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Abstract. This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions
in the case of inelastic (granular) collisions. First, in the (angular) cut-off case,Lrhiflutions are constructed as limits

of the iterate functions and boundedness of higher velocity moments are discussed in the case of inverse power collisions
forces. Then the problem of the weak solutions, as weak limit of a sequence of mild solutions, is studied for a bounded body,
in the case of very soft interactions (including the Coulomb case). Furthermore, strong convergence of weak solutions to the
equilibrium, when time goes to infinity, is discussed, using a generalized H-theorem, together with a translation continuity
property.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical modelling in physics, (e.g. for describing
the neutron distribution in reactor physics, cf. [1]-[3]). In our earlier papers [4]-[6] we have studied the linear
Boltzmann equation, both in the angular cut-off case and the infinite range case, for a fuiixtian) representing
the distribution of particles with masa undergoing elastic binary collision with other particles with massand
with a given (known) distribution functio¥(x, v.). In recent years there has been a significant interest in the study of
kinetic models for granular flows, mostly with the non-linear Boltzmann equation; see ref. [7] for an overview, with
many further references, and also [8]-[9]. Our papers [10] and [11] consider respectively the time-dependent and the
stationary linear Boltzmann equation for inelastic (granular) collisions, both papers in the angular cut-off case, but the
paper [12] studies the (granular) infinite range case.

The purpose of this paper is to generalize our earlier results in [13] on existence of weak solutions for very soft
elastic collisions (including the Coulomb forces), in the Cauchy problem case, to inelastic (granular) collisions in a
bounded body, and (for simplicity) without external forces.

So we will study collisions between particles with massand particles with massy,, such that momentum is
conservedimv +m.v, = mv' +m,V., wherev, v, are velocities before and, Vv, are velocities after a collision.

In the elastic case, where also kinetic energy is conserved, one finds that the velocities after a binary collision
terminate on two concentric spheres, so all velocitielée on a sphere with radiuﬁ% around the center of mass,

v = (mv+m.v,)/(m+m,), wherew = |v —v,|, and all velocities/, lie on a sphere with the same certeaind with
radius -, cf Figure 1 in [4].

In the granular, inelastic case we assume the following relation between the relative velocity components normal to

the plane of contact of the two particles,

w'-u=—-a(w-u), 1)
wherea is a constant, & a< 1, andw =v —v,,w' = V' — Vv, are the relative velocities before and after the collision,
andu is a unit vector in the direction of impaat,= (v—V’)/|v—V'|. Then we find that’ = v} lies on the line between

v andvy, wherev] is the postvelocity in the case of elastic collision, i.e. véth 1, andv,, lies on the (parallel) line
betweerv, andv’,.

Now the following relations hold for the velocities in a granular, inelastic collision

™ (w-uu, V,=v.+(@a+1)
m+m, m+m,

wherew - u = wcosb, w = |v — v,|, if the unit vectow is given in spherical coordinates,

/

vVi=v—(a+1)

(w-uu, )

u = (sin@cosy,sinfsing,cosf), 0<O<m/2 0< <2 3)
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Moreover, if we change notations, and’lef v.. be the velocities before, andv.. the velocities after a binary inelastic
collision, then by (1) and (2), cf. [7]-[12],

/V:V_w(w.u)u7 ,V* :V*+M
a(m+m,)

a(mtm) (W-u)u. 4)

PRELIMINARIES

We consider the time-dependent transport equation for a distribution funtfion,t), depending on a space
variablex = (x1,X2,X3) in a bounded convex bodp with (piecewise)C-boundary” = dD, and depending on a
velocity variablev = (vi,Vv2,v3) € V = R3 and a time variablé € R ;. Then the linear Boltzmann equation is in the
strong form

ﬁ(x,v,t) +vgrad f(x,v,t) = (Qf)(x,v,t),

ot ©)
xeD, veV=R3 teR,,
supplemented by initial data
f(x,v,0) = fo(x,v), xeD, veV. (6)
The collision term can, in the case of inelastic (granular) collision, be written, cf. [7]-[12],
@OV = [ [ [Ba(OmIY (V) F(xV.0) = Y (x,v.) F(x,v,1)] B(6,w) dv.dEd @
v/o

with w = |v — v,|, whereY > 0 is a known distributionB > 0 is given by the collision process, and finallyis a

factor depending on the granular process (and giving mass conservation, if the gain and the loss integrals converge
separately). Furthermorey, ‘v, in (7) are the velocities before amlv, the velocities after the binary collision, cf.
(4),andQ = {(6,9) : 0< 68 < 6, 0 < ¢ < 271} represents the impact plane, whére: 7 in the angular cut-off case,

and6 = 7 in the infinite range case. The collision functiB(@,w) is in the physically interesting case with inverse

k-th power collision forces given by

B(6,w) =b(O)W, y= Pt

W= |V—V,, (8)
with hard forces fok > 5, Maxwellian fork = 5, and soft forces for 3 k < 5, whereb(8) has a non-integrable
singularity for@ = 7, of ordera = —(k+1)/(k—1). So in the angular cut-off case one can chose 7, and then
the gain and the loss terms can be separé@d (x,v,t) = (Q" f)(x,v,t) — (Q~ f)(x,v,t), where the gain term can
be written (with a kerneKy)

Q" F)(x,,t) = /V Ka(X, ¥ — V) f (x,v,t) d \, @)

and the loss term is written with the collision frequendi,v) as (Q™ f)(x,v,t) = L(x,v)f(X,v,t). In the case of
non-absorbing body we have tHaix,v) = [, Ka(x,v — V') dV’. Furthermore, equation (5) is in the space-dependent
case supplemented by ( general) boundary conditions
f-(x,V,t) / 0V ok, = V) o (x5, 1)
— MV = T O V= sV )
J n-v| * (10)
n-v<0,nV>0 xel=0D,teR,,

wheren = n(x) is the unit outward normal atc I' = dD. The functiorR > 0 satisfies (in the non-absorbing boundary
case)fy R(x,V — v)dv =1, andf_ and f, represent the ingoing and outgoing trace functions correspondingmo
the specular reflection case the functi®rs represented by a Dirac meas®e,V — v) = 6(v—V+2(n-¥)n), and
in the diffuse reflection cade(x,¥ — v) = |n-v|W(x, V) with some given functioW > 0, (e.g. Maxwellian function).
Letty =tp(X,V) = infrcr, {T: X — TV ¢ D}, andx, = Xp(X,V) = X —tpv, Wherety, represents the time for a particle
going with velocityv from the boundary poimnt, to the pointx.
Then, using differentiation along the characteristics, equation (5) can formally be transformedldoeguation,
and also to aexponentiaform of equation in the angular cut-off case, cf. [10] and also [4]-[6].
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CONSTRUCTION OF SOLUTIONSIN THE CUT-OFF CASE

We construct.!-solutions to our problems as limits of iterate functidiis whenn — . Let first f ~1(x,v,t) = 0.
Then define for giveri"~! the next iterate ", first at the ingoing boundary (using the appropriate boundary condition),
and then insid® and at the outgoing boundary (using the exponential form of the equation),

n _ [V 1y o 110
fl(x,v,t) = V|n-v|R(X’V_>V)f+ (x,V,t)dv, (11)
— t
f(x,v,t) = f“(x,v,t)exp[—/ L(x —sv,v)ds|+ (12)
0

t T
+/ exp{—/ L(x—sv,v)ds} / Ka(x—1v, v — V) " (x — v, v,t — 1) d'vdT,
0 0 v

where

T { fo(x—tv,v),  0<t<ty, (13)

n _
FOOVD =1 i vt—ty), >t

Let alsof"(x,v,t) = 0 forx € R®\ D. Now we get a monotonicity lemma&? (x,v,t) > f"~1(x,v,t), which is essential
and can be proved by induction.
Then, by differentiation along the characteristics and integration (with Green’s formula), we find (using the equa-

tions above, cf. [10]), that
// f(x,v,t) dxdvg// fo(x,v) dxdv, (14)
DJVv DJv

so Levi's theorem (on monotone convergence) gives existence of (bilshlutions
f(x,v,t) = lim fM(x,v,t)

to our problem with granular gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v)f(x,v,t) € LY(D x V), then we get equality in (14) for the limit functidih giving mass conservation together
with uniqueness in the relevant function space (cf [4]—[6], [10], [11], and also Proposition 3.3, chapter 11 in [3]).
Remark 1The assumptioh f € L1(D x V) is, for instance, satisfied for the solutidrin the case of inverse power
collision forces, cf. (8), together with e.g. specular boundary reflections. This follows from a statement on global
boundedness (in time) of higher velocity moments, (cf. Theorem 4.1 and Corollary 4.1 in [10]).
Remark 2There holds also in the granular inelastic collision caseHatmeoremfor a general relative entropy
functional

® f(x,v,t)
H2(H = [ [ o iy ) F ooV dxav. (15)
giving that this H-functional is nonincreasing in timegit= ®(z), R, — R, is a convexC!-function, and if there exists

a corresponding stationary solutiérx,v) with the same total mass as the initial d&jéx, v) for the time-dependent
solutionf (x,v,t); cf. Theorem 5.1 in [10]. By using this H-functional one can prove that every time-dependent solution
f(x,v,t) converges to the corresponding stationary soluE@r,Vv), as time goes to infinity; cf. Remark 5.1 in [10]
and further references.

WEAK SOLUTIONSIN THE COULOMB CASE
In this section the linear Boltzmann equation for granular inelastic collisions is considered with a weak form of

angular cut-off, (cf. (16) below), in the collision term for very soft forces, i.e. witb @ k< 3, so—4<y< —1in
equation (8). We will here (for simplicity) consider the Coulomb forces, i.e. with?2 andy = —3in (8). The problem
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is studied in the following weak integral form, which can faihy be derived from equation (5) with (6) and (7):

//g(x,v,t)f(x,v,t)dxdv://g(x,v,O)fo(x,v)dxdv+
bV bV

t

///v gradg(x,v,7) + %g(x,v, 7)]f(X,v, T)dxdvdT+ (16)

DV

o

t

///v// g(x,V', ) — g(x,V, T)]B(8, W)Y (x,v.) f (x, v, T)dxdvdv.dOd¢dr,

DV

o

for all test functiong € CO s =19¢€ Cg 1g(x,v,t) =0,x e I = gD}, which (for simplicity) are zero on the boundary.
HereC>™ = {ge CY(D xV x R.) : ||g|ls < o}, where

||9||a=SUH(1+VZ)‘“/2|g(x,v,t)I]+Sup[(1+v2)“’/2|ig(x,v,t)|]
+suf(14 V%)~ Y/2|0,9(x, vt)|]+sup[(1+v2) 9=172|0,g(x, v, 1)]],

(17)

(giving a wider class of test functions than used in a similar context, cf. e.g. [12]).
We start our calculations with a lemma, estimating the difference between the test functions in the collision term(16);
cf. Lemma 2.3. in [13].

Lemmal. Letg=g(v) be a continuously differentiable function. Then éor 0 there holds thatg(v'(08)) —g(v)| <
constx suf(1+ u?)~9/2|0g(u|] - wcosh (1 +v?)/2(142)9/2,

/2 /2
Proof. g(v'(6))—g(v)| =] f Og(v' () FV' (@ )dw|<SUFi(1+U) /2| 0g(u)] g( +(V ()22 FpV (w)ldy,
where (2) (mthegranularcase)gM%v( = é;i%) W= |[V—v,[,and 1+ (V)2 < max(1, ) (14+v2) (14+V2),
so the lemma follows. O

Next we will formulate a proposition on estimates of velastiafter and before a binary (elastic or inelastic)
collision; cf. also ref. [4], where the negative term (on right hand side below) is used to get boundedness in time
of higher velocity moments.

Proposition 2. Letvj(68, ) andv be the velocities after and before a collision. Then foralb- 0 there are positive
constants Kand K (depending oro,m,m,, and a) such that

(14|va(6,0)|?)7/2 = (1+ |v|2)7/% < Ky (weos) (1+v,) M0 (14v2) (722 _ Ky (weos 6) (14 v2) (7172

Now we will study the case with a sequence of bounded collision functions; cf. (8BH&, y= —3, in the Coulomb
case. Let for positive integehé
BN(eaW):min(NaB(eaW))v (18)

and letQn be the corresponding collision term with mild solutiofs. Then we can formulate a proposition of
existence of the solutions with mass conservation and local boundedness in time of higher velocity moments, for
the case with some weak angular cut-off (independeht)of

Proposition 3. A) Let for the Coulomb case (k¥ 2,y = —3), By be given by (18), and assume that
sup( /Y (x,v.)dv,) < . Then, for every initial functionofe L (D x V) and general boundary function R,
X

there exists (for inelastic or elastic collisions) a unique mild solutigrtd the problem (5)-(7) with non-absorbing
boundary, giving mass conservation.

//fN(x,v,t)dxdv://fo(x,v)dxdv,teR+. (29)
DV

DV
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/2

B) Furthermore, assume that b(8)cosfd8 = by < o, and that(1+4 v, )™%%-1 supY (x,v,) € LY(V) for3< g < o
0 X

and somedgp > 0, and suppose a "non-heating" boundary (e.g. specular reflection). Théh#if?)9/2fo(x,v) €
LY(D x V) there holds a (local) boundedness of higher velocity momentsy < gy, t € R,

//(1+v2)"/2fN(x,v,t)dxdv < ef%t//(l—i—vz)"/zfo(x,v)dxdv,
bV Y

where Ay is a positive constant depending on B only through b

Proof. Proposition A follows from the discussion in the section above. To get Proposition B, start with differentiation
along the characteristics of iterate functidijsin (16)-(18), multiply by(1+v2)"/2 and integrate, with some change

of variables, cf. [13]. Then, by the proposition (above) on velocities after a binary collision, using only the positive
part (at the right hand side) of the estimate, one get the integrals of type

t

/////Wcose(1+v*)ma’<l""*l>BN(G,W)Y(x,v*)fﬁ(x,v,T)dxdvdv*dedqodr

0DVYVAQ

t
< 2nbo///[sup/WV+1(1+v*)ma“"’*l)Y(x,v*)dv*] - (14V?)(=2/2f0 (x, v, T)dxdvdT,
X
0DV \Y

wherey = —3 fork= 2. Thus

/W*ZG(V*)dv* g/ W’ZG(V*)dv*+/G(v*)dv*,
v w<1 V

where Holder inequality (for the first integral on r.h.s.), gives
/o 1/q

/waZG(v*)dv* g( \/\/*ZQ’G(v*)dv*)l (/V(G(v*))de*> ,

if3<q<o,and Y/q+1/d =1, i.e. 1< d < 3/2. Now, using a Gronwall type estimate, the (local) boundedness
of velocity moments are reached for the iteraf§sand finally the monotonicity properti 7 fn, n — o, gives the
result; cf. [13] and further references. O

w<1

The existence theorem for very soft solutions to the linedtZBtann equation is based on a compactness lemma,
which is analogous to that given by Arkeryd in [14], (cf, also Lemma 4.1 in [5]). The proof is omitted here; see Lemma
2.5in[13].

Lemma4. Let{fn}N_; be a sequence of nonnegative integrable functions erVD such that for someg > 0
//(1+v2)"0/2fN (x,v)dxdv < Cg,
with a constant G, independent of N. Let E E(x,Vv) be a positive measurable function satisfying

sup{E(x,v)(1+v2)*5/2} <o

X,V

for someo < gy, and let the H-functional in (15) witl = zlogz, z= f/E, satisfies an inequality gfn < Cg
with a constant € independent of N. Then there exists a subsequéf¢é” ; C { fn}N_; converging weakly to a
nonnegative integrable function onsbV, such that

//QJ(XN)fNi (X,v)dxdv—>//g(x,v)f(x,v)dxdv, i — oo

for every measurable g satisfying
sup|lg(x, V)| (1+V7)"7/2] <o
X,V

with somé) < g < 0gp.
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Then we come to the main result in this section concerningstisesce of weak solutions and local boundedness
(in time) of higher velocity moments in the case of unbounded scattering Batoequation (8) with some (angular)
cut-off, weaker than the cut-offs needed in the theory of mild solutions to the Boltzmann equation. We will formulate
the result for the Coulomb case, i.e. wkh- 2 (andy = —3).

Theorem 5. Let the assumptions in the Lemma above hold, and suppose that the mild solution f satisfies the H-
theorem(He f)(t) < Hg(fp) < o0, t € R1. Then there exists a nonnegative solution functien ff(x,v,t) to the linear

Boltzmann equation in the weak form (16) for every test functier(é;g’o, giving mass conservation and also local
boundedness of higher moments.

Proof. (Sketch) See mainly the paper [13]. Define first a sequence of functions by (18) and then use the weak
compactness lemma together with boundedness of higher moments. Then prove an equicontinuous property for the
sequence

{//g(x,v,t)fN(x,v,t)dxdv}‘,’jzl,

on every time interval0, T], first for rational times, and then for irrational times. Now prove that the fundtisatisfies
the weak equation (16); for details, see [13]. O

CONVERGENCE TO EQUILIBRIUM

For the weak solution in (16) we can prove strong convergence to equilibrium, when time goes to infinity, using a
generalized H-theorem, cf.(15), with the functidz) = (z— 1)?, z= f/E, if the collision functionY = Y(v,) is
independent of the space-variable, &e- E(x,Vv) is a Maxwellian function. Then we first use a cut-off in the initial
function, fg , = min(fo, pE) together with a translation property and the weak convergence theorem for a sequence of
functionsfy(x,v,t); for details, see our paper [13].

RemarkThe assumptiog(x,v,t) = 0, x € [ = dD, on the test functions can be weakened, and general boundary
cases can be studied, e.g. specular reflections, cf. [12].

Final remarkGranular inelastic collisions can also be studied using transformation of masses and velocities to the
problem of elastic collisions, cf. ref. [15].
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