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Abstract

It is very important to be able to simulate axial piston pumps in order to under-
stand its impact on the velocity, pressure and temperature of the lubricating oil in
the pump. These variables have huge impact on the leakage in the lubricating gaps
which is strongly related to the amount of power loss in the pump.

This thesis main focus have been to further develop a in-house developed FSI
(Fluid Structure Interacting model) software called CASPAR, which is developed by
MAHA Fluid Power Research Center in order to calculate the velocity, pressure and
temperature in an axial piston pump.

This software has been further developed in three main research steps. One step
was to develop a simplified and fast model that predicts the case temperature in
an axial piston pump. The case temperature has previously been proven to have
an impact on the power loss due to thermal deformation of the structure in the
lubricating gaps. The calculated case temperature with this model should be used as
a mixed boundary condition in the calculation tool CASPAR. The case temperature
was previously taken from measurements.

Measurements regarding the case temperature in an actual axial piston pump
has been taken in order to analyze and validate the developed model for the case
temperature.

The behavior of the model has shown that the gap height is strongly influenced
by the case temperature, hence the simplification to use constant gap heights in the
lubricating gaps are not a valid approximation. Instead a further investigation has
to be done and a recommendation to integrate the developed model with CASPAR,
where both gap heights and leakage are calculated.

CASPAR is divided into two parts, the Pressure Module and Gap Flow Module.
These have been further developed in this thesis in order to improve the efficiency
and accuracy of the calculations of axial piston pumps. This was done by using and
merging previous versions of the Pressure Module in to one single version and to
develop the possibility to simulate the three lubricating gaps in an axial piston pump
simultaneously with the Gap Flow Module.

The new single version of the Pressure Module is called the Coupled Pressure
Module and it is now possible to run simulations while combining different models
considering different physical effects. The simultaneous calculations of the lubri-
cating gaps is called the Coupled Gap Flow Module. This has improved the time
efficiency compared to independently calculated lubricating gaps. Friction forces are
transmitted between the gaps in the way it is meant to be and the Coupled Pressure
Module and Coupled Gap Flow Module is a part of the step against the development
of the new version of CASPAR.

The new version of CASPAR should be one improved version where more physics
is included compared to the old versions.

Keywords: Coupling, Axial piston pump, CASPAR, Leakages, Gap heights, Power loss,
Case temperature, Model
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1 Introduction

The main source of power loss in an axial piston machine is the lubricating gaps. The
power loss due to viscous friction and gap flow occur in these lubricating interfaces. These
are located between the cylinder block and valve plate, piston and cylinder, and between
slipper and swash plate. It is very important to take this into account when the pump is
designed.

A fluid structure interacting model called CASPAR has been developed. CASPAR is
able to calculate displacement chamber pressure and losses due to viscous friction and gap
flow [2].

CASPAR is divided into two modules, Pressure Module and Gap Flow Module. The
Pressure Module calculates the instantaneous pressure in the displacement chamber, while
the Gap Flow Module solves the leakage flows in the lubricating gaps.

CASPAR was developed by Monika Ivantysynova and Uwe Wieczorek in 2002. The
software is still under development by the CASPAR team led by Professor Monika Ivan-
tysynova at MAHA Fluid Power Research Center at Purdue University.

There have been many different versions of the Pressure Module developed for different
purposes, i.e. different models considering different physical effects on different levels. The
goal of the presented thesis work was to study the different mathematical models and to
combine them in one large coupled program version. This will allow the user to combine
effects and therefore to always use the most appropriate model for the given task. The
Coupled Pressure Module (CPM) has been developed for this purpose.

The Gap Flow Module calculates the pressure, temperature fields, resulting flow and
viscous friction in the three gaps (gap between moving piston and cylinder, gap between
rotating cylinder block and valve plate and gap between rotating slipper and swash plate)
independent from each other. However, the fluid film behavior of each of those gaps are
connected and influenced by fluid forces generated in each gap. Therefore accurate results
require a data exchange between these separate gap modules. By solving three interfaces
simultaneously a better calculation of the flow field in the gap can be achieved, which is
very important in order to determine the gap flow parameter and resulting pump perfor-
mance data accurately. The development of Coupled Gap Flow Module (CGFM) has been
the second research task of the presented thesis.

The temperature in the case of the pump is a critical parameter in order to calculate
the temperature distribution in the solid parts and the temperature field in the fluid film.
This is important in order to determine the resulting thermal deformations of the solid
parts, which is influencing the amount of power loss due to the leakage flow and viscous
friction. This temperature has previously been taken from measurement data. This be-
comes a problem when designing new pumps where no measurements are available. The
case temperature affects the temperature in the gaps and thermal deformation of the solid
parts in the axial piston machine. As a third research task of this thesis a model has
been developed to calculate the case temperature prior to CASPAR to get a more accurate
simulation of the leakage flows.

1.1 Purpose

The purpose of this project is to further improve the fluid structure interaction model
CASPAR which has been developed by researchers of the Maha Fluid Power research
Center. In particular the research focus on the following three steps.

1. Study and merge the various versions of models to predict the instantaneous cylinder
pressure in axial piston machines. The new Pressure module should include the same
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outputs as the various existing in-house models.

2. Develop a model that allows to run simulations for all three main lubricating inter-
faces of a swash plate type axial piston pump simultaneously by using the recently
developed fluid structure interaction models. Also investigate how the power loss is
affected due to the fluid forces that are transmitted between the three interfaces.

3. Develop a model that predicts the temperature in the pump casing. Also investigate
how the gap heights are affecting the developed model.

1.2 Limitations

The CGFM was made as an external program that acts as a parent program for the three
Gap Flow Module programs.

The model for the case temperature calculation is based on estimated values of dissi-
pated energy and empirically chosen gap heights. It has therefore a limited accuracy. The
model was carried out and verified with measurements of a Sauer-Danfoss 75cc pump.

1.3 Approach

CPM and CGFM were developed in Microsoft Visual Studio 2008 in the programming
language C++. The case temperature model was made in MATLAB.

1.4 Sustainable development

To have simulation tool that calculates the fluid film, resulting fluid flow and viscous friction
accurately in a pump is crucial when designing a pump. Digital prototyping does not only
allow for better and less costly pump design. It also gives better inside and understanding
of the influence of design parameters on pump performance, and reliability. It will allow
for sustainable design and save costs of currently used trial and error design process.

2 Axial Piston Machines

An Axial piston machine is a positive displacement machine that works on the displacement
principle[3]. The different types of displacement machines are divided in five main clas-
sifications, Piston machines, Gear machines, Screw machines, Vane machines and other
machines. Most of the machines can operate either as a pump or a motor.

The Piston machines use moving pistons to displace fluid. The displacement chamber
is formed between the cylinder and the moving piston. In axial piston machines the main
movement of the piston is in axial direction. The main components of axial piston machine
are the cylinder block, valve plate, swash plate, pistons, slippers and the pump case and
shaft with shaft bearings, see Figure 2.1.

The cylinder block contains cylinder bores arranged on a circle with radius RB. The
piston move in axial direction between the inner and outer piston dead center while the
cylinder block rotates and the pistons are supported on the inclined swash plate. The
pistons need to be in continuous contact with the swash plate. In most pumps the piston
are supported on the swash plate using slippers. The slipper are constructed in a way that
allows to rotate around its own axis. The cylinder block is connected to a driving shaft.
The cylinder block rotates with the shaft while the swash plate is stationary. Please note
that there are designs with inverse kinematics, i.e. rotating swash plate and stationary
cylinder block.

2 , Applied Mechanics, Master’s Thesis 2011:62



Figure 2.1: Parts of an axial piston machine swash plate design

Figure 2.2 explains the operation of an ideal pump when compressibility of the fluid is
considered.

Figure 2.2: operational cycle of a ideal displacement machine with compressibility of a real
fluid

When operating as a pump the flow will enter the displacement chamber at point A
from the low pressure line at the inlet by the stroke of the piston. The displacement volume
will increase until point B where the maximum volume Vmax is achieved. The direction of
the translatory piston movement will change direction and compress the fluid inside the
displacement chamber until point C. The compression happen so fast that an adiabatic
process is assumed [3]. The fluid will flow out to the outlet in the high pressure line until
point D where the minimum volume Vmin is achieved. The pressure falls because of the
reversal movement of the piston until point A where the cycle is repeated.

If the axial piston machine operates as a motor, the flow will instead enter at the high
pressure line at point D. The displacement chamber volume is increased until point C
where the pressure suddenly falls to point B because of the expansion of the fluid. The
displacement chamber opens to the low pressure line at the outlet where the fluid flows out
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until point A. The displacement chamber closes to the outlet and the fluid is compressed
because of the further reduction of the displacement chamber volume until point D. The
cycle is then repeated.

The flow direction can be changed by either changing the displacement of the swash
plate to either negative or positive angle or by changing the rotation direction of the driving
shaft.

The Axial piston machine has two different classifications, Swash plate or Bent axis
design. The main difference of these two pump types is where the torque is generated. The
torque is generated on the cylinder block for a swash plate type pump, while for a bent
axis pump it is generated on the driving flange [3], see Figure 2.3.

Figure 2.3: Parts of an axial piston machine bent axis design

The Bent axis type of machine has often an angle (β) of the cylinder block to the drive
shaft. This enables the pump to operate with a bent axis/shaft, instead of the straight
shaft in the swash plate design.

An axial piston pump with the swash plate design operating in pumping mode will be
considered in this thesis, unless otherwise stated.

2.1 Lubricating gaps

The lubricating gaps function is to seal the displacement chamber [7] and to transfer high
forces from one part to the other pump part, i.e. the gaps fulfills a sealing and bearing
function. It also reduces friction and wear between the mobile parts [6]. An optimal design
of these gaps is achieved when energy dissipation is minimum and the sealing and bearing
functions are fulfilled under all pump operating conditions.

The lubricating interfaces in an axial piston pump are between the piston and cylin-
der, slipper and swash plate and the cylinder block and valve plate, see Figure 2.4. The
lubricating gaps has been proven to bethe main sources of the power loss inside the pump.

The geometry of the gap has a big impact on the volumetric efficiency of the pump. The
gap geometry depends on many things, such as pump speed, pressure and temperature.

The volumetric efficiency is the ratio between the effective pump flow (theoretical flow
rate minus volumetric loss) and the theoretical flow rate, i.e.

ηv =
Qe

Qi

=
Qi −Qs

Qi

(2.1)

The volumetric efficiency is varying with pressure and pump speeds as in Figure 2.5.
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Figure 2.4: The lubricating interfaces in an axial piston pump

Figure 2.5: Volumetric efficiency of a pump for changing pressure or pump speed.

The power loss generated by the fluid flow in the lubricating gaps is

Ploss = PSQ + PSv = Qleak∆p+ F • v (2.2)

where PSQ and PSv are power loss due to leakage flow and viscous friction respectively and
v stands for the velocity of the fluid in the lubricating gap for the respective friction force,
F.
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2.2 Kinetics of the pump

The schematic in Figure 2.6 represents an axial piston pump of swash plate design with
cylinder bores parallel to the shaft.

Figure 2.6: Scheme of an axial piston pump of swash plate design

The rotation of the shaft is around the z-axis and the angular rotation speed, ω, is
constant for all revolutions. The displacement of the piston, sK , is in the z-axis direction.

sK = −z (2.3)

The displacement depends on the pitch radius, RB, and the location of the piston in φ-
direction.

z = b tan β (2.4)

b = RB − y (2.5)

y = RB cosφ (2.6)

Combining Equations 2.3- 2.6 the following expression for the displacement is achieved

sK = −RB tan β(1− cosφ) (2.7)

The maximum value of the displacement sK is achieved after a half revolution when the
piston is at φ = 180◦, this location is also referred to the inner dead center (IDC).

HK = 2RB tan β (2.8)

The relative velocity of the piston in z-direction is

vK =
dsK
dt

=
dsK
dφ

dφ

dt
=
dsK
dφ

ω (2.9)

The derivative with respect of the angle φ of Equation 2.7 is

dsK
dφ

= −RB tan β sinφ) (2.10)
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inserting Equation 2.10 into Equation 2.9 will yield the relative velocity

vK = −ωRB tan β sinφ = −1

2
ωHK sinφ (2.11)

The acceleration of the piston is

aK =
dvK
dt

=
dvK
dφ

dφ

dt
=
dvK
dφ

ω (2.12)

By taking the derivative of Equation 2.11 with respect of φ and inserting in Equation 2.12
will give

aK = −ω2RB tan β cosφ = −1

2
ω2HK cosφ (2.13)

The circumferential speed of the piston due to the rotation of the cylinder block is

vu = RBω (2.14)

and the radial acceleration can then be expressed as

au = RBω (2.15)

The volume in the displacement chamber is continuously changing due to the linear motion
of the piston, the rate of change of the volume is expressed as

dV

dt
= vKAK = −ωRBAK tan β sinφ = −1

2
ωHK sinφAk (2.16)

where AK is the area of the piston.
The volume in the displacement chamber is defined as

VDC = V0 − V = V0 − sKAK = V0 +RB tan β(1− cosφ)AK (2.17)

where V0 is the volume at the pistons outer dead center (ODC), i.e most outer point of
the piston at φ = 0◦. The volume entrapped in the displacement chamber at IDC is called
VDEAD, and is the smallest achievable volume in the displacement chamber.
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2.3 Forces at the piston

The external forces that act at the piston can be viewed in Figure 2.7. The FDK force is
the force created due to the pressurization of the displacement chamber.

Figure 2.7: Forces acting at the piston

FDK = Ak(pDC − pcase) (2.18)

The inertial force FaKz is the force created due to the acceleration of the piston with
slipper

FaKz = −mKaK (2.19)

The frictional force exerted on the piston is denoted as FTK . This force can be divided
into two components, one acting as a resiting force against the movement of the piston
in the axial direction, FTKz and the other one in the circumferential direction around the
piston, FTKy. These forces can be computed by calculating the integral of the shear stress
due to the lubricating oil in the gap under the assumption of viscous friction (sufficient oil
film in the gap [3]).

FTKz =

∫
A

τyzdA =

∫
A

µ
∂vz
∂y

dA (2.20)

FTKy =

∫
A

τyxdA =

∫
A

µ
∂vy
∂y

dA (2.21)

The total force acting on the piston in the axial direction is represented as FAKz

FAKz = FDK + FaKz + FTKz (2.22)

This force is transmitted to the slipper as a force perpendicular to the swash plate, FSK .
The reaction force from the swash plate will then act on the piston in the opposite direction,
hence

FSK = −FAKz
cos β

(2.23)

This is split up into two components

8 , Applied Mechanics, Master’s Thesis 2011:62



FSKy = FAKz tan β (2.24)

FSKz = −FAKz (2.25)

The FSKz is taken up by the cylinder block through the piston guide. The centrifugal force
acting on the piston is denoted as FωK .

FωK = mKau (2.26)

The piston is also loaded by the frictional force, FTG, that is transmitted from the
slipper. The total external forces is described in a coordinate system that is fixed to the
rotation of the piston around the shaft with angle φ. The yK axis is pointing outward
aligned with the centrifugal force, and the xK axis is pointing from the center of the piston
in the velocity direction of the piston. The origin of the system is aligned at the edge of
the bushing at the chamber side, see Figure 2.7. The total external forces acting at the
piston in the xK and yK-direction is then defined as

FKx = −FSKy sinφ+ FTG (2.27)

FKy = FSKy cosφ+ FωK (2.28)

where sufficient liquid film between the slipper and swash plate is assumed.
The external moments about the xK and yK axis are

MKx = −zRKFSKy cosφ− (zRK − lSK)FωK (2.29)

MKy = zRKFKx (2.30)

The external forces FKx, FKy and moments MKx, MKy are balanced with forces that
is created due to the pressure distribution in the lubricant in order for the piston to be in
equilibrium. The fluid forces are defined as the summation of the pressure times the area
the pressure is acting upon in every point in the lubricant around the piston surface inside
the bushing.

FfK =

∫
A

p dA (2.31)

This force is divided into two components in the reference system (xK ,yK ,zK).

FfKx = −FfK cosφK (2.32)

FfKy = −FfK sinφK (2.33)

In the same way as for the external forces, the moments resulting from the pressure
field are

MfKx = FfKxzK (2.34)

MfKy = −FfKyzK (2.35)

The external forces are balanced with the fluid forces at the piston to achieve equalib-
rium. The moments are transferred to forces that is also acting at the piston.
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2.4 Forces at the slipper

The slipper can only transmit normal forces to the swash plate, this is due to the sliding
bearing and the ability to rotate around its own axis.

Figure 2.8: Forces acting at the slipper

The coordinate system applied in the slipper originates from its center and its plane
agrees with the tilting of the swash plate angle β. The external force that is pressing the
slipper to the swash plate is defined as

FKS =
FAKz
cos β

(2.36)

which is the same as FSK but with opposite sign.
The arising firctional force, FTG, is due to the rotational and sliding motion of the

slipper on the swash plate. It can be determined under the assumption of viscous friction
between the slipper and swash plate as the resultant force of the two components FTGx
and FTGy

FTG =
√
F 2
TGx + F 2

TGy (2.37)

where the components are computed as

FTGx =

2π∫
0

a2∫
a1

τzxa dadγ =

2π∫
0

a2∫
a1

(τza sin γ + τzγ cos γ) a dadγ (2.38)

FTGy =

2π∫
0

a2∫
a1

τzya dadγ =

2π∫
0

a2∫
a1

(τza cos γ − τzγ sin γ) a dadγ (2.39)

The shear stresses in the cartesian coordinate system is divided into two components
each in the local cylindrical polar coordinate system for the slipper, as shown in Figure 2.9.

τza = µ
∂va
∂z

τzγ = µ
∂vγ
∂z

(2.40)

The moment around the x-axis is as a result of the centrifugal force, FωG
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Figure 2.9: Shear stress components acting at a element on the slipper.

MGx = FωGlG cos β = mSRBω
2lG cos β (2.41)

and the moment around the y-axis as a result of the frictional force FTG, and is expressed
as

MGy = FTGxlG (2.42)

The corresponding fluid forces in the gap are expressed as

FGfz =

∫
A

p dA (2.43)

MGfx =

∫
A

pa dA (2.44)

MGfy =

∫
A

pa dA (2.45)

The external and fluid moments are transferred to forces. The three fluid forces will be
balanced by the external forces at the slipper.

2.5 Forces at the cylinder block

The external forces at the cylinder block can be viewed in Figure 2.10. The cylinder block
is loaded with a pressure force, pDCi, in the displacement chamber

FDBi = −pDCiAD (2.46)

where index i stands for one piston. The centrifugal force on the piston is transferred to
the cylinder block through the following equation

FωBi = FωKi = mKω
2RB (2.47)
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Figure 2.10: Forces acting at the cylinder block

The frictional force at the block is in the opposite direction of the frictional force of the
pistons

FTBzi = −FTKzi (2.48)

The cylinder block is also loaded with the frictional force from each slipper

FRBxi = FωKi sinφ− FTGi cosφ (2.49)

FRByi = FSKyi + FωKi + FTGi sinφ (2.50)

The total external forces loaded at the cylinder block in each direction is

FBx =
n∑
i=1

FRBxi (2.51)

FBy =
n∑
i=1

FRByi (2.52)

FBz = FBan = −FFB +
n∑
i=1

FDBi +
n∑
i=1

FTBzi (2.53)

where n stand for the number of pistons. The FFB force is transmitted due to a spring
that is located between the cylinder block and swash plate. Its function is to prevent the
gap between the cylinder block and valve plate to become to big, which would make the
cylinder block to fly and the gap looses its function as a bearing. This would result in too
large fluid forces.

The external moments around the x and y-axis are defined as

MBx =
n∑
i=1

yiFDBi +
n∑
i=1

yiFTBzi −
n∑
i=1

ziFRByi (2.54)

MBy = −
n∑
i=1

xiFDBi −
n∑
i=1

xiFTBzi +
n∑
i=1

ziFRBxi (2.55)

The corresponding fluid force and moments are described as

FfB =

∫
A

p dA (2.56)
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MfBx =

∫
A

FfBy dA (2.57)

MfBy =

∫
A

−FfBx dA (2.58)

The fluid forces are balanced in the same way as for the slipper.
The fluid forces for all the interfaces are determined by solving the Reynolds and energy

equation numerically for each gap, this is further explained in Section 3.2.

3 CASPAR

CASPAR (Calculation of Swash-Plate Type Axial Piston Pump/Motor) is a computational
software that is designed to calculate the losses due to viscous friction and gap flow in swash
plate type axial piston machines [2]. It also takes deformation due to pressure and thermal
loading of solid parts into account.

CASPAR is divided into two parts, the Pressure Module and the Gap Flow Module. The
Pressure Module calculates the pressure in the displacement chamber based on a lumped
parameter model for the pressure. The Gap Flow Module solves the gap flows using the
Reynolds, energy, and linear elastic deformation equation [2]. It uses the Finite Volume
Method (FVM) to solve the for the fluid and the Finite Element Method (FEM) to solve
for the solid parts.

When using CASPAR, the Pressure Module needs to be solved first. The complete
calculated results from the Pressure Module are then used as a boundary condition in the
Gap Flow Module.

The following sections will go through the theory of the Pressure Module and the Gap
Flow Module that is relevant in order to understand how the program works.

3.1 Pressure Module

The Pressure Module uses a lumped parameter model for the pressure, which means that
the pressure is assumed to be constant in the spatial domain. The model only regards
changes with respect to time.

The following equation solves the pressure in the displacement chamber

dpDC
dt

=
K

V

(
Qr +QSK +QSB +QSG −

dV

dt

)
(3.1)

Equation 3.1 is the pressure equation, which is the main equation that is solved in the
Pressure Module. K is the bulk modulus which depends on the temperature and pressure
in the displacement chamber. The temperature is assumed to be constant in the ports.
The displacement chamber is assumed to have the temperature of the fluid of the respective
port that it is open to at an instant of time.
The pressure, pDC , and the volume, V , are solved in time. The volume represents the
displacement chamber volume.

The flow variable, Qr, is the net flow through the valve plate

Qr = QrLP +QrHP (3.2)

where QrLP and QrHP is the sum of all the flows entering and exiting the displacement
chambers for every piston. They are defined as in Equations 3.3 and 3.4
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Figure 3.1: Pressure development in the displacement chamber

QrLP =
n∑
i=1

QrLPi = αD,LPArLPi

√
2|pDCi − pLP |

ρ
sgn(pDCi − pLP ) (3.3)

QrHP =
n∑
i=1

QrHPi = αD,HPArHPi

√
2|pDCi − pHP |

ρ
sgn(pDCi − pHP ) (3.4)

where αD is the respective discharge coefficient that depends upon the metering-edge-
geometry and the Reynold’s number [3]. The areas ArLP and ArHP are defined as the
respective cross sectional orifice area perpendicular to the flow direction through the valve
plate. The pressures pLP and pHP is the pressure in respective port and n is the number
of pistons.

The other flow variables in Equation 3.1 is QSK , QSB, QSG, which represents the leakage
flows through the lubricating gaps between piston-cylinder, cylinder block-valve plate, and
between slipper-swash plate respectively. The leakage in the cylinder block-valve plate
interface, QSB, is the sum of QSB1 and QSB2. The leakage flows is not calculated with the
Pressure Module since this requires much information and knowledge of the gaps. Hence
QSK , QSB, QSG are set to empirically determined values when first solved. This will be
further described in the Section 3.2.

Equation 3.1 is modified in the following way to solve for the pressure in the HP and
LP port.

dpLP
dt

=
K

VLP
(QIN −QrLP ) (3.5)

dpHP
dt

=
K

VHP
(QrHP −QOUT ) (3.6)

where Q1 and Q2 are the flows entering and exiting the LP and HP ports depending on
the direction of flow.

Q1 = αD,LPAD,LP

√
2|p1 − pLP |

ρ
sgn(p1 − pLP ) (3.7)

Q2 = αD,HPAD,HP

√
2|p2 − pHP |

ρ
sgn(p2 − pHP ) (3.8)
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The areas AD,LP and AD,HP are the areas in the throttling valves that is located at
the entrance and exit to the pump. These areas regulate the amount of flow entering and
exiting the pump, thereof the load of the system. The pressures p1 and p2 direct the line
of flow in the system, a schematic of the axial piston pump and the connected lines can be
seen in Figure 3.2.

Figure 3.2: Schematic of the axial piston pump with the connected lines.

When the pump is in pumping mode, the pressure p1 needs to be larger than p2 in order
for the flow to go in through AD,LP and out through AD,HP . Pressure p1 also needs to be
equal to or larger than pLP .

The same way follows for the pressure pHP which needs to be larger than or equal to
p2, but smaller than pLP . The areas AD,LP and AD,HP needs to be determined properly in
order to full fill these pressure correlations to get the correct load on the system.

Figure 3.3 below shows how the pressure in the displacement chamber varies during
one shaft revolution. The pressure profile is shown for pumping mode with the piston at
the ODC for φ = 0◦.

Figure 3.3: Pressure in the displacement chamber for a piston during one revolution.
(Normalized with the maximum pressure)
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The graph in Figure 3.3 is taken from a calculation of the original version of the Pressure
Module that uses the equations 3.1-3.8.

The Pressure Module has several different versions that have been developed for dif-
ferent purposes, such as noise reduction in the pump. These versions can be viewed in
Figure 3.4

Pressure Module

Momentum
equation (HP port

and HP groove)
PCFV and DCFV Air release port Bent axis

Figure 3.4: Existing versions of the Pressure Module

The different versions all originate from the original Pressure Module explained above.
The following sections will go through the implementations already made in the different
versions.

3.1.1 Momentum equation

The momentum equation was implemented in a model by Klop (2010), in order to investi-
gate noise sources in hydraulic transmissions. One of the largest source of noise generation
in an axial piston machine is the fluid borne noise. The fluid borne noise source can be
quantified through the amplitudes of pulsating flow or pressure. The momentum equa-
tion was implemented in the HP port in order to more accurately capture these pressure
amplitudes. The momentum equation was also implemented in the HP groove to capture
pressure spikes that are shown by direct measurements of the displacement chamber pres-
sure. This is since there is separation of flow which forms a jet in the instant when the
piston is only open to the groove [1], see Figure 3.5.

Figure 3.5: Flow through HP groove in a thick valve plate

The model also coupled the pump to a transmission line model in order to investigate new
strategies to reduce noise [4]. The line model will not be used in the Coupled Pressure
Module and is therefore not relevant to describe in this thesis. The line will instead be
solved with a pressure equation in the same way as in the HP port as explained in the
original Pressure Module.
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The momentum equation was implemented in the HP port and HP groove. The im-
plementation of the momentum equation in the HP port will capture the acceleration of
fluid from the valve plate to the exit of the HP port. The momentum in the HP groove
will capture the acceleration of fluid through the groove.

The following equation is implemented in the HP port

dv

dt
=

1

VHPρHP

[−→
F FMIN −

−→
F FMOUT +

−→
F perm +

−→
F imperm

]
− 1

ρHP

dpHP

dt
dpHP

dρHP

v (3.9)

This is a differential equation of the velocity of flow exiting the HP port, and it is derived

from the linear momentum equation.
−→
F FMIN is the sum of the forces due to momentum

of the fluid that is entering the HP port from the displacement chamber.

−→
F FMIN =

n∑
i=1

ρiArHPivrHPi|vrHPi| (3.10)

where the incoming velocity to the HP port is, vrHPi, which is determined by the following
equation.

vrHPi =
QrHPi

αD,HPArHPisgn(pDCi − pHP )
(3.11)

Equation 3.11 is derived from Equation 3.4. The force of the fluid flow from HP port to

the line is expressed as
−→
F FMOUT , which is calculated as

−→
F FMOUT = ρlineAlinevrHPi|vrHPi| (3.12)

where Aline is the cross-sectional area of the line. The line is not visible in the equations
for the original Pressure Module since the acceleration of the fluid through the HP port
to the line is not taken into consideration. Hence the pressure will be the same in the

HP port and line. The
−→
F perm term is the force acting on permeable surfaces through

the valve plate and end case and the last term,
−→
F imperm, are the remaining area that is

impermeable of the end case at the entrance of the HP volume. In the exit of the volume
the impermeable surface is estimated based on the average pressure between the line and
port. The impermeable surface is considered as the remaining area between the entrance
of the line, Aline, and end case, ArHP .

−→
F perm =

n∑
i=1

pDCiArHPi − plineAline (3.13)

−→
F imperm = (ArHP − ArHPzi)pHP + (Aline − ArHP )

pHP + pline
2

(3.14)

The opening areas through the end case can be viewed in Figure 3.6 and 3.7 respectively.
The pressure built up equation in the line is solved with Equation 3.15.

dpline
dt

=
K

Vline
(Qline −Q2) (3.15)

where Vline and Qline is the volume and the volumetric flow rate in the line. The volumetric
flow rate is calculated with Equation 3.16.

Qline = αD LineAlinev (3.16)
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Figure 3.6: Cylinder block openings through
the HP port

Figure 3.7: HP port opening

The pressure is solved in the line since the implementation of the momentum equation
will change the pressure in the line compared to the HP port. A further description and a
derivation of Equation 3.9 can be found in Investigation of Hydraulic Transmission Noise
Source (Klop 2010).

The HP port, where Equation 3.9 is applied, can be viewed in Figure 3.8.

Figure 3.8: High pressure port control volume.

The momentum in the HP groove were implemented into the Pressure Module by Klop
(2010). The momentum equation in the grooves is applied only when a cylinder opening
are open to the HP groove. The angles φ0 and φ2 determines when this occurs, see Fig-
ure 3.9.

The momentum equation in the HP groove is used to derive the differential equation
for the volumetric flow rate in the groove, which reads
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Figure 3.9: Starting and ending position over HP groove.

dQgHP

dt
=

(
∆p

ρ
− QgHP |QgHP |

2A2
Hpα

2
d

− 1

2
(v2

2 − v2
1)

)/ φ2∫
φ0

R

a
dφ (3.17)

The first term in the nominator to the right side is associated with the total pressure
drop between the displacement chamber and the HP port, the second term is the pressure
drop from the displacement chamber to the smallest orifice. The third term is associated
with the change in dynamic pressure drop over the length of the groove. The integration
function in the denominator is changing with the location of the smallest orifice. A deeper
look into the equation and its variables will be explained in Section 4.1.

Equation 3.17 were used to include the fluid mass effect into the HP groove for thin
valve plates, see Figure 3.10

Figure 3.10: The mass of fluid accelerated through the HP groove in a thin
valve plate (ξ = 0).
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3.1.2 PC and DC filter volumes

The pre-compression and de-compression filter volumes (PCFV and DCFV) were imple-
mented in order to prevent pressure spikes in the displacement chamber. These pressure
spikes are a source of noise in the pump [2]. The filter volumes are placed in the end case,
which are connected to the displacement chamber through small holes in the valve plate.
The filter volumes have the same pressure as it is in the corresponding HP or LP port.
The PCFV will help to pre-compress the displacement chamber before entering the HP
port. The reversed will happen when it moves over the DCFV. The DCFV will then help
the displacement chamber to decompress before it moves over the LP port. The general
equation for the pressure in a filter volume is solved with the following pressure equation.

dpFV
dt

= − K

VFV
QFV (3.18)

where QFV is the volumetric flow rate in and out from the filter volume. The location of
the holes through the valve plate accessing the filter volume are determined by the angles
from the ODC (Outer Dead Center), which can be seen in Figure 3.11. This means that
the locations are determined by angle φPC and φDC +180◦. The areas of the holes are APC
and ADC .

Figure 3.11: Location of the entry holes through the valve plate accessing
PCFV and DCFV.

3.1.3 Air release port

The air release port is open directly to the case through a hole in the valve plate. It was
implemented in order to reduce noise and the risk for cavitation [2]. When the piston is open
to the air release port, high pressurized fluid that is left in the displacement chamber will
be vented to the casing [2]. The pressure from the casing will depressurize the displacement
chamber before the opening to the LP port. The air release port is placed next to the LP
port, see Figure 3.12.

The pressure in the case, pcase, is constant and requires therefore not any equation for
pressure. The flow exiting the displacement chamber into the case are defined as
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QAR = αdAAR

√
2|pDC − pcase|

ρ
sgn(pcase − pDC) (3.19)

Figure 3.12: Location of the entry hole through the valve plate accessing the
case.

3.1.4 Bent axis

CASPAR is made to simulate axial piston pumps of swash plate type design. The Bent axis
model was implemented in the Pressure Module as a step towards a further development
of CASPAR to be used for both designs.

The stroke is based on the pitch radius to the driving flange, RD, instead of the pitch
radius to the cylinder block, RB, see Figure 2.3. The stroke length is therefore redefined
as

sK = −RD sin β(1− cosφ) (3.20)

The kinetics of the bent axis pump design are similar as for the swash plate design,
hence the same relations can be used. The relative velocity of the piston is then

vK =
dsK
dt

=
dsK
dφ

dφ

dt
=
dsK
dφ

ω = −ωRD sin β sinφ (3.21)

The volume entrapped in the displacement chamber is

VDC = V0 − sKAK = V0 +RD sin β(1− cosφ)AK (3.22)

The change of volume over time can then be expressed as

dVDC
dt

= vKAK = −ωR2 sin β sinφ (3.23)

, Applied Mechanics, Master’s Thesis 2011:62 21



3.2 Gap Flow Module

The Gap Flow Module is used in order to calculate the leakage flow rates QSK , QSB, QSG

through the gaps, external forces, fluid forces and deformation due to pressure and thermal
loading of solid parts. The gaps are solved independent from each other with a separate
program for each gap. The Piston/Cylinder (P/C) gap is first solved independently from
the other gaps. With results from the P/C program, the Slipper/Swash plate (S/Sp) gap
can be solved. The last interface can be solved for the Cylinder block/Valve plate (Cb/Vp)
by using the data calculated by the P/C and S/Sp, see Figure 3.13.

Figure 3.13: Forces transmitted in the Gap Flow Module.

The leakages is defined as the area integral of the velocity of flow leaking out to the
case. The leakage for a piston is defined as

QSKi(φ) =

πdK∫
0

hK∫
0

uy dzdx (3.24)

Each piston has a different amount of leakage at a frozen instant of time. Hence all pistons
should be summed for each angle of φ, hence

QSK(φ) =
n∑
i

QSKi(φ+ i∆φ) (3.25)

where ∆φ is the angle between each piston. The leakage for a slipper is defined in a similar
way

QSGi(φ) =

2π∫
0

hG∫
0

ura dzdγ for a = a2 (3.26)

where each slipper needs to be summed, the same as for the piston

QSG(φ) =
n∑
i

QSGi(φ+ i∆φ) (3.27)

The leakage for the block is different since it leaks out in two directions, both to the
case inwards and outwards. The inward and outward leakage is denoted as QSB1 and QSB2,
respectively.

QSB1 =

2π∫
0

hB∫
0

urr dzdφ for r = r4 (3.28)

QSB2 =

2π∫
0

hB∫
0

−urr dzdφ for r = r1 (3.29)
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The total leakage is the sum

QSB = QSB1 +QSB2 (3.30)

As seen in Equations 3.24- 3.30 the leakage flow depends on the respective gap height,
hK , hG, hB. The gap height is varying in time and is non-constant along the gap, and it
is therefore solved with the Reynolds equation (Equation 3.31). The Reynolds equation is
derived from the Navier-Stokes and Continuity equations. It is derived based on assump-
tions that are valid in hydrodynamic lubrication. The fluid inertia forces are neglected, i.e.
only viscous and pressure forces are considered. The pressure is assumed to be uniform
along the gap height and the gradients of the velocity in the gap height direction are orders
of magnitude larger than the gradients in the other directions. The fluid is also considered
to be incompressible in the gaps.

− ∂

∂x

(
h3

12µ

∂p

∂x

)
− ∂

∂y

(
h3

12µ

∂p

∂y

)
+ h

∂

∂x

(
(ut + ub)

2

)
+ h

∂

∂y

(
(vt + vb)

2

)
+

+
(ut + ub)

2

∂h

∂x
+

(vt + vb)

2

∂h

∂y
−
(
ut
∂ht
∂x

+ vt
∂ht
∂y

)
+

+

(
ub
∂hb
∂x

+ vb
∂hb
∂y

)
+ (wt − wb) = 0

(3.31)

Index notation b and t stands for bottom and top surface and the velocities u, v abd
w are in x, y and z direction which is along the gap length, width and normal. The gap
height h is equal to ht − hb which is the difference between the distance from the top to
the reference plane and from the bottom surface to the reference plane, see Figure 3.14.

Figure 3.14: The reference plane in the lubricating gap. The reference plane is highlighted
in gray.

The x- and y-axis are aligned with the reference plane, while the z-axis originates from
the reference plane but is instead aligned in the direction of the gap height, hence hb is
defined as a negative value.

The first two terms in Equation 3.31 describe the net flow rates due to pressure gradients
within the lubricating area; the third to sixth terms describe the net entraining flow rates
due to the surface velocities. The seventh to ninth terms describes the net flow rate due
to local expansion. The third and fourth term are the stretch terms that can be neglected.
They are only of importance when the bounding solids are elastic [8].

The squeeze motion of the solid parts is represented by

∂h

∂t
= wt − wb (3.32)
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Equation 3.31 can now be reduced to Equation 3.33.

− ∂

∂x

(
h3

12µ

∂p

∂x

)
− ∂

∂y

(
h3

12µ

∂p

∂y

)
+

(ut + ub)

2

∂h

∂x
+

(vt + vb)

2

∂h

∂y
+

−
(
ut
∂ht
∂x

+ vt
∂ht
∂y

)
+

(
ub
∂hb
∂x

+ vb
∂hb
∂y

)
+
∂h

∂t
= 0

(3.33)

This equation is the main equation solved for each gap in CASPAR. The equation is
however modified in each gap to solve the motions of the different parts. The velocities
are determined by solving the N-S equations in the gaps.

The squeeze motion ∂h/∂t describes how the gap height is changing with respect to
time and it describes the gap motions as a velocity of the moving parts. Figure 3.15 shows
how the gap varies in the Cb/Vp interface.

Figure 3.15: The varying gap between the cylinder block and valve plate

The tilting of the cylinder block can be described by the three points where the gap
heights, hB1, hB2, hB3, are acting. These gap heights are equidistant from each other,
hence

∆φ1 = ∆φ2 = ∆φ3 (3.34)

The total squeeze motion of the gap is described in these three points as ∂hB1/∂t,
∂hB2/∂t, ∂hB3/∂t. These three gap velocities are determined by the force balance between
the external and fluid forces in the gap. The external forces and moments for the cylinder
block (explained in Section 2.5) are transferred to act in these points. The transferred
external forces and moments are denoted as, Fe1, Fe2, Fe3 and the corresponding transferred
fluid forces are denoted as , Ff1, Ff2, Ff3, see Figure 3.16. The force balance equations
can then expressed as

δF1 = Fe1 − Ff1

δF2 = Fe2 − Ff2

δF3 = Fe3 − Ff3

(3.35)
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Figure 3.16: The external and fluid forces acting on the cylinder block.

At the beginning of each iteration these force balances are likely to be non-zero. The
balance equation is treated as

|δF | =
√
δF 2

1 + δF 2
2 + δF 2

3 (3.36)

If |δF | is larger than the error criteria, the squeeze term in the Reynolds equation change
hence the pressure in the gap will change. The squeeze term is changed according to a root
finding method called Newton’s method, which is not explained in this thesis. The correct
gap geometry is achieved when the force balance is below the error criteria, i.e close to
zero.

The fluid flow is considered to be non-isothermal in the gaps. Reynolds equation
is affected by the viscosity which is depending on the pressure and temperature in the
lubricant in the following way

µ = µ0e
αpp−kT (T−T0) (3.37)

The energy equation is expressed with the same assumptions as for the derivation of
the Reynolds equation where convection and diffusion are considered

ρcp

(
ux
∂T

∂x
+ uy

∂T

∂y

)
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ µΦD (3.38)

The viscous dissipation term µΦD describes the amount of energy transferred to heat
in the gaps. Considering a laminar flow and a Newtonian fluid, the viscous dissipation
term is expressed as

µΦD = µ

(
∂ux
∂y

+
∂uy
∂x

)2

+ µ

(
∂uy
∂z

+
∂uz
∂y

)2

+ µ

(
∂uz
∂x

+
∂ux
∂z

)2

+

+ 2µ

[(
∂ux
∂x

)2

+

(
∂uy
∂y

)2

+

(
∂uz
∂z

)2
]
− µ2

3

[
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

]2 (3.39)
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The formulation in cylindrical polar coordinates reads

µΦD = µ
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]2 (3.40)

The temperatures in the displacement chamber, HP port, LP port and the temperature
in the case are considered to be known, and is used as boundary conditions to solve the
energy equation in the gaps.

The Gap Flow Module also provides an option to consider structural deformation and
thermal effects of the solid parts in the interfaces. The temperature and pressure fields
contribute as an external load at the solids causing elastic deformation of the structure [5].
A flow chart of the numerical procedure in the Gap Flow Module is presented in Figure 3.17

1. The initial values and boundary conditions are set.

2. The temperature distribution in the solid parts is calculated.

3. The thermal distribution is then used as a load to calculate the impact of the thermal
effects on the deformation of the solid parts. The deformation is calculated with linear
elastic deformation equations.

4. The deformation will change the gap height in the interface between the solid parts.

5. The deformation is calculated again by using the pressure distribution around the
solid part.

6. The pressure and temperature distribution in the fluid film are then calculated with
Reynolds and energy equation.

7. The thermal conductive heat fluxes is calculated in order to get the amount of energy
that is going into the solid parts.

8. The gap height is calculated from the force balance obtained when comparing external
and fluid forces. The squeeze motion is changed until the forces are balanced.

The described procedure from the calculated gap height due to the deformation is
repeated for every time step in the current revolution. When a new revolution is initi-
ated, the temperature distribution in the solid parts are calculated. The convergence
is achieved when the temperature distribution in the solid parts has converged.
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Figure 3.17: Flow chart of simulation procedure for the Gap Flow Module
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4 Coupled Pressure Module

The Coupled Pressure Module contains all the functions that were previously separated in
old versions of the Pressure Module, see Figure 4.1.

Coupled Pres-
sure Module

Momentum
equation (HP port

and HP groove)
PCFV and DCFV Air release port Bent axis

Cross flow
Momentum equa-
tion (LP groove)

Figure 4.1: Versions of the Pressure Module and the new features that is integrated into
the Coupled Pressure Module

The different versions are now in one single version. The benefits of this is that they can
be combined together. There is also some new implementations in the Coupled Pressure
Module.

The Coupled Pressure Module has the ability to:

1. Combine all previous versions together

2. Use the momentum equation in the groove for valve plates of thick designs

3. Use the momentum equation in the LP groove

4. Calculate the amount of cross flow

The following sections will describe how these new abilities have been implemented.

4.1 Momentum equation in groove

The momentum equation is implemented in the LP groove in order to capture the sudden
dip in pressure when the piston is open to the groove.

The momentum equation in the HP groove was implemented by only considering thin
valve plates where ξ = 0. This has been modified in the Coupled Pressure Module in order
to also cover thick valve plates where ξ > 0.

In order to use the momentum equation in the LP groove, the angular positions of the
LP groove is determined in the same way as for the HP groove. The positions are described
by φ3 and φ4, which are located at the beginning and at the end of the groove respectively,
see Figure 4.2.

In order to understand how the momentum equation now also works for thick valve
plates, a derivation of the differential volume flow rate equation for the HP groove is
described. The differential equation for the LP groove is derived in a similar manner,
hence it is not described.

The differential equation is derived by writing the momentum equation as the rate of
change of momentum in a control volume of the groove for a thick vale plate with gradual
opening (ξ >> 0), as in Figure 4.3a.

The derivation was made in Cylinder pressure transients in oil hydraulic pumps with
sliding plate valves (Edge, K A., Darling, J 1986) with cartesian coordinates.
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Figure 4.2: Starting and ending position over LP groove.

The derivation of Equation 4.7 begins with the momentum equation in cylindrical
coordinates, Equation 4.1.

∂p

∂φ
aδφ = m

(
cos ξ

v

RB

∂v

∂φ
+
∂v

∂t

)
(4.1)

where δφ << 1⇒ sin δφ ≈ δφ.
The control volume covers the mass of fluid that is accelerated through the groove; this
can be viewed in Figure 4.3, where a is the area of the control volume perpendicular to the
flow direction. The velocities v1 and v2 are the entering and exiting velocity of the volume.

The pressure at point 1 is denoted P1, which is acting on the area of the groove that is
opened to the displacement chamber, AHP . The pressure at point 2, P2, is acting on the
area opened to the HP port.

(a) The mass of fluid accelerated through the HP groove.(b) The volume of fluid accelerated through the groove,
with the control volume represented as a slice, δl.

Figure 4.3: Fluid accelerated through HP groove
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The radius RB is the pitch radius of the cylinder block. The lengths l1 and l2 are equal to

l1 =
RB sinφ1

cos ξ
(4.2)

l2 =
RB sinφ2

cos ξ
(4.3)

The angle φ1 are the current position of the cylinder opening. Equation 4.1 can be expressed
in volumetric flow rate by substituting m = ρaRBδφ/ cos ξ, v = QgHP/a and ∂v/∂t =
∂(QgHP/a)/∂t, which will give Eq 4.4

∂p

∂φ
=
ρQgHP

a

∂v

∂φ
+

R

cos ξ

ρ

a

∂QgHP

∂t
(4.4)

where QgHP is the volumetric flow rate of the flow through the control volume.
After assuming the fluid as incompressible and including the pressure drop due to the
acceleration of the fluid through the groove

∆pG = ρ
∂QgHP

∂t

φ2∫
φ0

1

cos ξ

R

a
dφ+

ρ

2
(v2

2 − v2
1) (4.5)

and the pressure drop from the displacement chamber to the smallest orifice (vena con-
tracta) [1]

∆p0 =
ρQgHP |QgHP |

2A2
HPα

2
d

(4.6)

the differential equation for the volumetric flow rate through the groove into the HP port
is derived as Equation 4.7.

dQgHP

dt
=

(
∆p

ρ
− QgHP |QgHP |

2A2
Hpα

2
d

− 1

2
(v2

2 − v2
1)

)/ φ2∫
φ0

1

cos ξ

R

a
dφ (4.7)

The terms is explained in Section 3.1.1. A similar equation is used in the LP port, but
with appropriate indices.

4.2 Cross-Flow

The cross flow is defined as the volumetric flow rate that is entering the LP port from the
displacement chamber, QCF . This flow is assumed to be all the flow that is leaving the
displacement chamber through the LP port, hence when QLP is negative. The amount of
cross-flow is valuable when the efficiency of the pump is determined.

QCF = |QLP < 0| (4.8)
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Figure 4.4: Flow entering the LP port.

5 Coupled Gap Flow Module

The Gap Flow Module (GFM) calculates each gap separately. This is both time-consuming
and inefficient. Such a calculation method will be less accurate than simultaneous solution
with exchange of simulation results after each iteration. This is since information is passed
between the interfaces in order to calculate the flow field in the gaps correctly.

The CGFM is the ”parent” program which controls the order and when a simulation
for a leakage interface should start. When a simulation is called, a separate ”child” process
is created. Each simulation will have their own child process. The processes/simulations
runs in parallel in order for each simulation to interact with each other. The simulations
interacts by continuously reading output from the corresponding interface in order to get
the appropriate information for each gap. The information that is transmitted between
the simulations are friction forces created in the P/C and S/Sp interfaces.

5.1 Transmitting forces

CGFM solves the leakage flows simultaneously by exchanging friction forces with each
other. The P/C interface transmits the friction force, FTK , to the S/Sp interface. P/C
interface also receives the frictional force, FTG from the S/Sp interface. The Cb/Vp in-
terface will receive the friction forces from both the P/C and S/Sp interfaces, this can be
seen in Figure 5.1.

Figure 5.1: Passing of forces
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The P/C interface is solved by calculating the flow field for one piston, because all
pistons goes through the same cycle during a revolution. The same rule applies for the
flow field in a S/Sp interface. Hence there is only one friction force transferred for each
time-step between the P/C and S/Sp. The Cb/Sp interface is different, so this interface
requires a friction force from all pistons and slippers for each time-step, in order to get the
external force and moments acting on the cylinder block, as explained in Section 2.5.

5.2 Implementations

To understand how the leakage interfaces interact programming wise, there are some im-
plementations in the CGFM that need some further explanation.

5.2.1 Interpolation

The first thing that is checked when a force is received from another simulation is the
angular step, ∆φ, which is the amount of degrees between two time-steps, ∆φ. If all simu-
lations use the same angular step, there would in theory be no need for any interpolation,
since the simulations would have the same corresponding time-steps. But since the CGFM
program is programmed in C++, it uses the floating point number system.

The floating point number system will not be explained in this thesis, but what basi-
cally happens is that a decimal number, that for example should be 0.0004, instead can be
represented as 0.000399999 or 0.000400001. This becomes a problem when two numbers
are expected to be the same, like two time steps. A way that partially solves this is to
introduce an interpolation method, and since the simulations should be able to run with
each other with different angular steps, the introduction of the interpolation is necessary.

The simplest method is the first order linear interpolation method, since it only uses
two points to approximate another point between those points. The two points will be
called, end points, and the approximated point, interpolation point. The first order linear
interpolation is safer than higher order methods, such as cubic interpolation, were the error
can be more significant when large derivatives are encountered in the data, since it bases
its interpolated value on more than two points.

F − Fi
t− ti

=
Fi+1 − Fi
ti+1 − ti

(5.1)

The relation for the linear interpolation can be viewed Equation 5.1. F and t represents
force and time respectively. The index notation i + 1 and i indicates if the end points is
located at a larger or smaller time step than the current time step, t, respectively. The
variables without notations are located in the interpolation point. By solving for F in
Equation 5.1, the force for the current time step is calculated.

The P/C and S/Sp only calculates forces for the first piston, which means that for each
revolution it will begin to rotate from 0−360 degrees. The simulation of the Cb/Vp inter-
face on the other hand, calculates forces regarding each individual piston in the simulation,
which means that the other pistons except the first will start to rotate from another angle
depending on the number of pistons in the pump; this is illustrated in Figure 5.2 for a nine
piston pump. The second piston will rotate from 40− 40 degrees and the other follows the
same behavior from their initial angle. It is here important that the interpolation handles
the shift from the last time step in a revolution to the first time step in the next revolution.

All pistons will be calculated based on the same values that were calculated in Piston/-
Cylinder and Slipper/Swash plate simulations where all pistons are treated with the same
behavior as the first piston.
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Figure 5.2: Cross-section of the cylinder block in an axial piston pump with nine pistons
and their corresponding initial angles.

5.2.2 Offset

The offset is introduced to fix the floating point number system problem that is explained in
Section 5.2.1. The offset will increase the tolerance in the end points where the interpolation
point should lie within. The problem arises when an interpolation point should be located
at an end point, but since the floating point problem exists it will instead be slightly smaller
or larger. This is not really an issue if a rotating piston is somewhere between 0 − 360
degrees of a revolution because of the implemented interpolation method. The interpolation
only takes time-step values that correspond to angles between 0 − 360 degrees; there will
therefore be a floating point problem when a revolution that should take for example 0.04
seconds instead takes 0.040000001 seconds. The increased time will correspond to an angle
larger than 360 degrees. As previously stated, increasing the end points interval will fix
this.

The offset is implemented in a way that will increase the tolerance of the end points by
one order larger than the order of a time-step. This is important in order for the tolerance
not to become too large and in that sense overlap into the next end point at another
time-step. If a time-step is ∆t = 0.00005 seconds and ti+1 is 0.04 seconds, then ti and ti+2

is 0.03995 and 0.04005 seconds respectively. Let say that t, which is in the interpolation
point, should be equal to ti+1 but instead is equal to 0.0400001. This will locate the
interpolation point in the wrong revolution. The offset will increase the tolerance with a
value that is larger than the floating point error. Since the time-step in this example is
the in order of 10−5 the tolerance will be in the order of 10−6. Which in a sense virtually
increase the value of ti+1 to 0.040001; this is illustrated in Figure 5.3. The same happens
for ti but instead of an increased value, the value is decreased to 0.039949. This lets the
location of the interpolation point to be between 0.039949 and 0.040001 instead of 0.03995
and 0.04.
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Figure 5.3: Illustration of the offset implementation (figure is not scaled).

5.2.3 Under-relaxation

Under-relaxation is implemented to avoid large discontinuities in the simulation that can
make it diverge. A discontinuity can happen when a force is received from another simula-
tion that is much larger/smaller than the estimated force in the current simulation. So the
idea of under-relaxation is to take some part of the old value and the rest of the new value.
This will give a force between the old and new force, which makes a smoother transition.
Equation 5.2 shows how the new force, F , is calculated by the current simulation.

F = F n−1 + α
(
F n − F n−1

)
n = 1, 2, 3... (5.2)

Index n − 1 indicates that the force is from the previous revolution while the index n
indicates that the force is from the current revolution. The under-relaxation factor, α,
can vary between 0–1, where a value of 0 and 1 would only take the old and new force
respectively. When the P/C and S/Sp begin their simulations, they will initiate their
first revolution, n = 1. Since no old force, F 0, is available for the first revolution, the
under-relaxation factor is recommended to be set to 1, in order to only use the new force,
F 1.

5.3 Methodology of CGFM

CGFM program starts by calling the simulations of the P/C and the S/Sp. At the first
revolution for each simulation, the interfaces will estimate the friction force from the corre-
sponding interface, this is since none has completed their first revolution. Each simulation
will check if the other simulation has completed a revolution for each time a new revolution
of the current simulation has been initiated. If so, the most recent completed revolution
will be used instead of estimating the friction force. In this way, if one simulation is faster
than the other (which is likely), the slower simulation will receive a force from the other
simulation, while the faster simulation will continue to estimate the force at least through-
out the second revolution.

The third simulation, Cb/Vp, starts when both the P/C and S/Sp has completed their
first revolution; the same methodology is applied for this simulation as for the simulations
of the P/C and S/Sp. The only difference is that Cb/Vp has to receive forces for every
piston instead of just one, as for the other two simulations. The flow chart in Figure 5.4
gives a representation of the global simulation procedure in CGFM.
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S/Sp and P/C
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Figure 5.4: Flow chart of global simulation procedure in the Coupled Gap Flow Module

5.4 Validation

The figures in this section shows how the forces are treated for the respective simulation.
The results below were simulated for the Sauer-Danfoss 75cc pump for 15 revolutions with a
shaft speed of 3000 rpm and with maximum displacement (β = 17◦). The under-relaxation
factor was set to 0.5.

It can be seen in Figure 5.5 and Figure 5.6 that the S/Sp simulation completed its first
revolution faster than the P/C simulation. This is since the shape of the P/C curve in the
second revolution has been influenced by the values from S/Sp simulations first revolution,
in Figure 5.6. The estimated FTK force by the S/Sp is far from the correct force calculated
by the P/C, see Figure 5.5.

As seen in Figure 5.7, the calculated force, FTK , for the P/C simulation has almost
converged after just a few revolutions. There is a visible maximum in the FTK force for
the P/C in revolution 2 and 8 that is not visible in the received force in the Cb/Vp. The
calculated force, FTG, for the S/Sp simulation does not reach convergence as fast as the
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P/C simulation.

Figure 5.5: The force, FTK , is calculated by the P/C simulation and transmitted to the
S/Sp simulation.

Figure 5.6: The force, FTG, is calculated by the S/Sp simulation and transmitted to the
P/C simulation.

The FTG force for the Cb/Vp in Figure 5.8 has not received a converged force from the
S/Sp at the first revolution. It can clearly be seen in this figure, that the S/Sp simulation
only has done one complete revolution, before the Cb/Vp simulation was initiated.

The trend is the same for all simulations, the new forces converges with the receiving
forces. The under-relaxation prevents the receiving simulation from diverge by avoid dis-
continuities in the forces, as showed in Figure 5.6. Faster convergence can be achieved if
the under-relaxation factor is increased from 0.5, but this is at the cost of the stability of
the simulations.
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Figure 5.7: The force, FTK , is calculated by the P/C simulation and transmitted to the
Cb/Vp simulation.

Figure 5.8: The force, FTG, is calculated by the S/Sp simulation and transmitted to the
Cb/Vp simulation
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6 Case temperature

The case temperature is the temperature in the pump case, see Figure 6.1. The case con-
taining the pump is filled with oil that is lubricating the pump. The leakage from the
lubricating gaps are flowing into the case, which is drained using the pump drain/case
port. The temperature of the fluid in the pump case is elevated because of the energy
dissipated in the gaps. It is also due to other losses occurring during pump operation like
friction in shaft bearings and churning losses caused by rotation of the cylinder block in
the oil filled case. The temperature of the fluid in the pump case is constant when the
pump runs under steady state conditions where the ambient temperature is constant.

Figure 6.1: The pump case surrounding the rotating group of the pump.

The case temperature is a boundary condition in the Gap Flow Module in CASPAR in
order to solve the energy equation and the structural deformation due to thermal loads.
This temperature is not calculated in CASPAR, instead it is pre-defined based on mea-
surements.

The model is developed in order to calculate the case temperature by using the viscous
dissipation created in the three lubricating gaps. The energy dissipation due to rotation of
cylinder block in the oil filled case will also be considered. The model is solved analytically
hence only constant gap heights are assumed. The calculated temperature will then be
validated against measured leakage temperatures that also were performed.

6.1 Measure the leakage temperature

The measurements were performed since there were no good data regarding the leakage
temperature. The test rig was used with a Sauer-Danfoss 75cc axial piston machine, see
Figure 6.2.

The electric motor(6) drives the shaft(5) that is connected to driving the pump. The
inlet(2) provides the flow to the pump. Line (11) is the supply line to a charge pump which
is providing pressure to a proportional valve that in turn is connected to the swash plate
control piston, that is controlling the displacement of the swash plate. Without a charge
pump the swash plate would not be able to be displaced. The charge pump adds power
loss to the system and in order to reduce this loss, a line for the control pressure(10) is
added to reduce the torque loss by maintaining pressure over the charge pump.
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Figure 6.2: Sauer-Danfoss 75cc pump mounted on test rig. (1) Sauer-Danfoss 75cc pump,
(2) LP line (inlet), (3) HP line (outlet), (4) Leakage line, (5) Shaft, (6) Electric motor, (7)
Pressure sensor, (8) Thermo couple, (9) Flow meter, (10) Control pressure, (11) Charge
pump line, (12) Adjustable throttling valve, (13) Pressure relief valve.

The pressure in the HP port can be controlled by the adjustable throttling valve(12)
located along the HP line(3). The leakage will pass through line (4). The pressure relief
valve(13) is there as a safety valve if the adjustable valve would be damaged. This valve
will open at a certain pressure that should be above the maximum pressure used in the
measurements.

Figure 6.3: Control table. (14) Data Acquisition, (15) PC with LabVIEW.

The thermo couples(8), pressure sensors(7) and flow meters(9) were placed along the
HP-, LP- and leakage line. The couples, sensors and meters are connected to the DAQ
(Data Acquisition)(14) system where the analog signals are converted to digital and then
read into the computer that uses LabVIEW, see Figure 6.3. The data screen(15) in Lab-
VIEW, displays the pressure, temperature, flow rate, pump speed and the provided mo-
ment.

To provide the testing pump with the flow of oil, other pumps(16) are used to pump the
flow in the system, see Figure 6.4. It is very important to provide the tested pump with
enough flow to avoid cavitation. The flow that is needed to provide the pump is calculated
by
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Figure 6.4: Pumping room. (16) Pumps that provides the flow to the system, (17) Lever
that control the amount of water to the heat exchanger.

Q = nV (6.1)

where Q is in liters per minute (lpm), n the pump speed in revolutions per minute (rpm)
and V the displaced volume in cubic centimeters (cc). The number of pumps driving the
flow are chosen based on the maximum amount of flow a pump can provide.

The temperature of the oil is controlled by a heating and cooling system which are
located in the engine room. While running test rig the heating system are mainly used
in the beginning to achieve the wished temperature at the inlet (LP port). The cooling
system provides water to a heat exchanger that is cooling the oil. The amount of water
to the heat exchanger are controlled by a lever(17) to a water pipe, see Figure 6.4. To
keep a constant temperature in the inlet, this needs to be changed continuously during
the tests. It is very crucial that the operator of the test rig control the flow of water until
steady state is achieved for each measurement. To get a good measure point a number of
measurements should be made for each point.

6.2 Case temperature model

The total energy dissipated in the three gaps and case can be formulated as

qgaps = µΦgapsV = µΦP/CVP/C︸ ︷︷ ︸
qP/C

+µΦS/SpVS/Sp︸ ︷︷ ︸
qS/Sp

+µΦCb/V pVCb/V b︸ ︷︷ ︸
qCb/V p

+µΦChurningVCase︸ ︷︷ ︸
qChurning

(6.2)

where V is the total volume of fluid trapped in the gaps and in the case. The energy
dissipated in the case and for each gap are calculated separately and are then inserted into
Equation 6.2.

Equation 3.39 or 3.40 are going to be solved in the three gaps and in the case. the
gradients of the velocities are solved by applying the Navier-Stokes (N-S) equations in the
gaps.

ρ
∂ui
∂t

+ ρ
∂uiuj
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(6.3)

There are a some assumptions that can be made to simplify Equation 6.3. The first
major assumption is to consider the height of the gaps to be constant. This makes the
the pressure to only vary along the gaps, and the gradient of pressure is assumed to be
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constant. The flow in the gaps is considered to be laminar and in steady-state, hence
the time derivatives can be neglected. In lubricating gaps, the viscous forces dominates
compared to the inertial forces, the left hand side in the N-S equations can therefore totally
be neglected. The following sections will describe how the viscous dissipation is calculated
in the case and in each gap.

6.3 Dissipation due to churning

The rotating motion of the cylinder block is churning the oil in the case, hence it is a source
to the energy dissipated in the pump. The flow in the case are considered to only vary in
the circumferential direction of the cylinder block, this is since the velocity gradient along
the cylinder block are magnitudes of orders smaller. The pressure in the case is considered
to be constant. The velocity field in the case can be seen in Figure 6.5.

Figure 6.5: Velocity profile at a cross section in z-direction.

The flow in the case is treated as laminar. The assumptions in the case can be viewed
below.

∂u

∂r
>>

∂u

∂ϑ
,
∂u

∂z
uϑ >> uz, ur

The N-S equations in cylindrical polar coordinates can now be reduced to

(ϑ-direction)

0 = µ

[
1

r

∂

∂r

(
r
∂uϑ
∂r

)
− uϑ
r2

]
(6.4)

The boundary conditions in the case are

uϑ(rcase) = 0 uϑ(rcb) = ωrcb

where rcb is the radius of the cylinder block and rcase is the radius from the center of the
cylinder block to the case. By integrate Equation 6.4 and using the boundary conditions
the following expression for the velocity can be derived.

uϑ = −ω (rcb/rcase)
2

1− (rcb/rcase)2
r + ω

r2
cb

(1− (rcb/rcase)2)r
(6.5)
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The viscous dissipation equation in cylindrical polar coordinates can be reduced to

µΦChurning = µ

(
r
∂

∂r

(uϑ
r

))2

(6.6)

To solve this equation, Equation 6.5 is modified and derivated

r
∂

∂r

(uϑ
r

)
= −2ω

r2
cb

(1− (rcb/rcase)2)r2
(6.7)

By inserting Equation 6.7 into Equation 6.6, the energy dissipated in the case can be
calculated

qChurning = µΦChurningVCase (6.8)

6.4 Dissipation in the Piston/Cylinder interface

For the P/C interface, the following assumptions can be considered:

∂u

∂z
>>

∂u

∂x
,
∂u

∂y

∂p

∂x
>>

∂p

∂z
,
∂p

∂y
ux, uy >> uz

The velocity profiles of the piston can then be considered as in Figure 6.6 and 6.7

Figure 6.6: Velocity profile at a cross section in x-direction, treated in cartesian coordinates.

The clearance between the piston and cylinder is very small compared to the piston
radius rK , the curvature of the lubricant can be neglected and a cartesian coordinate system
can be used.

The magnitude of the velocity gradients in the gap height direction (z-direction) is
much larger than in the other directions. These assumptions reduces Equation 6.3 to

(x-direction)

0 = −∂p
∂x

+ µ
∂2ux
∂z2

(6.9)

(y-direction)

0 = µ
∂2uy
∂z2

(6.10)

The following boundary condition can be applied:

ux(0) = 0 ux(hK) = vK

uy(0) = 0 uy(hK) = ωrK
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Figure 6.7: Velocity profile at a cross-section in y-direction along the gap.

Where rK is the radius of the piston. With these boundary conditions, Equation 6.9
and Equation 6.10 can be integrated to

ux =
1

2µ

∂p

∂x

(
z2 − zhK

)
+
vK
hK

z (6.11)

uy = ωrK
z

hK
(6.12)

By looking at the visous dissipation equation again, Equation 3.39 can also be reduced

µΦP/C = µ

[(
∂ux
∂z

)2

+

(
∂uy
∂z

)2
]

(6.13)

This equation can be solved with the derived equations of The N-S. To be able to solve
it, the derivative of Equations 6.14 and 6.15 are needed

∂ux
∂z

=
1

2µ

∂p

∂x
(2z − hK) +

vK
hK

(6.14)

∂uy
∂z

= ωrK
1

hK
(6.15)

The velocity vK is depending on the rotational angle φ. Equation 6.14 is therefore
integrated over the revolution time, T , in order to get the mean gradient over a revolution.
The velocity field in the x-direction is not linear, hence the viscous dissipation equation
has to be integrated in the gap height direction (z-direction).

1

T

T∫
0

hK∫
0

µΦP/Cdzdt =
1

T

T∫
0

hK∫
0

µ

[(
∂ux
∂z

)2

+

(
∂uy
∂z

)2
]
dzdt (6.16)

The energy dissipated in the gap can then be calculated with Equation 6.17

qP/C = n
1

T

T∫
0

hK∫
0

µΦP/CdzdtAs (6.17)
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Where the area As is the surface area of the piston within the gap length and n is the
number of pistons.

6.5 Dissipation in the Cylinder block/Valve plate interface

In order to be able to solve the velocity field analytically, the valve plate has to be simplified.
The ports are treated to be merged into each other, hence creating a empty space that is
symmetric, see Figure 6.8. This is since the velocity field in r-direction has to be treated
as symmetric.

Figure 6.8: The original valve plate to the left are changed and is instead treated as the
valve plate to the right

The local coordinate system in the Cb/Vp interface are treated in cylindrical polar
coordinates, and it originates from a plane aligned with the surface of the valve plate, see
Figure 6.9.

Figure 6.9: Coordinate system of the Cb/Vp interface (r, θ, z), with the dimensions: r2,
r3

The cylinder block viewed from the valve plate side can be seen in Figure 6.10. Impor-
tant to note here is that the viscous dissipation is created between the sealing land and
the valve plate. The sealing land is the surface that is closest to the valve plate, hence
constitute to the build of the lubricating gap.
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Figure 6.10: the parts of the cylinder block connected to the C/B interface

Since the port is merged into each other in the valve plate, the area between the cylinder
openings at the sealing land surface is not contributing to the energy dissipated in the gap.
This reduces the surface area of the sealing land to As1, As2 and As3, see Figure 6.11.

Figure 6.11: Dimensions of the cylinder
block.

Figure 6.12: The gap in the C/B interface.

Figure 6.12 shows a side view of the cylinder block and valve plate interface, where the
gap height is denoted as hB.

The velocity field due to the rotation of the block is uniformly distributed in the gap
(θ-direction). The rotational velocity can then be treated as a boundary condition that
varies in r-direction. The following assumptions can then be considered.

∂u

∂z
>>

∂u

∂r
,
∂u

∂θ

∂p

∂r
>>

∂p

∂z
,
∂p

∂θ
ur, uθ >> uz

With these assumptions the N-S equations can be reduced to

(r-direction)

0 = −∂p
∂r

+ µ
∂2ur
∂z2

(6.18)

(θ-direction)

0 = µ
∂2uθ
∂z2

(6.19)

to solve these equations, the following boundary conditions are applied
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ur(0) = 0 ur(hB) = 0

uθ(0) = 0 uθ(hB) = ωr

By integration and using the boundary conditions, the following equations for the
velocities can be achieved

ur = − 1

2µ

∂p

∂r

(
z2 − zhB

)
(6.20)

uθ = − 1

2µ

(
z2 − zhB

)
+
ωr

hB
z (6.21)

The viscous dissipation can be reduced to the following equation with the given as-
sumption

µΦCb/V p = µ

[(
∂ur
∂z

)2

+

(
∂uθ
∂z

)2

+ 2
(ur
r

)2
]

(6.22)

The last term is orders of magnitude smaller than the gradients in the z-direction,
hence Equation 6.22 can be reduced to

µΦCb/V p = µ

[(
∂ur
∂z

)2

+

(
∂uθ
∂z

)2
]

(6.23)

The velocity ur is flowing in opposite directions from the port into the case, as explained
with the leakage flow for the block in Section 3.2. Figure 6.13 and Figure 6.14 displays
how the velocity profiles is considered in the Cb/Vp interface

Figure 6.13: Velocity profile in the Cylinder block/Valve plate interface at a cross-section
in θ-direction.

There is only contributions to the viscous dissipation at the surfaces As1, As2 and As3.
The viscous dissipations are created at different surfaces hence the different areas must be
considered. Equation 6.23 is therefore integrated over the radius of the gap.

µ

r6∫
r1

ΦCb/V p2πr dr = µ

r6∫
r1

[(
∂ur
∂z

)2

+

(
∂uθ
∂z

)2
]

2πr dr (6.24)

The first term in Equation 6.24 is rewritten to
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Figure 6.14: Velocity profile in the Cylinder block/Valve plate interface at a cross-section
in r-direction.

r6∫
r1

(
∂ur
∂z

)2

2πr dr =

r2∫
r1

(
∂ur
∂z

)2

2πr dr +

r3∫
r2

(
∂ur
∂z

)2

2πr dr

︸ ︷︷ ︸
=0

+

+

r4∫
r3

(
∂ur
∂z

)2

2πr dr +

r6∫
r4

(
∂ur
∂z

)2

2πr dr

︸ ︷︷ ︸
=0

= As1

(
∂ur
∂z

)2 ∣∣∣
s1

+ As2

(
∂ur
∂z

)2 ∣∣∣
s2

(6.25)

since the pressure is constant in the port for an instant of time, the second term in the
right hand side is considered to be zero. The same assumption applies where the radius
is larger than r4, since the pressure in the case is constant. The gap between r5 and r6 is
only contributing to the viscous dissipation due to the rotation of the cylinder block.
The second term in Equation 6.24 is treated in a similar manner. The second term is
integrated as

r6∫
r1

(
∂uθ
∂z

)2

2πr dr = As1

(
∂uθ
∂z

)2 ∣∣∣
s1

+ As2

(
∂uθ
∂z

)2 ∣∣∣
s2

+ As3

(
∂uθ
∂z

)2 ∣∣∣
s3

(6.26)

The rotation of the cylinder block is contributing to the viscous dissipation where the
surface areas As1, As2 and As3 is existing, which is the whole surface of the gap.

The gradients of the velocities is achieved by derivate Equations 6.20, 6.21

∂ur
∂z

= − 1

2µ

∂p

∂r
(2z − hB) (6.27)

∂uθ
∂z

= − 1

2µ
(2z − hB) +

ωrm
hB

(6.28)

Inserting Equations 6.27, 6.28 into Equation 6.24 and integrating over the gap height
will give the energy dissipated in the gap

qCb/V p =
1

T

T∫
0

hB∫
0

r6∫
r1

µΦCb/V p2πr drdzdtAs =

=
1

T

T∫
0

hB∫
0

µ

 r6∫
r1

(
∂ur
∂z

)2

2πr dr +

r6∫
r1

(
∂uθ
∂z

)2

2πr drAs

 dzdt
(6.29)
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Where As is the sum of the areas As1, As2 and As3.

6.6 Dissipation in the Slipper/Swash plate interface

The S/Sp interface is the most complicated interface when considering the viscous dissi-
pation calculation. The Slipper can rotate around its own axis. There are also velocity
contributions due to the sliding motion that is created by the rotation around the shaft.

Figure 6.15 shows how the slipper is rotating around two axis.

Figure 6.15: Slipper rotation around the two centers, O and OG.

The angular rotation of the slipper is considered to be the same as the shaft speed but
with opposite sign, hence ωG = −ω.

The resultant velocity VG is divided into two components, VGa and VGγ. The VGa are
in the radial direction a, while VGγ are in the angular direction,γ. The slipper velocities in
every point in (a,γ) are

VGa = ωrM cos δ

VGγ = ω(rM sin δ − a)
(6.30)

Where component VGγ is the relative velocity around its center, OG.
The resultant velocity is

|VG| =
√

(ωrM cos δ)2 + (ω(rM sin δ − a))2 =
√
ω2(r2

M + a2 − 2arM sin δ) = ωRφ (6.31)

This proofs that the the slipper is translating around the center O with a uniform
velocity of ωRφ. The velocity components are different around the slipper, this will change
the gradient in the gap height direction (z-direction) in every point around the slippers, γ
direction. The radius rM is calculated at every point around the slipper.
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rM =
√
R2
φ + a2 − 2aRφ cos(180− γ) (6.32)

R2
φ = (RB sinφ)2 +

(
RB cosφ

cos β

)2

(6.33)

Where RB is the pitch radius of the pump and Rφ the radius to the center of the slipper,
OG, that varies with the rotating angle φ.

The pressure built up in the slipper is different from the pressure in the displacement
chamber, hence this needs to be calculated.

The pressure built up is depending on the force that is pushing the slipper against the
swash plate, FKS, see Figure 6.16.

Figure 6.16: schematic of the slipper.

A responding force from the pressurized fluid in the slipper will push the slipper at the
opposite direction, hence balancing the external forces. The load ability, Ffz,is described
as

Ffz =
1

2
pGπ

a2
2 − a2

1

ln a2
a1

(6.34)

This fluid force is however lower than the external force FKS, because there is also
an contribution from the hydrodynamic pressure. Since the gap height is assumed to
be constant in this case, the contribution from the hydrodynamic force is neglected. By
neglecting this, the pocket pressure will be overestimated. To cover this, the contribution
from the fluid force is assumed to be slightly lower.

Ffz = BGFKS (6.35)

The constant BG is between 0.95− 0.99, depending on the magnitude of the fictitious
hydrodynamic force. The pressure in the slipper can then be described as

pG =
2FKS ln a2

a1

π(a2
2 − a2

1)
BG (6.36)

The constant is used even with a constant gap height to avoid an over estimation in
the pocket pressure.
The following assumptions can be considered in the lubricating gap for the slipper.

∂u

∂z
>>

∂u

∂a
,
∂u

∂γ

∂p

∂a
>>

∂p

∂z
,
∂p

∂γ
ua, uγ >> uz
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The velocity profiles of the slipper can then be considered as in Figure 6.17

(a) Velocity profile at a cross-section in γ-direction. (b) Velocity profile at a cross-section in a-
direction.

Figure 6.17: Assumed velocity profiles in the Slipper/Swash plate interface

The assumptions reduces the N-S equations to

0 = −∂p
∂a

+ µ
∂2ua
∂z2

(6.37)

0 = µ
∂2uγ
∂z2

(6.38)

by using the following boundary conditions

ua(0) = 0 ua(hG) = VGa(a, γ, φ)

uγ(0) = 0 uγ(hG) = VGγ(a, γ, φ)

integration of Equations 6.37, 6.38 in the same manner as for the other interfaces, will
give the equations for the velocities

ua = − 1

2µ

∂p

∂a

(
z2 − zhG

)
+
VGa(a, γ, φ)

hG
z (6.39)

uγ = − 1

2µ

(
z2 − zhG

)
+
VGγ(a, γ, φ)

hG
z (6.40)

Figure 6.18 shows how ua and uγ varies with γ at z = hG, a = a and at y = Rφ.
The equation for the viscous dissipation can be reduced to the following equation with

the given assumption

µΦS/Sp = µ

[(
∂ua
∂z

)2

+

(
∂uγ
∂z

)2

+ 2
(ua
a

)2
]

(6.41)

In the same way as for the Cb/Vp interface, the last term is orders of magnitude smaller
than the gradients in the z-direction, hence Equation 6.41 can be reduced to

µΦS/Sp = µ

[(
∂ua
∂z

)2

+

(
∂uγ
∂z

)2
]

(6.42)

The derivatives of the velocities are obtained as
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(a) The radial velocity ua (b) The angular velocity uγ

Figure 6.18: Normalized velocities at z = hG

∂ua
∂z

= − 1

2µ

∂p

∂a
(2z − hG) +

VGa(a, γ, φ)

hG
(6.43)

∂uγ
∂z

= − 1

2µ
(2z − hG) +

VGγ(a, γ, φ)

hG
(6.44)

The velocity components of the slipper varies with a-,γ- and φ-direction. The viscous
dissipation is integrated over a, γ the time it takes for the slipper to rotate around O in
one revolution. This is in order to get a mean value of the viscous dissipation.

Inserting Equations 6.43 and 6.44 into Equation 6.42 and integrating over the gap
height, radius, angle and time will give

1

TΓA

hG∫
0

T∫
0

Γ∫
0

a2∫
a1

µΦS/Spdadtdγdz =
1

TΓA

hG∫
0

T∫
0

Γ∫
0

a2∫
a1

µ

[(
∂ua
∂z

)2

+

(
∂uγ
∂z

)2
]
dadtdγdz

(6.45)
where the time T is the time it takes for the slipper to rotate a revolution around O and
Γ is the angle of a revolution around OG. A is the the distance from a1 to a2.

The energy dissipated in the gap can then be calculated

qS/Sp = n
1

TΓA

hG∫
0

T∫
0

Γ∫
0

a2∫
a1

µΦCb/V pdadtdγdzAs (6.46)

Summing all the energy dissipations will give the total energy dissipated in the pump,
as Equation 6.2 states.

6.7 Calculate the case temperature

The model considers that there is one flow entering the pump and two flows leaving. One
flow is leaving the pump at the outlet, where the other flow are the sum of all flows leaving
the pump due to leakage. The energy source that is heating the fluid in the pump are due
to the energy dissipated, represented as qtot. A representation of the system can be seen
in Figure 6.19.
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Figure 6.19: The system is represented as the control volume surrounding the pump.

The equations for the system are expressed as


ṁoutcp(Tout − Tin) + ṁleakcp(Tleak − Tin) + h∞A(Tleak − T∞) = qtot
ṁout + ṁleak = ṁin

qtot = qgaps + qpump

(6.47)

where the specific heat capacity, cp, is treated as a constant. Equation 6.47 is solved
and expressed in Tleak as

Tleak =
qtot − ṁoutcp(Tout − Tin) + ṁleakcpTin + h∞AT∞

ṁleakcp + h∞A
(6.48)

The leakage temperature is determined as the amount of energy required to elevate the
inlet temperature for a certain amount of mass flow through the gaps, ṁleak. The temper-
ature of the flow leaving the pump is not only elevated because of the viscous dissipation
in the gaps. The elevation of the outlet temperature is mostly elevated because of other
effects in the pump, which is not included in the model. It is not trivial or even possible
to determine the amount of energy that is rising the temperature of the outlet due to the
other effects with a analytical model. Equation 6.48 is therefore modified.

The nominator in Equation 6.48 represents the amount of energy that rises the tem-
perature in the leakage. The energy dissipated in the gaps are assumed to only heating the
leakage flows, hence the outlet and the energy dissipated due to other effects are neglected.

Tleak =
qgaps + ṁleakcpTin + h∞AT∞

ṁleakcp + h∞A
(6.49)

The total mass flow of the leakage is determined as

ṁleak = ρ(p, T )Qleak = ρ(p, T )
(
QSK +QSB +QSG

)
(6.50)

The leakages from each gap is calculated as a mean value over a revolution. These
values are achieved by integrate Equations 3.25, 3.30 and 3.27 over the revolution time
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

QSK = 1
T0

T0∫
0

QSK(φ) dt

QSB = 1
T0

T0∫
0

QSB(φ) dt

QSG = 1
T0

T0∫
0

QSG(φ) dt

(6.51)

The leakages depends on the density of the fluid. The viscous dissipation depends
on the viscosity which also depends on the pressure and temperature. The density and
viscosity is not constant since the pressure and temperatures changes. Even if the fluid
is regarded as incompressible, the compressible effects are still considered by determine
the viscosity and density based on pressure and temperature. The kinematic viscosity is
calculated by the following empirically determined equation for hydraulic fluids [2].

ν(p, T ) = wePc1pTPc2 (1010(Tc1−Tc2∗log10(T )) − 0.5)10−6 (6.52)

The pressure and temperature of the gap is denoted as p and T . The pressure and
temperature are consider to vary linearly over the gap, hence a mean value can be used. The
weighting factor, w, is empirically determine depending on which type of hydraulic oil. The
variables Tc1, Tc2 and Pc1, Pc2 are the temperature and pressure coefficients respectively.
The coefficients are determined to match the behavior of the kinematic viscosity for the
corresponding oil.

The density is calculated according to the following linear approximation [2]

ρ(p, T ) = ρ0 [1 + βp(p− p0)− βT (T − T0)] (6.53)

where ρ0 and T0 is the reference density and temperature. The coefficients, βp and βT ,
are the isothermal coefficient of compressibility and the isobaric thermal coefficient of
volumetric expansion, respectively.

The dynamic viscosity can then be calculated as:

µ = νρ (6.54)

The viscosity and density are based on a mean value that is dependent on the leakage
temperature. The calculation procedure for the leakage temperature requires an iteration
process until the correct viscosity and density are achieved. The error for the temperature
are defined as

f = |T n−1 − T n| (6.55)

where convergence is achieved if f < 10−2. The flow chart in Figure 6.20 describes the
calculation procedure.
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CLT

Estimate Tleak

Calculate µ, ρ
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leak=T n-1
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f < 10-2 ?

Finished

No

Yes

Figure 6.20: Flow chart of the calculation of leakage temperature (CLT)

7 Results

The result are presented in two parts, one for the CGFM and one for the case temperature.
The results from the CGFM are primarily to show how the transfer of frictional forces have
an impact on the power loss. The model for the case temperature is going to be compared
to measured data and calculation with different gap heights has been performed in order
to investigate the impact on the case temperature.

All simulations have been made for a Sauer-Danfoss 75cc pump with HLP 32 mineral
oil.

7.1 CGFM

The tables presented in this section show how the volumetric efficiency and power loss
changes with pressure and pump speed.

Table 7.1: Pump speed 500 rpm

ηv[%] Ploss[W]
∆p[bar] No forces Forces No forces Forces
100 98.8 98.7 470 640
200 98.5 98.7 644 625
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Table 7.2: Pump speed 1500 rpm

ηv[%] Ploss[W]
∆p[bar] No forces Forces No forces Forces
100 99.3 99.4 2413 2428
300 99.2 99.2 2796 2853

Table 7.3: Pump speed 3000 rpm

ηv[%] Ploss[W]
∆p[bar] No forces Forces No forces Forces
100 99.5 99.5 7342 7357
300 99.4 99.4 7469 7576

The transmitted friction forces seems to become of less importance when the pump
speed is increased. The forces has a large impact on the power loss when the pump speed
and pressure is low. A larger pressure in the pump becomes of larger importance when the
pump speed is increased compared to the lower pump pressure.

7.2 Case temperature

The measured data are first presented in order to later validate the calculations with the
case temperature model.

7.2.1 Measurments

The measurements where made at five different pump speeds; 1000, 1500, 2000, 2500 and
3000 rpm, and three different pressures; 100, 200 and 300 bar. These points are a usual
range of operating conditions for the Sauer-Danfoss 75cc, and the points where chosen
with care to reduce the risk of damaging the pump, hence the minimum and maximum
operating conditions where not used. The case temperature in the pump has been assumed
to correspond to the measured leakage temperature after reaching steady state condition.

Table 7.4: Pump speed 1000 rpm

∆p[bar] Qleak[l/min] Qout[l/min] Tin[
◦C] Tout[

◦C] Tleak[
◦C]

100 2.78 71.22 52.06 54.28 53.20
200 2.95 68.90 52.04 56.15 57.02
300 3.27 66.64 52.46 58.42 63.63
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Table 7.5: Pump speed 1500 rpm

∆p[bar] Qleak[l/min] Qout[l/min] Tin[
◦C] Tout[

◦C] Tleak[
◦C]

100 3.14 108.23 51.49 53.66 59.64
200 3.26 105.85 51.35 55.26 63.29
300 3.59 103.18 51.69 57.29 68.70

Table 7.6: Pump speed 2000 rpm

∆p[bar] Qleak[l/min] Qout[l/min] Tin[
◦C] Tout[

◦C] Tleak[
◦C]

100 3.45 145.47 52.68 55.10 64.91
200 3.68 142.40 51.41 55.69 69.89
300 4.25 138.54 52.53 58.69 77.74

Table 7.7: Pump speed 2500 rpm

∆p[bar] Qleak[l/min] Qout[l/min] Tin[
◦C] Tout[

◦C] Tleak[
◦C]

100 4.08 182.65 51.27 53.28 65.76
200 4.24 179.05 51.00 54.62 72.42
300 4.58 167.41 52.23 58.91 80.96

Table 7.8: Pump speed 3000 rpm

∆p[bar] Qleak[l/min] Qout[l/min] Tin[
◦C] Tout[

◦C] Tleak[
◦C]

100 4.71 220.57 51.31 53.41 69.22
200 5.05 215.78 51.65 55.35 76.39
300 5.94 210.85 52.67 58.06 81.65

The trend in the measurements are a raised leakage temperature for an increased pump
speed and pump pressure. The change in pressure seems to have a larger impact on the
leakage temperature than the increase in pump speed.

The data are also presented in a map to easier see the variations in case temperature,
see Figure 7.1.
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Figure 7.1: Case temperature map.

7.2.2 Case temperature model

The model has calculated the case temperature for five different pump speeds: 1000, 1500,
2000, 2500, 3000 rpm and three different pressures, 100, 200 and 300 bar with the maximum
displacement at, β = 17◦. The gap heights where set to: hK = 17µm, hB = 8µm,
hS = 8µm. Worth to note is that the gap height for the piston are calculated by subtracting
the the radius of the piston from the radius of the bushing in the cylinder bore. The gap
height for the Piston/Cylinder interface are also the interface which has the highest gap
height, hence the gap heights tested for the Slipper/Swash plate and Cylinder block/Valve
plate interface was smaller.

Table 7.9: Pump speed 1000 rpm

Qleak[l/min] qtot[W] Tcase[
◦C]

∆p[bar] calculated measured calculated measured calculated measured
100 1.17 2.78 296.22 - 57.83 53.20
200 1.55 2.94 436.80 - 59.94 57.02
300 1.84 3.27 598.75 - 62.27 63.63
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Table 7.10: Pump speed 1500 rpm

Qleak[l/min] qtot[W] Tcase[
◦C]

∆p[bar] calculated measured calculated measured calculated measured
100 1.49 3.14 529.65 - 63.00 59.64
200 1.88 3.26 694.31 - 64.26 63.29
300 2.17 3.59 876.39 - 66.09 68.70

Table 7.11: Pump speed 2000 rpm

Qleak[l/min] qtot[W] Tcase[
◦C]

∆p[bar] calculated measured calculated measured calculated measured
100 1.80 3.45 817.88 - 67.85 64.91
200 2.21 3.68 1014.31 - 68.61 69.89
300 2.51 4.25 1223.69 - 70.13 77.74

Table 7.12: Pump speed 2500 rpm

Qleak[l/min] qtot[W] Tcase[
◦C]

∆p[bar] calculated measured calculated measured calculated measured
100 2.11 4.08 1151.23 - 72.34 65.76
200 2.54 4.24 1384.76 - 72.79 72.42
300 2.85 4.58 1626.61 - 74.13 80.96

Table 7.13: Pump speed 3000 rpm

Qleak[l/min] qtot[W] Tcase[
◦C]

∆p[bar] calculated measured calculated measured calculated measured
100 2.41 4.71 1522.93 - 76.49 69.22
200 2.86 5.05 1797.76 - 76.75 76.39
300 3.20 5.94 2076.67 - 77.99 81.65

The case temperature is increasing for an increased pump speed and pump pressure.
However the trend is not similar as the measured leakage temperature. The pressure has
a larger impact on the case temperature for lower pump speeds compared to higher ones.
This is a reversed behavior compared to the trend of the leakage temperatures, where large
changes in pressure will raise the temperature even more for high pump speeds.

The model also under predicts the amount of leakage, which is strongly related to the
gap heights.

To be able to determine how large impact the gap heights has on the temperature
for a wider range of operating conditions, 1476 simulations where runned for each test of
different gap heights. The results are expressed in the temperature maps below.

Gap heights of 10 µm and 12 µm for the slipper and cylinder block interface were also
tested, see Figure 7.3 and 7.4
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Figure 7.2: Case temperature for gap heights: hK = 17µm, hB = 8µm, hS = 8µm.

Figure 7.3: Case temperature for gap
heights: hK = 17µm, hB = 10µm, hS =
10µm.

Figure 7.4: Case temperature for gap
heights: hK = 17µm, hB = 12µm, hS =
12µm.

The gap heights have a large influence on the case temperature. To be able to get a
better estimation of the case temperature, calculations from CASPAR have been done in
order to get mean gap heights for different operating conditions for the slipper and cylinder
block.

The gap heights has been loaded and used in the case temperature model with a result
displayed in Figure 7.5.

The variation in case temperature as a dependency of gap heights can be viewed in
Figure 7.6. This show how much the gap heights is able to raise the case temperature.
The gap heights can be raised up to 40◦C when going from 17 to 2 microns.
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Figure 7.5: Case temperature for mean gap heights from CASPAR.

Figure 7.6: Case temperature for variable gap heights for the cylinder block and slipper.
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8 Summary and Conclusions

The friction forces transmitted in the Coupled Gap Flow Module have a larger impact on
the power loss for low pump speeds with low pressures for a Sauer-Danfoss 75cc pump.
This is since the other forces becomes much larger than the friction forces for higher pump
speeds and pressures.

The volumetric efficiency is decreasing for increased pressures and is increasing for
increased pump speeds. Compared with Figure 2.5 this agrees well when located at the
left side where the slope is positive (in the graph to the right). This shows that the increase
in leakage due to increased pressures are larger than the relative leakage increase due to
higher pump speeds. This means that the leakage produced is becoming smaller for higher
pump speeds relative the total flow through the pump.

The results from the model that predicts the case temperature has a trend to rise the
temperature when the pump speed and pressure are increasing. The case temperature is
strongly dependent on the gap heights and smaller gap heights increases the case temper-
ature due to the increase in viscous dissipation in the gaps. The case temperature agrees
well with the measurements for a pressure of 200 bar at the five different pump speeds
when the gap heights are set to: hK = 17µm, hB = 8µm, hS = 8µm. However, since
the gap heights are empirically chosen and its impact on the case temperature is high, the
approximation to assume the gap heights to be constant is not a valid assumption.

The variable gap heights shown in Figure 7.5 is showing the case temperature with
mean gap heights that was calculated with CASPAR for different pump speeds and pres-
sures (note that the gap heights are still assumed to be constant for each pressure and
pump speed). The case temperature is not agreeing well with the measurements, which
gives a strong indication that the assumption to use constant gap heights are a too big
approximation. Figure 7.6 shows how much the case temperature is varying for changes
in gap heights for the slipper and cylinder block interfaces. The temperature was raised
up to 40◦C when changing the gap heights from 17 to 2 microns. It is therefore obvious
that the gap heights is one of the largest source of the inaccuracy that the developed case
temperature model produce.

9 Future Work

There may be several ways to improve the case temperature model, but one of the largest
source of error in predicting the case temperature is the empirically chosen constant gap
heights. A recommendation is therefore to integrate the case temperature model with
CASPAR where the gap heights are calculated. To improve the prediction further is
probably to develop a version of CASPAR which calculates the three gaps in one program
instead of three separate ones. This will give a good indication if the case temperature can
be calculated by only using the energy dissipated in the gaps.
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