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A comparison of drift wave stability in stellarator and tokamak geometry
J. Anderson,a) T. Rafiq, M. Nadeem, and M. Perssonb)

Department of Electromagnetics, EURATOM-VR Association, Chalmers University of Technology,
S-417296 Go¨teborg, Sweden

~Received 2 October 2001; accepted 4 January 2002!

The influence of plasma geometry on the linear stability of electrostatic ion-temperature-gradient
driven drift modes~ITG or h i5Ln /LTi modes! is investigated. An advanced fluid model is used for
the ions together with Boltzmann distributed electrons. The derived eigenvalue equation is solved
numerically. A comparison is made between an H–1NF@Fusion Technol.17, 123 ~1990!# like
stellarator equilibrium, a numerical tokamak equilibrium and the analyticalŝ2a equilibrium. The
numerical and the analytical tokamak are found to be in good agreement in the low inverse aspect
ratio limit. The growth rates of the tokamak and stellarator are comparable whereas the modulus of
the real frequency is substantially larger in the stellarator. The threshold inh i for the stellarator is
found to be somewhat larger. In addition, a stronger stabilization of the ITG mode growth is found
for largeen(5Ln /R) in the stellarator case. ©2002 American Institute of Physics.
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I. INTRODUCTION

One of the main unsolved questions in fusion researc
to understand the anomalously high cross field particle
energy transport in magnetically confined plasmas.1,2 In re-
cent years, substantial efforts have been made towar
deeper understanding of these issues.

One of the most important problems remaining is t
effects of three-dimensional~3D! geometry of stellarators
and tokamaks, since most of the previous studies have
simplified magnetic field configurations. The geometry
fects the magnetic drift frequency, and the perpendicular
parallel space variation, and thus change the regions o
vorable and unfavorable curvature.

Among the drift waves, the ion-temperature-gradie
~ITG or h i5Ln /LTi! driven mode3–6 is one of the main can
didates for explaining the anomalous transport in the c
plasma.

Previous work on stability ofh i-modes include some
work on simplified tokamak equilibria7,8 and, to a more lim-
ited extent, in full stellarator equilibria.9 In recent investiga-
tions, a full 3D tokamak geometry10 was used to calculate
the h i-mode stability.

With inclusion of the nonlinear terms, the model us
here has been successful in reproducing experimental11 and
nonlinear gyrokinetic results.12 The drift wave sensitivity to
effects of geometry is strongly dependent on the fluid clos
and thus it is essential to study the effects of geometry w
an advanced fluid model.13

In the present paper a comparative investigation of
linear h i-mode stability on geometry is displayed for thr
different cases, namely the H–1NF14 stellarator, a numerica
circular 3D tokamak and an analyticalŝ–a equilibrium
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model. The numerical equilibria employed are generated
the VMEC code.15

In this analysis, good agreement is found in comparis
of the analytical and the numerical tokamak results for sm
and intermediate radial positions. These results are c
trasted to the comparisons of the geometry dependent q
tities, the magnetic drift frequency and the perpendicu
wave vector. The growth rates in the tokamak and stellara
are comparable, whereas the modulus of the real frequen
substantially larger for the stellarator, which is caused by
stronger curvature for the stellarator. The threshold inh i for
the stellarator is somewhat larger. In addition, a stronger
bilization of the ITG mode growth is found for largeen in
the stellarator case, this is due to the negative local magn
shear in the stellarator.

It is often assumed that there is a relationship betw
the linear growth rate and the nonlinear turbulence level
Ref. 12 there are indications of limitations for this assum
tion, due to the effects of zonal flows. Zonal flows, radia
localized and strongly sheared flows in the poloidal direct
are commonly believed to be responsible for the turbule
suppression and enhancement of confinement in toroidal
vices. The results reported in Ref. 12 suggests that zo
flows may cause a nonlinear up-shift in the critical tempe
ture gradient needed to obtain transport for longer ti
scales. This is, however, out of the scope of the present
per.

The remainder of the paper is structured in the followi
way. In Sec. II the physical model and the equilibria a
presented. The results and a discussion thereof is prese
in Sec. III. Finally, we summarize the work in Sec. IV.

II. DRIFT WAVE MODEL AND MAGNETIC FIELD
CONFIGURATION

For the ions, we employ an advanced fluid model,7,8,16,17

whereas the electrons are assumed to be Boltzmann dis
uted.
9 © 2002 American Institute of Physics
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1630 Phys. Plasmas, Vol. 9, No. 5, May 2002 Anderson et al.
The model equations are solved using numerical equ
ria and a generalizedŝ–a model equilibrium, which allows
for the choosing of the global shearŝ and safety factorq as
free parameters.

First we consider the fluid model consisting of the i
continuity, the parallel momentum and the ion energy eq
tion in the electrostatic limit,

]ni

]t
1¹•~nivW E1nivW ! i !1¹•~nivW pi1nivW p i !1¹•~nivW i i !50,

~1!

mini

]vW i i

]t
1¹ipi1nie¹if50, ~2!

3

2
ni

dTi

dt
1niTi¹•vW i1¹•qW i50. ~3!

Here,ni is the ion particle density,pi5niTi is the ion pres-
sure,Ti is the ion temperature,vW i i is the parallel ion velocity,
f is the electrostatic potential, andmi is the ion mass. The
convective derivative is defined asd/dt 5 (]/]t) 1(vW E

1vW ! i)•¹. The diamagnetic drift andEW 3BW drifts are defined
as

vW ! i5
c

eniB
~ei3¹pi !, ~4!

vW E5
c

B
~ei3¹f!, ~5!

where e is the charge,c is the speed of light, andei

5BW /uBW u is a unit vector along the magnetic field. The dr
vW p i is the stress tensor drift, cf. p. 20, Ref. 16, and the
larization drift vpi

is defined as

vW pi
5

1

Vci
S ]

]t
1vW i•¹ D ~ei3vW i !, ~6!

where vW i is the total ion drift velocity and the cyclotro
frequency is given byVci5eB/mic. Here we express the
divergence as

¹•~nivW pi1nivW p i !5¹•S ni

Vci

]

]t
~ei3vW i ! D ,

where we substitutevW E and vW ! i for vW i . The part due tovW E

corresponds to the polarization drift velocity, and the p
due to vW ! i is the lowest order finite Larmor radius~FLR!
term. We then obtain

¹•~nivW pi1nivW p i !52nirs
2 ]

]t
D

ef

Te
2

rs
2

Te

]

]t
Ddpi , ~7!

wherers5cs /Vci andcs5ATe /mi andD is the Laplacian.
The diamagnetic ion heat flux is given by

qW i5qW ! i5
5

2

cTini

eB
ei3¹Ti . ~8!

The ion temperature fluctuations equations couple to Eqs~1!
and ~2! through
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¹•~njvW ! j !5
1

Tj
vW D j•¹dPj , ~9!

wheredPj ( j 5 i ,e) is the perturbed pressure andvW D j is the
magnetic drift velocity at the thermal speed, i.e.,

vW Di5
Ti

miVci
Fei3¹B

B
1ei3kW G , ~10!

wherekW 5(ei•¹)ei is the curvature vector. Additional cur
vature relations arise in Eqs.~1! and ~2! as

¹•qW ! i52
5

2
nivW ! i•¹T1

5

2
nivW Di•¹T, ~11!

¹•vW E5
qj

Tj
vW D j•¹f. ~12!

Assuming a perturbation of the forme2 ivt and using the
continuity equation for¹•vW i in the energy equation, the con
vective diamagnetic effects cancel out and the energy eq
tion becomes

dTi

Ti
5

v

v2
5

3
vDi

S 2

3

dni

n0
2

v!e

v S 2

3
2h i D ef

Te
D . ~13!

The parallel ion equation~2! gives

vW i i52 i
cs

2

v
ei•¹S ef

Te
1

1

t

dpi

pi
D . ~14!

Here we havet5 Te /Ti . Substituting~13! and~14! into ~1!
and using quasineutrality and Boltzmann distributed el
trons dni /n0 5 dne /n0 5 ef/Te , we arrive at the eigen-
value equation

cs
2~ei•¹!2S 11

1

t
1F̂ D ef

Te

52v~v2v!e!
ef

Te
1v~tvDi

2vk'
2 rs

2!

3S 11
1

t
1F̂ D ef

Te
, ~15!

where

F̂5
v

v2 5
3 vDi

S 2

3t
1

v! i

v S 2

3
2h i D D . ~16!

Employing the standard high-n ballooning mode
formalism,18 we obtain a second order eigenvalue equat
for the potentialf in the extended ballooning mode coord
natej,

~ei•¹!2F52hS S 12
1

V DA2
2tvDi

v
1k'

2 rs
2DF, ~17!

whereV5 v/v!e and we have

F5S 11
1

t
1F̂ D ef

Te
, ~18!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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A5

12
10

3

vDi

v

F22bt
vDi

v

, ~19!

F511
1

Vt
~11h i !1

5

3t S 12
1

V D , ~20!

b5
5

3t S 11
1

t D , ~21!

h5
q2ku

2rs
2tV2

en
2 . ~22!

Here,en5Ln /R andq is the safety factor,ŝ5 d ln q/d ln r is
the magnetic shear. The geometric effects enter through
magnetic drift frequencyvD and the parallel derivative in
the second order differential eigenvalue equation a
throughk'

2 .
The numerical equilibria are calculated using the VME

code15 and are then mapped to the Boozer coordinate sys
(s,u,j),19,20 wheres52pc/cp is the normalized flux~ra-
dial! coordinate andu, j are the generalized poloidal an
toroidal angles, respectively. Herecp5pB0ā2/q is the total
poloidal magnetic flux and 2pc is the poloidal magnetic
flux, whereB0 is the magnetic field at the axis,ā is the minor
radius. The Boozer coordinate system is related to the C
tesian coordinate system (x,y,z) by the cylindrical coordi-
nates (R,f,z), whereR is the major axis andf the cylin-
drical toroidal angle, as

R5 (
m50

np

(
n52nt

nt

Rmn~s!cos~mu1nNj!, ~23!

f5j2
2p

N (
m50

np

(
n52nt

nt

fmn~s!sin~mu1nNj!, ~24!

z5 (
m50

np

(
n52nt

nt

zmn~s!sin~mu1nNj!. ~25!

Here np and nt are the maximum poloidal and toroida
Fourier components, respectively, andN is the number of
field periods in the device studied. The Fourier compone
Rmn , fmn , zmn and the rotational transformi52p/q are
determined by the VMEC code.

The position vectorrW of any point (s,u,j) at a magnetic
surface s in the Cartesian coordinate system isrW
5(R cosf, Rsinf, z) with the covariant basis vectors in th
Boozer systemeW i5]rW/]xi , wherexi5$s,u,j% and the con-
travariant components are calculated as¹xi5eW j3eW k /J.
Here

J5eW s•eW u3eW j5
R̄ċ

B2 ~Bu1qBj! ~26!

is the Jacobian, whereBW 5¹a3¹c5ċ¹a3¹s, ċ

5dc/ds5B0ā/2q, and a5j2qu. The magnetic fieldBW
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fulfills ¹•BW 50 andBW •¹c505BW •¹a which is equivalent
to the fact thatc anda are stream functions of the magnet
field.

Now employing the formulas for contra and covaria
basis vectors, the magnetic field can be expressed aBW

5ċ/J(eW u1qeW j) and the operator

eW i•¹5
ċ

JB S ]

]u
1q

]

]j D5
ċq

JB

d

dj
~27!

and the field line curvature vector

kW 5eW i•¹eW i5qS ċ

JB
D 2S d

dj
~eW u1qeW j!

2
1

2

d ln J

dj
~eW u1qeW j! D . ~28!

The eigenmode equation is now in the Boozer coordin
system,

d2

dj2
F5S 2xJB

āenqR̄ċ
D 2S S H212

āenVD

2
D V

2S H211S xB0

B
D 2

k̂'
2 D D F, ~29!

where

F5H
ef

Te
, ~30!

H511t211
t21~ 2

3 V1h i2
2
3!

V1
5

6t
āenVD

, ~31!

x5e21
qrs

ā

]S

]a
, ~32!

vDi
5vDi

~s,a,j!5
B0R̄

B2 kW'•~BW 3~k1¹ ln B!!, ~33!

kW'5kW'~s,a,j;uk!

5
ā

q S ¹j2q¹u2S j2j0

q
2ukD dq

dc
¹c D , ~34!

wheree is the WKB expansion parameter andS is the eiko-
nal in the standard ballooning mode formalism. This defi
tion of uk differs slightly from that commonly used in such
way that it gives the samek' for different matching points.
Using the analyticalŝ–a equilibrium model, explicit expres-
sions for the magnetic drift frequency and perpendicu
space variation are found

vD52v!enS cosj1 ŝj sinj2
ā

R̄
D , ~35!

k'
2 rs

25bt~11 ŝ2j2!. ~36!
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Here b5ku
2rS

2 and the global magnetic shear is calculat
from the numerical equilibrium asŝ5 (1/q)(]q/]s)
3(]s/]r ), cf. Ref. 21.

III. RESULTS AND DISCUSSION

The solutions for the eigenmode equation@Eq. ~29!# are
found by a standard numerical shooting technique, mak
use of the WKB-type boundary conditions for largej as in
Refs. 8 and 22. These studies are carried out on the H–

FIG. 1. The tokamak spectrum@the growth rateg vs the real frequencyv r

~normalized to the electron diamagnetic drift frequency!# of the drift wave
equation fors50.4, b50.1, uk50.0, en50.5, h i58, andt51. The corre-
sponding eigenfunctions alongL/Rq are shown as insets.

FIG. 2. The frequency~top! and the growth rate~bottom! ~normalized to the
electron diamagnetic drift frequency! vs h i ~* representing the analytica
tokamak,1 the numerical tokamak, and the squares the stellarator! for s
50.4, b50.1, uk50.0, en50.5, andt51.
Downloaded 12 Oct 2004 to 129.16.87.99. Redistribution subject to AIP 
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stellarator withnp513, nt527 and with field configuration
having a three-fold toroidal symmetry (N53) and a numeri-
cal tokamak equilibrium having an aspect ratio (R̄/ā)510,
which is also compared to the analyticalŝ–a model equilib-
rium.

The ITG mode spectrum~normalized to the electron dia
magnetic frequency! is shown in Fig. 1 for the Numerica
Tokamak fors50.4, b50.1, uk50.0, en50.5, h i58, and
t51. The eigenfunctions along the field line are displayed
insets for some of the eigenfrequencies. It is found that
mode growth of the stellarator and the tokamak are com
rable, whereas the modulus of the real frequency is subs
tially lower in the tokamak than the stellarator, cf. Fig. 1
Ref. 9. In Ref. 16, the real frequency and the growth rate
calculated analytically. Neglecting the effects of FLR a
letting t51, the real part of the frequency can be written

v r

v!
52

1

2 F211
13

3
uvD /v!uG . ~37!

If, as in the stellarator case, the curvature (uvD /v!u(j50)
'1.37) is increased@compared to the analytical tokama
(uvD /v!u(j50)51.0) which also holds for the numerica
tokamak# then the real frequency is increased. Qualitative
this explains the shift in frequency between Fig. 1 in th
paper and Fig. 1 of Ref. 9. The eigenfunctions for the m

FIG. 3. The frequency~top! and the growth rate~bottom! ~normalized to the
electron diamagnetic drift frequency! vs en @* ( ŝ50.459) and triangles (ŝ
520.459) representing the analytical tokamak,1 the numerical tokamak,
and the squares the stellarator# for s50.4, b50.1, uk50.0, h i58, andt
51.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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unstable mode, which is also the most localized mode,
very similar comparing the stellarator and tokamak case

Figure 2 displays the mode eigenfrequency~both real
frequency and growth rate normalized to the electron d
magnetic frequency! as a functionh i ~* representing analyti-
cal tokamak,1 numerical tokamak and the squares the s
larator! and the other parameters as in Fig. 1. A go
agreement in the growth rate above the threshold for
analytical and numerical tokamak is found. However, ther
a slight shift in the real frequency. The modulus of the r
frequency for the stellarator is substantially larger and
threshold is somewhat larger than in the tokamak case. T
are previous results indicating that negative magnetic sh
increases the threshold, cf. Fig. 7 of Ref. 8.

In Fig. 3 theen dependency of the eigenvalue on bo
real frequency and growth rate normalized to the elect
diamagnetic frequency and the other parameter values a
Fig. 1 are displayed, with the symbol* representing the ana
lytical tokamak, triangles the analytical tokamak with r
versed shear (ŝ520.459), 1 the numerical tokamak, an
the squares the stellarator. Note the stabilization due to c
pression is recovered for smaller values in the stellarator t
in the tokamak geometry. This is due to the fact that
negative magnetic shear in the stellarator tends to decr
the curvature and the mode eigenfunction becomes exte
and, thus, the growth rate decreases. Using the analy
model with reversed shear, the stellarator result is rep

FIG. 4. The frequency~top! and the growth rate~bottom! ~normalized to the
electron diamagnetic drift frequency! vs b ~* representing the analytica
tokamak,1 the numerical tokamak, and the squares the stellarator! for s
50.4, uk50.0, en50.5, h i58, andt51.
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duced. Moreover, there is good agreement of the gro
rates for all three geometries for smallen .

The effects of finite Larmor radius are presented in F
4. Hereb, defined as

b5ku
2rs

25S e21
]S

]a D¹a•¹auj50 , ~38!

is the local value of the normalized perpendicular wave nu
ber in the magnetic surface. The eigenfrequency, with b
real frequency and growth rate normalized to the elect
diamagnetic frequency as a function ofb is shown and the
other parameters are as in Fig. 1. Here the symbol* repre-
sents the analytical tokamak,1 the numerical tokamak, and
the squares the stellarator. Comparing the three different
ometries, there are no large shifts in the peak value of
spectrum, whereas in the stellarator case there is stro
stabilization of the growth rate asb increases.

Considering temperature ratios in terms oft21

5Ti /Te , the dependency on the eigenfrequency is norm
ized to the electron diamagnetic frequency and the other
rameters as in Fig. 1 is shown in Fig. 5,1 representing the
numerical tokamak and the squares the stellarator. The s
lization due to large and smallt21 is found in both the
stellarator and the tokamak, however, the stabilization
somewhat stronger for largert21 and somewhat weaker fo
smallert21’s in the stellarator case.

FIG. 5. The frequency~top! and the growth rate~bottom! ~normalized to the
electron diamagnetic drift frequency! vs t21 ~1 representing the numerica
tokamak and the squares the stellarator! for s50.4, b50.1, uk50.0, en

50.5, andh i58.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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The variation of the results with aspect ratio and asso
ated equilibrium quantities such as curvature and modB is
displayed in Fig. 6, which shows the eigenfrequency a
function of the normalized radial Boozer coordinates. Here
the symbol* represents the analytical tokamak,1 the nu-
merical tokamak, and squares the stellarator, all other par
eters are set as in Fig. 1. It is observed that for small
intermediates, the growth rates agrees fairly well, where
for larges there is a slight disagreement in the real frequen
for the tokamaks. Presumably this is due to the decrea
aspect ratio for largers. For the stellarator, the curvatur
decreases ass increases and the growth rate and the modu
of the real frequency decrease. Employing Eq.~37!, at mag-
netic surfaces50.4 the real frequency for the tokamak
approximately21.67 and for the stellarator it is22.47. If
the FLR dependent terms are included, the real freque
will be slightly lower in both cases.

We can understand the differences in the obtained res
between stellarators and the tokamaks and the variation
the radial coordinate in terms of the variation of the curv
ture. We can also understand the different results obtaine
using the numerical tokamak and theŝ–a model equilibrium
in terms of the different variation of the curvature with r
spect to the radial coordinate. In Figs. 7~a!, 7~b!; 8~a!, 8~b!;
9~a!, 9~b! the dashed lines represent the numerical tokam
and the solid lines (ŝ50.459) and dashed–dotted line (ŝ
520.459) the analytical model, where the magnetic d

FIG. 6. The frequency~top! and the growth rate~bottom! ~normalized to the
electron diamagnetic drift frequency! vs s ~* representing the analytica
tokamak,1 the numerical tokamak, and the squares the stellarator! for b
50.1, uk50.0, en50.5, h i58, andt51.
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frequency is shown fors50.4 @Fig. 7~a!# and s50.9 @Fig.
8~a!# as a function of a normalized lengthL/Rq. In Figs.
7~b! and 8~b!, the magnetic drift frequency as a function
L/R is displayed for the stellarator~dashed line! and the
numerical tokamak~solid line!. The perpendicular wave vec
tor as a function ofL/Rq for the two different magnetic
surfacess50.4 @Fig. 9~a!# ands50.9 @Fig. 9~b!# are shown.
The corresponding global magnetic shear and safety fa
for the two different flux surfacess50.4 ands50.9 in the
tokamak case areŝ'0.459, q'2.02 andŝ'1.10, q'3.10,
respectively. The periodicity of the curvature in Figs. 7~a!
and 8~a! is different, since the values ofq are different. In the
case of higherq value@Fig. 8~a!# the region of bad curvature
is significantly larger. When we, in Figs. 7~b! and 8~b!, com-
pare the stellarator curvature as a function of the length al
the field line,L/R, with the corresponding tokamak result
we find that the helical ripples in the stellarator case decre
the connection length between bad and good curvature
gions and thus has a stabilizing effect on the modes. In F
7, 8, and 9 good agreement is found for the region where
most localized mode, which has the largest growth rate
excited, comparing the analytical and numerical tokamak
the s50.4 flux surface, whereas fors50.9 there are differ-
ences. In the case of reversed magnetic shear toka
~dashed–dotted line,s520.459! the curvature is signifi-

FIG. 7. ~a! The functionvD ~normalized to the ion diamagnetic drift fre
quency! vs L/Rq the dashed line representing the numerical tokamak
the solid line (ŝ50.459) and dashed–dotted line (ŝ520.459) the analytical
model fors50.4. ~b! The functionvD ~normalized to the ion diamagnetic
drift frequency! vs L/R the solid line representing the numerical tokam
and the dashed line the stellarator fors50.4.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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cantly reduced and, hence, the eigenfunctions are more
tended and the growth rates are lower. In the case of eig
modes localized in regions with favorable curvature~e.g., the
inside of the tokamak! the eigenfunctions tend to becom
extended and the growth rates are decreased.

IV. SUMMARY

The effects of 3D geometry in a circular tokamak a
the stellarator H–1NF are compared with respect to lin
stability of the ion-temperature-gradient ITG mode. T
work is based on an advanced fluid model for the ions in
presence of parallel ion momentum effects and the elect
are assumed to be Boltzmannian. The effects of finiteb,
trapping, collisions are neglected in order to more ea
quantify the effects of 3D geometry. The 3D numerical eq
libria are generated by the VMEC code and the analyt
equilibrium is theŝ–a model.

An eigenvalue equation was derived using the highn
ballooning mode formalism. The derived eigenvalue eq
tion was solved using a standard shooting technique
scribed in Refs. 8 and 9.

A comparison of the analytical and the numerical tok
mak results for small and intermediate radial Boozer coo

FIG. 8. ~a! The functionvD ~normalized to the ion diamagnetic drift fre
quency! vs L/Rq the dashed line representing the numerical tokamak
the solid line (ŝ50.459) the analytical model fors50.9. ~b! The function
vD ~normalized to the ion diamagnetic drift frequency! vs L/R the solid line
representing the numerical tokamak and the dashed line the stellarato
s50.9.
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nate s showed good agreement. The differences for lar
radii is understood in terms of geometry dependent qua
ties, the magnetic drift frequency and the perpendicular w
vector. The growth rates in the tokamak and stellarator
comparable, whereas the modulus of the real frequenc
substantially larger for the stellarator. The latter can be
derstood in terms of differences in the geometry resulting
substantially different curvature. The threshold inh i for the
stellarator is somewhat larger. This is a result of negat
magnetic shear, which is also observed in tokamaks w
negative shear. The stabilization due to compression is
covered for smaller values ofen in the stellarator than in the
tokamak geometry. This is due to the fact that the nega
magnetic shear in the stellarator tends to decrease the cu
ture and the mode eigenfunction becomes extended and
the growth rate decreases. This is displayed using the co
sponding result for the analytical model with reversed she

The effects of noncircular 3D tokamak geometry is im
portant but has been neglected in this work and will be
subject of a future paper. Especially the cross-sectional e
gation, since it is known experimentally that the effects
elongation on the energy confinement time is favorabletE

;k0.5.23

d

for

FIG. 9. ~a! The functionk'
2 @normalized to~b!# vs L/Rq the dashed line

representing the numerical tokamak and the solid line the analytical m
for s50.4. ~b! The functionk'

2 @normalized to~b!# vs L/Rq the dashed line
representing the numerical tokamak and the solid line the analytical m
for s50.9.
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