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Zonal flow generation in ion temperature gradient mode turbulence
J. Anderson,a) H. Nordman, R. Singh, and J. Weiland
Department of Electromagnetics, EURATOM-VR Association, Chalmers University of Technology,
Göteborg, Sweden

~Received 30 April 2002; accepted 6 August 2002!

In the present work the zonal flow~ZF! growth rate in toroidal ion-temperature-gradient~ITG! mode
turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth
with plasma parameters is examined for typical tokamak parameter values. The physical model used
for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations
whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF
growth is found close to marginal stability and for peaked density profiles and these effects may be
enhanced by elongation. ©2002 American Institute of Physics.@DOI: 10.1063/1.1510450#
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I. INTRODUCTION

The important role played by plasma flows for the redu
tion of energy transport in tokamak regimes of enhan
confinement is now widely acknowledged. Of particular
terest for the improved confinement regimes are the non
early self-generated zonal flows.1 These are radially localized
and strongly sheared flows in the poloidal direction. In e
periments, zonal flow levels above the neoclassical pre
tion has been observed in connection with transport barri2

in the edge~H-mode barrier! and core~internal transport bar-
riers! regions. Due to the strong shear stabilization of
driving instabilities associated with these flows, they are c
cial for the dynamical self-regulation and saturation of t
underlying turbulence and anomalous transport fluxe3

Theoretically, the generation and evolution of zonal flo
due to drift mode turbulence has been extensively studie
recent years, both analytically3–11 and in computer simula
tions using gyrokinetic12–14 and advanced fluid models.15–17

In particular, the gyrokinetic simulations of ITG mode turb
lence reported in the Cyclone work Ref. 18 indicate th
there is a strong excitation of zonal flows close to margi
stability where the nonlinearly generated flows were able
damp out the turbulence resulting in a nonlinear up-shift
the critical temperature gradient needed to obtain trans
for longer time scales.

In the present paper, the excitation of zonal flows
toroidal ion-temperature gradient~ITG! turbulence is studied
analytically. A system of equations is derived which d
scribes the coupling between the background ITG turbule
and the zonal flow modes. The model used is an advan
fluid model for ITG modes19 including effects of elongated
flux surfaces. Previous work using this model indicates t
the ITG growth is rather insensitive to the shape of the fl
surface.20–22 The analytical technique used here closely f
low Ref. 5 where the coupling between the zonal flo
modes, driven by Reynolds stress forces, and the ITG tu
lence is described by a kinetic equation for wave pack
The present work extends the previous study by study

a!Electronic mail: elfja@elmagn.chalmers.se
4501070-664X/2002/9(11)/4500/7/$19.00

Downloaded 12 Oct 2004 to 129.16.87.99. Redistribution subject to AIP 
-
d
-
-

-
c-
s

e
-

.
s
in

t
l
o
n
rt

y

-
e

ed

t
x
-

u-
s.
g

effects of noncircular geometry on the zonal flow grow
rate. The result is an analytical expression for the growth r
of the zonal flow instability in elongated equilibria.

The scaling of the zonal flow growth rate with plasm
parameters is investigated. In particular, the role of plas
elongation on the generation of zonal flow is examined
resonance in the zonal flow excitation level is found close
marginal stability, consistent with the Cyclone work.18 For
peaked density profiles~small en52Ln /LB), there is a sub-
stantially increased excitation of zonal flow when the elo
gation is increased whereas for most other cases the ef
of elongation are weak. Moreover, the zonal flow excitati
grows linearly with the wavenumber for zero collision
damping whereas for nonzero damping the zonal flow ex
tation is significantly reduced.

The paper is organized as follows. In Sec. II the physi
model for the toroidal ITG modes is presented. The eq
tions describing the coupling between the background I
turbulence and the zonal flow modes is presented in Sec
Section IV is dedicated to the results and a discuss
thereof. Finally there is a summary in Sec. V.

II. TOROIDAL ION-TEMPERATURE-GRADIENT
DRIVEN MODES

The description used for toroidal ITG driven modes co
sists of the ion continuity and ion temperature equations. T
effect of parallel ion motion is weak in the reactive mod
and is hence neglected. Magnetic shear can, however, mo
the nonlinear upshift as found in Ref. 10. For simplicit
effects of electron trapping and finite beta effects are
glected in this work. The ion-temperature and ion-continu
equations can be written

]ni

]t
1¹•~nivW E1nivW ! i !1¹•~nivW pi1nivW p i !50, ~1!

3

2
ni

dTi

dt
1niTi¹•vW i1¹•qW i50. ~2!

Here vW E is the EW 3BW velocity, vW ! is the diamagnetic drift
velocity, vW pi is the polarization drift velocity andvW p i is the
0 © 2002 American Institute of Physics
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FIG. 1. The ITG mode growth~normalized to the elec-
tron diamagnetic drift frequency! vs h i with elongation
and en as parameters fort51 and en50.2; k51.0
~diamonds! and k52.0 ~squares! and en52.0; k
51.0 (1 curve) andk52.0 (* curve).
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stress tensor drift velocity andqW i is the ion heat flux. The
derivative is defined asd/dt5]/]t1rscszW3¹f̃•¹ and n,
f, Ti are the ion density, the electrostatic potential and
ion temperature, respectively. In the forthcoming equati
ñ5dn/n0 , f̃5edf/Te , T̃i5dTi /Ti0 as the normalized ion
particle density, the electrostatic potential and the
temperature, respectively,t5Ti /Te , vW !5rscsyW /Ln , rs

5cs /Vci wherecs5ATe /mi , Vci5eB/mic. We also define
L f52(dln f /dr)21, h i5Ln /LTi

, en52Ln /R where R is
the major radius anda i5t(11h i). The perturbed variable
are normalized with the additional definitionsñ
5Ln /rsdn/n0 , f̃5Ln /rsedf/Te , T̃i5Ln /rsdTi /Ti0 as
the normalized ion particle density, the electrostatic poten
and the ion temperature, respectively. The perpendic
length scale and time are normalized tors and Ln /cs , re-
spectively. The geometrical quantities are calculated in
strong ballooning limit@u50, g5g(u50,k)51/k ~Ref. 21!
whereg(u) is defined byvD(u)5v!eng(u)]. Equations~1!
and ~2! can now be simplified to

]ñ

]t
2S ]

]t
2a i

]

]yD¹'
2 f̃1

]f̃

]y
2eng

]

]y
~f̃1t~ ñ1T̃i !!

52@f,n#1@f,¹'
2 f#1t@f,¹'

2 ~n1Ti !#, ~3!

]T̃i

]t
2

5

3
teng

]T̃i

]y
1S h i2

2

3D ]f̃

]y
2

2

3

]ñ

]t

52@f,Ti #1
2

3
@f,n#. ~4!

Here @A,B#5]A/]x]B/]y2]A/]y]B/]x is the Poisson
bracket. Linearizing Eqs.~3! and ~4! and using Boltzmann
distributed electrons (ñi5ñe5f̃) gives
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~v2~12~11t!eng!ky1~v1a iky!k'
2 !f̃1tengkyT̃i50,

~5!

~v1 5
3 tengky!T̃i2~~h i2

2
3!ky1 2

3 v!f̃50. ~6!

The corresponding dispersion relation and solutions are

05v2~11k'
2 !2vkyS 12S 11

10t

3 D eng

2k'
2 S a i1

5

3
tengD D1tengky

2S h i2
7

3

1
5

3
~11t!eng1

5

3
a ik'

2 D , ~7!

v r5
ky

2~11k'
2 !

S 12S 11
10t

3 D eng2k'
2 S a i1

5

3
tengD D ,

~8!

g5
ky

11k'
2 Ateng~h i2h i th!, ~9!

wherev5v r1 ig and

h i th'
2

3
2

1

2t
1

1

4teng
1engS 1

4t
1

10

9t D . ~10!

Effects of finite Larmor radius~FLR! on the linear stability
thresholdh i th are neglected, however, they are importa
when the group velocities are to be determined. The gr
velocities (vg j5]v r /]kj ) are in the long wavelength limi
(k'

2 !1) given by

vgx52kxkyS 11~11h i !t2S 11
5t

3 D engD , ~11!
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vgy5
1

2 S 12S 11
10t

3 D engD . ~12!

The instability of the mean flow in the linear regime sets
when the velocity of the mean flow modulations are close
the group velocities of the small scale wave packet. In Fig
the effects of elongation anden on theh i-mode stability is
illustrated. The growth rate~normalized the electron diamag
netic drift frequency! as a function ofh i with elongation~k!
anden as parameters is displayed. The results are shown
t51 anden50.2; k51.0 ~diamonds! andk52.0 ~squares!,
anden52.0; k51.0 (1 curve) andk52.0 (* curve).

III. THE WAVE KINETIC EQUATION AND ZONAL FLOW
EVOLUTION

In this section the problem of how to construct the ad
batic invariant in ITG driven turbulence and deriving th
evolution equations for zonal flows and ITG perturbations
summarized. The method has been described in detail in
5 ~and references therein! and only a brief summary is give
here. An alternative statistical approach, resulting in a mo
fied wave kinetic equation@see Eq.~25! below#, is presented
in Ref. 11 which also contains an extensive discussion of
comparison with the approach used here. In describing
large scale plasma flow dynamics it is assumed that there
sufficient spectral gap between the small scale fluctuat
and the large scale flow. The electrostatic potential is rep
sented as a sum of fluctuating and mean quantities

f~X,x,T,t !5F~X,T!1f̃~x,t !, ~13!

whereF(X,T) is the mean flow potential. The coordinat
(X,T), (x,t) are the spatial and time coordinates for t
mean flows and small scale fluctuations, respectively. F
Eqs.~3! and ~4! we get after neglecting the FLR nonlinear
ties

]f̃

]t
1~12~11t!eng!

]f̃

]y
2teng

]T̃i

]y
52@F,ñ#, ~14!

]T̃i

]t
2

7

3
teng

]T̃i

]y
1S h i2

2

3
~11t!engD ]f̃

]y
52@F,T̃i #.

~15!

Here, the interaction between the ITG perturbations h
been omitted@see discussion after Eq.~25!#. In order to de-
termine the generalized wave action densityNk5uCku2 we
introduce the normal coordinatesCk5f̃k1akT̃i , whereak

is to be calculated. Multiplying Eq.~15! by ak and adding it
to Eq. ~14! gives

]

]t
~f̃k1akT̃ik!1S 12~11t!eng1akS h i2

2

3
~11t!engD D

3
]f̃k

]y
2S 7

3
tengak1tengD ]T̃ik

]y
52@F,f̃k1akT̃ik#.

~16!

The normal coordinates are found if the equation is rewrit
as in Ref. 5
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]Ck

]t
1Vk

]Ck

]y
52@F,Ck#, ~17!

where

Vk512~11t!eng1ak~h i2
2
3 ~11t!eng!, ~18!

ak52

7t

3
engak1teng

Vk
, ~19!

which gives

ak5

2
1

2 S 12eng1
4t

3
engD1 iAeng~h i2h i th!

h i2
2

3
~11t!eng

. ~20!

The linear relations betweenf̃k and T̃ik enables one to ex
pressCk andNk as

Ck5f̃k1akT̃ik5
2igk

Dk1 igk
f̃k , ~21!

Nk5uCku25
4gk

2

Dk
21gk

2 uf̃ku2, ~22!

Dk5
ky

2 S 12eng1
4t

3
engD , ~23!

gk5kyAeng~h i2h i th!. ~24!

Equations~21!, ~22!, and~24! describe the normal variables
the adiabatic invariant found from the normal variables a
the linear ITG growth rate, respectively. The wave kine
equation~see Refs. 5, 23, and 24! for the generalized wave
action Nk in the presence of mean plasma flow due to
interaction between mean flow small scale fluctuations is

]

]t
Nk~x,t !1

]

]kx
~vk1kW•vW g!

]Nk~x,t !

]x

2
]

]x
~kW•vW g!

]Nk~x,t !

]kx
5gkNk~x,t !2DvNk~x,t !2. ~25!

In this analysis it is assumed that the RHS is approxima
zero ~stationary turbulence!. The role of nonlinear interac
tions among the ITG fluctuations~here represented by a non
linear frequency shiftDv! is to balance linear growth rate. I
the case whengkNk(x,t)2DvNk(x,t)250, the expansion of
Eq. ~25! is made under the assumption of small deviatio
from the equilibrium spectrum function;Nk5Nk

01Ñk where
Ñk evolves at the zonal flow time and space sc
(V,qx ,qy50), as

2 i ~V2qxvgx1 igk!Ñk5ky

]2

]x2 F
]Nk

0

]kx
, ~26!

Ñk52qx
2ky

]Nk
0

]kx

i

V2qxvgx1 igk
. ~27!

The evolution equations for the zonal flows is obtained a
averaging the ion-continuity equation over the magnetic fl
license or copyright, see http://pop.aip.org/pop/copyright.jsp



4503Phys. Plasmas, Vol. 9, No. 11, November 2002 Zonal flow generation in ion temperature gradient mode turbulence
FIG. 2. The ZF growth~normalized to the ITG mode
growth! vs en with elongation as parameter forh i54,
t51, qxr50.3, m50 and k51.0 (1 curve); k
52.0 (* curve).
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surface and over fast scales including a damping term.25 Tak-
ing the average of the continuity equation over fast sm
scales, employing quasineutrality, gives the evolution eq
tion of the mean flow as

]

]t
¹x

2F2m¹x
4F5~11t!¹x

2K ]

]x
f̃k

]

]y
f̃kL

1t¹x
2K ]

]x
f̃k

]

]y
T̃ikL , ~28!

where it is assumed that only the small scale self interact
are the important interactions in the RHS.26 Here, m
50.78n i i A(r /R) andn i i 510212ni /Ti

3/2, wherem is the col-
lisional damping,n i i is the ion–ion collision frequency, an
Ti is the ion temperature in electron volts.27,28 Using typical
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tokamak parameters (Ti5Te510 keV, ni5ne51020 m23,
r 51 m, R53 m) it is found thatm'50. Expressing the
Reynolds stress terms in Eq.~28! in Nk we obtain

~2 iV2mqx
2!F5~11t1td!E d2kkxkyuf̃ku2, ~29!

whered is a k independent factor

d5
Dkky

Dk
21gk

2 S h i2
2

3
~11t!engD . ~30!

Utilizing Eqs. ~22!, ~27!, and~29! gives
FIG. 3. The ZF growth~normalized to the ITG mode
growth! vs elongation~k! with en as parameter forh i

54, t51, qxr50.3, m50 and en50.1 (1 curve);
en51.0 (* curve) anden52.0 ~squares!.
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FIG. 4. The ZF growth~normalized to the ITG mode
growth! vs m with elongation as parameter forh i54,
t51, qxr50.3, en51.0 and k51.0 (* curve); k
52.0 (1 curve).
e

ve

-

~2 iV2mqx
2!52 iqx

2~11t1td!
Dk

21gk
2

4gk
2 E d2kky

2kx

3
]Nk

0

]kx

qxvgx

V2qxvgx1 igk
, ~31!

wherekxky is substituted using the group velocity as

2kxky5
vgx

11~11h i !t2S 11
5t

3 D en

.

It is now assumed that the short scale turbulence is clos
Downloaded 12 Oct 2004 to 129.16.87.99. Redistribution subject to AIP 
to

marginal stability~or stationary state,gk is small!. Integrat-
ing by parts inkx and assuming a monochromatic wa
packetNk

05N0d(k2k0) gives

~V1 imqx
2!~V2qxvgx!

252qx
2~11t1td!

3
Dk

21gk
2

4gk
2 ky

2N0V. ~32!

In the special case ofm50, the third order dispersion rela
tion for zonal flowV reduces to
FIG. 5. The ZF growth~normalized to the ITG mode
growth! vs qx with elongation andm as parameters for
h i54, t51, en51.0 andm50 k51.0 (* curve) and
k52.0 ~diamonds!; m550 k51.0 (1 curve) andk
52.0 ~squares!.
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V5qxvgx1 iqxkyA~11t1td!
Dk

21gk
2

4gk
2 N0. ~33!

In expressing the zonal flow growth in dimensional for
making use of the relation (Dk

21gk
2)/(4gk

2)N05uf̃u2 it is
assumed that the mode coupling saturation level is reach29

f̃5
g

v!

1

kyLn
. ~34!

IV. RESULTS AND DISCUSSION

An algebraic equation~32! describing the zonal flow
growth rate including the effects of elongation is derive
The third-order dispersion relation is solved numerically a
the zonal flow growth rates are compared to the linear to
dal ITG growth rates.

In Fig. 2 the zonal flow growth rate~normalized to the
ITG growth rate! as a function ofen(52Ln /LB) is displayed
with elongation~k! as parameter forh i54, t51, qx50.3,
m50. The results are shown fork51 (1curve) andk
52 (* curve). We note that a strong excitation of zon
flows ~with g/g ITG>1) is obtained for smallen where a
resonance is found. Similar results have been reported ea
in analytical calculations10 and in the Cyclone nonlinear~col-
lisionless, electrostatic! numerical calculations of ITG mod
turbulence.14 In the numerical calculations there were a no
linear up-shift in the linear threshold fromR/LT'4 to
R/LT'6 and the other parameters wereen50.9, t51. The
zonal flow growth is increased with increased elongation
small en .

Next, the effects of elongation anden on the zonal flow
growth rate is studied. Figure 3 shows the zonal flow grow
rate ~normalized to the ITG growth rate! as a function ofk
with en as parameter andh i54 and the other parameters
in Fig. 2. For peaked density profiles the zonal flow grow
rate is increased with elongation andg/g ITG>1 is obtained
whereas for flat density profiles~largeen) the effects of elon-
gation on the zonal flow growth are rather weak.

Figure 4 illustrates the effect of collisional damping~m!
and elongation on the zonal flow growth~normalized to the
ITG growth rate!. The normalized zonal flow growth rat
is shown as a function ofm with k as a parameter. Th
other parameters are as in Fig. 3 withk51 (* curve) and
k52 (1curve). The zonal flow growth rate is decreased
the damping is increased and the effects of elongation
weak in this parameter regime. Form550 ~typical value! a
reduction of zonal flow growth with approximately 50%
obtained.

In Fig. 5 the zonal flow growth rate as a function of th
zonal flow wave numberqx with elongation and damping a
parameters is displayed. The other parameters are as in F
with m50; k51 (* curve), andk52 ~diamonds! whereas
m550; k51 (1curve), andk52 ~squares!. The effect of a
nonzero damping is strong on the zonal flow growth rate
for zero damping the growth rate is linearly dependent
qx . Moreover, the effects of elongation are small.
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V. SUMMARY

An algebraic equation which describes the zonal fl
growth rate in the presence of toroidal ITG turbulence
elongated equilibria is derived and solved numerically in
strong ballooning limit. The model for the ITG driven mod
is based on the ion-continuity and the ion-temperature eq
tions. The present model is electrostatic and effects of tr
ping are neglected. The evolution of zonal flows is describ
by the vorticity equation and the time evolution of the ad
batic invariant in toroidal ITG turbulence is determined
the wave kinetic equation. This gives a system of equati
that couples the zonal flow and the ITG driven mode pert
bations.

A strong generation of zonal flows is obtained f
peaked density profiles. The effects of elongation on the g
eration of zonal flows for realistic tokamak parameters
rather weak for flat density profiles, however, a resonanc
the zonal flow generation is found close to marginal stabi
as in Ref. 10 which is consistent with the results reported
Ref. 14. For peaked density profiles, a strong excitation
zonal flows is found withg/g ITG>1. When damping is in-
cluded in the model there is a significant reduction in t
zonal flow generation for increasing zonal flow radial wav
numbers whereas for zero damping the zonal flow genera
is linearly dependent on the radial wavenumber.

In short, this work indicates that for most parameter
gimes, the effects of elongation on zonal flows driven
pure ITG modes are rather weak. However, the total effec
transport levels and turbulence may be significant since th
is a resonance in the generation of zonal flows and this ef
may be enhanced by elongation.
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