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Effects of cross-sectional elongation on the resistive edge modes
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Resistive edge modes in a shifted noncircular tokamak geometry are investigated in the electrostatic
limit. The reduced Braghinskii equations are used as a model for the electrons and an advanced fluid
model for the ions. An eigenvalue problem is derived from these equations which is solved
numerically. It is found that the resistive ballooning modes are stabilized by plasma elongation for
peaked density profiles. In addition, it is found that the resistj«enodes ;= Ln/LTi) may be

either stabilized or destabilized by elongation depending on the collision frequenc00®
American Institute of Physics[DOI: 10.1063/1.1329150

I. INTRODUCTION shift on the stability properties of the resistive modes are
investigated. It is found that for edge relevant parameters the

The study of plasma edge turbulence and transport is effects of elongation are usually stabilizing, whereas the ef-

high priority issue in present day fusion research. In the edgéects of Shafranov shift are rather weak.

region of a tokamak, the plasma is strongly influenced by  The remainder of the paper is structured in the following

electron—ion collisions which suggests that resistive edgevay. In Sec. Il the physical model and the equilibrium model

modes are an important source of the turbulence. In receng presented. In Sec. Il the results and a discussion thereof is

years, a deeper understanding of the resistive edge modggesented. Finally, in Sec. IV there is a summary.

have been attained. In particular, the role of resistive modes

in the low-high C—H) confinement phase transition has

been thoroughly studied in Refs. 1-3 as well as the transitio- FORMULATION

between linearly and nonlinearly driven turbulence in the  1ha reduced Braghinskii equations are used for the elec-

plasma edge as given in Refs. 4 and S. o tron physics and an advanced fluid model is used for the
One important effect to consider in connection with tur-,, 12-15 g joint model is assumed to be valid in a colli-
bulence and anomalous transport is that of plasma shapingiona| plasma which is typical in an edge plasma discharge.
While a considerable amount of work has been done on thgye have neglected electron trapping effects since the bounce
effects of shaping on magnetohydrodynarfHD) modes,  grequency is assumed to be less than the electron—ion colli-
there is very little work published on the effects Og shapingsjon frequency. The effects of electromagnetic perturbations
on drift modes. Earlier work on then-mod€™ (7 and ion sound coupling are small except in the case of very
=Lna/Ly,) stability in the core plasma have shown that elon-|arge wavelengtisand are hence neglected and we have
gationx may be stabilizing or destabilizing depending on theneglected electron temperature perturbations for simplicity.
density scale length,. Empirically it is found that the over- |n Ref. 1 the effects of electron temperature perturbations on
all effects of elongation on the confinement time are favorthe resistive edge modes are quantified. The vorticity equa-

able with 7~ x93, tion, the ion continuity equation and the ion temperature

It is still not clear whether this favorable scaling is equation take the forms,
caused by a stabilization of the linear modes or if it is due to
some indirect effects. Transport code simulations suggest .
that the main effects of elongation on the confinement time
originates from the edge region of the plasthadowever, n nc d
the effects of plasma shaping on the resistive edge modes are — + V. (nvg+nv,;)— V- <_ —V, ¢,) =0, 2)
still not well known. at B dt

In the present paper, the resistive ballooning mode 5 i
(RBM) and the collisionaly;-mode (i.e., ;-modes withw Enm+nTiV.vi+V~qi=0. 3
<) are studied using a two fluid model. A generalized
s—a model is used for the equilibrium which allows for Here, ¢ is the electrostatic potentidl,; is the ion tempera-
variation of the parameters without recomputing the equilibture,n=n;=n, is the particle densityy; is the total ion drift
rium. In particular, the effects of elongation and Shafranowelocity, g; is the ion heat fluxw:;=eB/m;c is the ion cy-
clotron frequency mj is the ion(electron massc is the
speed of light ane is the electron chardeB is the magnetic

nc d 1
avﬂﬁ —V-(nv*e+nv*i)—EVHJH:O, 1

wCiB
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terms proportional thv*e~VVfZS represent the finite-
Larmor-radius(FLR) effects. Utilizing the standard high-
ballooning representatiéfﬁEqs.(12)—(14) can be written as
zgeHxV¢ (5) one s_econd-orde_r differential equatiqn and _two algebraic
equations wherd is the extended poloidal variable,

C
V*i:qTBeHXVPi , (4

where q is the charge,P;=nT,; is the pressure, ane D, P(P-1)
=B/|B| is a unit vector along the magnetic field. The ion 2e 5 > +ik?p2(0+ aw,o) d+ierw,og(h)
heat flux is given by 9peq°R™ 90
5cTin ~ A
qi=q*i=§§e”><VTi. (6) Xin 1+; +; =0, (15
The parallel current]; is obtained from L _ - N+
sz_pg(aH' A.e) T ON— W, e+ €,0,9(0)| P+ T

1 e
Jj=ne =Vin—=V¢|, 7
H Qe(n N, ||¢) () o, 18
where D= T,/0.5Im.vg; is the parallel electron diffusion
andvg; is the electron—ion collision frequency. The ion tem-
perature fluctuations couple to Ed4) and(2) through

5 ¢, ~ (3 ~ ~
—w+§7w*eg(9) ti_ Eﬂi_l w*e¢_wn:0' (17)

whereg,, [EQ.(24)] is a geometrical scale factor agds the

1
V-(nv,)) = T_VDJ'V5P1 , (8)  safety factor,w,e=KgpsCs/L, and ep=wp/w,=2L,/Lg.
j Substitutingt; from Eq. (17) into Egs. (15) and (16) we
where 6P; j=i,e is perturbed pressure ang; is the mag- obtain a second-order differential eigenvalue problem in the
netic drift velocity at the thermal speed, i.e., generalized potentiay=¢—n,
e”XVB D (721,0
Vbe= ~ P<Cs +epxx), ©  i— Dy(w) = =Dy(w)¥, (18)
B PR, o)~ 2 =D 1
where «=(g- V)e. Additional curvature relations arise in
Egs.(1)—(3) as 2 2 2 10
: D1(w) =0 (1+kips) — 0w, 1~ €n9(0) — 3 €ng(6)
V-q.=—3nv,;-VT+ 3nvp;- VT, (10 c L
En
i kJ_ps ) - (77| 7 €n9(0) 1+
v-vE=%ij-V¢. (11) " 33
i (19
Substituting the continuity equation f&f-v in Eq. (3) we L2 2 2 2
: . = + +
find that the noncurvature part &-q; is canceled together Da(w)=kips(w+aw,e) o+ eng(d) wwie
with the convective diamagnetic terms. The systém-(3) 5
can be written as X|1+a—eg(0)| 1+ -
d ~ 1\~ T e-0(0))?
Pg(ﬁ—av*e ) Vig=—vpe V|| 1+ n+— . +—( ”gi ) w3
+E, (12) X §+3——ni——eng(t9) 1+— (20

K . ~ Here, terms of ordeenkgpS have been omitted. In the weak
Ps(ﬁ—av*e'V>VL P=Vae' Vbt — collisionality limit ve;—0 (Dj—) a local dispersion rela-
tion D1(w,#=0)=0 (Ref. 12 may be obtained, which de-

~ N+t scribes the toroidaly;-mode. Moreover, in the large colli-
—Vpe' V| ¢+ — | (13 sionality limit ve—o (Dj—0) the resistive ballooning

mode dispersion relation is obtained and Byr=0 it simpli-

34t 5 /3 . an fies to the ideal interchange mode equatj@y,(w,f#=0)
251 2,0e Vit | 5771 |Vie V= —-=0. (14 =0] that contains effects of finite, and 7; . Thus the eigen-

mode equation(18) contains two branches, an electron
Here,n=én/n, ¢=e¢/T,, andt;= 8T, /T, are the normal- branch driven by collisions and curvature and an ion branch
ized perturbations of density, electrostatic potential, and iorriven by curvature and ion temperature gradients.
temperature, respectively, andps=cs/w. With cq In the second-order differential equation the geometry
=(T./m,)*2 The dimensionless parameters are defined adependent factors are the magnetic drift frequemgyand
ni=Lnlly, a=(1+mn)/7, and Li=(dIn f/dr)"'. The the scale factox/g,, and in addition the geometry also modi-
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fies kf. As a model for the equilibrium, we employ the
generalized—« equilibrium model of Ref. 17, which allows

for modification of equilibrium parameters like elongation
and Shafranov shift without recomputing the equilibrium.
The flux coordinate system is defined by

R(r,@)zzO Rn(r)cogné), (21
Z(r,0)= 20 Z,(r)sin(né), (22)

where R and Z are the usual cylindrical coordinates. The
termsRy, Ry=r, Z,;=r« describes shift, minor radius and
ellipticity, respectively, the termR,, Z, describes triangu-

larity. In the present work effects of triangularity are ne-

Anderson, Nordman, and Weiland

2

08

=06

0.2

glected. The scale factors become

9y =(9,Ro+€0s6)2+ (9,(r k)sin 6)?, (23
Jpo=r*(1+(k?—1)cog 9), (24)
0r9=0;(kr)kr sinfcosfd—r(d,Ry+cosh)sing, (25
g</>¢:R21 (26)

where « is the elongation an@jza/&xj, note that it only
acts at the object directly after and we denote position vector

r=(R,Z) and basis vectoréj=(1/hj)(9]-r. The metric tensor

gjj is defined as

d82=gijdxidxj.

Keeping only the first terms ire-ordering and with the
B-field given byB=B,6+ B, we have the magnetic drift

frequency ank, as

€n

wp
2= eg(0)~
Wre 9go

q
—g" FZKAJFS@_ 9”T},ddl,
2

2 2 Ko 2
kl=k9k(0)~+‘]—2(grr+ggg(st9) —20,480),

wheres=d Ing/dInr is the global magnetic shear. Here the

gH’FZMJgsBJr g””I‘:,,(qu

(27)

(28)

(29

inverse of the metric tensor is defined by the relatigg’®

=8¢ compare with Eq.(33). The Christoffel symbols are

given by
= 39" (9Qni + diGnk— 9;9ik) (30)
1(960. 5 9o,
66— "7 <?0r9¢¢— J—2309¢¢ : (31)
1 gﬂr gl’l’
6 _ 2 2
F¢¢—_Z <_J_2¢9r9¢¢+ J_zaﬁgd)qS)' (32)
where the Jacobian is given by
J2=04 (9199 97y)- (33

FIG. 1. The growth raténormalized to the electron diamagnetic drift fre-
quency vs k, for gq=s=7=1, k®p2=0.1, 7=3, v,=0.05, €,=1
(dashed—dotted linge,= 0.1 (dashed ling €,= 0.1 (solid line) the noncol-
lisional advanced fluid model.

These results reduce to the usual expressions in circular ge-
ometry, i.e.,

b ~ e (cosf+shsing), (39

*e

k2 ~Kk3(1+s262). (35

Ill. RESULTS AND DISCUSSION

The solutions to the eigenmode equat|[@y. (18)] are
found by a numerical standard shooting technique. We as-
sume that the even modes are more important than the odd
modes for the curvature driven modes studied here. Applying
the shooting technique we start frafi= 0 with (0)=1 and
' (0)=0, and iterate the eigenvalues until the conditin
—0 asf—x is satisfied. In the following analysis it is im-
portant to note that the growth rates of the resistive balloon-
ing modes(RBM) and then;-modes are of the same order
but the maximum growth rate occurs at different length
scales, kyp~0.15 for the RBM andkg,p~0.3 for the
ni-modes. We divide the results and discussion section in
two parts starting with the collisionah;-modes and then
followed by a discussion of the RBM. Henceforth the colli-
sion frequency will be normalized as in Ref. 18 with;
=0%R/Ne(Me/M) Y2 and A g=vine! Vei -

In Fig. 1 the effects of elongatior on the »;-mode is
displayed. The growth ratéhormalized to the diamagnetic
frequency as a function of elongation with, (2L,/Lg) as
a parameter is shown. The other parameters ggres= 1
=1, kf 2=0.1, =3, andv,;=0.05. The results are illus-
trated fore,= 1.0 (dashed—dotted lineand ¢,=0.1 (dashed
line). As observed, a weak stabilization with elongation is
obtained. In the flat density case,& 1.0) the corresponding
analytical limit eigenvalue from the collisionless advanced
fluid model givesy/w,=1.01 atk=1, which is in rather
good agreement with the numerical result. The collisional
n;-mode growth(dashed ling is similar to that obtained
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FIG. 2. The growth raténormalized tocs/L,) vs «, for q=2, s=7=1, FIG. 3. The eigenfrequencfnormalized to the electron diamagnetic drift
k2p?=0.16, €,=0.337,=6, v,;=0.01 (solid line) and v,;=0.25 (dashed  frequency vs v; for g=s=7=1, k?p?=0.1, =2, €,=0.1 (solid line
line). and e,=0.15 (dashed ling

(solid line) by a collisionless advanced fluid model including
parallel ion motiof*®for peaked density profiles,=1. This @ , _
collisionless model is based on an advanced fluid model fo"eS, and ,=0.15 (dashed lines For €,=0.15 a destabi-

the ions whereas the electrons are assumed to be Boltzmafip2tion Wwith increasing collision frequency is found,

distributed. When the effect of parallel ion motion is smaIIWhereas fore,=0.1 a stabilization is foun.d.. The;-mode
(w3kjco) the two models give similar results since the col- 9rowth rate scales rather weakly with collision frequency.
lisional effects on they,-mode are rather weak Now the RBM is to be considered. In earlier wbtkt

, .

Next, in Fig. 2 the growth raténormalized toc /L) as ~ Was shown that the spectrum of the instability is very broad.
! " S n

a function of elongation with.; as a parameter is given. The SNOWn in Fig. 4, the other parameters areq=r7=1, €,

other parameters are taken from Ref. 8 with 2, s=7=1, . 0-1:7ei=0.33,%,=0 is the growth raténormalized to the
kfp2=0.16, 7=6, ande,=0.33. For medium collisionality diamagnetic frequengyas a function of the magnetic shear

H — 1/2
1e;=0.25 (dashed ling a destabilization with increasing With mode numbem=kps(vei/€,)™" as a parameteithe

elongation is found whereas for low collisionality;=0.01 cither parameters are=q= T:_l' € =0.1, 1¢=0.33, 7,
(solid line) the favorable elongation scaling is recovered, the— 0)- It 'S found that for highm=1.77 (solid line) and me-
latter case has been observed in recent work, by botfUm m=0.88 (dashed ling the growth rate initially in-
gyrokinetié and collisionless flufdisimulations. creases and then abose 1 it rapidly decreases but for low

However, a more detailed study shows a slightly morem=0.35(dashed—dotted linghe growth rate increases with

colorful picture. Expanding around the collisionless solution
wq to the local dispersion relation with= wy+ dw and then

are as in Fig. 1, except tha};=2, k=1, €,=0.1 (solid

solving for Sw, gives us 035
CveiDa(wo)
dw=——"—. 36 03f 1
7D;(wo) (39

aw 0.25

Thus the imaginary part ofw is

0.2

0.15

_
Im(5w)~C$(—kipzwf’—kipzaw*wrz

—eg(1+ a)wlo). (37)

Here wy=w,+iy and w,=1—e,g— (10/3r)e,g— ak’ p?
and we have assumed thg& w, . Equation(37) is not posi- 005
tive definite and may have both positive or negative sign,
indicating that collisions may have either stabilizing or de- o5 : :
stabilizing effects on they;-mode. s

In Fig. 3 the el,genfrequenCSIDOth real_ frequency and FIG. 4. The growth raténormalized to the diamagnetic frequehegs. For
growth rate normalized to the diamagnetic frequengy a g—s=r=1, =0, ,=0.1, ;= 0.33 withm=1.77 (solid line), m=0.88
function of collision frequency is displayed. The parametergdashed ling andm=0.35 (dashed—dotted line

0.1

35
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FIG. 5. The growth raténormalized to the electron diamagnetic drift fre- FIG. 6. The growth raténormalized to the electron diamagnetic drift fre-
quency vs v for s=q=7=1, €,=0.1 withk, p=0.075(solid line), k, p quency vs e, forg=s=7=1,k, p=0.15,7,=0; bl and b2 (=1); al and
=0.15(dashed ling andk, p=0.3 (dotted ling. a2 (k=1.5).

increasing magnetic shear. This is in good quantitative agreglotted 1ing. It is observed thato, contributes with a sub-
ment with the results found in Ref. 19. stantial stabilization andt, ,k; contribute with a destabiliz-

Next, we investigate the growth rafeormalized toy, ing effect. This is in agreement with the results obtained for
=(2c2/RL,)"7 as a function of the collision frequency with the 7i-mode in the collisionless fluid modétf. Fig. 7 in
FLR as a parameter. This is shown in Fig. 5 in a log—log p|0tRef. 9, where it was found that t_he stabilizing gffects were
with parameters as in Fig. 4 witkyp=0.075 (solid line), due to elongation gffgcts aip while the elongation effects
k,p=0.15 (dashed ling andk,p=0.3 (dotted ling. From  ©N k, were destabilizing f_or the relevant parameters. _
these three graphs we obtain thg dependence of the mode e effects of elongation on tiig-spectrum are studied,
as y~ 128 (solid line, small values of the FLR parameter I Fig. 8. The mode growtl@r;orzmgllzed to the dlamagnet.|c
and y~ v2? (dashed—dotted lind,p=0.15). The results re- frequency as a function ofkzp“ with « as a parameter is
flects the presence of two different branches of the resistivéNown. The other parameters &e q=r7=1, ,=0.2, 7
modes that differ in the scaling with,; asy~ %% (resistive =0, ¥ei=0.15, andx=1 (solid ling) and x=1.5 (dashed
ballooning modg and y~»1® (resistive drift wavek line). One important feature of this mode is that the maxi-

el

respectively’ The former estimate may be unattainable inMUm growth occurs ak,p=0.15, for bothx=1 and «
this case since the average curvature may not be small com=1-5- A small destabilization is found aroukgp~0.15 for
pared to the FLR as assumed in the analytical estimate. Fdf= 1.5 but for larger values of a stabilization with elon-
large collisionality, the growth rates approach the ideal MHD
limit vy, as expected from Eq18).

In Fig. 6 we illustrate thes,, dependence of the eigen-
value (both real frequency and growth rate normalized to the
diamagnetic frequengywith x as a parameter. The other e
parameters ars=q=7=1, 7,=0, kyp=0.15, 1,=0.5 T
with k=1 (curves b1, bpand k=1.5 (curves al, ag The ne -7 T
effects of elongation is stabilizing for peaked density profiles 2 E i
(en=<0.1) typical for an edge plasma discharge whereas in _ T
the flat density limit the effects are destabilizing. However, e B2
for large €, the mode is stabilized due to compressional ef-
fects. The results found here are very similar to the results °%f
found for the n;-mode in the collisionless advanced fluid
model (cf. Fig. 2 in Ref. 9.

In order to clarify the effects of elongation on the RBM,
an investigation of the isolated effects @f , k, , kj is per- . . . . . . . . . .
formed. In Fig. 7 the growth rat@gnormalized to the diamag- 1 W d2 43 44 45 48 47 18 9 2
netic frequencyas a function of elongation is displayed. The
other parameters are as in Fig. 6. Figure 7 shows the growtHG. 7. The growth raténormalized to the electron diamagnetic drift fre-
rate in three different cases; all elongation effects includecﬁ‘uency vs elongation forq=s=7=1, k,p=0.15, &=0.1, =0 with

. . . . solid line) as the full numerical simulations ariddashed lingas the simu-
(solid line), without elongation effects omp (dashed ling  jation with wp(6,x=1) and the(dashed—dotted linds with both wp and

and bothwp and k, kept at their circular valug¢dashed— k, at their circular value.
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FIG. 8. The growth raténormalized to the electron diamagnetic frequéncy
vs k?p? with q=s=7=1, ¢,=0.2, =0 wherex=1 (solid line) and «

—1.5 (dashed ling
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and it was found to contribute with only modest modifica-
tions of the results presented here.

IV. SUMMARY

In the plasma edge region, the two linear instabilities
expected to dominate in the electrostatic limit are the resis-
tive ballooning mode and thg,-mode. The effects of plasma
elongation and Shafranov shift on these instabilities are in-
vestigated using the analytical noncircular equilibrium model
of Ref. 17. The work is based on the Braghinskii equations
as a model for the electrons together with an advanced fluid
model for the ions. The resistive edge modes are investigated
in a noncircular equilibrium. An eigenvalue equatiffaq.
(19)] is derived and solved numerically using a shooting
technique. The geometrical effects enter B®) through the
magnetic drift frequencysp and through the perpendicular
(k,) and the parallelK)) length scales. It is found that the
effects of elongation on the resistivg-mode are usually
weakly stabilizing for edge relevant parameters, in agree-
ment previous results obtained for reactiyemodes’ In
addition, it is found that the effects of collisions on the re-
sistive »;-modes are rather weak and may be either stabiliz-
ing or destabilizing. For the resistive ballooning mode, sta-

gation may be recovered. It is also noted that for shortepjlization due to elongation is found for edge like
wavelengths the mode growth decreases more rapidly for parameters, whereas for large=2L,/Lg, a destabilization

=1.5 thank=1.

In a recent analytical pap@rit was found that the resis-
tive ballooning mode is stabilized by an increaserin al-
ready for small values of;. In Fig. 9 the eigenfrequency
(normalized to the diamagnetic frequeh@s a function of
7; is displayed with parameters from Ref. 1882, q=1r
=1, €,=0.08, kyp=0.15, andv,;=0.25. The stabilization
of the growth rate with an increase i is preserved and it

is obtained. In particular, the; stabilization of the strongest
mode observed in Ref. 18 is further enhanced if the effects of
elongation are taken into account, as exemplified by Fig. 9.
In conclusion, the elongation scaling of thg and balloon-

ing modes seem to be more favorable in the edge, where

is small, than in the core. As suggested by recent transport
code simulations, the scaling originating from the edge may
be more important for determining the total effects of plasma

stabilization. However, agj; increases any; driven mode

conclusions of the effects of elongation on the confinement

properties of the RBM, this occurs fof;=1.

treats both the edge and core transport processes self-

The effects of the Shafranov shift were also investigategonsistently is needed.
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