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Zonal flow generation in ion temperature gradient mode turbulence
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In the present work the zonal flo@@F) growth rate in toroidal ion-temperature-gradi€G) mode
turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth
with plasma parameters is examined for typical tokamak parameter values. The physical model used
for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations
whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF
growth is found close to marginal stability and for peaked density profiles and these effects may be
enhanced by elongation. @002 American Institute of Physic§DOI: 10.1063/1.1510450

I. INTRODUCTION effects of noncircular geometry on the zonal flow growth
rate. The result is an analytical expression for the growth rate
The important role played by plasma flows for the reduc-of the zonal flow instability in elongated equilibria.
tion of energy transport in tokamak regimes of enhanced  The scaling of the zonal flow growth rate with plasma
confinement is now widely acknowledged. Of particular in- parameters is investigated. In particular, the role of plasma
terest for the improved confinement regimes are the nonlinelongation on the generation of zonal flow is examined. A
early self-generated zonal flowdhese are radially localized resonance in the zonal flow excitation level is found close to
and strongly sheared flows in the poloidal direction. In eX-marginal stability, consistent with the Cyclone wdfkFor
periments, zonal flow levels above the neoclassical predicpeaked density profilesmall ,=2L,/Lg), there is a sub-
tion has been observed in connection with transport ba%rier‘?stantia”y increased excitation of zonal flow when the elon-
in the edgg(H-mode barrierand corelinternal transport bar-  gation is increased whereas for most other cases the effects
riers) regions. Due to the strong shear stabilization of theof elongation are weak. Moreover, the zonal flow excitation
driving instabilities associated with these flows, they are crugrows linearly with the wavenumber for zero collisional

cial for the dynamical self-regulation and saturation of thedamping whereas for nonzero damping the zonal flow exci-
underlying turbulence and anomalous transport flixes.tation is significantly reduced.

Theoretically, the generation and evolution of zonal flows The paper is organized as follows. In Sec. Il the physica|
due to drift mode turbulence has been extensively studied ifhodel for the toroidal ITG modes is presented. The equa-
recent years, both analytically* and in computer simula- tions describing the coupling between the background ITG
tions using gyrokineti**and advanced fluid model$™*"  turbulence and the zonal flow modes is presented in Sec. .
In particular, the gyrokinetic simulations of ITG mode turbu- Section IV is dedicated to the results and a discussion
lence reported in the Cyclone work Ref. 18 indicate thathereof. Finally there is a summary in Sec. V.

there is a strong excitation of zonal flows close to marginal

stability where the nonlinearly generated flows were able to

damp out the turbulence resulting in a nonlinear up-shift in!l: TOROIDAL ION-TEMPERATURE-GRADIENT

the critical temperature gradient needed to obtain transpoRR'VEN MODES

for longer time scales. The description used for toroidal ITG driven modes con-
In the present paper, the excitation of zonal flows bysists of the ion continuity and ion temperature equations. The
toroidal ion-temperature gradiefiT G) turbulence is studied gffect of parallel ion motion is weak in the reactive model
analytically. A system of equations is derived which de-anq js hence neglected. Magnetic shear can, however, modify
scribes the coupling between the background ITG turbulencgye nonlinear upshift as found in Ref. 10. For simplicity,
and the zonal flow modes. The model used is an advancegkects of electron trapping and finite beta effects are ne-

fluid model for ITG mode¥ including effects of elongated glected in this work. The ion-temperature and ion-continuity
flux surfaces. Previous work using this model indicates thagquations can be written

the ITSzog(gwth is rather insensitive to the shape of the flux an

surfaceS""““ The analytical technique used here closely fol-  °%i = s nA o Y

low Ref. 5 where the coupling between the zonal flow 4t TV (et MU )+ V- (N0 + N0 7i) =0, @
modes, driven by Reynolds stress forces, and the ITG turbu- dT
lence is described by a kinetic equation for wave packets. !

—ni_+niTiV'Ji+V'qi:O. (2)
The present work extends the previous study by studying 2 dt

Here 5 is the EXB velocity, 7, is the diamagnetic drift
dElectronic mail: elfla@elmagn.chalmers.se velocity, v,; is the polarization drift velocity and ,; is the
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stress tensor drift velocity ang is the ion heat flux. The (0= (1—(1+7) €Q)ky+ (0 + aiky)kf)ZSJr rengkﬁ'i=0

derivative is defined ad/dt=d/dt+pcsZX V-V andn, (5)
¢, T; are the ion density, the electrostatic potential and the
ion temperature, respectively. In the forthcoming equationgw -+ %rengkyﬁ'i—((ni— Dk, + 2w)$=0. (6)

fi=on/ng, p=edplIT,, T;=5T,IT,, as the normalized ion
particle density, the electrostatic potential and the io
temperature, respectivelyr=T;/T., 0U.=psCsY/Ln, ps
=c¢/Q¢ wherecs=T./m;, Q;=eB/m;c. We also define 0=w?(1+k?)— wky< 1-
Li=—(dInf/dr)™*, p=L,/Lt, €=2L,/R whereR is

the major radius and; = 7(1+ »;). The perturbed variables
are normalized with the additional definitiongi
=Ln/psdning, d=L,lpeddITe, Ti=L,/psdT;IT;y as

the normalized ion particle density, the electrostatic potential + §(1+ 7)eng+ Eaik2 ) 7
and the ion temperature, respectively. The perpendicular 3 3

length scale and time are normalizedggandL,/cg, re-

nl he corresponding dispersion relation and solutions are

107
1+ —

3 Eng

—kf

5 ) 7
ai+§7'6ng + 7engk; 773

spectively. The geometrical quantities are calculated in the _ Ky 5 1_(1+ &) eng— K| a;+ ?TE g))
strong ballooning limif #=0, g=g(6=0,x)=1/x (Ref. 21) T 2(1+kD) e D A
whereg(6) is defined bywp(6) = w,€,9(6)]. Equations(1) (8)
and(2) can now be simplified to
y
~ Y= 70z V77— 7itn), 9
7 (a a)Vz%‘w © (BT pe
gt \at a'&y + ay nd ady T ' wherew=w,+iy and
=—[¢.n]+[$,VIp]+ 15, VI(N+T))], () 2 1 1 1 10
nim~———+—+eng(—+—). (10
~ ~ ~ 3 2 4 4 9
.5 4T, 2\ gd 2 o T 4Tend ToeT
- §T€ngﬁ+ 39y T3t Effects of finite Larmor radiu$FLR) on the linear stability
threshold »;;, are neglected, however, they are important
= [T+ E[d) n] 4) when the group velocities are to be determined. The group
e gET velocities @ 4;=dw, /JkK;) are in the long wavelength limit

_ _ (k*<1) given by
Here [A,B]=dAldxdBldy— dAldydBlax is the Poisson

bracket. Linearizing Eqs(3) and (4) and using Boltzmann

distributed electronsi,=T,= ¢) gives Dgi= Ky

57
1+(1+7]i)7_(1+? eng), (12
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1 10r IV oy

Ugyzz(l_ 1+ T) Eng>. (12 T-FVkW:—[(I),\I’k], 17
The instability of the mean flow in the linear regime sets inwhere
when the velocity of the mean flow modulations are close to 5
the group velocities of the small scale wave packet. In Fig. 1~ Vk=1—(1+ 1) eg+aw(ni— 5(1+7)€,9), (18)
the effects of elongation anel, on the »;-mode stability is 7s
illustrated. The growth ratehormalized the electron diamag- —epgay+ 7€
netic drift frequencyas a function ofy; with elongation(x) a=— 3 , (19)
and e, as parameters is displayed. The results are shown for Vi
7=1 ande,=0.2; k=1.0 (diamond$ and = 2.0 (square} which gives

ande,=2.0; k=1.0 (+ curve) and«=2.0 (* curve).
1

47 )
- E( 1-e, 0+ ?Eng) +iVeng(7i— mitn)
I1l. THE WAVE KINETIC EQUATION AND ZONAL FLOW ay=

2
EVOLUTION ni— g( 1+7)eng

(20

In this section the problem of how to construct the adia- ] ) ~ ~
batic invariant in ITG driven turbulence and deriving the 1€ linear relations betweegi and T enables one to ex-

evolution equations for zonal flows and ITG perturbations isP"€SSW« andN, as

summarized. The method has been described in detail in Ref. _ _ 2y ~

5 (and references thergiand only a brief summary is given W= ot anTi=3—7 - ¢ (21)

here. An alternative statistical approach, resulting in a modi- KTk

fied wave kinetic equatiofsee Eq(25) below], is presented Ye -

in Ref. 11 which also contains an extensive discussion of and  Nk= |‘1’k|2:W| bil, (22

. . " kT Yk

comparison with the approach used here. In describing the

large scale plasma flow dynamics it is assumed that there is a Ky 4t

sufficient spectral gap between the small scale fluctuations Ak:?( 1-eng+ ?Eng)' (23)

and the large scale flow. The electrostatic potential is repre-

sented as a sum of fluctuating and mean quantities Yk= Ky Ve€nd( 7= 7ith)- (24)
HOXGX T =D(X, T)+ d(x,t), (13 Equations(21), (22), and(24) describe the normal variables,

. . ) the adiabatic invariant found from the normal variables and
where®(X,T) is the mean flow potential. The coordinates the jinear ITG growth rate, respectively. The wave kinetic
(X,T), (x,t) are the spatial and time coordinates for theequation(see Refs. 5, 23, and R4or the generalized wave
mean flows and small scale fluctuations, respectively. Fromtion N, in the presence of mean plasma flow due to the

Egs.(3) and(4) we get after neglecting the FLR nonlineari- interaction between mean flow small scale fluctuations is
ties

- - ~ &N( 0+ d ( kG )é’Nk(X,t)
d d JT; —r Nk(X, T (W TK-Vg) — 7
O (e Y reg D = [om], s P ke v
at ay ay
9 . IN(x.t) ,
W oT 2 b_ o= ~ ox (K00~ — = N —AN(x.D)* (29)
ot 3 gy T 3(1+7)eng Y [®,Ti].

(15) In this analysis it is assumed that the RHS is approximately
zero (stationary turbulende The role of nonlinear interac-
Here, the interaction between the ITG perturbations havéions among the ITG fluctuatior{sere represented by a non-
been omittedsee discussion after EQR5)]. In order to de- linear frequency shifAw) is to balance linear growth rate. In
termine the generalized wave action densily=|¥,|?> we  the case wheny,Ny(x,t) — AwN,(x,t)2=0, the expansion of
introduce the normal coordinates, = ¢, + a, T;, wherea,  Eq. (25 is made under the assumption of small deviations

is to be calculated. Multiplying E15) by a, and adding it from the equilibrium spectrum functiol,=Np+ N, where

to Eq.(14) gives N, evolves at the zonal flow time and space scale
J ~ ~ 2 (Q1arQy:0)- as
(Bt aTi) +| 1= (14 neg+ a7~ 3(1+ 7)€ | o 2N
~ ~ _l(Q_qxvgx+|7k)Nk:ky_2q)_y (26)
e (7 5T B B axc kg
XW—(gTengak-i- Teng>W:—[(I),¢k+akTik]. N 2k ﬂN(k) | (27)
(16) k=T 0y Ky Q_qxvgx'i'i'yk.
The normal coordinates are found if the equation is rewritterThe evolution equations for the zonal flows is obtained after
asin Ref. 5 averaging the ion-continuity equation over the magnetic flux
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surface and over fast scales including a damping térfak-  tokamak parametersT(=T,=10 keV, nj=n,=10"m"3,
ing the average of the continuity equation over fast smalk=1m, R=3m) it is found thatu~50. Expressing the

scales, employing quasineutrality, gives the evolution equareynolds stress terms in E8) in N, we obtain
tion of the mean flow as

9 v2p— VD o[ 9~ 9~ N 2k ke 1T |2
&th‘D puVi®@=(1+1)V; &x¢kay¢k (—i1Q—uq)®=(1+7+76) | d°kkky|eyl?, (29
o 0~ J= . .
+ 7V 5¢kWTik , (28)  wheredis ak independent factor
where it is assumed that only the small scale self interactions Ak 2
are the important interactions in the RES.Here, u 5=%(77i—§(1+7)eng). (30)
=0.78v;; J(r/R) and v;; =10 '?n, /T2 wherey is the col- Al vk

lisional damping,v;; is the ion—ion collision frequency, and
T, is the ion temperature in electron vofts?® Using typical ~ Utilizing Egs. (22), (27), and(29) gives
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4
Yk packetNO=Nyd(k—ko) gives
EIN v
Xk, e ) - ol 2
¥ ~Oxgex 1%k (Q+I/“qu)(Q_QXUQX) =—0Ox(1+7+179)
wherek,k, is substituted using the group velocity as 2, .2
2 e (32
—k.k = Ygx 4yi Y
Xy 57
1+(1+n)7— 1+? €n

In the special case g&=0, the third order dispersion rela-
It is now assumed that the short scale turbulence is close tioon for zonal flow() reduces to
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An algebraic equation which describes the zonal flow
growth rate in the presence of toroidal ITG turbulence in
In expressing the zonal flow growth in dimensional form elongated equ_ilibrig i§ derived and solved numer_ically in the
making use of the reIationA(ﬁJr V) (4v2)No=|B|? it is _strong balloonlng limit. T.he.model for t.he ITG driven mode
assumed that the mode coupling gaturat?on level is reé%hedf’ based on the ion-continuity and the ion-temperature equa-
ions. The present model is electrostatic and effects of trap-
ping are neglected. The evolution of zonal flows is described
b= R 1 (34) by the vorticity equation and the time evolution of the adia-
o, kL, batic invariant in toroidal ITG turbulence is determined by
the wave kinetic equation. This gives a system of equations
that couples the zonal flow and the ITG driven mode pertur-
IV. RESULTS AND DISCUSSION bations.
i ) o A strong generation of zonal flows is obtained for
An algepra|c gquat|or(32) describing th? zo_nal fI(_)w peaked density profiles. The effects of elongation on the gen-
growth_ rate mclgdmg t.he effec;ts 9f elongation 'S derlVed'eration of zonal flows for realistic tokamak parameters are
The third-order dispersion relation is solved numgrlcally anqrather weak for flat density profiles, however, a resonance of
the zonal flow growth rates are compared to the linear toroig,q ;o4 flow generation is found close to marginal stability
dal ITG _growth rates. . as in Ref. 10 which is consistent with the results reported in
In Fig. 2 the zonal floyv growth rate"lormgllzgd to the Ref. 14. For peaked density profiles, a strong excitation of
IT_G growth r_ate) as a function ok,(=2L,/Lpg) is displayed zonal flows is found withy/ ;7= 1. When damping is in-
with elongation(x) as parameter fo;=4, 7=1, ,=0.3, ) 4eq in the model there is a significant reduction in the
n=0. The results are shown fok=1(+curve) andx o0 fiow generation for increasing zonal flow radial wave-

. o
fTZ( qur\]/e)'/ We>nlote. that: a stdrofng excr:itlonhof Zonalnumbers whereas for zero damping the zonal flow generation
ows (wit VY= ) IS 0 tained for smalk, where a _is linearly dependent on the radial wavenumber.

resonance is found. Similar results have been reported earlier | 1ot this work indicates that for most parameter re-

in analytical calculation’d and in the Cyclone nonlinecol- gimes, the effects of elongation on zonal flows driven by

L|S|gn:ess,eﬁllecttrhostat)mur_neTcall ca:liglat|({[rr1]s of ITG mode pure ITG modes are rather weak. However, the total effect on
urbuience. ‘1n the numerical calcuiations there were a non'transport levels and turbulence may be significant since there

linear up-shift in the linear threshold frorR/L;~4 to is a resonance in the generation of zonal flows and this effect
R/Ly~6 and the other parameters wetg=0.9, 7=1. The may be enhanced by elongation

zonal flow growth is increased with increased elongation for

2 2 V. SUMMARY
. Aj+ vk
Q=q,vgtiguky (1+r+75)—472 No. (33
k

small e, .
Next, the effects of elongation arg} on the zonal flow IA. Hasegawa, C. G. Maclennan, and Y. Kodama, Phys. FREI®122
o . . (1979.
growth rate is studied. Figure 3 shows the zonal ﬂow growthzg ¢ Bell, F. M. Levinton, S. H. Bathat al, Phys. Rev. Lett81, 1429
rate (normalized to the ITG growth rateas a function of« (1998.

with €, as parameter ang;=4 and the other parameters as jH- Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluid2B1 (1990.

in Fig. 2. For peaked density profiles the zonal flow growth 5/'1' 'I'"SDn'q"’(‘)'E(;’llgva”F?E Bbi;r:nn;h Zhﬁ'dF’\'/‘I"o\'/s ],3' ;fff(}el\?gghys Plasthas
rate is increased with elongation amdly;rc=1 is obtained 39872000, ' o ' '
whereas for flat density profiléiargee,) the effects of elon-  °L. Chen, Z. Lin, and R. White, Phys. Plasnigs3129(2000.

gation on the zonal flow growth are rather weak. AL Smolyakov, P. H. Diamond, and M. Malkov, Phys. Rev. L8#, 491

Figure 4 illustrates the effect of collisional dampit)g) gl(\iOOAQ'Melkov P. H. Diamond, and A. I. Smolyakov, Phys. Plasnas

and elongation on the zonal flow growthormalized to the  1553(2001. ' o ' '

ITG growth rate. The normalized zonal flow growth rate °P.N. Guzdar, R. G. Kleva, and L. Chen, Phys. PlasB)a&59 (2002).
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