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Abstract. The influence of plasma elongation and Shafranov shift on the stability of electrostatic
ion-temperature-gradient driven modes (ηi-modes) is investigated. An advanced fluid model is
used for the ions together with Boltzmann distributed electrons. The derived eigenvalue equation
is solved both analytically, in the strong ballooning limit, and numerically. It is found that the
effects of elongation change from stabilizing, for peaked density profiles, to destabilizing in the
flat density regime. In addition, it is shown that the maximum growth rate is shifted towards
shorter wavelengths as the elongation increases. The effects of shaping on tokamak stability are
exemplified with data from a Joint European Torus (JET) high-performance mode discharge.

1. Introduction

One of the main challenges of fusion research is to understand the anomalously high transport
of particles and energy in magnetically confined plasmas [1, 2]. Although substantial progress
has recently been made in this field, some unsolved problems remain.

One of the most important is that of the effects of plasma shaping. The beneficial effects
of elongation on MHD stability are well established and understood. The effects on transport
are, however, not yet well understood. Empirically, it is known that elongation has a favourable
influence on transport [3]. While the explicit dependence of the confinement time on elongation
is roughly as κ0.5, another important effect is through the current scaling since the plasma cross
section, and thereby the current, increases with elongation.

One of the effects of elongation is to modify the perpendicular space variation and thereby
the effective magnetic shear [4]. This has a beneficial effect on MHD stability since the
stabilizing Alfvén frequency enters together with the squared perpendicular mode number. On
drift waves we get an enhanced convective damping due to magnetic shear. At the same time,
however, the mode width is reduced and this tends to reduce the beneficial effect on shear
damping. The net effect can even sometimes be destabilizing [5].

As found in the present work, the effect of elongation on the magnetic drift can also be
important. This is, in particular, the case for modes localized at the outside of the torus since the
poloidal curvature there is reduced by elongation. The ion-temperature-gradient driven mode
is one of the main candidates for explaining the anomalous transport in tokamaks [6–9]. A few
studies of ηi-mode [4, 10, 11] and trapped electron mode [12, 13] stability in the presence of
flux surface shaping have been made before. Two linear papers [4, 10] show weak stabilizing
effects of elongation while recent nonlinear work is less decisive [11]. As compared to the
linear studies, we have made here an extension to include the effects of elongation on the
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magnetic drift frequency. We also note that the sensitivity of drift waves to effects of geometry
depends strongly on the fluid closure. It is thus essential to study effects of elongation with an
advanced fluid model, such as the one used here. This model has been successful in reproducing
both experimental [14] and nonlinear gyro-kinetic results [15].

The paper is organized as follows. In section 2 the model equations and the equilibrium
are discussed. In section 3, the effects of elongation and Shafranov shift on the stability of
ion-temperature-gradient modes are discussed. Finally, a brief summary is given in section 4.

2. Formulation

An advanced fluid model [16–19] is used for the ion physics whereas the electrons are assumed
to be Boltzmann distributed. The model equations are solved utilizing a generalized non-
circular equilibrium model [20] which allows for controlled variation of the shape parameters
like elongation and Shafranov shift. Focusing on the fluid model, we start with the ion
continuity, the ion energy and the parallel momentum equation. In the electrostatic limit,
the equations take the forms

∂ni

∂t
+ ∇ · (ni�vE + ni�v
i) + ∇ · (ni�vpi + ni�vπ i) + ∇ · (ni�v‖i) = 0 (1)

mini
∂ �v‖i

∂t
+ ∇‖pi + nie∇‖φ = 0 (2)

3

2
ni

dTi

dt
+ niTi∇ · �vi + ∇ · �qi = 0. (3)

Here, ni is the ion particle density, pi = niTi is the ion pressure, Ti is the ion temperature, �v‖i is
the parallel ion velocity, φ is the electrostatic potential, andmi is the ion mass. The convective
derivative is defined as d/dt = ∂/∂t + (�vE + �v
i) · ∇. The diamagnetic and �E × �B drifts are
defined as

�v
i = c

eniB
(e‖ × ∇pi) (4)

�vE = c

B
(e‖ × ∇φ) (5)

where e is the charge, c is the speed of light, and e‖ = �B/| �B| is a unit vector along the magnetic
field. The drift �vπ i is the stress tensor drift and the polarization drift vpi is defined as

�vpi = 1

�ci

(
∂

∂t
+ �vi · ∇

)
(e‖ × �vi) (6)

where �vi is the total ion drift velocity and the cyclotron frequency is given by �ci = eB/mic.
Here we express the divergence as

∇ · (ni�vpi + ni�vπ i) = ∇ ·
(
ni

�ci

∂

∂t
(e‖ × �vi)

)

where we substitute �vE and �v
i for �vi. The part due to �vE corresponds to the polarization drift
velocity and the part due to �v
i is the lowest-order finite Larmor radius (FLR) term. We then
obtain

∇ · (ni�vpi + ni�vπ i) = −niρ
2
s
∂

∂t
�
eφ

Te
− ρ2

s

Te

∂

∂t
�δpi (7)

where ρs = cs/�ci and cs = √
Te/mi. The diamagnetic ion heat flux is given by

�qi = �q
i = 5

2

cTini

eB
e‖ × ∇Ti. (8)
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The ion temperature fluctuations equations couple to equations (1) and (2) through

∇ · (nj �v
j ) = 1

Tj
�vDj · ∇δPj (9)

where δPj (j = i, e) is the perturbed pressure and �vDj is the magnetic drift velocity at the
thermal speed, i.e.

�vDi = Ti

mi�ci

[
e‖ × ∇B

B
+ e‖ × �κ

]
(10)

where �κ = (e‖·∇)e‖ is the curvature vector. Additional curvature relations arise in equations (1)
and (2) as

∇ · �q
i = −5

2
ni�v
i · ∇T +

5

2
ni�vDi · ∇T (11)

∇ · �vE = qj

Tj
�vDj · ∇φ. (12)

Assuming a perturbation of the form e−iωt and using the continuity equation for ∇ · �vi in
the energy equation, the convective diamagnetic effects cancel out and the energy equation
becomes

δTi

Ti
= ω

ω − 5
3ωDi

(
2

3

δni

n0
− ω
e

ω

(
2

3
− ηi

)
eφ

Te

)
. (13)

The parallel ion equation (2) gives

�v‖i = −i
c2

s

ω
e‖ · ∇

(
eφ

Te
+

1

τ

δpi

pi

)
. (14)

Here we have τ = Te/Ti and ηi = d ln Ti/d ln ni. Substituting (13) and (14) into (1) and using
quasineutrality and Boltzmann distributed electrons δni/n0 = δne/n0 = eφ/Te we arrive at
the eigenvalue equation

c2
s (e‖ · ∇)2

(
1 +

1

τ
+ F̂

)
eφ

Te
= −ω(ω − ω
e)

eφ

Te
+ ω(τωDi − ωk2

⊥ρ
2
s )

(
1 +

1

τ
+ F̂

)
eφ

Te
(15)

where

F̂ = ω

ω − 5
3ωDi

(
2

3τ
+
ω
i

ω

(
2

3
− ηi

))
. (16)

Employing the standard high-n ballooning mode formalism [21], we obtain a second-order
eigenvalue equation for the potential φ in the extended poloidal angle θ ,

∂2ψ

∂θ2
= −h

((
1 − 1

�

)
A +

εn

�
g(θ) + b

)
ψ (17)

where � = ω/ω
 and we have

ψ =
(

1 +
1

τ
+ F̂

)
eφ

Te
(18)

A = 1 + (5/3τ)/(εn/�)g(θ)

F + β(εn/�)g(θ)
(19)

F = 1 +
1

�τ
(1 + ηi) +

5

3τ

(
1 − 1

�

)
(20)

β = 5

3τ

(
1 +

1

τ

)
(21)
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h = gθθq
2k2
θ ρ

2
i τ�

2

2ε2
n

(22)

ωD = ω
εng(θ) (23)

k2
⊥ = k2

θ k(θ). (24)

Here, εn = ωD/ω
 = 2Ln/LB and q is the safety factor, s = d ln q/d ln r is the magnetic shear.
The geometric effects enters through the magnetic drift frequencyωD and the scale factor

√
gθθ

in the second-order differential eigenvalue equation and through k2
⊥. The equilibrium model

used is a generalization of the s − α equilibrium model developed in [20]. The flux surface
coordinate system is defined by

R(r, θ) =
∞∑
n=0

Rn(r) cos(nθ) (25)

Z(r, θ) =
∞∑
n=0

Zn(r) sin(nθ) (26)

whereR andZ are the usual cylindrical coordinates. The termsR0, R1 = r , Z1 = rκ describe
shift, minor radius and ellipticity, respectively, the terms R2, Z2 describe triangularity. In the
present work effects of triangularity are neglected. The scale factors become

grr = (∂rR0 + cos θ)2 + (∂r(rκ) sin θ)2 (27)

gθθ = r2(1 + (κ2 − 1) cos2 θ) (28)

grθ = (∂r(κr)κr sin θ cos θ − r(∂rR0 + cos θ) sin θ) (29)

gφφ = R2 (30)

where κ is the elongation and ∂j = ∂/∂xj ; note that it only acts at the object directly after and
we denote position vector �r = (R,Z) and basis vectors êj = (1/hj )∂j �r . The metric tensor
gij is defined as

ds2 = gij dxi dxj . (31)

Keeping only the first terms in ε-ordering and under the assumption that the B-field is
�B = Bθ θ̂ + Bφφ̂, we have the magnetic drift frequency and k⊥ as

ωD

ω
e
= εng(θ) ≈ εn√

gφφ

(
gθr2rφφJ

q

r
s + gθθ2rφφJq − grr2θφφJ

q

r
s − gθr2θφφJq

)
(32)

k2
⊥ = k2

θ k(θ) ≈ − k2
θ

J 2
(grr + gθθ (sθ)

2 + 2grθ sθ). (33)

Here the inverse of the metric tensor is defined by the relation gijgjk = δki , compare with (33).
The Christoffel symbols are given by

2ijk = 1

2
gjn(∂kgni + ∂ignk − ∂jgik) (34)

2rφφ = −1

4

(
grr

J 2
∂rg

2
φφ +

grθ

J 2
∂θg

2
φφ

)
(35)

2θφφ = −1

4

(
gθr

J 2
∂rg

2
φφ +

gθθ

J 2
∂θg

2
φφ

)
(36)

where the Jacobian is given by

J 2 = gφφ(grrgθθ − g2
rθ ). (37)
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These results reduce to the usual expressions in circular geometry, i.e.
ωD

ω
e
≈ εn(cos θ + sθ sin θ) (38)

k2
⊥ ≈ k2

θ (1 + s2θ2). (39)

The eigenfunctions are often well localized corresponding to the strong ballooning limit.
Expanding all expressions for small theta to second order we get the Weber equation

∂2ψ

∂θ2
= (A(�)− B(�)θ2)ψ. (40)

The solution is given in the Hermite polynoms as

ψn(θ) = Hn(B
1
4 θ) e− 1

2B
1
2 θ2

(41)

where we require that Re[B
1
2 ] > 1 for strong localization. The analytically obtained ηi-mode

growth rate will be compared with the numerical solutions later. However, this approximation
method has some limitations. For example to ensure that we get a well localized mode we
have to consider rather small εn to get good agreement with the numerical result.

3. Effects of non-circular geometry: results and discussion

The eigenvalue equation (17) is solved numerically using a standard shooting technique. We
focus on the even modes since they are expected to be more important for tokamak confinement
than the odd modes. Starting from θ = 0 with ψ(0) = 1 and ψ ′(0) = 0, the eigenvalue is
iterated until the condition ψ → 0 as θ → ∞ is satisfied.

In figure 1 the effects of elongation κ on the ηi-mode stability are illustrated. The growth
rate (normalized to the electron diamagnetic frequency) as a function of ηi is shown with εn
(2Ln/LB) and κ as a parameter. The other parameters are q = s = τ = 1 and k2

⊥ρ
2 = 0.1.

The results are shown for εn = 1, κ = 1.5 (curve a1) and κ = 1 (curve a2), and for εn = 0.1,
κ = 1.5 (curve b1) and κ = 1 (curve b2). A slight destabilization of the mode with increasing
κ is found for both peaked (εn = 0.1) and flat (εn = 1) density profiles in this parameter
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Figure 1. The growth rate (normalized to the electron diamagnetic drift frequency) versus ηi, for
q = s = τ = 1, k2

⊥ρ
2 = 0.1, εn = 1, κ = 1.5 (curve a1); εn = 1, κ = 1 (curve a2); εn = 0.1,

κ = 1.5 (curve b1) and εn = 0.1, κ = 1 (curve b2).
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Figure 2. The growth rate (normalized to the electron diamagnetic drift frequency) versus εn, for
q = s = τ = 1, k2

⊥ρ
2 = 0.1, ηi = 4, κ = 1.5 (curves a1 and a2); κ = 1 (curves b1 and b2).
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Figure 3. The growth rate (normalized to cs/a) versus κ for q = 2, s = τ = 1, k2
⊥ρ

2 = 0.16,
ηi = 6, εn = 0.33 (full curve) and εn = 1.0 (dashed curve).

regime. Close to marginal stability, the destabilizing effects of elongation are substantial, in
particular for flat density profiles.

In figure 2 the εn dependence of the eigenvalue (both real frequency and growth rate) with
κ is displayed. The other parameters are as in figure 1 with κ = 1 (curves b1, b2) and κ = 1.5
(curves a1, a2). The mode is stabilized for large εn due to compressional effects. We note that
the effects of elongation are destabilizing in the flat density limit whereas for peaked density
profiles, εn � 0.15, the effects are stabilizing. Elongation also results in an increase of |ωr |.

Earlier work indicates that the ηi-mode growth rate is reduced with increasing elongation
[4, 10, 11]. To illustrate this, figure 3 shows the effects of elongation on the growth rate with
parameters taken from [11] with q = 2, s = τ = 1, k2

⊥ρ
2 = 0.16, ηi = 6 and εn = 0.33

(full curve, cf figure 2(b) of [11]) and εn = 1. For peaked density profiles εn = 0.33 (full curve)
the effects of elongation are found to be stabilizing in good qualitative agreement with the
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Figure 4. The growth rate versus k⊥ρ for q = s = τ = 1, ηi = 4, εn = 0.1. The curves a1
(κ = 1.5) and b1 (κ = 1) are the analytical dispersion relations and a2 (κ = 1.5) and b2 (κ = 1)
are the numerical simulations.

results reported in [11]. For flat density profiles εn = 1 (dashed curve), on the other hand, a
substantial destabilization is found for κ � 1.7. As the equilibria becomes more elongated the
influence of κ is reversed and a stabilization is observed for large values of κ .

Next, the effects of κ on the kθ spectrum are discussed. Figure 4 displays the mode growth
as a function of kθρ with κ as a parameter. The parameters are as in figure 1 except that we
have fixed εn = 0.1 and have κ = 1.5 for the curve a2 and κ = 1 for the curve b2. In the
circular case (κ = 1) the maximum growth rate occurs for kθρs = 0.3. For κ = 1.5, however,
the peak is shifted towards larger values of kθρ. Also shown is the analytical solution, for
κ = 1.5 (curve a1) and κ = 1 (curve b1) in the strong ballooning limit (equation (40)).
The analytical approximation usually overestimates the growth rate for elongated equilibria,
whereas the circular case is well reproduced.

Figure 5 illustrates the effects of elongation in combination with negative shear on ηi-mode
stability. The normalized growth rate is shown as function of ηi with κ and s as parameters.
The other parameters are q = 2, εn = 0.2, τ = 1 and for s = 0.5 we have κ = 1.5 (curve a1)
and κ = 1.0 (curve a2), whereas for s = −0.5 we have κ = 1 (curve b2) and κ = 1.5
(curve b1). For the circular case, the effects of negative shear (s = −0.5 versus s = 0.5) are
slightly stabilizing. For κ = 1.5, on the other hand, a substantial reduction in growth rate is
obtained in the negative shear case. The results indicate that the stabilizing effects of magnetic
shear can be enhanced in the presence of elongated equilibria.

In figure 6 the modulus of the eigenfunction is shown for εn = 1 (full curve) and εn = 0.1
(dashed curve). The other parameters are as in figure 1 with κ = 1. The eigenmode tends to
be more localized for small εn. In this regime, however, the eigenmode is rather insensitive
to elongation. We thus expect the strong ballooning approximation (equation (40)) to be valid
for small εn.

In the eigenvalue equation (equation (17)), the effects of elongation enter through the
magnetic drift frequency ωD = ω
εng(θ), the FLR parameter k2

⊥ = k2
θ k(θ) and the mode

structure along the field line (k‖). Since the effects on the mode structure are usually small the
main effects enter through ωD and k2

⊥. In figures 7(a) and 7(b), the influence of κ on ωD(θ) and
k2
⊥(θ) are illustrated. In figures 7(a) and 7(b) ωD(θ) and k(θ) are given for κ = 1 (full curve)

and for κ = 1.5 (dashed curve). We note that g(θ = 0) is reduced with increasing elongation
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Figure 5. The growth rate (normalized to the electron diamagnetic drift frequency) versus ηi for
q = 2, τ = 1, k2

⊥ρ
2 = 0.1, εn = 0.2. The curves a1 (κ = 1.5) and a2 (κ = 1) have s = 0.5; the

curves b1 (κ = 1) and b2 (κ = 1.5) have s = −0.5.
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Figure 6. The eigenfunctions for different εn with q = s = τ = 1, k2
⊥ρ

2 = 0.1, ηi = 4 where
εn = 1 (full curve) and εn = 0.1 (dashed curve).

(figure 7(a), dashed curve). Also k2
⊥(θ = 0) is slightly reduced in the κ = 1.5 (dashed curve)

case.
In order to quantify and compare the effects of elongation (through ωD and k2

⊥) on the
mode growth we solve (equation (17)) while artificially keeping the magnetic drift ωD at its
circular value. The results of a κ-scaling with εn as a parameter are shown in figure 8. The
growth rates (curve a2, εn = 1; curve b1, εn = 0.1) are then compared with the solution to
(equation (17)) with the full κ-dependence retained (curve a1, εn = 1; curve b2, εn = 0.1).
As observed, the inclusion of the κ-dependence of the magnetic drift can be both stabilizing
(εn = 0.1) and destabilizing (εn = 1). This is a consequence of the εn-dependence of the mode
growth as displayed in figure 2. As κ increases, ωD(0) is reduced (figure 6(a)) and this leads to
an effective reduction of εn = ωD(0)/ω
. The resulting effect on the growth is stabilizing close
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Figure 7. (a) The function g(θ) for s = 1 with κ = 1 (full curve) and κ = 1.5 (dashed curve);
(b) the function k(θ) for s = 1 with κ = 1 (full curve) and κ = 1.5 (dashed curve).

to the lower εn stability threshold and destabilizing in the proximity of the upper threshold.
The influence of κ through the FLR parameter is destabilizing in both cases.

The Shafranov shift has in general a very weak effect on the eigenfrequency both in the
circular and the elongated cases. Figure 9 shows the growth rate as a function of the Shafranov
shift with ηi as a parameter. The other parameters are s = q = τ = εn = κ = 1 with ηi = 8
(dashed dotted curve), ηi = 6 (dashed curve) and ηi = 4 (full curve). Similar results are
obtained for small εn.

To quantify the effects of elongation and Shafranov shift on ηi-mode stability for realistic
tokamak equilibria, parameters from the JET H-mode discharge 43633 have been studied.
The stability calculation was performed at ρ = 0.66 in steady state at t = 48 s. The other
parameters are s = 0.45, q = 1.67, τ = 1, εn = 1.13, κ = 1.6 and the Shafranov shift is
−0.12. The stability calculation is most easily performed through a scaling in ηi values, this
scaling is motivated by the large uncertainty in the experimental ηi values. For ηi values around
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Figure 8. The growth rate (normalized to the electron diamagnetic drift frequency) versus κ for
q = s = τ = 1, k2

⊥ρ
2 = 0.1, ηi = 4. Curves a1 (εn = 1) and b2 (εn = 0.1) are the full numerical

simulations and a2 (εn = 1) and b1 (εn = 0.1) are the simulations with ωD(θ, κ = 1).
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Figure 9. The growth rate (normalized to the electron diamagnetic drift frequency) versus
Shafranov shift for q = s = τ = 1, k2

⊥ρ
2 = 0.1, εn = 1, κ = 1. ηi = 8 (dashed dotted

curve); ηi = 6 (dashed curve) and ηi = 4 (full curve).

4 the growth rate increases by approximately a factor of two when elongation is included. The
Shafranov shift has a more modest contribution, a destabilizing effect of less than 20%. These
results are rather typical for the JET equilibria considered.

4. Summary

The effects of plasma shaping on the stability of ion-temperature-gradient driven modes is
investigated. The work is based on an advanced fluid model for the ions, which is extended to
allow for non-circular cross sections. The electrons are assumed to be Boltzmann distributed.
The derived eigenvalue equation (17), which includes effects of elongation κ and Shafranov
shift, is solved numerically.
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The main effect of elongation enters through a modification of the magnetic drift frequency
ωD. Also the FLR parameter and the parallel wavenumber k‖ are modified. For large values of
εn = ωD/ω
, corresponding to the flat density regime, it is found that the ηi-mode is slightly
destabilized by elongation, whereas for small εn a stabilization is found. The influence of the
Shafranov shift is found to be slightly stabilizing.

In addition, the spectrum of the unstable modes is shifted towards shorter wavelengths for
elongated equilibria. This shift tends to reduce the transport by reducing the correlation length
in the plasma. For realistic tokamak parameters, the model predicts a slight destabilization of
the ηi-mode in the core plasma where the density profiles are rather flat. In the edge, on the
other hand, a stabilizing effect is expected. To evaluate the total effect of elongation on the
confinement time, both the edge region where κ is large, and the core region must be included
in the analysis. To this end, a transport code simulation is needed which treats the core and edge
transport processes self-consistently and which includes the effects of non-circular geometry
on the resistive edge modes. This will be the subject of a future paper.
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