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A comparison of drift wave stability in stellarator and tokamak geometry
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The influence of plasma geometry on the linear stability of electrostatic ion-temperature-gradient
driven drift modegITG or »;=L,/Ly; mode$ is investigated. An advanced fluid model is used for

the ions together with Boltzmann distributed electrons. The derived eigenvalue equation is solved
numerically. A comparison is made between an H-1FEsion Technoll7, 123 (1990] like
stellarator equilibrium, a numerical tokamak equilibrium and the analydieat equilibrium. The
numerical and the analytical tokamak are found to be in good agreement in the low inverse aspect
ratio limit. The growth rates of the tokamak and stellarator are comparable whereas the modulus of
the real frequency is substantially larger in the stellarator. The threshojdfor the stellarator is

found to be somewhat larger. In addition, a stronger stabilization of the ITG mode growth is found
for large e,(=L,/R) in the stellarator case. @002 American Institute of Physics.

[DOI: 10.1063/1.1466820

I. INTRODUCTION model. The numerical equilibria employed are generated by
the VMEC code®

One of the main unsolved questions in fusion research is  In this analysis, good agreement is found in comparisons
to understand the anomalously high cross field particle andf the analytical and the numerical tokamak results for small
energy transport in magnetically confined plasthag re-  and intermediate radial positions. These results are con-
cent years, substantial efforts have been made towards teasted to the comparisons of the geometry dependent quan-
deeper understanding of these issues. tities, the magnetic drift frequency and the perpendicular

One of the most important problems remaining is thewave vector. The growth rates in the tokamak and stellarator
effects of three-dimensionaBD) geometry of stellarators are comparable, whereas the modulus of the real frequency is
and tokamaks, since most of the previous studies have uséybstantially larger for the stellarator, which is cause_d by the
simplified magnetic field configurations. The geometry af-Stronger curvature for the stellarator. The thresholdirior

fects the magnetic drift frequency, and the perpendicular antpe stellarator is somewhat larger. In addition, a stronger sta-

parallel space variation, and thus change the regions of fapilization of the ITG mode growth is found for largs, in

vorable and unfavorable curvature. the stellarator case, this is due to the negative local magnetic

Among the drift waves, the ion—temperature—gradientShe""r.In the stellarator. . . .
(ITG or =L, /L) driven mod&-8is one of the main can It is often assumed that there is a relationship between
i~ bEnlkTi -

didates for explaining the anomalous transport in the Corthe linear growth r_ate_ an_d the no_nli_negr turbulen_ce level. In
plasma Ff_?ef. 12 there are indications of limitations for this assump-
s - . tion, due to the effects of zonal flows. Zonal flows, radially
Prevpus \_N,mk on stability pfni—modes include S(_)me localized and strongly sheared flows in the poloidal direction
yvork on 5|m_pI|f|ed tokamak equn_l_bﬂ{f and, to a more !'m' are commonly believed to be responsible for the turbulence
ited extent, in full stellarator equilibrialn recent investiga-

X suppression and enhancement of confinement in toroidal de-
tions, a full 3D tokamak geometywas used to calculate \ices The results reported in Ref. 12 suggests that zonal

the 7;-mode stability. flows may cause a nonlinear up-shift in the critical tempera-
With inclusion of the nonlinear terms, the model usedyyre gradient needed to obtain transport for longer time

here has been successful in reproducing experimérstatl  scales. This is, however, out of the scope of the present pa-

nonlinear gyrokinetic result$. The drift wave sensitivity to per.

effects of geometry is strongly dependent on the fluid closure  The remainder of the paper is structured in the following

and thus it is essential to study the effects of geometry wittway. In Sec. Il the physical model and the equilibria are

an advanced fluid modéf. presented. The results and a discussion thereof is presented
In the present paper a comparative investigation of then Sec. Ill. Finally, we summarize the work in Sec. IV.

linear »;-mode stability on geometry is displayed for three

different cases, namely the H—1Mfstellarator, a numerical |l. DRIFT WAVE MODEL AND MAGNETIC FIELD

circular 3D tokamak and an analyticBl« equilibrium CONFIGURATION

For the ions, we employ an advanced fluid motfet®!”
3Electronic mail: elffa@elmagn.chalmers.se whereas the electrons are assumed to be Boltzmann distrib-
YElectronic mail: elfmp@elmagn.chalmers.se uted.
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The model equations are solved using numerical equilib-

ria and a generalize&-« model equilibrium, which allows V- (nju,))= T Upj- VP, 9
for the choosing of the global she&and safety factoqg as !
free parameters. where 6P; (j=i,e) is the perturbed pressure ang; is the

First we consider the fluid model consisting of the ion magnetic drift velocity at the thermal speed, i.e.,
continuity, the parallel momentum and the ion energy equa-

S L T, |¢XVB
tion in the electrostatic limit, s ] ! =
UD| miQCi B +e||><K y (10)
an;
(9—,['+V~(niﬁE+ Niv.i)+ V- (Nivp+Niv )+ V-(njv;)=0, where k=(e;-V)e, is the curvature vector. Additional cur-
(1) vature relations arise in Eq6l) and(2) as

v V-G,i= 2 G VT+5 ioi- VT 11

min — + Vit nieV¢=0, @) T e T g e T D
q.

3 dT; . . V-ie=2 5. .. V. 12
Enid_tl+niTiV'Ui+V'qi:0. (3) E Tj Di ¢ ( )

Assuming a perturbation of the form ' and using the
continuity equation foWV - v; in the energy equation, the con-
vective diamagnetic effects cancel out and the energy equa-
tion becomes

Here,n; is the ion particle densityp;=n;T; is the ion pres-
sure,T; is the ion temperature,; is the parallel ion velocity,
¢ is the electrostatic potential, amg; is the ion mass. The
convective derivative is defined ad/dt= (d/dt) + (v

+3,:)- V. The diamagnetic drift anE x B drifts are defined i o 200 0.2 \ed 13
as Ti N 5 3 no w 3 i Te '
w— 5 wWp.
c 3
g = X ’ . . .
Ui eniB(eH VP, “@ The parallel ion equatiof) gives
2
. c R Cs ep 14p;
Te=g(exVe), (5 vi= e (T_e_'—;E : (14)

where e is the chargec is the speed of light, an@, ~ Here we haver=T¢/T;. Substituting(13) and(14) into (1)
:|§/||§| is a unit vector along the magnetic field. The drift and using quasineutrality and Boltzmgnn d|str|bute_d elec-
7. is the stress tensor drift, cf. p. 20, Ref. 16, and the polfons oni/ng= éne/ng = e¢/T, we arrive at the eigen-

larization driftv, is defined as value equation
1 ,.\ed
2 2 _
: > = cs(e-V)9 1+ —+F
Up= | =+0v;-V]|(eXv;), (6) st T
P Qci ot i ( II i T e
where v; is the total ion drift velocity and the cyclotron =—w(w—w*e)%-i-w(rwn—wkfpg)
frequency is given by).;=eB/m;c. Here we express the Te '
divergence as 1 .\ed
X1+ —+F|—, (15)
V(n*+n*)v(ni ﬁ(ex”) T Te
(NG i+ NG )=V | —— — o) |,
iYpi iV i Qci ot I i where

where we substitutég andv,; for ;. The part due tajg R w 2 w2
corresponds to the polarization drift velocity, and the part F= —5<§_+ ® (g— ﬂi))- (16)
due tov,; is the lowest order finite Larmor radiu§LR) w— 30p,

term. We then obtain

Employing the standard high- ballooning mode

0 ed pg 9 formalism!® we obtain a second order eigenvalue equation
V(iU i+ N0 ) = —nipgﬁAT—— T EAépi . (7)  for the potentialg in the extended ballooning mode coordi-
€ € nateé,

wherep,=c,/Q.; andcs=+T./m; andA is the Laplacian.

: i S 1 27'(1)Di
The diamagnetic ion heat flux is given by (e,-V)2d= —h( ( 1— 5 A— - +kipg)®, (17)
N . 5 CTini
Gi=0vi=5 g @xVTi. (8  whereQ= w/w,, and we have
The ion temperature fluctuations equations couple to @gs. d=|1+ E+ = % (18)
and(2) through T Te
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10 @p, fulfills V-B=0 andB-V=0=B-Va which is equivalent
1- 3 o to the fact thaty and « are stream functions of the magnetic
A= —m, (190 field.
F—ZﬂTE Now employing the formulas for contra and covariant
0] basis vectors, the magnetic field can be expresseﬁ as
. . L = lJ(6,+08&,) and the operator
F:l+Q_7'(1+77i)+§' 1—5>, (20) - lﬂ P N 8)_(//q d ,
: . &-V=38l30"95¢) = IB dg (27
B= 37 1+ P (2D and the field line curvature vector
. 2
22 22 Lo 4 d _
h= qist_ (22) K:eH'Ve”:q ﬁ d_g(e0+qe§)
en
: . : 1dinJ
Here,e,=L,/R andq is the safety factos=dIng/dInr is — = —— (6,08 |. (28)
the magnetic shear. The geometric effects enter through the 2 d¢

magnetic drift frequencysp and the parallel derivative in - The eigenmode equation is now in the Boozer coordinate
the second order differential eigenvalue equation a”‘%ystem
H—l_% QO
2

throughk? .

The numerical equilibria are calculated using the VMEC d? 2xJB
codé® and are then mapped to the Boozer coordinate system ——®=
(s.0,£),"*%° wheres=2myl, is the normalized fluxra- dg

2

5Enqﬁl./f

dial) coordinate andy, ¢ are the generalized poloidal and B.\2
toroidal angles, respectively. Hem)=w80§2/q is the total —|H 1+ XBo Ri D, (29)
poloidal magnetic flux and 2/ is the poloidal magnetic B
flux, whereB is the magnetic field at the axia,is the minor where
radius. The Boozer coordinate system is related to the Car-
tesian coordinate systenx,f/,z) by the cylindrical coordi- ed
nates R,¢,z), whereR is the major axis andp the cylin- P=H=, (30
drical toroidal angle, as ¢
—1,2 2
np oo B 4, 7 (5Q+7—-3)
R=> 3 Ry(s)co¥mo+nNe), 23 H=ltr 4 —p— (3Y)
m=0 n=-n, QO+ a_aenQD
n n
p=&— 2 Ep Et Gmn(S)si(mM+nNE) (24) ~19ps 7S
N m=o n=—n; mn ' XT€ ?%* (32)
¥ S e : SR, s
2= 2, 24 Zmn(S)SINMO+NNE). (25 wp,=wp (S,a,§)= 5ok - (BX(xk+VINB)), (33
= = t I I
Heren, andn; are the maximum poloidal and toroidal IZJ_ZIZJ_(S-a1§;0k)

Fourier components, respectively, ahdis the number of _
field periods in the device studied. The Fourier components _a v v §—&o dq
Rmn: émn. Zmn and the rotational transform=2/q are q §-QqVo— q ~ O dy
determined by the VMEC code. _ ) )
The position vector of any point &, 6,£) at a magnetic wheree is the WKB expansion parameter aBds the eiko-
surface s in the Cartesian coordinate system i§ nal in the standard ballooning mode formalism. This defini-
= (R cos¢, Rsin ¢, 2) with the covariant basis vectors in the tion of 6, differs slightly from that commonly used in such a
Boozer systen®, = Jr/ox', wherex'={s,6,£} and the con- Way that it gives the samle, for different matching points.

travariant components are calculated ﬁxizéjxé’k/‘]_ Using the analytica—« equilibrium model, explicit expres-
Here sions for the magnetic drift frequency and perpendicular
space variation are found

Vi, (34

Ry _
J=6;-€,X6;=—(By+qB 26 a
G0 e gz (Bt aBy (20 tzzw,en(cosg+§gsing—:>, (39
. . R
is the Jacobian, whereB=VaxXVy=yVaXxVs, -
=dylds=Byal2q, and a=&—q6. The magnetic fieldB k? pi=b7(1+8%£%). (36)
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FIG. 1. The tokamak spectrufthe growth ratey vs the real frequency,
(normalized to the electron diamagnetic drift frequenaf the drift wave
equation fors=0.4,b=0.1, 6,=0.0, ¢,=0.5, =8, andr=1. The corre-

sponding eigenfunctions alongRq are shown as insets.

Here bzkgpg and the global magnetic shear is calculated
equilibrium as§= (1/q)(dq/ds)

from the numerical
X(aslar), cf. Ref. 21.

Ill. RESULTS AND DISCUSSION

The solutions for the eigenmode equat|&y. (29)] are 0
found by a standard numerical shooting technique, making 0
use of the WKB-type boundary conditions for lar§es in

Anderson et al.
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FIG. 2. The frequencytop) and the growth ratébottom (normalized to the
electron diamagnetic drift frequencys »; (* representing the analytical
tokamak, + the numerical tokamak, and the squares the stellgrédors

=0.4,b=0.1, §,=0.0, €,=0.5, andr=1.

electron diamagnetic drift frequencys €, [* (§=0.459) and triangless(
= —0.459) representing the analytical tokamakthe numerical tokamak,
and the squares the stellardtéor s=0.4, b=0.1, 6,=0.0, =8, andr
=1.

stellarator withn,= 13, n,=27 and with field configuration
having a three-fold toroidal symmetriNE& 3) and a numeri-

cal tokamak equilibrium having an aspect ratR/g) =10,
which is also compared to the analyti&la model equilib-
rium.

The ITG mode spectrurfnormalized to the electron dia-
magnetic frequengyis shown in Fig. 1 for the Numerical
Tokamak fors=0.4, b=0.1, §,=0.0, ¢,=0.5, =8, and
7=1. The eigenfunctions along the field line are displayed as
insets for some of the eigenfrequencies. It is found that the
mode growth of the stellarator and the tokamak are compa-
rable, whereas the modulus of the real frequency is substan-
tially lower in the tokamak than the stellarator, cf. Fig. 1 in
Ref. 9. In Ref. 16, the real frequency and the growth rate are
calculated analytically. Neglecting the effects of FLR and
letting 7= 1, the real part of the frequency can be written as

Wy

w, 2

. (37

13
-1+ ?;|Q)D/0)J

If, as in the stellarator case, the curvatufeq/w,|(é=0)
~1.37) is increasedcompared to the analytical tokamak
(lop/w,|(§€=0)=1.0) which also holds for the numerical
tokamal then the real frequency is increased. Qualitatively,
this explains the shift in frequency between Fig. 1 in this
paper and Fig. 1 of Ref. 9. The eigenfunctions for the most
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FIG. 4. The frequencytop) and the growth ratéottonm) (normalized to the
electron diamagnetic drift frequencys b (* representing the analytical
tokamak, + the numerical tokamak, and the squares the stellgrédors
=0.4, 6,=0.0, ,=0.5, =8, andr=1.

FIG. 5. The frequencytop) and the growth ratéotton) (normalized to the
electron diamagnetic drift frequencys 7 * (+ representing the numerical
tokamak and the squares the stellarafor s=0.4, b=0.1, 6,=0.0, €,
=0.5, and7;=8.

unstable mode, which is also the most localized mode, are .
very similar comparing the stellarator and tokamak case. duced. Moreover, there is good agreement of the growth
Figure 2 displays the mode eigenfrequeribpth real  'ates for all three geometries for smaj. o
frequency and growth rate normalized to the electron dia- The eﬁect.s of finite Larmor radius are presented in Fig.
magnetic frequendyas a functiony; (+ representing analyti- 4 Hereb, defined as
cal tokamak,+ numerical tokamak and the squares the stel-
laraton and the other parameters as in Fig. 1. A good
agreement in the growth rate above the threshold for the
analytical and numerical tokamak is found. However, there iss the local value of the normalized perpendicular wave num-
a slight shift in the real frequency. The modulus of the realber in the magnetic surface. The eigenfrequency, with both
frequency for the stellarator is substantially larger and theeal frequency and growth rate normalized to the electron
threshold is somewhat larger than in the tokamak case. Thediamagnetic frequency as a function lofis shown and the
are previous results indicating that negative magnetic shearther parameters are as in Fig. 1. Here the symb@pre-
increases the threshold, cf. Fig. 7 of Ref. 8. sents the analytical tokamak;, the numerical tokamak, and
In Fig. 3 thee, dependency of the eigenvalue on boththe squares the stellarator. Comparing the three different ge-
real frequency and growth rate normalized to the electrorometries, there are no large shifts in the peak value of the
diamagnetic frequency and the other parameter values as gpectrum, whereas in the stellarator case there is stronger
Fig. 1 are displayed, with the symbolrepresenting the ana- stabilization of the growth rate dsincreases.
lytical tokamak, triangles the analytical tokamak with re- Considering temperature ratios in terms of !
versed shear§= —0.459), + the numerical tokamak, and =T,;/T,, the dependency on the eigenfrequency is normal-
the squares the stellarator. Note the stabilization due to comzed to the electron diamagnetic frequency and the other pa-
pression is recovered for smaller values in the stellarator tharameters as in Fig. 1 is shown in Fig. b, representing the
in the tokamak geometry. This is due to the fact that thenumerical tokamak and the squares the stellarator. The stabi-
negative magnetic shear in the stellarator tends to decreasieation due to large and smakt~! is found in both the
the curvature and the mode eigenfunction becomes extendatkellarator and the tokamak, however, the stabilization is
and, thus, the growth rate decreases. Using the analyticabmewnhat stronger for largef * and somewhat weaker for
model with reversed shear, the stellarator result is reprosmallerr~''s in the stellarator case.

aS
b=k§P§=(€l£)Va'V“|§o' (38)
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FIG. 6. The frequencytop) and the growth ratébottom (normalized to the
electron diamagnetic drift frequencys s (* representing the analytical
tokamak, + the numerical tokamak, and the squares the stellaré&orb
=0.1, 6,=0.0, €,=0.5, »,=8, andr=1.

FIG. 7. (a) The functionwp (normalized to the ion diamagnetic drift fre-
guency vs L/Rq the dashed line representing the numerical tokamak and
the solid line §=0.459) and dashed—dotted life<{ —0.459) the analytical
model fors=0.4. (b) The functionwp (normalized to the ion diamagnetic
drift frequency vs L/R the solid line representing the numerical tokamak
and the dashed line the stellarator &+ 0.4.

The variation of the results with aspect ratio and associ-
ated equilibrium quantities such as curvature and Biasl
displayed in Fig. 6, which shows the eigenfrequency as drequency is shown fos=0.4 [Fig. 7(a)] and s=0.9 [Fig.
function of the normalized radial Boozer coordinateHere  8(a)] as a function of a normalized lengttYRq. In Figs.
the symbol* represents the analytical tokamak, the nu-  7(b) and &b), the magnetic drift frequency as a function of
merical tokamak, and squares the stellarator, all other paranh-/R is displayed for the stellaratoidashed ling and the
eters are set as in Fig. 1. It is observed that for small andiumerical tokamaksolid line). The perpendicular wave vec-
intermediates, the growth rates agrees fairly well, whereastor as a function ofL/Rq for the two different magnetic
for larges there is a slight disagreement in the real frequencysurfacess=0.4[Fig. 9a)] ands=0.9[Fig. 9b)] are shown.
for the tokamaks. Presumably this is due to the decreasinghe corresponding global magnetic shear and safety factor
aspect ratio for larges. For the stellarator, the curvature for the two different flux surfaces=0.4 ands=0.9 in the
decreases asincreases and the growth rate and the modulusokamak case arg~0.459, q~2.02 and$~1.10, q~3.10,
of the real frequency decrease. Employing E3Y), at mag- respectively. The periodicity of the curvature in Figsa)7
netic surfaces=0.4 the real frequency for the tokamak is and 8a) is different, since the values gfare different. In the
approximately—1.67 and for the stellarator it is 2.47. If  case of higheq value[Fig. 8@a)] the region of bad curvature
the FLR dependent terms are included, the real frequencig significantly larger. When we, in Figs(ty and &b), com-
will be slightly lower in both cases. pare the stellarator curvature as a function of the length along

We can understand the differences in the obtained resulthe field line,L/R, with the corresponding tokamak results,
between stellarators and the tokamaks and the variation wittve find that the helical ripples in the stellarator case decrease
the radial coordinate in terms of the variation of the curva-the connection length between bad and good curvature re-
ture. We can also understand the different results obtained hgions and thus has a stabilizing effect on the modes. In Figs.
using the numerical tokamak and thea model equilibrium 7, 8, and 9 good agreement is found for the region where the
in terms of the different variation of the curvature with re- most localized mode, which has the largest growth rate, is
spect to the radial coordinate. In Figga); 7(b); 8(a), 8(b); excited, comparing the analytical and numerical tokamak at
9(a), 9(b) the dashed lines represent the numerical tokamakhe s=0.4 flux surface, whereas fa=0.9 there are differ-
and the solid lines §=0.459) and dashed—dotted liné ( ences. In the case of reversed magnetic shear tokamak
=—0.459) the analytical model, where the magnetic drift(dashed—dotted lines=—0.459 the curvature is signifi-
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FIG. 8. (a) The functionwp (normalized to the ion diamagnetic drift fre- representing the numerical tokamak and the solid line the analytical model

_ . 2 . .
quency vs L/Rq the dashed line representing the numerical tokamak and©F $=0-4- (b) The functionk; [normalized tolb)] vs L/Rq the dashed line
the solid line §=0.459) the analytical model f&=0.9. (b) The function representing the numerical tokamak and the solid line the analytical model
wp (normalized to the ion diamagnetic drift frequeneg L/R the solid line  for $=0.9-
representing the numerical tokamak and the dashed line the stellarator for
s=0.9.

cantly reduced and, hence, the eigenfunctions are more ekates showed good agreement. The differences for larger
tended and the growth rates are lower. In the case of eigeriadii is understood in terms of geometry dependent quanti-
modes localized in regions with favorable curvat(egey., the ties, the magnetic drift frequency and the perpendicular wave
inside of the tokamakthe eigenfunctions tend to become vector. The growth rates in the tokamak and stellarator are
extended and the growth rates are decreased. comparable, whereas the modulus of the real frequency is
substantially larger for the stellarator. The latter can be un-
derstood in terms of differences in the geometry resulting in
] . substantially different curvature. The thresholdzinfor the
The effects of 3D geometry in a circular tokamak andgieiarator is somewhat larger. This is a result of negative
tTebﬁFfllar?t?r: H,_l'\i': are ctompare((jj_wrihl_rreépectdto I'_I'jﬁafnagnetic shear, which is also observed in tokamaks with
stability of he ‘lon-temperature-gradien moade. enegative shear. The stabilization due to compression is re-
work is based on an advanced fluid model for the ions in the : .
. covered for smaller values @f, in the stellarator than in the
presence of parallel ion momentum effects and the electronts o .
. ' okamak geometry. This is due to the fact that the negative
are assumed to be Boltzmannian. The effects of fifiite . .
Jnagnetlc shear in the stellarator tends to decrease the curva-

trapping, collisions are neglected in order to more easil h e ) h
quantify the effects of 3D geometry. The 3D numerical equi_ture and the mode eigenfunction becomes extended and thus

libria are generated by the VMEC code and the anaIyticthe growth rate decreases. This is displayed using the corre-
equilibrium is thed—a model. sponding result for the analytical model with reversed shear.

An eigenva'ue equation was derived using the h'lgh_ The effects of noncircular 3D tokamak geometry is im-

ballooning mode formalism. The derived eigenvalue equapPortant but has been neglected in this work and will be a

tion was solved using a standard shooting technique desubject of a future paper. Especially the cross-sectional elon-
scribed in Refs. 8 and 9. gation, since it is known experimentally that the effects of

A comparison of the analytical and the numerical toka-elongation on the energy confinement time is favoratle
mak results for small and intermediate radial Boozer coordi—~ «°5.%

IV. SUMMARY
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