
Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, October 2011

Investigating Model Transformation Technology

For Architecture Description Languages

Nigsti Berhanu Ayele

ii

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it

accessible on the Internet.

The Author warrants that she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and make

it accessible on the Internet.

Model Transformation for Architecture Description Languages

NIGISTI BERHANU AYELE

© NIGSTI BERHANU AYELE, October 2011

Examiner: Dr. Miroslaw Staron, Associate Professor and Director of Software Engineering

and Technology, and Software Engineering and Management

Supervisors: Professor Jörgen Hansson, Professor and Head of Division Software

Engineering
 Mr. Söderberg, CTO of Systemite

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover Picture: It represents ATL based model transformation architecture. In order to transform source

model to the target model, the source, target, and ATL meta-models are required.

iii

Abstract
This thesis studies Model Transformation for Architecture Description Languages (ADLs) in the

contexts of automotive electrical and electronics. Embedded Automotive SysTems ADL (EAST-

ADL) is an architecture description language, which captures automotive electrical and

electronic systems with sufficient detail to allow modeling for documentation, design, analysis

and synthesis, which is currently, implemented using different tools such as SW

(SystemWeaver), MetaEdit+, Enterprise Architect and Papyrus. EAST-ADL XML (EAXML) and SW

XML (SWxml) are two different implementations of EAST-ADL. Investigating the possibility of

using Model Driven Transformation to transform EAXML to SWxml and vice versa has been the

main part of this study.

The investigation includes discovering the architectural and structural relationships between

EAXML, which is an AUTOSAR based representation, and SWxml, which is SW based

implementation. The architectural patterns of these two implementations are defined and are

used to drive the transformation requirements. Hence, to investigate the architectural and

structural relationships between SWxml and EAXML, we developed and validated meta-models

of these two implementations. According to the architectural pattern, we derived

transformation requirements and stated the mapping rules between EAXML and SW accordingly.

Based on the analysis made on EAST-ADL, EAXML and SW, a prototype has been developed to

prove that model driven transformation is a possible way to realize model transformation.

According to the mappings, we have conducted analysis on the meta-models to drive the rules.

These rules are implemented using the Atlas transformation language (ATL). Because of the

different levels of abstraction between EAXML and SW model, complementary and main

transformations are implemented. In addition to ATL, eclipse based frameworks such as

AtlanMod MegaModel Management (AM3), Eclipse Modeling Framework (EMF), and Graphical

Modeling Framework (GMF) are used to implement the model transformation.

A prototype of bidirectional transformation has been implemented as a proof-of-principle. We

transformed the SW model to EAXML and then we transferred the EAXML back to SW and

imported it to the SW platform. Since the acceptance tests made to perform bidirectional

transformation using the prototype worked without problem, model driven transformation,

specifically ATL, has indicated to be a promising solution for the bidirectional transformation

between SW and EAXML.

iv

Acknowledgments
Next to GOD, I would like to express my deepest gratitude to my supervisors, Prof. Jörgen

Hansson, Professor and Head of Division Software Engineering, and Mr. Söderberg, CTO of

Systemite. I believe both of them have supported me in the following ways: Prof. Jörgen, he has

been an inspiration since the first course he gave me, and yet regardless of how busy he is, he

accepted my idea and encouraged me to work with him. It is because of his enthusiastic class and

encouragement that I am in this position. Jan, he gave me the opportunity to work with an

interesting topic of study and also he gave me the help and support I needed to accomplish this

work. I am grateful for the experience I gained from working under his supervision. I am also

thankful to him for acknowledging my work by throwing a party in his company. The support

and help I received from both made the study easier.

I owe my deepest gratitude to all Systemite staff members for their cheery helpful attitudes they

gave me during 6 months stay with them, and to INSA higher administrators and the rest of the

staff members for their encouragement. Special thanks go to Mr. Tsehaye Kidane and Mr. Abi

Ahmed.

I am thankful to the department of Computer Science and Engineering, and Chalmers library for

their help and fast response for every help I needed during my study in CTH.

I would like to thank my classmates of Software Engineering and Technology field, for making

my study in Chalmers and in Sweden of great experience.

I am also grateful for the continuous support I received from my bf Asmelash Tsegay and my

uncle Mr. Solomon Tedella. It is also my pleasure to thank all my Ethiopian and International

friends for the sisterly and brotherly care they provided me with.

Lastly and most importantly, I would like to take this opportunity to thank my beloved family,

my mother (Mrs. Tsirihu Abreha), my father (Mr. Berhanu Ayele), and my sister (Abeba

Berhanu). I am so thankful to the lessons I received from my mam throughout my life. She is the

greatest person in my life who taught me to respect people, friendship, Love and job. I would not

be in this position without their courage and lessons. Thanks to all for setting the best example

to my life.

v

Contents
Abstract .. iii

Acknowledgments .. iv

Contents... v

List of Tables .. vi

List of Figures .. vii

Abbreviations ... viii

1. Introduction ... 1

1.1. Report Structure .. 1

2. Background ... 2

2.1. EAST-ADL Implementation in SW ... 3

2.2. EAXML .. 5

2.3. Why Transformation? .. 5

3. State-of-the-Art .. 7

3.1 Introduction to MDE .. 7

3.2 Model transformation .. 7

3.2.1 ATL ... 7

3.2.2. QVT ... 8

3.2.3. Kermeta .. 9

3.2.4. ETL .. 10

3.2.5. Dually .. 10

3.2.6. oAW .. 11

3.3. Model Transformation Languages Metrics .. 11

4 Problem Statement .. 12

4.1. Problem Definition ... 12

4.2. Research Questions .. 13

4.3. Research Methodology ... 14

5. SWxml and EAXML ... 16

5.1. SWxml vs EAXML .. 16

5.2. Meta-Model Representation Views .. 20

6. The Model Transformation.. 25

6.1. Model Transformation Languages Evaluation... 25

6.1.1. ATL ... 25

vi

6.1.2. oAW .. 32

6.1.3. Result of the Transformation Language Investigation .. 34

6.2. Prototype Implementation .. 34

6.2.1. Meta-model implementation.. 34

6.2.2. Transformation Logic ... 35

6.2.3. The ATL Implementations .. 38

6.3. Contribution of the Solution .. 41

7. Summary .. 42

Future Work .. 43

References .. 45

Appendix A .. 47

SW.xml ... 47

Appendix B – XML Schema meta-models .. 50

Appendix C – The EMF meta-models .. 52

SW Meta-model ... 52

XML Meta-Model .. 56

Appendix D - ATL Transformation Files ... 57

XML2SW.atl.. 57

SW2EAXML.atl ... 62

EAXML2SW.atl ... 68

SW2XML.atl.. 75

List of Tables
Table 1: ATL handling capacity ……………………………………………………………………………………….……..8

Table 2: Metrics of different transformation languages……………………………………………………...…...11

Table 3: Feature modeling implementation analysis ……………………………………………………….…….19

Table 4: SW2EAXML………………………………………………………………………………………………………......…38

Table 5: EAXML2SW……………………………………………………………………………………………………….…..…38

vii

List of Figures
Figure 1: Structure of an item ...4

Figure 2: SWxml ...5

Figure 3: ATL model transformation [4] ...8

Figure 4 : relationships between QVT meta-models [39] ..9

Figure 5: Model transformation using Kermeta [38]... 10

Figure 6: Simple structure ... 13

Figure 7: Complex Structure ... 13

Figure 8 : Research methodology... 15

Figure 9: Feature modeling from EAST-ADL Specification... 17

Figure 10: Sample EAXML user model .. 20

Figure 11: Sample SW object model ... 20

Figure 12: EAXML in XML Schema format... 21

Figure 13: EAXML meta-model in EMF ... 21

Figure 14: The partial view of EAXML using GMF ... 22

Figure 15: SW meta-model in XML format .. 22

Figure 16: SW in XML Schema format ... 23

Figure 17: SW met-model in EMF format .. 24

Figure 18: The partial view of SW meta-model in GMF.. 24

Figure 19: Composite transformation (34)... 29

Figure 20: SW2EAXML main transformation .. 30

Figure 21: EAXML2SW main transformation .. 30

Figure 22: SW2EAXML complementary transformation ... 31

Figure 23: EAXML2SW complementary transformation ... 31

Figure 24: Complete bidirectional transformation between SW and EAXML .. 32

Figure 25: SW and EAXML transformation using oAW .. 33

Figure 26: The relationship between meta-models and ATL .. 35

Figure 27: The bidirectional transformation flow and logic .. 36

Figure 28: The bidirectional transformation high level view ... 39

Figure 29: SWXML2SW.atl header... 39

Figure 30: SW2EAXML.atl header .. 39

Figure 31: EAXML2SW.atl header .. 39

Figure 32: SW2XML.atl header .. 40

Figure 33: Tool integration logic .. 42

viii

Abbreviations
ADLs – Architecture Description Language

AM3 - AtlanMod MegaModel Management

ATL – Architecture Transformation Language

AUTOSAR – AUTomotive Open System Architecture

DI – Dependency Injection Pattern

DSL – Domain Specific Language

EAST-ADL – Embedded Automotive SysTems ADL

EAXML – EAST-ADL XML

EMF – Eclipse Modeling Framework

EAXMLMM – EXML XML meta-model

ETL- Epsilon Transformation Language

KM3 – Kernel Meta Meta Model

MDD – Model Driven Development

MDE – Model Driven Engineering

MDSD – Model Driven Software Development

MDT – Model Driven Transformation

MOF – Meta Object Facility

MTT –Model Transformation Technology

M2C – Model to Code Transformation

M2M – Model to Model Transformation

M2M2T – Model to Model to Text Transformation

M2T – Model to Text Transformation

OCL – Object Constraint Language

OMG – Object Management Group

oAW – open Architecture Ware

QVT – Query View Transformation

RSQ – Research Question

SW – SystemWeaver

SW-M – SystemWeaver Model

SW-MM – SystemWeaver meta-model

T2T – Text to Text transformation

XSD - XML Schema Definition

XMI – XML Metadata Interchange

XML – eXtensible Mark-up Language

UML – Unified Modeling Language

1

1. Introduction

This study is part of the maenad project (www.maenad.eu), and is undertaken in Systemite. Its

purpose is to investigate model transformation technologies for ADLs.

EAXML and SWxml are two different implementations of the EAST-ADL. To increase reusability

of information, Two-way transformation implementation between SWxml and EAXML is

required. This study covers the investigation of model transformation technologies and the

transformation between SWxml and EAXML. ATL, which is found to be the research based

solution, is described in detail towards solving the transformation between SWxml and EAXML.

Upon maenad project objectives, the main objective of investigating this model transformation is

to later integrate SW with other different tools which are used to implement EAST-ADL. For

example, if integration between SW and MetaEdit+ is required then the integration can be

realized through transformation of SW to EAXML and then transforming EAXML to MetaEdit+.

This kind of transformation enables us to perform tool integration with less resource and fewer

transformations than tool integration though explicit transformation, which is a transformation

without using EAXML.

Generally, transforming the SW’s concept to the EAXML and vice versa supports systematic

reuse of information.

By reviewing a range of research papers and internet sites this paper investigates different

model transformation technologies and examines their performance against four requirements:

compatibility, usability, performance and complexity. The report then considers selecting the

promising model transformation language by proving the principles through prototype

implementation.

1.1. Report Structure

To clearly define the problem definition and present the solution the report is structured as it is

shown below.

Background: this chapter defines important concepts used throughout the research.

State-of-the-art: this chapter describes related fields of studies which are available.

Problem Statement: this chapter elaborates the main problem that is solved by this research

study. It also describes the research questions that have to be answered and the research

methodology that is used to solve it.

SWxml and EAXML: this chapter describes both SWxml and EAXML. It also describes the

analysis between these two implementations.

The Model transformation: this chapter describes the solution of the research study. It

describes the MTT selection and the prototype implementation.

Generally, the analysis conducted and the complete solutions along with the logics used to solve

the problem are presented in this chapter.

http://www.maenad.eu/

2

Summary: in this chapter, we summarized the overall research and suggested the feature work

that we believe has to be done in the future.

2. Background

Any software systems development starts from requirements. These requirements can be

gathered using different mechanisms according to the product type, the market and the current

circumstances. For successful development and maintenance, the requirements should be well

documented in such a way that developers and users can understand them. The specification

document is the main center of communication among different parts which are directly or

indirectly involved in that project. Documenting the requirements using a model based

development technique increases correctness, unambiguity, verifiability of the document and

improves understanding of the user. For this reason, MDSD process has been a powerful process

in the area of developing safety critical systems. It is a vital software development process

which can also enable us to generate an executable code as a byproduct form. Such system

development process decreases the level of misunderstanding that could happen during

implementation. This is of great importance for testing the system against its test-cases which

are derived from the use-case or other types of models of the system. In order to develop the

desired system successfully, considering all conditions at early design stage is the most

important part. OMG fosters MDA [30][42]. MDA has been evaluated by many companies as an

approach used to specify and develop applications where systems are represented as models

and transformation functions [30]. The transformation functions are used to map between these

models as well as to generate automatically executable code [17]. The idea of model driven

software development can be realized using these MDD approaches.

The term model is defined by Seidewitz as “a set of statements about some system under study”

[13]; it is a set of affirmations, constraints or rules to get a higher abstraction of a problem. It is

also defined as “measure, rule, pattern, example to be followed” [14]. Meta-model is the

structural and organizational formal description of a model, which is specified using the

semantics introduced by meta-meta-models.

ADLs are used to design both software and hardware. In the sense of software, they are used for

analyzing and representing software architecture. The ADLs for software capture the behavioral

specifications of components and their interactions that comprise the software architecture.

However, the ADLs for hardware capture the structure (hardware components and their

connectivity) and behavior (instruction-set) of programmable architectures consisting of the

processor, coprocessor, and the memory subsystem. Based on the above definition, EAST-ADL is

an ADL for a System.

DSL is a language tailored to a specific domain for solving a wide range of different problems

[20]. It is the opposite of general purpose programming languages such as c, java and general

purpose modeling languages such as UML. The main objective of DSL is to reduce time-to-market

by enabling development and using concepts closer to the problem domain at hand, rather than

those offered by programming languages. Because of this, DSL is the basis for model

transformation. Models created using domain specific language can be transformed into other

models developed using different modeling tools which use different implementation concept.

3

EAST-ADL is a language used to capture automotive electrical and electronic systems with

sufficient details by refining the requirements in such a way that all parts which are related to

the system can understand it with minimum level of ambiguity [3]. The fact that we use different

tools to implement EAST-ADL leads to model transformation and tool integration. It enables

modeling through introduction of different layers. These layers allow reasoning of the overall

system requirements by dividing them at several levels of abstraction. These layers are called

Vehicle, Analysis, Design, Hardware and Implementation levels. According EAST-ADL

Specification [3], these different levels are described below:

 Vehicle level describes the decomposition of system characteristics organized as a
software product line.

 The analysis level includes the Functional Analysis Architecture (FAA) which is built
from an abstract definition of the system to capture analysis support of what the system
shall do.

 The design level includes the Functional Design Architecture (FDA) which represents a
decomposition of functionalities denoted in the FAA, including behavioral description
but excluding software implementation constraints. The decomposition has the purpose
of making it possible to meet constraints regarding non-functional properties such as
allocation, efficiency, reuse, or supplier concerns and the final level refers to the system
element in an AUTOSAR model.

 The Hardware Architecture which includes Electronic Control Units, communication
links, sensors and actuators and their connections are also considered as analysis level.

 Implementation level refers to the System level in the AUTomotive Open System
Architecture (AUTOSAR) model

o AUTOSAR is a standard for software implementations in the automotive industry.
This is stated as the main argument for the AUTOSAR-compliance of the EAST-
ADL exchange format.

Tool availability is one of the goals to achieve safety through modeling techniques [8]. SW is one

of the tools EAST-ADL has implemented. SW considers the classes and references of EAST-ADL

as an Item and part respectively.

2.1. EAST-ADL Implementation in SW

SW Concept: the main concept of SW is model based development where the actual building

blocks or components act as information carriers. The concept also includes a powerful system

data model which describes logical and physical components and their interactions, inheritance

or relations, status, requirements, version and variants, and access to components [37].

SW platform: which is part of the implementation of SW concept, is a multi-tier architecture

with support for access control, secure communication, server and client side cache as well as

support for powerful configuration management. It is generally an infrastructure used for

maintaining consistency in design information, distribution of consistent design information and

integration of design process [37].

Models in SW are built by Item, representing the suitable building blocks that the models are

built by. All items have a unique identifier so that the item can be distinguished from other

items, and so that it can be located and referenced in a SW database.

4

(SW identifiers are represented by hexadecimal strings like x0000001D04000023, or complete

URLs like url: swap: //localhost:1768/x0000001D04000023 but in this description we use

shorthand notations to illustrate the IDs). An item has a number of standard properties, like a

name, creation date, description and more.

Figure 1: Structure of an item

SWxml: in SW, EAST-ADL is implemented using Items rather than objects and is exported in

XML file format. We call the exported XML file SWxml. A class or a reference is identified as an

item. From this, it is easy to recognize that the XML file is represented using sets of Items. The

Item can be one of the following two.

itemType – this is the item which corresponds to classes in EMF.

partType – this is the item which corresponds to references in EMF.

For further understanding of the SWxml, look in Figure 2. The concept of item is the result of SW

component based implementation.

5

Figure 2: SWxml

2.2. EAXML

It is an AUTOSAR based representation of EAST-ADL and is transformed to XML Schema. EAST-
ADL is first implemented using UML objects and classes and then later transformed to AUTOSAR
representation of an XML Schema file. According to Dominguez et. al. [21], the EAXML
represented in XML Schema is resulted from M2M2T transformation and the following mappings
are made during the M2M2T transformation.

a. All classes are transformed into ComplextType and Element

b. Root class is mapped to an Element and a ComplexType

c. Elements are declared for every class and they are organized in a substitution group

2.3. Why Transformation?

Representing a system using different implementation concepts lead to the concept of model

transformation. Using different concepts to implement EAST-ADL results to a system

represented using different syntax and semantics. This issue leads to the concept of model

transformation where the interoperability of the meta-models [15], reusability, maintainability

and scalability [17] can be attained. In order to accomplish the goal of bidirectional

6

transformation, it is important to apply bidirectional transformation approach [12]. Even if it is

not possible to implement the bidirectional transformation at once, it is important to perform

the Two-way transformation using different approaches/mechanisms. For xml based model

transformations, XML-support language and meta-model based transformations are two

important constraints that should be considered during implementation of this transformation

[16].

Generally, in MDD, there are two types of transformations called M2M and M2C transformations.

They are also sometimes called as horizontal and vertical transformations [4]. Most of the time,

M2M transformation is horizontal. However, vertical transformation is a transformation made

within a model to generate another model, meta-model or code of a specific model.

Model transformation technologies are useful for reusability of models in cases where a system

is described using two overlapping models [3]. In Maenad project SW, MetaEdit+, and Papyrus

are three tools that have to be integrated to each other using the common implementation called

EAXML. According to [3], EAST-ADL is a large language with at least 283 classes and 564

associations, where every class has a transformation rule taking care of attributes. For this

reason, none of the tools which implement EAST-ADL makes full implementation of it. According

to [Mr. Söderberg] about 90% of EAST-ADL is implemented. Each tool has different

implementation concepts. Due to the high complexity caused by size and rapid evolution,

developing transformation from one meta-model to another implementation of EAST-ADL has

been difficult [4].

Since there are many types of modeling tools, one of the most important things during modeling
is to identify the kind of objects that should be modeled. Objects can be static or dynamic and the
objects in AUTOSAR are static objects. Keeping this in mind, there are many tools which enable
us to model objects, such as UML, EMF, SW, etc. Machine or vehicle objects are static; it is mostly
difficult to model machines using different available software modeling tools. UML 2.0 is second-
generation ADL which is used for modeling software intensive systems and it has more than 13
viewpoints. It mostly covers technology and business aspects of the architecture during
modeling. Due to those many viewpoints, UML diagrams can be interpreted in different ways
and the different interpretations of diagrams leads to ambiguity. This is one reason for
representing AUTOSAR using schema rather than the objects in UML. However, tools like SW
enable modeling of static objects through component based modeling.

There are not many clear explanations to answer the question “why is it not possible to

represent AUTOSAR objects using UML objects?” However, based on [Mr. Söderberg’s] point of

view, the main reason AUTOSAR objects cannot be represented using UML objects is that UML is

designed to represent dynamic creation of objects which implies to software modeling rather

than vehicles or machines. Therefore EAXML uses AUTOSAR M3 rules for the meta-model by

using element, association, type, prototype, is-of-type and instanceref constructs. Because of this,

AUTOSAR defines the structure and semantics of the data using UML class diagrams and

semantics using common data exchange language [7].

7

3. State-of-the-Art

3.1 Introduction to MDE
MDE is a software development approach which uses models as constructive elements for the

implementation of the system. In the history of model driven engineering, the level of

abstraction to develop systems has always been increasing. Many approaches have evolved using

MDE concepts. MDA, which is realization [30] of MDE, is one of these approaches. Different

modeling tools, model transformations and code generations are the results of model driven

engineering. MDE is also the base for DSL [31] and model transformation.

3.2 Model transformation

Model transformation is one of the rapidly growing and demanded technologies [24]. Many

companies and organizations find it enormously useful. Information reusability, tool integration,

and model reusability are some of the merits that can be obtained from model transformation.

Due to complexity and implementation differences, many researchers have described that the

basic challenge to implement model transformation for specific models, which are developed

using different modeling tools, is choosing the right model transformation tool [25]. However,

the demand for model transformation is increasing due to the high demand of tool integration,

configurability feature and information reusability.

3.2.1 ATL

ATL is a popular M2M transformation tool. According to (Jouault et al. incited in Tolosa et al.)
[12], ATL model transformation adopts partially declarative transformation approach which
merges both declarative and imperative transformations. The hybrid feature enables us to deal
with conditions of domain specific scenarios, simpler formal syntax and mathematical
foundations. The fact that this tool has declarative behavior helps to have error free code due to
the no side effect feature [15].

ATL complements declarative behavior over imperative and vice versa in case of impossibilities.

On situations such as impossibility of transformation using declarative language, ATL allows

users to use imperative language in order to enable complex transformations. ATL is one among

the different model transformation tools which has the capability to automatically create target

model using the information represented in source model, source meta-model and target meta-

model.

The ATL model, which is basically the main transformer, uses source meta-model, target meta-

model and source model as inputs during transformation. The ATL model consists of import,

rules and helpers. The helpers mostly describe global variables derived from the input meta-

model. These helpers are used later in the rules to implement the real transformation. As it is

shown inFigure 4, the ATL model transformation has easy and clear architectural structure. It

supports unidirectional model transformation. However, it is possible to implement

bidirectional transformation through explicit implementation of both side transformations. In

ATL transformation, the source model has read-only access whereas the target model has write-

only access. This kind of transformation execution is called “Source-target-execution” [10].

8

Figure 3: ATL model transformation [4]

According to Gronmo et al. [16]’s study, ATL fulfills the following requirements:

Requirement ATL

Commonly-used language No

Inheritance Yes

Graphical annotation No

Lexical Notation Yes

Declarative No

Bidirectional No

XML support No

UML-to-UML Yes

Text-to-UML No

UML-to-Text Yes

UML tool independence Yes

Meta-model/MOF-Based Yes

Merged Imperative and Declarative Yes

Table 1: ATL handling capacity

3.2.2. QVT

QVT has both declarative and imperative nature. It is a M2M transformation tool through Query,

View and Transformation. As it is described below these three structures have their own

responsibilities.

 Queries: are applied to describe the source model as instances of the source meta-

model.

 View: is the description of the target model by stating what the target model should look

like

 Transformation: is responsible for the final model to model transformation by making

sure the queries are projected on the view, creating the target model.

9

Language and interoperability dimensions are two orthogonal dimensions of QVT conformance.

The valid QVT conformance point is specified by the intersection of these two dimensions.

Syntax Executable, XMI Executable and XMI Exportable [26] are the items that should be

conformed with the items in Language dimension [39]. Language dimension contains Core,

Relations and Operational items [40]. Using this model transformation tool, it is possible to make

more than two [16] directions of transformation. However, two directions is the common

transformation.

Figure 4 : relationships between QVT meta-models [39]

3.2.3. Kermeta

Kermeta is an executable meta-language for modeling. It is an imperative object-oriented

language which is both an executable meta-language and a kernel, upon which to build other

languages. Generally, Kermeta is a transformation language which is specifically shaped based

on the concepts used in Xion and MTL [27]. Xion is a language which is platform-independent

and was originally developed in the context of the Netsilon environment [27] and is used for the

development of model-driven web information systems. MTL is an object-oriented model

transformation language. It provides APIs to allow manipulating models from various

repositories such as EMF, Netbeans MDR [27] in a unified manner.

Kermeta which is distributed as an Eclipse plug-in is an open source project from INRIA. It

includes parser, type-checker, and an interpreter. Kermeta provides packages, classes,

operations and methods, inheritance and late bindings which can be used to encapsulate

transformations. Operation calls or method overloading are two among many of the methods

used during successful model transformation. Kermeta is not a transformation language, but it is

a general-purpose language that can be used to implement mechanisms to support model

transformation [38]. It is an imperative language for modeling, with a basic syntax inspired from

Eiffel. The execution is made by an interpreter and the code is statically type checked. Kermeta

uses lambda expressions in order to implement and statically type check OCL-like iterators.

The main goal of Kermeta, with its workbench, is to provide a support for all language driven

engineering activities. It is typically used to build tools useful to build software, which includes

model checkers, simulators, model transformations including model weavers and compilers.

Kermeta includes MOF compliant, Model oriented, Imperative, Object-Oriented, Aspect-Oriented,

and is statically typed. In addition to these characteristics, it also includes some model oriented

concepts such as associations, multiplicities, or object containment management [38]. Figure 5

shows how Kermeta works. The constraints use to implement the meta-model semantics and

QVT is used as part of it to transform the models.

10

Figure 5: Model transformation using Kermeta [38]

3.2.4. ETL

ETL is a rule-based and task-specific [41] model transformation language which has a

declarative signature, hybrid and imperative body expressed in EOL [28]. Each of the

programming supports demonstrates particular advantages and disadvantages. Declarative is

limited to a simple mapping where the source and target meta-models are similar to each other

in terms of structure. However, they fail to solve complex mappings. The imperative

transformation languages are capable of solving complicated transformation scenarios.

However, they operate at a low level of abstraction which means that the user needs to manually

address issues such as tracing and resolving target elements from their source counterparts and

orchestrating the transformation execution. It consists of transformation rules that can translate

elements in the source model into elements in the target model and can query/navigate/modify

both source and target models. ETL, as a transformation language, has its own features as listed

below.

 Transform many input to many output models
 Ability to query/navigate/modify both source and target models
 Declarative rules with imperative bodies
 Automated rule execution
 Lazy and greedy rules
 Multiple rule inheritance
 Guarded rules

3.2.5. Dually

Dually is a model transformation framework used to create interoperability among ADLs

themselves as well as UML [29]. It has only two levels of abstraction which are M1 and MM1. As

it is shown in Figure 3, each model M1 conforms to its own meta-model MM1. The transformation

is then from concepts of architecture M1 into semantically equivalent architecture model

M2. The transformation made using dually allows software architect [29] to generate the target

model from the source model which conforms to their respected meta-models.

Similar to the rest of model transformations mentioned in this thesis work, Dually is also an

Eclipse plug-in. The available version of dually is based on ATLAS Model Management

Architecture (AMMA) and it extends the ATLAS Model Weaver.

11

3.2.6. oAW

oAW is a very powerful framework [19] for MDA and MDD, which is suitable for generating code,

transforming and checking models. This framework is also known as Xtend/Xpand/Check. A

validation language CHECK, which is equivalent to OCL, is provided by oAW for specification of

tests. Each meta-class is checked by the constraint and then follows the keyword WARNING or

ERROR. These keywords specify what kind of action should be taken in case the constraint fails.

ERROR is executed if the constraint fails, the specified message is printed and all further process

is cancelled. WARNING is executed if the constraint fails, the specified message is printed and the

workflow execution continues working. After the models are tested using validation language, it

is possible to generate code, and to transform model.

a) Workflow:

The workflow is a simple xml-based configuration language based on the DI with which all kinds

of generator workflows can be described. It consists of workflow components that are executed

sequentially in a single JVM. A Workflow component represents a part of a generator process

such as model parsers, model validation, model transformers and code generators. oAW is

shipped with different workflow components which can be used where suitable, but it is also

possible to implement your own workflow upon the requirements. It is possible to recognize the

output based on its ID in the log. This can be made by implementing the workflow interface

called “WrkflowComponentWithID” and “setID()” operations.

b) Check

Check file has .chk extension and is full of guard sentences. The check file makes sure whether

the constraint on the meta-model is fulfilled by the model or not. First, the meta-model is

imported and then the context is specified for which the constraint applies. After this, the name

of the meta class that is going to be checked by the constraint should be called; then the ERROR

or WARNING keywords are specified to define what kind of action should be taken in case the

constraint fails.

c) Xtend

Xtend is a language delivered with oAW. The file resides in the java class path of the used

execution context and its file extension is .ext. The actual M2M transformation is realized

through this language.

3.3. Model Transformation Languages Metrics

ATL QVT Epislon Xtend Kermeta oAW

Helpers Mappings Rules Extensions Rules CHECK

Rules Helpers Pre/post

blocks

check Query workflow

Ecore and

XMI

dependent

XMI and

Ecore

dependent

Xmi

dependen

t

Xml, uml,

xmi etc

XMI and

Ecore

dependent

XML, XMI,

XML Schema,

UML

 Table 2: Metrics of different transformation languages

12

4 Problem Statement

This research study is intended to solve a problem of model transformation in the field of MDE.

In order to have clear understanding of the problem, this chapter defines the problem, discusses

the list of research questions that need to be answered to solve the problem, and the research

methodology that is designed to answer the questions.

4.1. Problem Definition

Each tool has its own inherent concepts. Due to this reason, SW, as a tool, has its own syntax and

semantics. The SW based implementation of EAST-ADL is represented in SWxml, which is

structurally different from EAXML. EAXML is an AUTOSAR-based representation of EAST-ADL.

This model is available in the XML Schema format. These two xml files are called model files.

Since models are the basic artifacts of system development, it is important to use model

transformation so that a model represented using different semantics and syntax can be used by

different tools of different concepts.

Specifically, this study is concerned with finding suitable model transformation technology for

Two-way transformation between EAXML and SWxml. The research has to be proved through

the implementation of a model transformation prototype. Identifying the differences between

these two EAST-ADL implementations is thus also an objective of this research study.

Based on the maenad project [32], implementation of this bidirectional model transformation is

one of its objectives. However, this thesis work, which is undertaken at Systemite, is the first

study for the SW based implementation.

SW, MetaEdit+, and Papyrus are tools where EAST-ADL is implemented [4]. In order to have high

interoperability [17] and reusability [4] of models, these tools should be integrated to one

another through the common EAXML. For this transformation to fulfill the requirements, the

import and export of newly transformed model is verified through the prototype transformation.

Generally, these two models are represented in different levels of abstraction. SW uses Simple

and Complex structures to implement EAST-ADL.

Simple Part Structure

The concept of items and parts in SW is useful for implementing most part of the EAST-ADL by

capturing all the needed information. This structure has a simple conceptual mapping between

the target syntax and semantics offered by SW. The usual case for this structure is when there is

no distinction between the instance of a type and the type itself. That is the instance holds no

additional information compared to the type. FeatureGroup and childFeatures are part of EAST-

ADL implemented using simple structure.

Note that some of these cases could include minor complications, like a type that should only

occur in a single instance, but these are usually due to limitations of the concepts of the target

meta-model (confusion between types and values, like class properties and object properties, or

when real life use cases have not been considered).

13

Figure 6: Simple structure

Complex Structures - are used when simple structures are not enough to represent a system,

like electronic architectures, where the same component may appear multiple times in the same

architecture and when references are needed deep into a specific structure. Example: The

Type/Prototype pattern structured models in general in SW

Figure 7: Complex Structure

Keeping the SW-based EAST-ADL implementation in mind, the research based solution should

be able to include the following outputs:

1. Propose suitable model transformation language

2. Bidirectional M2M transformation between EAXML and SWxml

3. Reliable or easy upgrade of import/export feature

4. Generation of important error message as part of import or export

5. Support incremental import/export according SW exchange cases, versions, support for

automation of transformation in one or both directions, given a defined mapping

4.2. Research Questions

For easy understanding of the problem, we have stated different research questions that we

have believed answering them solves the problem. Considering the above problem definition,

we designed the following research questions that are answered through the research study.

14

RSQ1: What are the structural and architectural relationships between SW and EAXML?

Since the main objective of this thesis work is to select suitable model transformation technology

which solves the defined problem, the first thing that must be examined is the structural and

architectural relationships between these two implementations.

RSQ2: How is it possible to combine the views of these two implementations and MDT to realize

MDE?

Model transformation is a view combination of the input and the output meta-models. Due to

this reason examining the possibilities of view combination to realize MDE is vital.

RSQ3: What are the available M2M transformation technologies that are applicable for the

transformation of SW and EAXML and how can we select the suitable one?

Identifying the available model transformation technologies gives the chance to choose one

transformation technology, which is final solution to solve the problem. The available M2M

transformation languages must be tested against the high level requirements. However, this

does not mean only the high-level requirements are the only criteria that have to be fulfilled to

select the suitable one among the existing model transformations.

RSQ4: How can we achieve bidirectional transformation between SW and EAXML?

We aim to formulate the architectural patterns between SW and EAXML. Therefore these

patterns are used to drive the transformation specifications. These specifications are used as test

cases for the bidirectional transformation.

RSQ5: How to verify the selected M2M transformation language of the transformation between

SW and EAXML?

There are many ways to transform models. The feasibility of the selected transformation

technology has been evaluated to determine whether it is the right solution or not. For example:

if a M2M transformation technology can only fulfill the high level requirements but not the

detailed requirements, then the solution is considered as invalid.

RSQ6: How is it possible to realize tool integration through the chosen model transformation

technology?

According to the maenad objectives the main purpose of conducting studies on model

transformation is to further realize tool integration.

4.3. Research Methodology

We have designed the research in four stages called Problem Analysis, Solution Design, Solution

Validation and Evaluation of the Prototype. We have adopted this approach from the research

and design methodology principles proposed by (Wieringa 2008; Wieringa 2009). The overall

research methodology design is shown in Figure 8.

15

 Figure 8 : Research methodology

Problem Analysis: In order to answer the research questions, we have reviewed different

related research publications and examined the models which are represented in XML and XML

Schema files. Since there is no available documentation about SW made in Systemite, Mr.

Södberg has been used as the main source of the required information.

Solution Design: The solution is made by developing both SWxml and EAXML meta-models.

Then we designed the views and derived the transformation requirements.

Solution Validation: in this stage we checked the research based solutions to the

transformation requirements. According to the transformation requirements implementation

16

made on solution design, we have checked if the solution can still be valid and sent feedback to

the solution design. If the validation fails then we get back and check the design and

implementation of transformation requirement and for different transformation language. If the

validation succeeds then we continued with the next stage.

Evaluation of prototype: at this stage we have implemented a prototype and compared the

actual solution with the expected one. Then after getting the expected result, the research is

summarized.

5. SWxml and EAXML

In this chapter, the differences between SWxml and EAXML are analyzed.

The transformation for the class feature of the EAST-ADL specification has been implemented

using ATL model transformation. The feature modeling in EAST-ADL is used to illustrate the

differences and similarities between SWxml and EAXML. Section 5.1 discusses the differences

between Swxml and EAXML and Section 5.2 discusses the different meta-model representations

views of SWxml and EAXML.

5.1. SWxml vs EAXML

Taking feature modeling from EAST-ADL specification as an example, we have described the

differences among EAXML, SWxml and EAST-ADL. We have used EAST-ADL as a common

specification to analyze the differences between SWxml and EAXML. The feature modeling in

EAST-ADL is shown in Figure 9.

Since there was no model transformation or similar works done in Systemite, this is the first

study conducted on this area. There are no artifacts that tell the differences between these two

implementation concepts. To compromise the lack of information on this area, EAST-ADL

specification is used to increase understanding, during conducting an analysis between SWxml

meta-model and EAXML meta-model.

17

 Figure 9: Feature modeling from EAST-ADL Specification

As it is described above the implementation differences for feature modeling is analyzed. To

check the analyses look on Table 3. A total of two types of analysis are made prior to the model

transformation technology investigation. The first type of analysis is conducted to identify the

naming differences. The second type of analysis is conducted to identify more of structural

differences. According to the analysis conducted we divided the differences as Simple and

Complex ones.

Simple: this is mostly naming difference. When a class in EAST-ADL is named differently in one

or both of the implementations, then we call it simple difference. For example, the

FeatureTreeNode class in EAST-ADL is named as childNodes in EAXML, such kind of differences

are naming differences.

Complex: these differences are mostly structural differences. If a reference or attribute is

implemented in different classes than the EAST-ADL specification, we call it complex difference.

These kinds of references need special attention during transformation. We said it needs special

attention because ATL traces references during transformation. If these kinds of differences are

not recognized well, then it is less probable to get the transformation working correctly. SW and

EAXML meta-models are available in different level of abstraction. Due to this reason the

representation of their model is different as it is shown on Figure 10 and Figure 11.

18

EAXMl EAST-ADL SW

ChildNode FeatureTreeNode ItemType of name

childNode

Feature Feature ItemType of name Feature

Featureparamter featureParameter ItemType of name

featureParameter

EaDatatypePrototype atpPrototype ItemType of name

atpPrototype

BindingTime BindingTime ItemType of name

BindingTime

Class Reference

ownedRelationship

featureLink featureLink ItemType named

featureLink

Include ItemType-

ownedRelationShip

multiLevelReference ItemType: include

Realization ItemType :

multiLevelReference

Refine ItemType: refine

requirementsLink ItemType:requirementsLink

Satisfy ItemType: satisfy

Verify ItemType :verfy

Extend ItemType: extend

featureGroup featureGroup ItemType with name

featureGroup

EAXMl EAST-ADL SW

ChildNode FeatureTreeNode ItemType of name

childNode

Feature Feature ItemType of name Feature

19

 Table 3: Feature modeling implementation analysis

EAXML Model -Figure 10Figure 11 shows the XMI user model of the meta-model

EAXML.

Featureparamter featureParameter ItemType of name

featureParameter

EaDatatypePrototype atpPrototype ItemType of name

atpPrototype

BindingTime BindingTime ItemType of name

BindingTime

Class Reference

ownedRelationship

featureLink featureLink ItemType named

featureLink

Include ItemType-

ownedRelationShip

multiLevelReference ItemType: include

Realization ItemType :

multiLevelReference

Refine ItemType: refine

requirementsLink ItemType:requirementsLink

Satisfy ItemType: satisfy

Verify ItemType :verfy

Extend ItemType: extend

featureGroup featureGroup ItemType with name

featureGroup

20

Figure 10: Sample EAXML user model

SW Model: Figure 11 shows the equivalent XMI format of the SWxml model

Figure 11: Sample SW object model

5.2. Meta-Model Representation Views

As long as both source and target meta-models are the basis for the transformation rules,

understanding and implementing the meta-models in the correct way is crucial task which has to

be done prior to the model transformation language investigation and model transformation

implementation prototype.

Throughout the research study we have used GMF, EMF, and XML Schema to understand and

analyze the meta-models. Using different representation frameworks helps us to analyze the

architectural relationship between SW-MM and EAXML-MM. Each tool and framework used to

analyze the meta-models is described in this section.

EAXML Meta-Model

EAXML meta-model is an explicit implementation of EAST-ADL. Every class is modeled

separately. If we look at the EAXML meta-model for the feature-modeling of EAST-ADL, we have

21

found all the classes modeled separately. This makes the meta-model large. Including the

AUTOSAR classes, EAXML contains a total of about 600 classes.

XML Schema: Originally the EAXML is available in XML Schema as it is shown in Figure 12.

Figure 12: EAXML in XML Schema format

EMF: The EAXML meta-model is also available in EMF (Ecore) format. This representation is

easier to understand than the Schema. As it is shown in Figure 13, the classes and references can

be viewed easily.

Figure 13: EAXML meta-model in EMF

22

GMF: This framework is used to represent meta-models in graphical representation. This

representation is the easiest way to understand the meta-models. The GMF representation of

EAXML meta-model is shown in Figure 14. However, it is

limited to the size of the graphical displayer used to view the meta-model.

 Figure 14: The partial view of EAXML using GMF

SW Meta-Model

This meta-model is available in four formats called XML, XML Schema, EMF and GMF. As it is

shown in Figure 15, SW meta-model is implemented in an implicit way using ItemTypes, PartTypes,

ObjTypes, and AttributeTypes. SWxml is originally available in XML file format.

Figure 15: SW meta-model in XML format

XML Schema: The Schema of SW is created as a result of XML conversion to XML Schema using

Oxygen. For easier understanding and further model transformation, it is mandatory to transform the

23

XML meta-model to its Schema. The XML Schema of SW is much more difficult to understand than

the other formats. The newly created schema from SWxml is shown in Figure 16.

Figure 16: SW in XML Schema format

EMF: The SW Meta-model is also available in EMF (Ecore) format. The Eclipse Modeling

Framework is used to transform the SW Schema to its EMF based meta-model. This

representation is easier to understand than the Schema. It also used as input to the M2M

transformation. As it is shown in Figure 17 the classes, attributes and references can be seen

easily.

24

 Figure 17: SW met-model in EMF format

GMF: Using GMF, meta-models can be represented and viewed graphically. This representation

is the easiest way to understand the meta-models. It is because GMF enable us to see all the

classes, attributes and references easily. However, this does not mean it does not have any

drawbacks. The level of graphics that can be seen at a time depends on the size of electronic

visual display. The GMF representation of SW meta-model is shown in Figure 18.

Figure 18: The partial view of SW meta-model in GMF

25

6. The Model Transformation
In order to solve the problem, we have investigated different transformation languages in the

field of MTT. We investigated 6 transformation languages called oAW, Dually, ETL, Kermeta,

QVT, and ATL. However we have found two of them suitable languages for the transformation

between SWxml and EAXML. Since one language must be chosen we evaluated ATL and oAW

against all the requirements and selected ATL to perform the transformation between SWxml

and EAXML.

This chapter describes the investigation, and research evaluations of the research solution

through prototype implementation. Section 6.1Model Transformation Languages Evaluation

describes the evaluation conducted between ATL and oAW. Section Prototype Implementation

describes the prototype implementation including the rules derived to complete the

transformation. Section 6.3 Contribution of the Solution discusses the contribution of the study.

6.1. Model Transformation Languages Evaluation

In MDE, the scope of model transformation technologies is to create target model from source

model. Based on the type of models and meta-models that need to be transformed, model

transformation languages have their own weaknesses and strengths [25]. All transformation

technologies have their own specific application. One transformation technology can be used to

implement horizontal transformation, vertical transformation, code generation or M2M

transformation. This shows that model transformation technologies have their own applications

and handling capacities. Therefore one among the reasons why this investigation is required is

to discover the transformation technology which is suitable to implement the transformation

between SWxml and EAXML. This shows that no transformation technology is better than the

other. Because of this the best way to select the suitable technology is to set the conditions and

requirements that need to be fulfilled for the transformation between SWxml and EAXML to

succeed. The following high level requirements have been set as criteria to investigate the

suitable model transformation technology for the transformation between EAXML to SWxml.

1. The chosen transformation language should support XML or XML Schema.

2. The chosen transformation language shall produce XML model

3. The output model of EAXML to SW transformation should be imported to and exported

from SWExplorer.

4. The transformation language shall handle both complex and simple structures of SW.

6.1.1. ATL

ATL [1], which is an Integrated Environment Developed on top of Eclipse platform, provides

syntax highlighting, debugger and is mostly used in MDE [2].

Using MDE concept, software specification should be translated into executable programs

automatically [12]. For this reason, the source code is represented as an executable text model

which conforms to its meta-model. ATL is one of the tools which adequately enable us to

transform models in a horizontal transformation approach [12].

26

ATL includes three kinds of units called modules, library and queries. Each unit has its own

functionality as follows:

 Module: corresponds to the classical ATL transformation, which contains header, helper

and rules.

 Query: enables us to return a primitive value from a model.

 Library: defines a set of ATL functions. The library model mostly includes general

definitions which are used all over the transformation.

During M2M transformation, the source model, source meta-model, and target model and target

meta-model are configured in a certain hierarchies as it is shown in Figure 20. As it is shown in

Figure 20, the source and target models conform to their respective meta-models. The ATL

transformation model uses the source meta-model, target meta-model and source model as

inputs.

Even though in [43], endogenous and exogenous are specified as types of transformations, we have

used these terminologies to define the relationship among models. The relationship between SWxml

and EAXML is categorized as exogenous as it is defined below.

 Exogenous models: are models implemented using different tools. If the source model is

implemented using a different tool than the target model’s tool, then the transformation

between these two models is called Exogenous. Since SWxml is implemented using SW

and EAXML is implemented using UML 2.0, they are called exogenous models.

Respectively the transformation between SWxml and EAXML is an exogenous

transformation.

 Endogenous models: are models developed using the same tool. The transformation

between such models is called endogenous transformation. Models which are

implemented using UML are called endogenous.

We have implemented the SWxml meta-model using Eclipse Modeling Framework. During our

implementation, we have discovered that there are many methods to implement EMF based

meta-models and we have divided these methods into two approaches.

Approaches used to create EMF based SWxml meta-model

i. XML Schema Mapping

This approach is used to automatically create meta-models from their XML Schema through

mapping. The meta-model classes, references, attributes and data types are mapped to EMF

Eclass, Ereference, Eattribute and EMF data types.

SWxml is available in XML file format whereas EAXML is available in XML Schema. EMF supports

direct mapping from Ecore, UML, Rational Rose and XML Schema. Therefore SWxml meta-model

cannot be mapped to its respective EMF based meta-model directly. It is vital to generate the

SWxml’s schema prior to the mapping. In order to generate the SWxml Schema from the SWxml,

we investigated XML Spy, and Oxygen. As the result of the investigation, we have found Oxygen

as the tool to support the transformation between XML and XML Schema. We then generated the

EMF based meta-models from the newly generated XML Schema.

27

However, the EMF based meta-models generated through mapping has to be reviewed before

use. Because of the information loss such as multiplicity, we have found it important to review

the meta-models and validate them before use.

To implement SWxml EMF based meta-model, we have used this approach. However, we re-

implemented the meta-model to make sure that the information loss is correctly fixed. The

partial view of the EMF based SWxml meta-model which we have implemented is shown in

Figure 17.

a. Merits of using XML Schema mapping approach

This approach minimizes the resources used to implement meta-models. The resources are

minimized through the automatic mapping from the XML Schema to Ecore meta-model. Since the

EMF meta-models drive the ATL transformation, the availability of these meta-models is vital. It

is of great advantage to use this approach if the meta-models are not available in a clear

documentation. Mapping the meta-models from XML Schema increases the understanding of the

meta-model.

b. Limitation of using XML Schema mapping approach

During XML Schema to Ecore mapping, some of the XML Schema specific constructs are not
represented directly in the created Ecore; such information is added to Ecore using Ecore
annotation called Extended Metadata. This API is provided by EMF to query, modify or create the
additional metadata. Losing important information such as multiplicity leads to dramatic change
in the meta-model. Because of the loss of such information the transformation based on such
meta-models might not even work as it is intended. However, modifying the meta-model
manually can solve the problem. We have fixed the information loss issue on mapping XML
Schema to Ecore according the explanation given in [11].

ii. Manually implementing a meta-model

This approach can be used if the meta-models are available in a clear model diagram or other

representation other than xml or XML Schema. It is possible to write a meta-model using Ecore

or GMF manually. For this approach to succeed, it is important to use three to four eclipse based

frameworks called ATL, AM3 and EMF or GMF.

Generally, this approach is more tiresome and time consuming than the first approach. The

development cost is almost double of the first approach. The reason is that if there is an

automated way to directly map the existing meta-model to Ecore meta-model, the time and cost

decrease. However, in case of this approach the complete meta-model has to be implemented

manually using EMF or MOF.

Since the available meta-models are not presented in a clear model diagram, we have not

considered this approach as an option. However, since this approach is a piece of work to

produce correct meta-models, we have found it important to include it in the report. Generally,

there are many ways that Ecore meta-models can be implemented; the following listed methods

are some among the many ways to generate Ecore meta-model from different formats.

 Injecting it from km3 - km3 is a model file where meta-models can be implemented
through coding. After implementing the meta-model it is possible to generate its

28

respective EMF based meta-model by using a functionality called inject which is provided
by ATL.

 Manually implementing Ecore meta-model– creating Ecore meta-model using this
method is as tiresome as Injecting from km3. However, this is a good approach to
develop the correct meta-model.

As it is shown in Figure 19, there must be defined source and target meta-models which can be
used as a basis and input for the transformation rules. These two meta-models are used by
ATLModel during the transformation.

During the transformation, EAXML and SWxml are the target and source models, whereas

EAXMLMM (EAXML meta-model) and SW-MM (SWxml meta-model) are the meta-models. Each

model conforms to their respective meta-models and the meta-models conform to their meta-

meta model.

Bidirectional M2M transformation is achieved through an explicit One-way transformation.

During EAXML2SW transformation the resulted model need to be imported to and exported

from SWExplorer. The import or export functionalities of SWExplorer works only if the resulted

model is represented in the correct XML file format. Therefore as the result of this

transformation an XML model file must be created as a target model. Unfortunately, ATL does

not have the ability to take an XML model as input or to create an XML model file as an output.

Taking the high level requirements mentioned in section 6.1 into consideration, we investigated

different frameworks that support to make the transformation complete. We used AM3 to inject

and extract SWxml. The inject functionality supports ATL by creating the Ecore equivalent of the

SWxml. The extract functionality supports ATL by creating the xml equivalent of SW.ecore.

However, this does not mean a single transformation makes the import and export possible. The

Inject and Extract functionalities, provided by AM3, lead to extra transformations named as

Complementary transformations.

Generally, in order to achieve the transformation using ATL, three different eclipse frameworks

called GMF, EMF, and AM3 are used as auxiliary frameworks. GMF is used to represent and view

the meta-models graphically and makes it easier to understand the differences and similarities

of these two meta-models for further transformation. EMF is used to create the meta-models

from their respective Schemas. AM3 is used to handle the model file format issue.

The transformations used for this study are divided in to two categories called Main and

Complementary transformations. The Main transformation is the transformation between

EAXML and SWxml meta-models and the Complementary transformation includes the rest of the

transformations made in order to complement the lacked features of ATL. These two different

types of transformations are described below. According to J.E. et al [34], series of

transformations to achieve one transformation is called composite transformation.

29

Figure 19: Composite transformation (34)

We have used the same legends to illustrate the different transformations made during the

implementation of the bidirectional transformation. To avoid repeat definition of the legends, we

have defined them prior to the figures.

Legends used to illustrate the transformation

 Inject – is a function which is provided by the AM3 and is used to transform .xml model
file format to .ecore model format which conforms to the general XML model.

 Extract- is a function provided by AM3 and is used to extract .ecore model file to its

specific purpose .xml format.

 ConformsTo – This shows that the model is constructed based on its meta-model’s

semantics construction. During ATL transformation the models are always checked

against their meta-models.

 Uses – is a terminology used to show that the ATL file uses the correspondent input and

output meta-models.

The Types of Transformations Used

I. Main Transformation

The main transformation is considered to be the main part of the transformation. This

transformation is the critical one. Complementary transformation is used to make the Main

transformation to be complete solution. The Main transformation covers the transformation

between SWxml and EAXML meta-models and is illustrated in Figure 20 and Figure 21.

 SW-to-EAXML transformation: is the transformation between SW-MM and EAXML-MM.

Since the primary model transformation is between these meta-models, we call the

transformation between these two meta-models Main transformation. As it is illustrated

using Figure 20, the SW-M represents the SW model, the SW-MM represents the SW meta-

model, EAXML-MM represents the EAXML meta-model, the EAXML-M represents the

EAXML model and the ATL represents the ATL model transformation file. The ATL file uses

SW-MM and EAXML-MM to drive the transformation rules. Using the rules derived from

source and target meta-models, the ATL file finally transforms the SW-M to EAXML-M.

30

Figure 20: SW2EAXML main transformation

 EAXML-to-SW transformation: during the bidirectional transformation, there are two

Main transformations. The first one is the transformation between SW-MM to EAXML-MM

and the second one is the EAXML-to-SW. It is illustrated in Figure 21 that the

transformation is between EAXML-MM-to-SW-MM. The ATL file is constructed according

to the information used in EAXML-MM and SW-MM. Using this information, the ATL file is

used to transform different EAXML user models to SW models.

 Figure 21: EAXML2SW main transformation

II. Complementary Transformation

ATL cannot handle all transformation requirements listed in section 6.1 by its own. In order

to complement the lack of ATL, different Eclipse frameworks called AM3, EMF, and GMF are

used. AM3 is used to inject and extract xml object models. EMF is used to create the EMF

meta-models form the XML Schemas. The Complementary transformations include ATL

transformation and AM3 Inject or Extract functions.

 SW to EAXML Complementary Transformation: includes injecting the SWxml

using AM3 framework. This injection action creates SWxml.ecore, which conforms to

the general XML meta-model, from the SWxml, which is exported form SWExplorer.

Then SWxml to SW transformation takes place to transform the SWxml.ecore to

SW.ecore model. Figure 22 illustrates the SW to EAXML Complementary

transformation by using the Inject functionality to transform the SW.xml to SW-M.

Then the ATL file is used to transform XML-MM to SW-MM.

31

Figure 22: SW2EAXML complementary transformation

 EAXML to SW Complementary Transformation: it takes place right after the Main

transformation of EAXML to SW. The SW.ecore is created as an output model of the

Main transformation between EAXML to SW. However, since the main objective is to

obtain the output model in xml format, we need to run Complementary

transformation. We have used this Complementary transformation to transform

SW.ecore model to SWxml.ecore model using ATL transformation. Then the

SWxml.ecore model is extracted to SWxml using AM3 framework. Figure 23

illustrates the transformations used to perform the complementary transformation

from EAXML to SW. The ATL is used to transform the concept in EAXML-MM to SW-

MM and transform EAXML-M to SW-M. However, the SW-M is not the expected

output. Therefore the Extract functionality from AM3 is used to extract the SW.xml

from its SW.ecore model file.

Figure 23: EAXML2SW complementary transformation

For general understanding of the transformation Figure 24 shows the complete bidirectional

transformation. We put the above different transformations to illustrate the complete

bidirectional transformation.

As it is illustrated in Figure 24, both the SW-MM and SW-M are represented in XML file format.

Since it is not possible to use XML files with ATL, we need to transform both the model and the

meta-model to the ATL supportive formats. Therefore the SWxml meta-model is first

transformed to SW.xsd using an XML editor called Oxygen. Then the SW.xsd is mapped to its

EMF based meta-model. The SW.xml model is transformed to SWxml.ecore format using AM3

framework. The SWxml.ecore model conforms to the general XML-MM. Then the first ATL is

implemented to transform the concept of XML-MM to SW-MM. These meta-models are EMF

based meta-models.

The EAXML meta-model is available in XSD format. We have mapped the EAXML.xsd to its EMF

based meta-model. After the EMF based EAXML-MM is developed, the Main transformations

32

takes place. The second ATL file uses the information of both SW-MM and EAXML-MM and

transforms the SW-M to EAXML-M. The word ecore is used as a suffix of the models and meta-

models to show that they are of type ecore.

Figure 24: Complete bidirectional transformation between SW and EAXML

Since, being able to import the target model to its respective tool is one proof to show that the

integration can work; and that the model transformed using ATL is possible to import it to

SWEplorer, we took ATL transformation language and EMF, and AM3 frameworks as the tools

that can fully solve the problem.

6.1.2. oAW

Based on oAW the bidirectional transformation between EAXML and SWxml is considered as

M2M2T transformation. The target model is represented using XMI format; in order to get the

preferable format which is xml, another model to text [21] transformation is needed.

Generally, oAW is a framework which provides textual languages that are useful in different
contexts in MDSD process (e.g. checks, extensions, code generation, and model transformation).
Xtend, Xpand and Check are built based on common expression language and type system. This
means they can operate on the same model, meta-models and meta-meta-models. oAW uses
functional programming language EXTENDS to make M2M transformation. It contains different
component classes for transformation and code generation and the specific component class
which supports M2M transformation is called Xtend. M2M transformation is controlled by the
central part of an oAW project which is the so called workflow. The actual transformation is
realized by the Xtend extension.

It is possible to use XML Schema and XML both as an input and output models using this
transformation. However, the complexity increases with the size of the meta-models. The fact
that this transformation language does not support rule based transformation makes it more
difficult to use it for this study. The lack of rules in its implementation makes it infeasible to
apply it for large meta-models which respectively can have large models. Since this study covers
large meta-models, we argue that choosing such tools makes the transformation complex and
difficult to maintain.

33

The oAW based model transformation between SW and EAXML is illustrated using Figure 25.
Figure 25 shows that the SWxml is first exported from SWExplorer. Then using the xml editor
called Oxygen the SWxml meta-model is transformed to SWxml Schema. The SWxml Schema is
transformed to its EMF equivalent meta-model.

When we look at the other side of the transformation, the EAXML.xsd is transformed to its EMF
equivalent meta-model. Both SW-MM and EAXML-MM are instances of Ecore. Then after these
two meta-models are available in EMF, the transformation between SW-M, which is the SWXML,
and EAXML-M, which is the EAMXML.xsd, is performed using Xtend.

Transformation Logic

Figure 25: SW and EAXML transformation using oAW

oAW model transformation is mostly done using two extensions called Xtend and Xpand. During

model transformation, there should be an input model and both source and target meta-models.

The source meta-model is used as confirmation of the user model. During the transformation,

the source model is read-only and the target is write-only. Then, Xtend or Xpand handles the

transformation of the model. Without considering the size of the models, this concept can be

applied to this study. Unlike ATL, this concept must apply observable logics to transform the

models. This decreases the performance of the application. Representing EAXML and SWxml

using different markup languages causes for further format transformation. Using oAW

minimizes the number of transformations that should be undertaken during transformation. The

only format transformation needed during this model transformation is XML to XML Schema and

vice versa. Generally oAW can read and write models of format UML2, UML (Poseidon,

MagicDraw, Enterprise Architect, Rose, XDE, Innovator, etc.), textual models (using JavaCC or

antlr parsers as frontends), XML and Visio.

oAW performs the following actions before M2M transformation.

 Calculation to determine which one should have read or write access

34

 Tests the semantic correctness of the specified models through oAW validation language

called CHCECK

Reasons to consider oAW

For a transformation language to be chosen as a suitable tool for this project, it needs to fulfill
the transformation requirements listed in the introduction part. oAW or Xtend/Xpand/Check is
used for M2M, M2T and T2T transformations and is powerful tool which can accept UML, XML
etc. formats as an input model. It can also give the output model in different formats which
makes it more suitable for this project. However, despite these merits, the code complexity
increases as the model size increases. For a large meta-model transformation, we need to write a
transformation code for each and every transformation made. Since this study covers large and
complicated model transformations, it is advisable to use this transformation tool.

As it is mentioned earlier, oAW can generate different formats by using a powerful template
language called Xpand. This template language can also be used to generate code at the end of
model transformation. Currently, the oAW components are migrated to Eclipse Modeling and are
mostly called Xtend/Xpand/Check. The fact that, oAW contains all these three extensions and
that they can be used for one project at the same time, makes it a more complete package than
the other transformation tools. Configurability is one of the features that make this tool suitable
for this thesis work.

Drawbacks of oAW

oAW has composite implementation languages. There are multiple languages that have to be
used to implement one transformation. Using these different templates, extensions and
workflows leads to complexity of implementation. The drawbacks of using oAW are that it is not
possible to make bidirectional transformation and that it is complicated to use. We also believe
that it decreases the performance as the size of the meta-models increases.

6.1.3. Result of the Transformation Language Investigation

Taking the investigation conducted between ATL and oAW into consideration, ATL has been

chosen as the suitable model transformation language for this study. Since ATL is a rule based

and compatible with different Eclipse based frameworks such as AM3 and EMF, we have found it

suitable to perform the bidirectional transformation between SWxml and EAXML with a good

transformation quality and in a reasonable resource. It can handle transformation of complex

cases where there is structural difference between the models that has to be transformed.

6.2. Prototype Implementation

A prototype has been implemented using ATL and the rest of the frameworks accordingly. The

prototype implementation contains the meta-model implementation, the transformation logic

used to implement the solution and the ATL implementation.

6.2.1. Meta-model implementation

The meta-models of EAXML and SW are implemented using EMF. The implementation

description is discussed on the next sections.

Implementing SW and EAXML meta-models

The available model in SWxml is the model which is exported from SWExplorer. There is no

available SW meta-model represented using model diagram. EMF is used to implement the

meta-models. We have implemented SW-MM using the information obtained through mapping

35

of SW XML Schema to Ecore. We have used the developed EMF based SW-MM throughout the

prototype development.

For the prototype implementation, the Ecore based EAXML meta-model which is developed by

KTH is used.

6.2.2. Transformation Logic

Overall Transformation steps:

The first thing that has to be done before any transformation is implementing and checking the

source and target meta-models availability. For example if SW-MM is the only available meta-

model, then we must know that we cannot implement ATL transformation. As it is shown in

Figure 26, if only EAXML-MM and SW-MM are available, then it is only possible to implement

SW2EAXML and EAXML2SW upon the available source model. The same is true for SW-MM and

XML-MM. If these two meta-models are available, then it is possible to write an ATL

transformations called SW2XML and XML2SW. Figure 26 illustrates the relationship between

meta-models and ATL. If the respective meta-models are available, then the transformation

takes place, if one or all of the meta-models are not available then the transformation cannot

take place.

Figure 26: The relationship between meta-models and ATL

Bidirectional transformation steps:

The bidirectional transformation is a combination of Complementary and Main transformations.

According to the eight steps, steps four and five are the Main transformations. The rest of the

steps describe the Complementary transformation and tool integration. The numbers in Figure

27 describes the steps taken to complete the bidirectional transformation. These steps are

described next.

36

Figure 27: The bidirectional transformation flow and logic

37

1. The first step shows that SW.xml, which is the object model, is exported from

SWExplorer. The output of this operation is SW.xml.

2. The second step injects the SW.xml in order to convert it to Ecore format of general XML
model. The Inject function is provided by AM3. Therefore as the result of the injection, the
SWxml.ecore is created. This is the first step of the Complementary transformation, in
SW2EAXML transformation.

3. The third step is the transformation from SWxml.ecore, which conforms to the XML-MM,
to the SW.ecore, which conforms to SW. To see the complete transformation code of
XML2SWR , look at Appendix D - ATL Transformation Files.

4. The fourth step is the Main transformation. It takes SW.ecore as an input model and

creates EAXML.ecore as target model. To look at the SW2EAXML.atl see Appendix D - ATL
Transformation Files.

5. The fifth step is another Main transformation. It takes the EAXML model as an input and
creates the SW model as an output. For more understanding of the EAXML2SW.atl, see

Appendix D - ATL Transformation Files.

6. The sixth step is Complementary transformation. It transforms the SW.ecore to
SWxml.ecore. The transformation is known as SW2XML. For further understanding see
Appendix D - ATL Transformation Files.

7. The seventh step is part of the Complementary transformation through an extraction.
This extraction function is provided by AM3 and is used to extract the final SW.xml from
the general SWxml.ecore.

8. The eighth step shows the tool integration through model transformation. We have
tested the implementation through import. The import shows that a model developed
using different tool can be imported to the other tool.

Transformation Scenarios:

In the previous sections, we have seen how the meta-models are implemented and how the
model transformation logic is implemented. Transformation scenarios are source of the ATL
rules. In order to have the correct transformation solution, it is mandatory to make the
transformation analysis between SWxml and EAXML. The classes, references and attributes
representation have to be identified. The bidirectional transformation is analyzed in Table 4 and
Table 5. Table 4 is used to analyze the SW-2-EAXML transformation. It shows the attributes,
references and classes. Similarly, Table 5 describes the EAXML-2-SW transformation.

SW2EAXML

EAXML SW Part –SW

requiredBindingTime requiredBindingTime Yes

actualBindingTime actualBindingTime Yes

childNode childNode Yes

uaTypeRefs userAttributeTypes Yes

38

 Table 4: SW2EAXML

EAXML2SW

SWVR EAXML

Name (actualBindingTime, requiredBindingTime, featureroot etc.)

Ancesstor uuid
Id uuid

Status Value

Description ownedComment(comment and rational)

Attributes

partGroups
(partGroup
Parts
Part

(actualBindingTime, childNodes,requiredBindingTime
ownedrelationships, Ea DataType, Traceable Specification Refs)

topNode Not available

versionNumber Not available

Sid Not available
Table 5: EAXML2SW

6.2.3. The ATL Implementations

In this section the ATL transformations implemented are described. Four ATL transformations
called XML2SW, SW2EAXML, EAXML2SW, and SW2XML are implemented. These four
transformations are used to successfully perform bidirectional transformation. The
bidirectional transformation is shown in Figure 28 : The bidirectional transformation high level
view Figure 28. The transformation from SW-to-EAXML and the meta-models and ATL files
involved in a transformation are elaborated. The black arrow shows the transformation from
SW-to-EAXML and the green arrow shows the transformation from EAXML-to-SW. The ATL
files included in Figure 28 are explained next.

OwnedComments(rational, comment) ownedComments Yes

OwnedRelationships(Derive-Requirement,

featureLink, satisfy, refine, verify, realize)

featureLink, Derived,

satisfiedRequirement,

refineRequirement, verify,

realizes

Yes

FeatureParamete featureParameter Yes

TracealbleSpecificationRefs traceableSpecificationRefs Yes

UaValues(userAttributeValue) userAttributevalue Yes

Uuid id Attribute

39

Figure 28: The bidirectional transformation high level view

1. XML2SWVR.atl: This transformation is performed by XML2SW.atl. It takes SWxml.ecore, SW-
MM and XML MM as an input and creates the target file called SW.ecore. The header is the
part of the ATL that described the input and output models and meta-models. The header for
the XML2SWVR is shown in Figure 29:

Figure 29: SWXML2SW.atl header

2. SW2EAXML.atl: this is the transformation from SW-to-EAXML. The header of this
transformation is shown in Figure 30.

Figure 30: SW2EAXML.atl header

3. EAXML2SW.atl: this is the Main transformation for the transformation from EAXML-to-SW.

Figure 31: EAXML2SW.atl header

4. SW2XML.atl: this transformation is a Complementary transformation for the transformation
from EAXML2SW. This is the final output from the ATL transformation. The output of this
transformation is SWxml.ecore and is extracted to SW.xml using the extract projector of
AM3.

40

Figure 32: SW2XML.atl header

Issues Detected During Implementation

In this section, we have presented the rules used for each transformation. The rules are the

result of the architectural view comparison between SW and EAXML meta-models. The

respective implementation code for each rule is found at Appendix D in their respective ATL

files. The rules used in four of the transformation implementations are described under their

names.

SW2EAXML: this is the complex transformation. It contains simple and complex

transformations.

Rules: The first rule that is implemented during this transformation is to transform a feature

model of SW to feature model of EAXML.

1. SW Item with PartGroups as part of it, will be a feature on EAXML

2. The requiredBindingTime part of SW is transformed to requiredBindindTime reference,

which is of type BindingTime, of EAXML. The requiredBindingTime of SW is also of type

BindingTime, however it is identified as both an item and part in SW.

3. The part called actualRequiredBingTime in SW is transformed to the reference of a

feature in EAXML. The reference is called actualBindingTime and has type of

BindingTime. The actualBindingTime is a part and an Item in SW.

4. The part featureParameter of SW is transformed to the EaDataTypeProtoType

5. The part named as userAttributevalue in SW is transformed to the reference UValues

which includes references to userAttributeValue class.

EAXML2SW: the rules are used to map between explicit and implicit concept of implementation.

This makes it to be complex transformation.

Rules:

1. When transforming the feature of EAXML to SW, all the Items and parts should be

distinguished using rules.

2. The item should be organized inside Items parent.

3. The features in EAXML object model are transformed to the Items include partGroups as

a reference within the class.

4. The parts should be organized using imperative language and must be included inside

Items class

5. The names of the Item contains the names of the feature with partGroups

6. The names of the parts are transformed using imperative language

XML2SW: for this implementation, the main rules of the transformation are discussed here. The

complete solution is implemented and the main points are discussed in this paper.

Rules:

1. Each Element in SWxml.ecore is transformed to Items, Item, PartGroups, PartGroup etc.

In general the elements in SWxml.ecore are transformed to the classes of SW.ecore

41

2. Each attributes of SWxml.ecore are transformed to attributes of the SW.ecore’s class’s

3. Each Text is transformed to an attributes, such as Name, dataSize etc

SW2XML: this is Complementary transformation during EAXML2SW transformation. The

transformation rules listed below are implemented in the ATL files listed in Appendix D.

Rules:

1. The root element is the SystemWeaver 3.0

2. Each Item is transformed to Element

3. Each part are transformed to an Element

4. Each partGroup are transformed to an Element

5. Each partGroups are transformed to an Element

6. Each Attributes are transformed to an Element

7. Each attributes are transformed to Attribute

8. Some attributes are transformed to Text

6.3. Contribution of the Solution

Generally, we have evaluated the research based solution through importing and exporting the

model, which is the output of the transformation, to SWExplorer. We exported the SWxml model

from SWExplorer and applied the SW2EAXML transformation. After the target model is created,

we performed EAXML2SW transformation on the target model and we got similar model which

we have imported it to the SWExplorer. Through this process we proved that ATL, EMF and AM3

are the right choices.

 To summarize the result of this study, we have provided a solution which includes the following

contributions.

 Proposed the suitable M2M transformation language and additional frameworks that

helped us to perform complete M2M transformation

 Showed the feasibility of the chosen transformation language through prototype

implementation

 Showed that MDT language and frameworks are possible ways of implementing

bidirectional transformation.

 Implemented and reviewed SW meta-model using EMF

 Compared alternative transformation languages to choose the most suitable one

 Showed that tool integration can be possible through M2M transformation by using the

output of model as an input of the respective tool

 Analyzed the model transformation specifications for EAXML and SW model

transformation

 Implemented the transformation of SW meta-meta model to a model for further use

In addition to the main objective of this study which is model transformation, we have designed

the logic to implement the tool integration through model transformation. The logic for tool

integration is shown in Figure 33

42

Figure 33: Tool integration logic

ATL along with EMF and AM3 have been proved that they are the promising model

transformation language and supporting Eclipse based frameworks. The fact that ATL is a rule

based transformation language makes it more preferable language for the transformation

between SWxml and EAXML by minimizing complexities of the meta-models. To clearly define

how the transformation between SWxml and EAXML is implemented, we have divided the

transformations as Main and Complementary transformations.

7. Summary
We have chosen ATL as the transformation language. In addition to ATL we have used extra

frameworks called AM3 and EMF to successfully implement the bidirectional transformation.

AM3 is used to handle the abstraction level difference between SWxml and EAXML. EMF is used

to implement both the source and the target meta-models.

Implementing model transformation requires dedication to the work and clear understanding of

the meta-models. Because of this investigating the different meta-model viewer frameworks

such as EMF and GMF has been one of the tasks. All the references, classes and attributes need to

be clearly understood. Due to this reason understanding of these parts of the meta-models help

to define the transformation rules easily. According to the investigation, the model

transformation between EAXML and SWxml has been implemented. The implementation is

achieved through the transformation logic illustrated in Figure 27.

According to this research study and other studies conducted, the Model driven transformation

is the vital field in MDE. It is a field which is very new and needs lots of attention. By conducting

this study, we are able to answer the questions listed in section 4.2. Research Questions

43

Answer RSQ1: the fact that both SWxml and EAXML are represented in different levels of

abstractions makes identifying the architectural and structural relationships difficult. In order to

understand the differences, we represented both meta-models in same level of abstraction using

EMF and analyzed the relationships using the EAST-ADL specification as central document.

Answer RSQ2: understanding the architectural pattern leads to the understanding of the views.

We combined the views of SW and EAXML implementations though meta-model mapping, and

model driven transformation. The answer for RSQ1 becomes basic input to answer this question.

We have confirmed its possibility by looking at both of the meta-models.

Using the meta-model mapping is part of model driven engineering. Hence, analyzing and

implementing the meta-models and understanding the EAST-ADL specification makes the

process of combining the views possible. The transformation requirements are also used as

constraint to check whether SW and EAXML views can be combined using MDE and MDT.

Answer RSQ3: model transformation languages such as ATL, oAW, Epsilon, Kermeta, QVT and

dually are investigated. However, both ATL and oAW are the two transformations that are

investigated against all the requirements. Since ATL is found to meet most of the requirements

than oAW, it is chosen as the suitable transformation language for SWxml and EAXML.

Answer RSQ4: after conducting a study on the model transformation technologies and both

meta-models, we have analyzed how the bidirectional transformation can be achieved. The

abstraction differences of SWxml and EAXML meta-models, makes the bidirectional

transformation complex and time consuming. Because of this, different frameworks such as

AM3 and EMF had to be used additionally to ATL to complete the transformation. As it is

illustrated in Figure 26, we have designed the transformation logic towards the relationship

between meta-models and the transformation models.

Answer RSQ5: we have tested the chosen transformation languages through prototype

implementation. The prototype is checked against all the requirements and declared as pass and

fail. ATL is the transformation language which passes this validation test

Answer RSQ6: tool integration is not the main objective of the transformation. However, since

this study is required to later achieve tool integration, we have designed simple integration logic

by considering Papyrus, SW and MetaEadit+ as the tools that has to be integrated. The logic is

illustrated in Figure 33.

Future Work

Considering the research as an input to the prototype implementation, the following feature

works are suggested.

 To implement the complete transformation between SWxml and EAXML, the

transformation has to be organized according to the structural constructs such as

SystemModeling, FeatureModeling, VehicleFeatureModeling, FunctionModeling and

hardware modeling. We believe that dividing the analysis upon this division makes

management and implementation easier.

44

 In order to get the SID, which is currently considered as data loss during the

transformation, the SW meta-meta-model has to be used as an input model during

EAXML-to-SW transformation.

 Completely automating the M2M transformation – this makes the transformation

easy to use. Ruing ATL configuration is complex. In order to hide the configuration

complexity, an automatic run application has to be developed.

 To make it more easy to use, it is even better to implement GUI and configure the

transformation externally. This more user friendly than the automated

transformation.

 Checking the possibility of importing the newly created model file directly from the

interface through dll is also the last thing that should be considered. This makes the

transformation independent from SWExplorer.

45

References

1. ATLAS group (LINA & INRIA) Nantes. Specification of ATL Virtual Machine. Version 1.0, 2005

[Online] [Accessed 10 June 2011]
Available at: <http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification[v00.01].pdf>

2. ATL: EclipseCON 2011 [Online] Available at: <http://www.eclipse.org/atl/> [Accessed 09
March 2011]

3. EAST-ADL Domain Model Specification, version M.2.1.9 2011-01-30.
[Online]Available:http://www.maenad.eu/public/EAST-ADL-Specification_M2.1.9.pdf

4. Matthias Biehl et al. – Model-based Analysis & Engineering of Novel Architectures for
Dependable Electric Vehicles, MAENAD Grant Agreement 260057.

5. ATL Concepts. [Online]. Available at <: http://wiki.eclipse.org/ATL/Concepts> [Accessed 10
March 2011]

6. Jan Söderberg, founder and chief technical officer of Systemite AB
7. AUTOSAR Specification of Interoperability AUTOSAR Tools V2.0.0 R4.0 Rev 1
8. Cuenot et al. “Managing Complexity of Automotive Electronics Using the EAST-ADL”

12th IEEE International Conference on Engineering Complex Computer Systems(ICECCS
2007)

9. ATLAS group, LINA et al. ATL:Atlas Transformation Language, ATL Starter’s Guide
version 0.1

10. Christian et al. Model Transformation in Eclipse with ATL and EMF Henshin
11. XML Schema to Ecore Mapping June 28, 2004. [Online] Available at:

<http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreM
apping.pdf> [Accessed 10 may 2011]

12. Tolosa et al, Towards Meta-model Interoperability of Models through Intelligent
 Transformations S.Omatu et al (EDs.) : IWANN 2009, Part II, LNCS 5518, p. 312-322,
 2009 @SpringerLink – Verglag Berlin Heidelberg 2009
13. Seidewitz, E. What models mean. IEEE Software 20(5), 26–32 (2003)
14. Ludewig, J. Models in Software Engineering – an introduction. Software and

 Systems Modeling 2(1), 5–14 (2003)
15. Malavolta et al. Providing Architectural Languages and Tools Interoperability

through Model Transformation Technologies IEEE TRANSACTIONS ON SOFTWARE
ENGINEEERING, VOL 36, NO. 1, JANUARY/FEBRUARY 2010

16. Gronmo et al. An Empirical Study of the UML Model Transformation Tool (UMT),
 SINTEF, Norway INTEROP-ESA-First International Conference on Interoperability of
 Enterprise software and Applications, February 23—25 2005, Geneva Switzerland
17. Wagelaar et al. Module Superimposition: a composition technique for rule-based
 model transformation languages Springer-Verlag 2009, SPEACIL SECTION PAPER –
 Revised: 4 Septemeber 2009, Published online: 15 October, 2009
18. Feng et al. Research on Integration of Safety Analysis in Model-Driven Software
 Development
19. Matthias et al. Model Based Development of Safety-Critical Systems Using Template
 Based Code Generation, Technische Universit¨at M¨unchen Garching b. M¨unchen,
 Germany {regensbu,buckl,knoll,schrott}@in.tum.de 13th EEE International Symposium
 on Pacific Rim Dependable Computing, 2007
20. Liegl et al. A Domain Specific Language for UN/CEFACT’s Core Components, Vienna
 University of Technology Favoritenstrasse 9-11/188 A-1040 Vienna, Austria {liegl,
 mayrhofer}@big.tuwien.ac.at, IEEE 2009 World Conference on Services – II
21. Dominguez et. al. A Survey of UML Models to XML Schemas transformation
22. Chen et al. A model Driven XML Transformation Framework for Business
 Performance Management, IEEE 2009
23. M.Regensburger et al. Model Based Development of Safety-Critical Systems Using

http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification%5bv00.01%5d.pdf
http://www.eclipse.org/atl/
http://wiki.eclipse.org/ATL/Concepts
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreM%20%20%20apping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreM%20%20%20apping.pdf
mailto:mayrhofer%7d@big.tuwien.ac.at

46

 Template Based Code Generation On13th IEEE International Symposium on Pacific
 Rim Dependable Computing
24. K. Czarnecki and S. Helsen. Feature-based survey of model transformation
 approaches. IBM Systems Journal, 45(3):621–645, 2006.
25. M.Biehl et al. Integrating Safety Analysis into the Model-based Development Tool
 chain of Automotive Embedded Systems. ACM 978-1-60558-953-4/10/4, 125-131,
 April 13-15, 2010, Stockholm, Sweden
26. Object Model Group(OMG). Meta Object Facility (MOF) 2.0
 Query/View/Transformation Specification, Version 1.1 – January 2011
27. P.Muller et al. On Executable Meta-Languages applied to Model Transformations

 IRISA/INRIA: France , EPFL/IC/UP-LGL: INJ, Swizerland, MIPS: Universite de Haute-

 Alsace, France

28. Dimitrios et al. Eclipse Development Tools for Epsilon. Department of Computer

 Science University of York Heslington, York, YO10 5DD, UK.

29. I.Malavolta et al. Providing Architectural Languages and Ty through Tools

 Interoperability though Model Transformation Technologies IEEE TRANSACTIONS

 ON SOFTWARE ENGINEERING, VOL 36, No. 1, JANUARY/FEBRUARY 2010

30. T.GHERBI et al. MDE between Promises and Challenges, UKSim 2009: 11th

 International Conference on Computer Modeling and Simulation

31. M.v.Amstel et al. An Exercise in Iterative Domain-Specific Language Design.

 Eindhoven University of Technology, IWPSE-EVOL ’10, September 20-21, 2010

 Antwerp, Belgium. Copyright 2010 ACM 978-1-4503-0128-2/09

32. maenad project. [online] Available at :< www.maenad.eu > [Accessed 6 Jun 2011].

33. F.Jouault (Ed.) Model Transformation with ATL, 1st International Workshop, MtATL

 2009. Nantes, France, July 8-9, 2009. Preliminary Proceedings

34. J.E. Rivera et al. Orchestrating ATL Model Transformations, GISUM/Alenea Research
 Group. Universidad de M´alaga (Spain).
 {rivera,daniruiz,fernando,jmbautista,av}@lcc.uma.es
35. Matthias Biehl. Literature Study on Model Transformations. Embedded Control

 Systems. Royal Institute of Technology. Sotckholm, Sweden biehl@md.kth.se, July

 2010

36. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Version

37. Systemite web site. [Online] Avaliable at:www.systemtie.se [Accessed 1, March

 2011]

38. Introduction to Kermeta. [online] Available at:<

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked

/KerMeta-Manual/ch01.html > [Accessed 28 Sep 2011]

39. J.Zhang et. al. A Model Transformation Classification Method Used in QVT, Proceedings of

2008 International Symposium on IT in Medicine and Education

40. J.Dong et. al. QVT BASED MODEL TRASNFORMATION FOR DESIGN PATTERN EVOLUTIONS

41. S.Kolovos et. al. Update Transformation in the Small with the Epsilon Wizard Language

42. O.Nikiforova et. al. Discussing the differences between Model Driven Architecture and Model

Driven Development in the Context of Supporting Tools

43. Eclipse official website : http://www.eclipse.org

http://www.maenad.eu/
http://www.systemtie.se/
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked/KerMeta-Manual/ch01.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.chunked/KerMeta-Manual/ch01.html

47

Appendix A
The SWxml file is the model file originally available for this study. During the research study we

have used it as documentation.

SW.xml

48

49

50

Appendix B – XML Schema meta-models
EAXML developed by KTH

51

SW in XML Schema format

52

Appendix C – The EMF meta-models
These two meta-models were first imported to EMF project and are used to implement the EMF

meta-model.

SW Meta-model

EAXML Meta-model

53

54

55

56

XML Meta-Model

57

Appendix D - ATL Transformation Files

XML2SW.atl

58

59

60

61

62

SW2EAXML.atl

63

64

65

66

67

68

EAXML2SW.atl

69

70

71

72

73

74

75

SW2XML.atl

76

77

78

