure how well the program performs in terms of accuracy, we have exported

several groups of data sets and have done some tests for our program. This is the

typical one: The data set consists of a road of roughly 1.5 km from OpenStreetMap,

and the road consists of 372 nodes.

4.2 Testing environment

The entire test was completed on a computer with the following specifications:

 Processor: AMD XP +4800

 Memory: 2Gb

 Drives: A 150 GB 10 000 rpm Western Digital Raptor and four 300GB 7200

rpm Seagate Barracuda in RAID 1 +0 association.

 Operating system: Windows 7 SP1

 C++: Visual Studio 2010

 ALGLIB 3.4.0

 GNUPlot 4.4.3

4.3 Test Result

We have designed the following way that can test our project:

1. Do conversion from Lat/Lon system to global coordinates system for every node

in OpenStreetMap. One can regard this series of nodes as original nodes.

2. Get OpenDRIVE file by our program.

3. Trace back the road described in OpenDRIVE file and get series of nodes with this

road.

29

4. Try to plot the road with nodes in step 1 and 3 separately, then check the

difference between these two roads.

GNUPlot is a portable driven graphing tool, it is an easy using open source software

that can plot curve by a series of consecutive nodes. We have plotted the original

nodes by GNUPlot, the result looks like Figure 4.1 shows:

Figure 4.1 curve of the original road.

The unit of x and y axes is meter, the scale of each slot is 1000 meters.

As mentioned before (in section 3.3.2), we have designed an algorithm that is used to

separate the road. Firstly, we try to set n in step 1 to 20, then run the program and

generate OpenDRIVE file. There are 8 geometries in this file. Then we plot the

original road and generated road at the same time.

Figure 4.2 curve of the original road(green) and generated road(red) n = 20.

30

geometry Error(meter) Length(meter)

1 34.1701 2555.7599

2 90.8312 6745.9264

3 40.275 2175.0050

4 147.096 2799.6547

5 69.5064 4979.8234

average 76.37574 3851.2336

Table 4.1 error of each segment (n = 20)

As shown in figure 4.2 and table 4.1, one can see there is rather big error in every

geometry, especially for the last part of the road.

Now we set n to 2 this time, then run the program and generate OpenDRIVE file.

There are 92 geometries in this file. Then we plot the original road and generated

road at the same time.

Figure 4.3curve of the original road(green) and generated road(red) (n = 2).

geometry Error(meter) Length(meter)

1 0.672154 330.8815

2 1.6795 401.0149

3 1.28874 260.2727

4 0.848396 260.5455

31

… …

89 0.654744 96.0104

90 0.330509 85.5145

91 0.814035 120.2601

92 0.615895 187.9328

average 0.968477 209.6592

Table 4.2 error of each segment (n = 2)

As shown in figure 4.3 and table 4.2, the original road and generated road nearly

share the same curve, and the error in each segment is also very small.

We did some more tests for our program. Exactly same as what we have predicted, if

we want to get an accurate result, one needs to separate the road into more segments.

For test case 1, the average error for all segments is roughly 76 meters, which means

the road's general properties could be used. But if we want to try to use this data

together with model of the environment then we must get closer to the resolution of

the GPS system < 10 meters, and sometimes we need to get even more close. That

forces us to separate the road like test case 2.

In test case 2, the average error is just 0.968477 meter, and no error of segment is

greater than 6 meters in all of my tests. Yet the program generates 92 geometries for

this 1.5 km road, this number is much bigger then test case 1. However, it is tolerable

with our current simulator.

We have used the road in simulator with the OpenDRIVE file generated by our

program, the road is smooth and continuous at the junction point of the geometries,

the problems in our last program do not appear in the current version of program.

This program fulfills all the requirements we have listed before: error size is small,

geometry number is acceptable, the generated road is smooth. So we can draw the

conclusion that this is a good way to generate OpenDRIVE file and VTI could get what

they want with the current program.

32

5. Future improvements

Below is a list of potential efficiency improvements in the system.

5.1 Road Separation

The algorithm that we are using to separate road is rather simple, it could find a

relatively good solution, but there are definitely some other algorithms that can

improve accuracy of result or time efficiency. One can improve the program by

updating this algorithm.

For the current algorithm, one can improve it by doing more tests to set n to a

reasonable number, so that the program could find the best balance point between

error control and geometry number control.

5.2 Junction

Junction is a place where multiple roads meet. It is the most important information of

map except road tracing. The junction is one kind of feature that has possibility to be

automatically generated based on the current GPS data. One can do road tracing for

all the roads in the map and try to detect where the two roads meet. This is also a

complex task and its workload is almost equal to the current project, since this is a six

months project so I do not have enough time to implement this part.

5.3 Other features

There are also some other features which cannot be get with the OpenStreetMap data

format, like overpasses, roundabouts, road lines, elevation and road textures. Since

the only useful information of nodes in OpenStreetMap is Lat/Lon coordinate, for

another word, it is a two dimensional system data format. But clearly we need three

dimensional coordinates system to generate overpasses and roundabouts elevation.

Of course one needs more information like colour to generate road lines and road

textures, but not just by the location of nodes. We need another kind of GPS data

format to implement these features.

33

5.4 Bézier Curve fitting

Bézier Curve fitting is one kind of method which is used to build smooth curve. One

can get a smoother road by doing Bézier Curve fitting for the nodes instead of least

squares fitting, with a cost of larger error. In practice, a smooth road may be more

important than accuracy.

34

6. Conclusion

During my thesis working, I have finished the following tasks:

1. Found a suitable GPS data source for road generation in simulator.

2. Successfully got OpenDRIVE file with GPS data source.

3. Fixed some bugs in previous version of program. The result is much better than

before.

4. Controlled the number of segments of the road in a tolerable level.

In the program, we have solved the following problems:

1. Found a reasonable way (least squares method) to do the conversion between

nodes and geometries.

2. Designed an algorithm for the road separation. It could give consideration to both

error control and geometry number control.

3. Found a way that can avoid jerks when generating the road.

4. Found ways to calculate the arguments of geometry, especially “hdg”, “length” and

coefficients of cubic polynomial.

35

References

1. OpenDrive specification. (20 June 2011) http://en.wikipedia.org/wiki/OpenDRIVE_(specification). (4

October 2011).

2. Least squares . (30 September 2011) http://en.wikipedia.org/wiki/Least_squares . (04 October 2011) .

3. total least squares. (23 September 2011) http://en.wikipedia.org/wiki/Total_least_squares (04 October

2011).

4. Partial Least squares. (4 September 2011) http://en.wikipedia.org/wiki/Partial_least_squares (04

October 2011).

5. 王福昌，曹慧荣，朱红霞。(2009) 经典最小二乘法与全最小二乘法及其参数估计。 统计与决策. Issue 1,

P. 16-17.

6. OpenDRIVE . (27 May 2011) http://www.opendrive.org/projectBackground.htm (04 October 2011)

7. OpenDrive specification. (20 June 2011) http://en.wikipedia.org/wiki/OpenDRIVE_(specification). (4

October 2011).

8. OpenstreetMap. (30 September 2011) http://wiki.openstreetmap.org/wiki/Beginners%27_guide. (04

October 2011)

9. Donald Hearn, M.Pauline Baker. (1997)computer graphics: C version. First edition. p.327-329. Tsinghua

University Press

10. Bézier curve. (28 August 2011) http://en.wikipedia.org/wiki/B%C3%A9zier_curve (4 October 2011)

11. TinyXML (20 Mar 2010) http://www.grinninglizard.com/tinyxml/ (4 October 2011)

12. Thomas H. Cormen Charles E.Leiseron Ronald L.Rivest Clifford Stein. (2009) Introduction to algorithms

Third edition. MIT Press.

13. Marius Dupuis e.a. (2010) OpenDRIVE menubook. P. 31-33.

14. Lennart Rade, Bertil Westergren. (1993) BETAMathematics Handbook. Second Edition P. 342-343.

Lund(Sweden), Studentlitteratur.

15. Kenneth Levenberg (1944) A Method for the Solution of Certain Non-Linear Problems in Least Squares.

The Quarterly of Applied Mathematics 2: 164–168

16 MINPACK http://devernay.free.fr/hacks/cminpack/cminpack.html (22 October 2011)

17. ALGLIB Group ALGLIB Reference Manual . http://www.alglib.net/translator/man/ (04 October 2011)

http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1
http://www.alglib.net/translator/man/

