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Gear Shifting with Retained Power Transfer
by Bengt Jacobson, Machine and Vehicle Design, Chalmers University of Technology,
S - 412 96 GOTEBORG, Sweden

ABSTRACT

The most essential property of a powershifting transmission is that power can be transferred
even during a gear shift. Automatic transmissions in vehicles are & common application.
The gearbox is shifted by simultaneous engaging and disengaging of clutches, connected
to a gear train. Analytic simulation models are useful tools when optimizing the control
strategy for these clutches.

This dissertation presents the following models for analysis of powershift operations in
vehicle drivelines:

00 Model for dimensionless equations: A driveline model without too many details
generates equations, which are made dimensionless in a lucid way, Through these, a
good overview of the principles of powershifting is found. Also, some phenomena of
interest are strictly defined (fie-up, flare, torque and inertia phase, etc.).

O Two-clutch model: This driveline model has a gearbox, which shifts between two
gears by controlling two clutches, one for the lower gear and one for the higher gear.
The simulation results are verified by tests. Thus the level of detail in the driveline
model is found to be appropriate.

O Multi-clutch model: In this model, the gearbox is equipped with as many clutches as
the real gearbox has. (In the presented example, this means five clutches.) Therefore,
all gear shifts for a certain gearbox can be analyzed with the same model. Also, it
is possible to analyze other shift operations than those where exactly one clutch is
engaging and one is disengaging.

O Model including surrounding systems: The driveline model is connected to models of
the engine block and vehicle. Also, a simple model of a passenger is present, making
it possible to study the passenger comfort more properly.

The clutches are often oil-immersed, and so they cannot be properly described with dry
friction characteristics. A model of an engaging multi-disc clutch, including squeeze and
viscous friction in the oil film, is therefore developed. The influence of the oil film on the
gear shift quality is studied.

The modelling is carried out systematically. Therefore, the work also gives some general
advice as to how dynamic transmission systems should be modelled. An algorithm is
developed to find the appropriate state variables for a constrained dynamic transmission
system.

Keywords: transmission, gearbox, powershift, gear shift, ratio change, automatic
transmission, analysis, model, dynamic, simulation, clutch, oil-immersed clutch, wet clutch,
dry friction, viscous friction
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ABSTRACT

The most essential property of a powershifting transmission is that power can be transferred
even during a gear shift. Automatic transmissions in vehicles are a common application.
The gearbox is shifted by simultaneous engaging and disengaging of clutches, connected
to a gear train. Analytic simulation models are useful tools when optimizing the control
strategy for these clutches.

This dissertation presents the following models for analysis of powershift operations in
vehicle drivelines:

OJ Model for dimensionless eguations: A driveline model without too many details
generates equations, which are made dimensionless in a lucid way. Through these, a
good overview of the principles of powershifting is found. Also, some phenomena of
interest are strictly defined (tie-up, flare, torque and inertia phase, etc.).

0 Two-clutch model: This driveline model has a gearbox, which shifts between two
gears by controlling two clutches, one for the lower gear and one for the higher gear.
The simulation results are verified by tests. Thus the level of detail in the driveline
model is found to be appropriate.

O Multi-clutch model: In this model, the gearbox is equipped with as many clutches as
the real gearbox has. (In the presented example, this means five clutches.) Therefore,
all gear shifts for a certain gearbox can be analyzed with the same model. Also, it
is possible to analyze other shift operations than those where exactly one clutch is
engaging and one is disengaging.

{0 Model including surrounding systems: The driveline model is connected to models of
the engine block and vehicle. Also, a simple model of a passenger is present, making
it possible to study the passenger comfort more properly.

The clutches are often oil-immersed, and so they cannot be properly described with dry
friction characteristics. A model of an engaging multi-disc clutch, including squeeze and
viscous friction in the oil film, is therefore developed. The influence of the oil film on the
gear shift quality is studied.

The modelling is carried out systematically. Therefore, the work also gives some general
advice as to how dynamic transmission systems should be modelled. An algorithm is
developed to find the appropriate state variables for a constrained dynamic transmission
system.
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transmission, analysis, model, dynamic, simulation, clutch, oil-immersed clutch, wet clutch,
dry friction, viscous friction
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1. Introduction

A powershifting transmission is shifted by engaging and disengaging clutches, connected to
a gear frain. In practice, this is often an automatic transmission in a vehicle, where each
clutch is designed as a multi-disc clutch, a band brake or a one-way clutch. In order to reach
good shift quality, an analytic simulation model is useful.

During the last 10-20 years, many models for gear shifts in specific automatic transmissions
in vehicles have been presented. Such work is often focused on the design of the control
system. Two older references, [1] and [2], present the basic mechanics in an excellent way.
The mechanical phenomena during a powershift are discussed. For instance, they discuss the
timing problem. It is a problem in shift operations where both disengaging and engaging
clutches are controlled, i.e. no clutch is designed as a one-way clutch, If the clutches are
too loosely engaged, the engine will overspeed (flare) and if they are engaged too hard the
engine will choke (tie-up). Both cases result in unnecessarily large losses of power supply
to the vehicle. Furthermore, there is a contradiction between the wear of the clutches and
passenger comfort, which are two other essential aspects of the shift quality.

Papers A-D in this dissertation present work carried out in order to systemize the modelling
technique itself. To a great extent, this work is also valid for dynamic transmission systems in
general. However, the aim was never to develop a complete modelling technique for dynamic
transmission systems, as was, for example, the case in reference [3]. In papers A and B,
simulation and test results are compared. The behavior of a specific important component,
the engaging oil-immersed multi-disc clutch, is studied in papers E and F.

2. Overview of the System Description

The three words in the concept dynamic transmission system are interpreted here as follows:

O “dynamic” means that the system, at each instant in time, changes in a way
determined by its present conditions. Therefore, the solution is implicitly defined
by sufficient information about the system conditions at some suitable instants in time.
Mathematically, this is treated as an initial value problem.

0O “transmission” means that the conditions in each point (i.e. section of shaft) of
the system can be described by one rotational velocity and one torque. Also, these
quantities are coaxial, and so the product of them is the mechanical power, which flows
through the point in a certain direction.

[} “system” means a constellation of components, most suitably described in two steps.
Firstly, properties for components are defined. Secondly, the connections between the
components are given.

As a further restriction in this dissertation, all component properties are lumped, e.g. there
are no shafts with continuously distributed mass and elasticity properties. Therefore, the
variables might only be differentiated with respect to time, i.e. the system is an ordinary
differential equation system.




2.1 Velocity and Torque Variables

It is important to have a lucid convention for where velocities and torques are found and which
senses are considered as positive. First, it is assumed that the transmissions are observed
in a sketch, where all velocities and torques are horizontal on the paper (i.e. directed from
left to right or vice versa). Figure | shows a suitable convention for analysis of a single
transmission component. Here, all shafts are shaft ends, and thus both shaft velocity and
shaft torque are vector variables. In figure 1, the positive senses for all shaft velocities and
shaft torques are defined through one single positive direction. The product of shaft velocity
and shaft torque is then the input power on the shaft. When expanding the analyze to a
system, the shaft velocities are still vectors, and their positive senses can be defined by
one single positive direction. However, a shaft torque cannot be observed unless a shaft is
cut off. Then there are two counter-directed torque vectors, one on each shaft end. One
possible solution to this problem is to introduce nodes, as shown in figure 2. Here, one
single positive direction tells the positive sense of all node velocities and all node powers. If
node power is defined as the product of node velocity and torque, a positive node torque is
implicitly defined. Hereby, power input nodes and power output nodes can be defined for a
component in the system. This is when node power is defined as positive as input and output
to the component, respectively. In figure 1, node 2 is an output power node for the single
gear transmission, but it is an input power node for the elasticity. In reference [4], another
convention for transmission systems is used. It is based on the convention in figure 1 and
interaction between components is handled by connection points, referred to as nodes.

positive direction positive direction
D s

1 node

Mpode . Mnode

—tel

Dpode

2
single N~ @) single _
gear gear elastic shaft
transmission transmission
Figure 1. Suitable convention Figure 2: Suitable convention for positive senses of velocities
for positive senses of and torques when analyzing a system

velocities and torques when
analyzing a component

The convention in figure 2 is first established in paper A and used in papers A-F. It is
sometimes expanded to include nodes with force and linear velocity. (The node concept is
also expanded with relative velocity nodes, introduced in section 3.3.) The positive direction
is assumed from left to right, unless otherwise defined.




2.2 Component and System Equations

The systems studied are composed of components, connected in nodes. The natural way
to describe the components is to give as many (independent) equations as there are nodes
connected to the component. This hypothesis (or definition of “natural way”) is declared in
paper D. In paper A, some of the most essential components are presented. Also, in table 1,
some examples are given. Note that both examples 4 and 5 are considered as one component.
This shows that a component can be defined in a rather arbitrary way, as far as it can be
connected to nodes in a system. However, for such a component, the number of component
equations is only equal to the number of nodes, if we just count effective equations. In
examples 4 and 5, M, can be regarded as an intermediate variable, which can be eliminated.
This would leave the component with just two equations, i.e. the effective ones. However,
in example 5, M; cannot be eliminated without introducing second order differentials (or
integrals). In section 2.3 the equations are formulated as first order differential equations,
and so components of this kind are not recommended. It is better to model example S as two
components, i.e. to introduce a node where M, is positioned.

Table 1: Examples of components and their component equations

COMPONENT
EXAMPLE COMPONENT EQUATIONS
lossfree differential gear
_ wrtws

NN w1 2
Mi=My+M;, (1
1 23 My = M3

inertia (one input and two outputs)

1 2 . wy = Wy
2 wy = w3 2

Jowp =M — My — M,

elasticity (linear)
k My = M,

3 1 2
e-\/N\/\ /e . 3
Mlzk-(wl—wg) (

inertia-damper-inerta

d Jirwy =My - M,
My M,
4 My =d-(w; —wy) (4
Jo cwy = M, —~ My
inertia-elasticity-inerta

. o T N [ | 7=
! 2 My =k (w —ws) 6

Jy-wy =M, — My




2.3 Physical Variables versus State Variables

In general, the component equations are composed of both algebraic? and differential
equations, and therefore they cannot be algebraically solved. Instead, the system generates an
initial value problem, which is based on the assumption that we know the initial conditions.
The solution is obtained by numerical integration. Computer software for such methods is
well established for initial value problems that can be formulated in normal form, ie. as
shown in equation 6. Here, x and y denote column vectors of physical variables (or algebraic
variables) and state variables, respectively. The physical variables are the node quantities, i.e.
node velocities and node torques. Superscript iv means initial value. Time is denoted by .
The time derivatives of the state variables (dotted form) are referred to as state derivatives.
y'V = known

. . (6)
[y,x] = system function(y,t)

It is supposed that the system function can be derived from the component equations if a
transformation between state variables and physical variables is given. In paper A, it was
found that the most straightforward way to express the state variables is in terms of velocities
of inertias and torques of elasticities. These quantities directly describe the level of stored
energy in the components; and the storage of energy is the very essence of the dynamic nature
of a dynamic transmission system. In paper A, there is also a discussion of the conventional
way to describe the conditions in a mechanical system, i.e. with position and velocity of each
inertia as state variables. This is found to be an unnecessarily complex way for a dynamic
transmission system, where velocities and torques are the quantities of interest. It can also
tempt us to introduce small inertias without physical significance, e.g. between the elasticity
and the damper in figure 3. Let us study the example in figure 3, for which the component
equations can be written as shown in table 2.

O-e 5]

prescribed ‘nertia  inertia elasticity ~ dampe prescribed
torque torque

Figure 3: Example with 6 components connected in 5 nodes

It is tempting to choose the state variables as the physical variables that occur in dotted
form in the component equations, i.e. y = [w; wy M;s ]T. Note that these are velocities
of inertias and torques of elasticities. However, it is not physically correct to use all three of
them, because there is a constraint between w1 and wy, namely equation 8, embedded in table
2. Also M3 is constrained, namely to ¢ through equations 16, 14 and 12. A primitive method
for finding the appropriate state variables is, intuitively, to become aware of these constraints
and to use y = w; Or y = wo instead. This method, which often requires some trial and
error, is used in all papers except paper D. There, an algorithm is developed for finding

2 Here, and in the papers A-F, “algebraic” means non-differentiated. Therefore, also transcendent equations,

linear interpolations in tables etc. are included in the expression “algebraic equations”.




Table 2: Component equations for the system in figure 3

COMPONENT COMPONENT EQUATIONS

(left) prescribed torque My = fi(t) ; where f1 is a known function of ¢ 7

(left) inertia

Wi = Wy (8 Jl'Lb]le"M2 (9

(right) inertia Wy = wy (10 Jrcwy =My, — Mz (11

elasticity M = M, (12 M=k (w3 —wyg) (13
damper

My = Ms (14 My :d‘(w4~w5) (15

(right) prescribed torque

Ms = f5(¢) ; where fs is a known function of ¢ (16

a physically correct set of state variables. The state variables become linear combinations
of the physical variables. In this example, the algorithm would suggest y to be a linear
combination of the node velocities in the system. A conclusion is that one should not regard
state variables as something basically physical. They are just mathematical variables with
ambiguous physical interpretations.

The algorithm presented in paper D is useful mainly for linear equation systems with constant
coefficients. Each (scalar) differential equation must be a first order linear equation with
constant coefficients. Non-linear algebraic equations cannot be included if they are active
as constraints. These restrictions are seldom an obstacle in transmission systems. A future
development of the algorithm could be to facilitate interaction to subsystems. This might
also be a way to allow non-linear differential equations and non-linear constraints, through
“hiding” them in the subsystems.

3. Equations for Gear Trains

The gear trains in powershifting gearboxes are almost exclusively designed with gearwheels
in planetary arrangements. This can act as a deterrent to the analyst, which would be a pity
because planetary gear trains are actually very easy to model. At least, the modelling is easy
when losses are neglected, which is the case in this dissertation. The matrix formulation of
the component equations quite simply becomes, in inhomogeneous form:

wy = A - wy an
My =B - My

or, in homogeneous form:

C-w=0
(18)




Here, A, B, C and D are matrices with coefficients determined by the number of teeth

in the gearwheels. The column vectors w and M contains all node velocities and torques,

respectively. In wy and My, only some of the nodes are represented. The remaining nodes

are represented in wy and My. Now there are simple ways to obtain the torque matrix from

the velocity matrix (or the other way around) for both the inhomogeneous and homogenous

form. The methods are valid also for more general mechanisms, where some nodes may
have translational velocities and forces.

Equations 19 and 20 show that the matrix formulations in equations 17 and 18 can be obtained
for the example in figure 4. These (conventional) derivations are based on kinematics and
torque equilibrium for the gearwheels.

80 teeth——— wp w10 (Willis> equation)
w3 ~ Wi 80 =
W] = wy
40 teeth —» N [wi] _ [8/12 4/12] [w]
wy 8/12 4/12 w3
or % i Y )
Figure 4: Example of gear train = Wi
with gearwheels in [~12 48 44 0 wy | 0
planetary arrangement = | +1 0 0 ~11 wy| |0
C [ we |
i (19)
N My| _ [+8/12 -8/12| | M;
My| | +4/12 —~4/12 My
Ml — M2 _*_Als +M4 T &__—\lg_—_———/ T
(global equilibrium) or .
0 = My/80 — M3/40 = M,
(equilibrium for = [+1 -1 -1 _1} M2 [0]
the planet wheel) 0 —1/8 +1/4 0 M 0
D My
(20

3.1 Inhomogeneous Form

The relationship between matrices A and B in equation 17 can be formulated in basic matrix
manipulations. This was shown in references [5] and [6] and in paper A. If all nodes
connected to the gear train are power input nodes, the relationship between the matrices
becomes as simple as:

B=-AT @n




In equation 21, superscript T' denotes transpose of the matrix. If there are power output
nodes among the x-nodes, the corresponding columns in B should change sign. Furthermore,
power output nodes among the y-nodes change the signs of the corresponding rows in B.
The drawback of the inhomogeneous form is that nodes on the left and right hand sides
in equation 17 cannot be chosen arbitrarily. For instance, in the example in figure 4, it is
impossible to write equation 17 with wy = [w wy ]T.

For the example in figure 4, matrix B in equation 17 can be found using equation 21 and
the sign rules. Both rows of —AT should change signs because nodes 2 and 3 are output
power nodes. The second column of —AT should change sign because node 4 is an output
power node. The result is shown in equation 22. Note that the resulting B is identical to
the one in equation 20. For a general gear train, derivations using equation 21 give different
matrices B as compared with derivations through torque equilibrium. However, they describe
the same torque relationships.

oo [3 0] (e ) [ 0] - e ) e
) )

changes signs _AT changes sign of
of both rows the 2nd column

3.2 Homogeneous Form

The equations for any gear train can be written in the homogeneous form in equation 18. A
method for deriving the torque matrix from the velocity matrix is used, but neither properly
presented nor proofed, in papers B and C. Therefore it is presented and proofed in appendix
A. In the following, only the result is exemplified.

For the example in figure 4, matrix D is derived from the matrix C, or actually a preliminary
variant, Cg. Cg is allowed to contain dependent rows. If Cy is taken as C in equation 19,
the matrices in equation 18 are determined as shown in equation 23. Note that the C and D
found are not identical with the C and D derived in equations 19 and 20. However, they
describe the same velocity and torque relationships.

—0.3032 —0.3701 —0.1851 +0.8584
W,
c ;\ﬁ_/
iy (23)
[0.5130 —0.6156 —0.3078 —0.5130] M, m

L 0 404472 —0.8944 O
M
D gt

[+0.8031 —0.5330  —0.2665 ~0.0036}. wy {0]

One drawback of this homogenous formulation is that the derivation of the torque matrix is
carried out numerically, and so an analytic expression cannot be obtained.




3.3 Relative Velocity Nodes

So far, the gear train has been assumed to be connected to its surroundings through (common)
nodes, defined as in figure 2. Figure 5 shows how this works in the case of connection to a
clutch. In order to reduce the number of variables, two common nodes can be exchanged to
one relative velocity node. The velocity and torque of a relative velocity node are defined in
figure 6. A clutch connected by means of such a node is shown in figure 7. This connection
is mostly useful for clutches connected to gear trains, but can be used between any connected
components, provided that the component equations can be expressed in relative velocity and
one torque. For example, in papers B and C, an elasticity is connected to a gear train by
means of a relative velocity node.

The relationships between velocity and torque matrices, presented earlier in this chapter, can
be applied to gear trains with relative velocity nodes. The relative velocity nodes should
then be regarded as power output nodes.

(relative velocity)
node
f“‘-Aﬁ

Mn'ghl

left right “&ﬁi‘_ﬁ;_ —>>—~*—8~ clutch
H left |1

Wyefy Oright H

wai Wnode =Wy — Wright
gear train _ gear train
Miode= M[gﬁ_Mﬁghl

Figure 5: Clutch connected to a  Figure 6: Suitable convention Figure 7: Clutch connected to a
gear train by means of two nodes. for a relative velocity node. gear train by means of a relative
Four variables are involved: wjg, The node power, defined as velocity node. Two variables are
Wright Mieft and Myjop;. Mpode * Wnode is @ power loss. involved: woputch 20d Mijuich-

4. Equations for Clutches

In this chapter, the clutches (including brakes and one-way clutches) are treated as components
acting with pure dry friction.

4.1 Component Equations

Three operating phases need to be handled: stick, positive slip and negative slip phases. In
the first case, the component restricts the relative velocity to zero. In the two latter cases,
the torque is restricted to a function of time, dependent on the actuating force, coefficient
of friction etc.. In equation 24 and figure 8 the component equations and characteristics are
shown. The variables denoted by ph and f! are referred to as phase and flags.




M= —¢(t) ;if ph=-1
w=70 ;if ph =0
M = +c(t) ;if ph=+1
ph switches from ~1to 0 ; when fI » tends to become > 0
ph switches from 0 to — 1 ; when f l;ﬁck tends to become > 0
ph switches from 0 to +1 ; when fl:;ick tends to become > 0 (24)
ph switches from +1to 0 ; when f l:“p tends to become > 0

fls—lxp =tw

fls—twk - C(t)
ﬁtck - M - C( )
slip = —¥

The dry friction torque capacity, ¢, is thought to be given as a direct function of time. When
the clutch is a single disc clutch, ¢(t) = p - Fyu(t) - radius, where p is the coefficient of
friction and Fy is the actuating force. The actuating force is given by the hydraulic pressure,
which is treated here as a known function of time.

To be more precxse there can be four variables for describing the torque capacity:

Calip® Cstick’ 3twk and Csllp The superscripts refer to slipping direction and the subscripts
distinguish between slip and stick friction. The slip friction is also allowed to vary slightly
with sliding velocity. The meanings of the four capacities are shown in figure 9. It is now
quite possible to obtain characteristics for a one-way clutch, simply by assigning:

cs_“p =—00 cs_“p =0

Cs_tiigk =-oo | Coick =0 25)
Cstick = Cotick = +oo
Cotip = 0 Cotip = +o00

This approach is used, in one way or another, in all the papers for describing the dry friction
characteristics of the clutches. Slightly different notations are used, e.g. in paper A-C, a
factor, «a, is introduced instead of distinguishing between slip and stick capacities. There,

a(w) - ¢g;.p corresponds to Caip and a(w) - c smk corresponds to ¢ lip*
M ph=+1 + .M
+c Cstick he]
ph=+
\“"N’\_/“
S )
i i et
sli
s s P
o= Dot~ Dright - O=ypn~ Orjght
Cslip
M
ph=-1 —>>=:ﬂl}=<<— ph=-1 - =ﬂu=«-
Cstick
oy m
left right leﬁ‘ corlght
Figure 8: Clutch characteristics Figure 9: Clutch characteristics, with the four torque
capacities: cmp ick? cfmk and cs,m
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4.2 Influence on the Nature of the System

When the clutch is described using the equations in section 4.1, there is another type of
dynamics in the system. This is referred to as discrete dynamics and the new (discrete)
state variables are expressed in the phases of the clutches. There are continuous variables,
referred to as flags, which tell when a phase switch should be carried out. Flags are related
to state derivatives, since they give information about changes of the phases. For a system
with n clutches, there are 3" possible phase combinations, since each clutch can operate in
3 phases: negative slip, stick and positive slip. This kind of dynamic system is referred to
as multi-phase system. If the numerical integration method is described in a flow scheme, it
would be like that in figure 10 for an ordinary (single-phase) system and as in figure 11 for
a multi-phase system. This approach can be regarded as just a systematic way of handling
several initial value problems, spliced together.

¥t ly’v, I Y, ph. t ly'th”', Y
- - vt y, ph t
integration -1 system integration | system
method < function method < function
»x 5’» ﬂ: x
¥ ph,
¥y, Xt
store store
tand x t and x
phase switch
function
v ph |
Figure 10; Flow scheme for numerical integration of ~ Figure 11: Flow scheme for numerical integration of a
an ordinary dynamic system (single multi-phase dynamic system. It is assumed
phase dynamic system) that the last time step before a phase switch

is adapted so that the flag just passes zero
by a very little, or actually infinite, amount.

As seen in figure 11, the system function has to be extended, as compared with figure 10
and equation 6. Another difference compared with the single-phase system, is that a phase
switch function has to be given. The normal form, needed for simulation of a multi-phase
system, becomes:

[yi", ph, ti”} = known
[y,8,x] = system function(y, ph,t) (26)
[y,ph] = phase switch function(y, ph, fl, )

This description can include cases where the transformation between state variables and
physical variables has to change between different phase combinations. Furthermore, it is
not obvious how the phase switch function should assign new values to the state variables.
The answers to these questions are implicitly hidden in the equations of the whole system,
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not just in the component equations of the clutches. Let us study the example described
in figure 12 and table 3.

1 2 3
i f-e-{|-8-{ /> e
= clutch ~'" clutch elasticity
inertia 1nertia

Figure 12: Example of multi-phase system. 5 components connected in 4 nodes

Table 3: Component equations for the system in figure 12

COMPONENT COMPONENT EQUATIONS
(left) inertia Jyodp =0 - M @7
My =—a(t) ;if ph1=-1
(left) clutch M= M, (28 L;}f:wjﬁ(t) :i zzi z (-)|-1 (29

phase switch conditions as in equation 24

(right) inertia wy = ws (30 Jo e = My — Ms 31

M3 = —C3(t) ; if phg = —1
(right) clutch w3 = wy if phy =0 (33

My =My (32 My = +es(t) ; if phg = +1
phase switch conditions as in equation 24
elasticity, .
connected to ground My=k (wg—0) (34

A possible transformation between state variables and physical variables is shown in table 4.
As seen here, the transformation has to be changed between different phase combinations. In
all phase switches, the state variables should be given new values. These should be chosen
with respect to how the physical quantities behave in a phase switch. Velocities w1 and ws
are velocities of inertias, which cannot be changed discontinuously without the presence of
impacts. There can be no impacts, because the clutches always switch phase when both
clutch halves have the same velocities. Therefore, the first phase switch requirement is that
w1 and wy should be continuous in all phase switches. The torque My is the torque of an
elasticity, which cannot be changed discontinuously unless the end of the elasticity changes
position discontinuously. In a phase switch where the right clutch switches from slip to
stick phase, the end of the elasticity starts to follow an inertia, and so its position has to be
continuous. Therefore, the second phase switch requirement is that M, should be continuous
in a phase switch from slip to stick phase in the right clutch. In a phase switch where the
right clutch switches from stick to slip phase, the end of the elasticity starts to move without
kinematic constraint to the inertia, and so its position can be discontinuous. However, in
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such a phase switch, we do not need to determine the new value of My, since it is not a state
variable after the switch. For this system, the phase switch requirements can be concluded
as: all physical quantities involved in the new state variables should be continuous.

Table 4: Suitable transformation between state variables and physical variables for
different phase combinations in the system in figure 12

PHASES TRANSFORMATION CONSTRAINTS
BETWEEN
right STATE VARIABLES Wy M,y
left clutch AND constrained | constrained

clutch . o
PHYSICAL VARIABLES 0 w2 0

stick stick y=[wg My ]T ® -
stick slip y = [w ]T ® e
slip stick y={w w My ]T - -
slip slip y=lw w ]T - e

In the beginning of this section, it was stated that there are 3" phase combinations. However,
it is not mecessary to use that many different sets of state variables. For instance, in the
example, 3" = 3% = 9 but there are only 4 = 2> = 2" different sets of state variables in
table 4, because there is no significant difference between the negative and positive slip
phases. Therefore, the number of different sets of state variables can be reduced to 2".
These questions become less important if the algorithm given in paper D is used, because the
algorithm can automatically find an appropriate transformation between state variables and
physical variables. No such model has been implemented as computer code, but in paper D it
is shown that the algorithm can find appropriate transformations for a system with a gearbox
with five clutches. (Five clutches make 2% = 32 different phase combinations to consider,
which requires a tedious work without the algorithm.)

In a gear train modelled with load dependent losses, there are also phases. These are
characterized by the sign of the relative power flow in each gear mesh. Therefore, such
models of gear trains make the system act as a multi-phase system. A study of such gear
train models might be a subject of future work, although in normal powershift analysis the
losses in the gear train are not significant.

5. Models for Simulation of Powershifts

5.1 Model for Dimensionless Equations

With a very simple model, like the one in figure 13, it is possible to make the equations
dimensionless in a nice way. This is described in paper A.
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' L1 “ “clutch for
Presctrlbted, inertia l_”_| lower gear
constan
torque ° J —g— gear O prescribed,
train constant
clutch for l—l velocity

higher gear_»'"'H

Figure 13: Model, whose equations can be made dimensionless.

(node notations: E=Engine power source, F=engine Flywheel, L=clutch for
Lower gear, H=clutch for Higher gear and O=gearbox Output)

The advantages of the dimensionless form are:

O

0
O

All speed (and torque) ratios between shafts are eliminated. This information is
concluded in one single quantity, the span, s, which is the ratio between the ratios
of the lower and higher gears.

Engine torque and vehicle velocity are dimensionless. They are scaled to the value 1.
The clutch torque capacities are described in dimensionless quantities, ¢, and c, .
They are scaled in a way that ¢, = 1 and c,g = 1 correspond to the minimum level
necessary for transmitting the engine power on each gear.

The engine flywheel inertia is made dimensionless. This requires division by a reference
time %, . It is suitable to chose ¢, # S0 that the entire shift operation takes place within
the time interval 0 < t, < 1, where ¢, = t/t,, s = dimensionless time.

Phenomena such as tie-up, flare, torque phase and inertia phase can be strictly defined.
It is also shown that one of the clutches always can be designed as a one-way clutch,
resulting in a shift with perfect timing. When power is transmitted from the engine
to the load, this is the clutch of the lower gear. In the case of engine braking, it is
the other clutch.

The dimensionless equations can be interpreted back to a physical system. Such a
system is shown in figure 14. It works in translation instead of rotation. The hands
corresponds to the clutches and we can understand the task of the control system by
imagining that the hands are our own hands.

a ~<='hand for higher gear"
- —\ \
constant a e
force <= (rlnksgs) - <
~
~ 2
s Ly
Z e 7
“hand for . constant
lower gear velocity (1 m/s)

Figure 14: Physical translational system, found by interpretation of the dimensionless equations of the system

in figure 13. The span, s, is the ratio between the ratios for the lower and higher gears.
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In paper A, there are a large number of diagrams which show how the dimensionless quantities
vary with the two dimensionless torque capacities, one for each clutch. In figure 15, about
the same is shown for the case when the clutch of the lower gear is a one-way clutch. This
gives only one independent variable, namely the dimensionless torque capacity of the higher
clutch. Therefore, these diagrams ought to be easier to follow. Equations are not derived
here, because they are a special case of the dimensionless equations in paper A.

In figure 15, the following dimensionless .
’ . M hift
variables are used: s=ratio span (I < s < *0 _> ups

o0), ¢, g=dimensionless torque capacity of the
clutch for higher gear, M,p=dimensionless
output torque, w,p=dimensionless engine ve-
locity, w!, p=dimensionless engine acceleration
and J,=dimensionless engine flywheel inertia ;
(J. > 0). Lo *H

. downshift

1/s e b b T R S Goancasaanoog

When the engine velocity is constant, the
condition is referred to as forque phase. In T
figure 15, it can be seen that the torque phases 1

last until the torque capacity of the higher
clutch has passed the value of 1 in either
direction. In the torque phase on the lower 15—~~~
gear, more and more of the output torque is
lost the more the capacity is increased. In the

torque phase on the higher gear, the output 0 o [ 1! |
torque is constant, thanks to the one-way
clutch. Jo®ip

When the engine velocity changes, the system
state is referred to as inertia phase. In figure
15, it can be seen that the engine accelerates or —
decelerates depending on whether the torque
capacity of the higher clutch is smaller or
Jarger than 1. The magnitude of acceleration 0 6
or deceleration is larger, the further away
from the value 1 the capacity is. The output
torque behaves similarly. This is not desirable
because, for an upshift, the torque has already
achieved the final value (M,o = 1/s) and for
a downshift, the torque change is in the wrong
direction.

C*H

Figure 15: Upshift and downshift operations in
dimensionless quantities. There is a
one-way clutch on the lower gear
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5.2 Two-clutch Model

The model in figure 16 is used in paper A. There are two clutches, one for each gear involved
in the gear shift. The essential surrounding components are included. For instance, the engine
power source is modelled by the steady state characteristics of the engine, i.e. Mg is an
algebraic function of wg and the throttle position (or corresponding quantity for other than
gasoline engines). The throttle position is assumed to be a known function of time. The
exact layout of the gear train component depends on the gearbox studied, and between which
two gears the shift is to be carried out. In figure 17, the layout is exemplified for the gearbox
ZF 4HP18, shifting between third and fourth gear. Note that the gearbox housing is inside the
gear train component, which makes it possible to treat brakes as a special case of clutches.

cluch for
torque lower gear driven wheels,
converter H I'_‘ including tire
T slip damping
7 0] w A v
Z_» train .
encine - elasticity of ) driving 7
po%ver engine ‘—' l—‘ driveshafts .Vehl?lﬁ resistance
flywheel H inertia
source inertia clutch for
higher gear

Figure 16: Two-clutch model.
(Node notations; as in figure 13 and P=Pump of torque converter, T=Turbine of torque
converter, W=Wheel center, A=driven Axle and V=Vehicle)

Y -

LlE—
3

planetary final
gear gear

IO
//””(/y// 77 /

-© O

gear tram

Figure 17: Gear train and clutches in the two-clutch model in ﬁgurc 16 for the case of gearbox ZF 4HP18,
shifted between third and fourth gear. The third gear is a torque-split gear and the
fourth is a lock-up gear (or, actually, the torque converter is bypassed).
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5.3 Multi-clutch Model

In order to have one gear train component for all gearshifts, it should be equipped with all
the clutches present in the real gearbox. Driveline models with such a gear train component
are presented in papers B and C. The gear train component can be described as shown in
figure 18, in the case of the gearbox ZF 4HP18, which has five clutches. The advantages
of including all the clutches are, first, the lucidity of having one component for all gear
shifts and, second, that generalized ratio change operations can be analyzed. Generalized
ratio change operations mean that not exactly one clutch should be disengaged and one
engaged. This can, for instance, be a lock-up maneuver, where only one clutch is engaged,
or a shift that demands two disengaging clutches and two engaging ones. Such a shift is
hardly ever used in practice, unless some intermediate gear is skipped, e.g. when shifting

directly from fourth to second gear.
clutches

h Hh ik i A

L |k mr——
% 2 S

planetary final
gear gear

—® O

§ R

1
I
N1 1N

gear train

-g-D 7 ’ A 1 8
Jint kinl
internal internal

inertia  elasticity

Figure 18: Example of gear train for multi-clutch model (gearbox ZF 4HP18).
(Node notations: as in figure 16 and 1-5=clutches number 1-5 and
6-8=nodes for connecting internal inertia and elasticity)

As seen in figure 18, the gear train component is connected to an internal inertia and
an internal elasticity. For most phase combinations, these have the values Jin; = 0 and
1/kint = 0. However, when too many clutches slip, there are too many kinematic degrees of
freedom. Then, Jn, is given a small positive value. The internal inertia is given the physical
interpretation as the planet carrier. Actually, such an interpretation is of minor interest. What
is important is only that the nodes of the gear train accelerate “very rapidly” in the proper
direction, satisfying the velocity equations of the gear train. When too many clutches stick,
the gear train becomes statically indeterminate, which requires extra elasticity. Then, 1 /it
is given a small positive value. The internal elasticity is given the physical interpretation




17

of one of the slenderest shafts in the gearbox. Actually, the physical interpretation is not
of any major interest here. The important thing is that the nodes of the gear train change
their torques “very rapidly”, satisfying the torque equations of the gear train. A question for
further work is to study whether these internal dynamic properties can be introduced without
any concrete assumptions of exactly which shaft, etc. has inertia or elasticity. The algorithm
in paper D can, even in its present state, detect these indeterminate situations. Another way to
handle statically indeterminate conditions is, consequently, to introduce a very stiff elasticity
in each clutch when it sticks. This is used in reference [3].

5.4 Model Including Surrounding Systems

The inertia of a transversely mounted power unit® is likely to participate quite a lot in
dynamics of the system. This, and a model of the vehicle body, are included in paper C.
In paper F, almost the same model is used, but it is equipped with a simple model of the
passenger, see also figures 19-21, in order to estimate passenger comfort. Normally, comfort
is defined as some sort of change in acceleration of the human being. Obviously, this is a
possible output from this model. However, exactly how to quantify the comfort is beyond
the scope of this work. A more general result from this model is that it connects common
dynamic models to the driveline model. Note especially how the gear train component has
to be equipped with a node, corresponding to the gearbox housing.

ot iy i
i

i

Zi

F& -

gear train GD 7l A ‘g
J;

int kint

internal  internal
inertia  elasticity

Figure 19: Gear train for the driveline model in figure 20.
(Node notations: as in figure 18 and H=gearbox Housing)

3 “Power unit” means engine block and gearbox housing, rigidly connected to one another.
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clutches
I 2 3 4 5
torque driven wheels,
© |1 dhdhdhdhdh including
slip damping
U B , 0 445, W A
gear train _._VVV_Q_O L &
: driveshafts
. / engine engine lastici
connection power B elasticity
b flywheel
etween source ertia 8 e e
. ine
engine b:)ock Jit " Kint
ind gearbox internal  internal
ousing inertia  elasticity
Figure 20: Driveline model, for connection to surrounding systems.
(Node notations: as in figure 19 and U=power Unit block and B=engine Block)
power passenger
unit
block Wy
& M
-%EW—M UL
7
® vehicle
dr_iving wheel wheel
IESIStance  gmga suspension suspension
A A

Figure 21: Surrounding systems for the driveline model in figure 20. (Node notations: as in figure 20)

6. Simulation and Test Results

It is important to make the dynamic model detailed enough to obtain the interesting
phenomena. It is also important not to include too many details, since then it becomes
very time consuming to create the model and to interpret the results. There is also a risk
of numerically unstable solutions if there are too many details. To judge whether or not a
model is detailed enough, the objective has to be defined, and simulation results must be

compared with the reality.
The objective of the models is to estimate shift quality, or at least to simulate the physical

quantities that affect the shift quality. A definition of shift quality is given in paper F. In
short, shift quality is determined with regard to three aspects:

1. Power supply to the vehicle should not drop unnecessarily much during the shift.
2. Wear of the clutches should be minimized.
3. Passenger comfort should be maximized.
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Roughly, the corresponding physical quantities are:

1. Tractive force on the vehicle
(The vehicle normally has approximately constant velocity during the gear shift, and
thus the power is proportional to the force.)
2. Energy loss in the clutches
(The wear is mainly due to high temperature caused by this energy loss.)
3. Acceleration of the passenger
(Comfort is assumed to be characterized by changes in acceleration.)

Test results from paper A are used as a comparison to simulations results. Tractive force
and engine velocity are measured. In conclusion, they coincide rather well with the resuits
from the simulations, and the computer time used was not annoyingly large. This probably
means that the level of detail in the driveline model is appropriate to simulate all velocities
and torques in the driveline. Thus, support for estimation of power supply and wear of the
clutches can be extracted from the simulations. If passenger acceleration can be expressed in
terms of tractive force, support for comfort estimation can also be found. Otherwise, vehicle
and passenger models should be included, as is done in paper F.

However, in order to simulate the measured tractive force in paper A, the prescribed torque
capacity functions of the clutches had to be modified?, as compared with what the hydraulic
actuating pressure gave. The reason was guessed to be the oil film in the clutches. In papers
E and F, this was verified analytically.

7. Consideration of Qil Film Phenomena
7.1 Engagement of a Single Clutch

Oil Film/Surface Model

Paper E describes a model for the conditions in a pair of friction surfaces. The oil film
is described using Reynolds’ equation, and the surface asperities are described as elastic
springs, with a certain coefficient of dry friction. An engagement can be described by the
following items:

O The actuating force is carried by a contact pressure on the asperities and an oil film
pressure. In paper E, both these pressures are mean pressures over the whole surface.
For thick oil films, the contact pressure is zero.

O The contact pressure, multiplied by the coefficient of friction, yields a dry friction
shear stress.

0O The oil film pressure squeezes out the oil, allowing the surfaces to approach one
another. This squeeze makes the engagement into a dynamic problem, whereby the oil
film thickness is a suitable state variable. The oil film is also sheared, which causes
a viscous shear stress, dependent on the oil viscosity, the oil film thickness and the
sliding velocity.

# From another point of view, the dry friction based description of the clutches can be regarded as not

satisfying. In addition to the dry friction torque capacity, a viscous torque coefficient is needed.
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O Since the surfaces approach one another, the asperities are more and more compressed,
and the dry friction shear stress increases. Also the viscous shear stress increases,
because the oil film thickness decreases.

O The dry friction shear stress increases until the whole actuating force is carried by
the asperities. Regarding the oil film thickness, the viscous shear stress should also
reach a maximum value and stay there. However, the oil viscosity decreases due to
the temperature rise, and the viscous shear stress actually fades out to almost zero.
(Also, when the oil film/surface model is used in a clutch in a transmission system, the
relative velocity becomes zero when the clutch sticks. Then the viscous shear stress
becomes exactly zero.)

Model of the Clutch

In paper E, the oil film/surface model is applied to a multi-disc clutch. Knowing the clutch
geometry, Reynolds’ equation can be solved and the shear stresses can be interpreted as
torques, a dry friction torque and a viscous torque. The clutch torque is the sum of these.

A similar study of a band brake would be a subject for future work. Such a study would result
in partial differential equations, since the oil film thickness varies both in time and along the
drum periphery. In paper A, tests indicate that band brakes have larger time delay® than
multi-disc clutches. Disengagement of different clutches and brakes is also of interest to study.

Model of the Actuating System

In order to find the proper solutions, it is important to include the hydraulic actuating system.
In the system in paper E, the clutch is actuated by a hydraulic pressure, via an orifice.
The engagement is controlled by how quickly the surfaces approach one another. Roughly,
this is determined by the orifice at the beginning of the engagement and by the oil film
squeeze at the end.

7.2 Influence on Gear Shift Quality

The influence of the oil film phenomena on the gear shift quality is studied in paper F. The
model from paper C (extended with a simple model of a passenger) is used for simulations.
The dry friction torque capacities for the clutches are input data for this model. Numerical
values for these are modified, relative to what the hydraulic pressure gives, in order to
simulate the conditions with both dry and viscous friction in the clutches.

It is found that the oil film effects may disturb the timing and also affect the wear and
comfort. The following is concluded for the engaging clutch in an upshift. (Note that tie-up
and flare are no problem when the clutch of the lower gear is designed as a one-way clutch.)

0O Multi-disc clutch with few discs give almost no oil film effects.

O Multi-disc clutch with many discs give tie-up, worse comfort but less wear.

7 Band brake tends to give flare, more wear but better comfort.

A subject for future work might be to extend the model used in paper F with the model of
the clutch and actuating system from paper E. Such a system is only sketched in paper F.

3 Here, “delay” means delay of clutch torque relative to hydraulic pressure.
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8. Conclusions

When powershifts are to be simulated, it is essential to include both the gearbox and
some of the surrounding components. As a minimum, for automotive applications, it is
suggested that the following components should be included: engine power source (with
steady state characteristics), engine flywheel inertia, torque converter, planetary gear train
with its clutches, elasticity of driveshafts and tire slip damper. Then the boundary conditions
are: engine throttle position, dry friction torque capacities for the clutches and vehicle speed.

With the aim of systemizing the modelling, also for dynamic transmission systems in general,
the following conclusions are drawn:

O The state variables of the system should be interpreted as velocities of inertias and
torques of elasticities.

O Equations for planetary gear trains should be written in matrix form, for lucidity. If
the gear train is assumed to be free from losses, the torque equations can easily be
found from the velocity equations, by means of power equilibrium.

O Each clutch should be modelled with strict Coulombian friction. This means that
a discrete state variable, or phase, defining whether the clutch sticks or slips, is
introduced. The whole system then becomes a mulfi-phase system, which changes
character every time a clutch switches between stick and slip phase.

O The equations of the system should be written in an explicit form, which is a form
where the state derivatives can be explicitly calculated as functions of the state variables
and time. This form is difficult to find when constraints are present. An algorithm
which handles this problem is developed.

O The clutches are oil-immersed. The oil has to be squeezed out before the dry friction
torque can be developed. Also, a viscous torque is present. In order to simulate these
phenomena, a model of the oil film and the friction surface is needed. The actuating
system of the clutch may also be important to model.

Appendix A: Relationship between Velocity and
Torque Equations on Homogeneous Form

In this appendix the relationship between matrices C and D in equation 18 is studied. It
is shown how D can be derived from C, or actually from a preliminary variant, Cg. The
derivation is based on the matrix manipulation singular value decomposition®, svd.

Start from a matrix Cp, satisfying the following velocity equation:

Co-w=0 (35)

® A singular value decomposition makes it possible to write any matrix A as U-S - VT, where S is a

diagonal matrix of the same size as A and with non-negative diagonal elements in decreasing order. The
matrices U and V are both square and orthogonal. Reference [7] describes the singular value decomposition
more thoroughly.
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Information about the sign conventions is given in the form of a vector s, with elements,
s; = +1 or s; = —1, such that w; - s; - M; = input” power in node number :. For the example
in figure 4, s = [+1 —1 —1]. Equation 35 is then subject to the following operations:

C()’U.):O
svd of Cg gives: U-S- VI .w=U-S - W-.w=0
P ———
Co
vl u.s-w-w=UT.0
S W-w=0
Si O Wi P . .
{ 0 0] -[sz} -w = 0 ; where S1 has positive diagonal elements
S
S1 Wyu1 w=0

S;I-Swal-w:le'w:O

Since W1 -w = 0, C can be identified as C = W,,1. Then equation 37 is obtained.
The rows of W1 are orthogonal. Therefore, equation 37 contains no linearly dependent
equations, which could have been the case in equation 35.

C w=0 37)

Introduce a transformed velocity vector w' such that w = W, - w'. The columns of W],
are then a set of orthogonal base vectors, describing directions of vector w, satisfying the
kinematic constraints: W, - w = 0. In other words, varying the values of the elements in
w' can give all combinations of velocities, allowed with respect to the kinematic constraints,
and no other combinations.

If the torque equations had been given, they could have been manipulated in the same way,
yielding: Wy - M =0 and M = WI&Z - M'. Here, varying the values of the elements
in M’ can give all combinations of torques, allowed with respect to the torque equilibrium,
and no other combinations.

The power equilibrium is written:

Zinput power = 0 = Ew,“s; M =0 :>wT-diag(s)-M =0=
Vi (38)
= W' W,y - diag(s) Wi, - M =0

The notation diag(s) means a diagonal matrix with the elements of s on the diagonal.
Power equilibrium should be satisfied for all allowed combinations of velocities and torques
in w and M. Then, equation 38 should be satisfied for arbitrary values of the elements in
w' and M'. One possibility is Wiy = W, -diag(s). Then, ' - W,,5-diag(s) Wi, -M' =
w’T'sz~diag(s)-(diag(s))T~W51-M’ = w'T'sz-W‘fl«M’, because diag(s)-(diag(s))T =
the identity matrix according to the definition of s. Furthermore, the rows of W,
and W, are orthogonal, which yields Wt W2 ng M =T 0. M =0

7

The opposite sign conventrons in vector s can also be used.
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The matrices Wpg; and Wygo should be orthogonal, which most easily is satisfied if
Wi = W, - diag(s). The torque matrix, D = W1, can therefore be obtained as:

D = W, - diag(s) 39)
In MATLAB-code, see reference
[8], this derivation can be written function [C,D]=powequil(CO,s)
as the fun'cnon, listed in ﬁgur.e 22. [U.S,V]=svd (CO) ;
The function has {Co,s} as input W=V’
parameters and {C,D} as output rankS=rank(S) ;
parameters. Wwl=W({l:rankS],:);
Ww2=W([rankS+1l:size(W)1,:);
C=Wwl;
D=Ww2*diag(s);
Figure 22: MATLAB-code for derivation of torque matrix
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Abstract

The main objective of this study is to simulate the mechanics of a driveline during
powershift. A powershifting transmission normally works with two clutches in
operation simultaneously, one clutch engaging and the other disengaging. By
proper control of the clutches one can make a ratio change very smooth and
without too much wear of the clutches.

A model suitable for a passenger car driveline has been constructed. The
simulation results of this model are verified in tests. The model simulates the
global mechanics, e. g. engine speed and vehicle traction force. Local mechanics,
such as squeal in clutches, have not been included.

There is also a simplified, dimensionless model. Using this model it is easy to
define and describe the essential phenomena during a powershift.

The work is valid for ordinary gears as well as planetary gears. The clutches may
be ordinary clutches, one-way clutches or brakes. Input to the models are the
torque capacities of the clutches as functions of time.

The driveline modelling technique is somewhat unconventional. The differential
equations are written with velocities of rotating bodies and torques of torsional
springs as state variables. This is more convenient since the absolute angular
positions are of no interest, but the torques are. In addition, connecting points
without inertia are used. This makes the results easier to comprehend and the
numerical solutions more stable. Furthermore, the clutches are modelled as
components that either stick or slip, i. e. as components with Coulombian friction.

Keywords:

automatic transmission
powershift

gear shift

clutch

Coulombian friction
driveline

model

dynamic

simulation
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Notation

@ Angular position [rad]

w Angular velocity [rad/s)

Wrel Relative angular velocity [rad/s]

M Torque [Nm]

i= { ﬁ:ﬁ:;i;ﬁf:;m Transmission ratio

s =11/12 Ratio span

ct Static torque capacity (of a clutch), positive direction [Nm]
c” Static torque capacity (of a clutch), negative direction [Nm]
o = Miuich dynamic/ € Fraction of ¢, o is weakly dependent of wrs.

U Coefficient of friction in clutch

Y = Wiurbine/Wpump Velocity ratio in converter

o = Myurpine/Mpump Torque amplification in converter

N = Mpump/Wkimp Torque capacity in converter [Nm/(rad/s)’]

J Moment of inertia [kgm?]

k Torsional linear stiffness [Nm/rad]

d Torsional linear damping {Nm/(rad/s}]

¢ Time {s]
Subscripts

IN Input shaft

OUT Output shaft

C Clutch

L Clutch for lower gear (with high ratio, ¢)

H Clutch for higher gear (with low ratio, 7)

ref  Reference quantity, used for dimensionless quantities
* Dimensionless quantity (see pp A32 and A38)

Others

Vectors (=column matrices) are marked by an arrow above: &

Vectors (=row matrices) are written within parentheses: (z,y,2)
Matrices are written with bold upper-case: I

Transposed matrices and vectors have the superscript T': 17, &%, (2,9, 2
Differentiation with respect to real time ¢ is marked by a dot: w
Differentiation with respect to dimensionless time t. is marked by a prime: '
Initial values have the superscript IV: w'¥

)T
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Chapter 1

Introduction

The subject of this work is to study the change of speed ratio in a vehicle with
powershifting transmissions, which in practice means automatic transmissions.

The ratio change in powershifting transmissions is very easy to describe and
perform in principal. The gearbox can be regarded as several branches for
transmitting the power. There is one branch for each ratio. Each branch includes a
clutch, see figure 1.1.

ENGINE § —— e LOAD

GEARBOX

Figure 1.1: Schematic iransmission with several ratios

In ordinary driving, just one of these clutches is activated. When changing ratio
that clutch is disengaged. Simultaneously, the clutch for the next ratio is engaged.
This sequence is shown in figure 1.2.

CLUTCH A CLUTCH B
ENGAGED

DISENGAGED

RATIO A RATIO CHANGE RATIO B TIME

Figure 1.2: Schematic description of ratio change (A=previous gear, B=new gear)
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It is difficult to fail completely when changing ratio. However, it is complicated to
accomplish a ratio change of good quality, i.e. to choose the right disengaging and
engaging functions.

A ratio change of good quality requires:

e Long transmission life (low energy losses in the clutches)
e Passenger comfort (smooth output torque)

o Absence of squeal (proper conditions near the clutches)
A complete analysis of the ratio change quality should be based on:

¢ Dynamics of the control system (control technique, hydraulics)
o Characteristics of the clutches (tribology, chemistry)
¢ Global dynamics of the driveline (mechanics)

e Local dynamics near the clutches (mechanics)

The present work deals with the global dynamics.
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Chapter 2

Literature review

The analysis of the mechanics of ratio changes presumes mathematical models for
the gearbox and the surrounding driveline. The most important attributes of the
gearbox are the speed ratios and the clutches involved, which are described as
components that either stick or slip. The most important attributes of the
driveline are normally the torque and inertia of the engine, the elastic components
(mainly the drive shafts or half shafts) and the damping components (mainly the
torque converter and the tyre slip).

In practice, there are two types of gearboxes: those with ordinary gears and those
with gears in planetary arrangements. The latter are undoubtably the most
common types in automatic transmissions.

[Forster 1957] and [Férster 1962] treat only gearboxes with ordinary gears. A
catalogue of different types of ratio changes is presented. The works are very
fundamental and give a good understanding of the phenomena flare (German:
negative (jbersclmeidung) and tie up (positive Uberschneidung). These phenomena
occur when the clutches involved are either too weakly engaged or engaged too
hard. The engine then overspeeds or chokes. Elasticities of the driveline are
neglected and so is the damping.

Similar work has been done by [Winchell 1962], with the difference that planetary
gears are treated. A useful discussion on the practical aspects of automatic
transmissions is included and describes many aspects of the layout of a planetary
gears and clutches.

[Ott 1972] shows equations for two planetary gears in series, which were both
shifted. No elastic components were considered. The damping action of the torque
converter was included, using the steady state characteristics.
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[Kraft 1972] and [Kraft 1974] are follow-up works of [Forster 1957] and

[Forster 1962]. They are concerned with planetary gears and how the equations

correspond to those for ordinary gears. The difference obtained is that an extra

inertia occurs inside the planetary gears. The works also treat thermal and wear
aspects of the clutches.

[Ishihara 1968] and [Ishihara 1970] treat planetary gears as well as the equations of
the hydraulic control system. The latter work presents verifying tests. [Ito 1972] is
a kind of follow-up work with most of its attention directed to the hydraulic
control system.

The work of [Shindo 1980] and [Koch 1972] considers the elastic components of the
driveline, which have been neglected by the previous authors. They deal with
numerical examples of specific transmissions.

As seen from this review, very little has been done in this field during the last ten
years. Interest during this period seems to have been attracted to the control
technique for automatic transmissions, while basic mechanics seems to have
disappeared from the scene.
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Chapter 3

Component equations

The driveline is composed of physical components, such as engine and drive shafts.
There are also engineering phenomena, such as tyre slip and driving resistance.
Finally there are mechanical properties, such as inertia, elasticity and damping.
Building blocks from these three groups cooperate to form the mathematical model
of the system. The most essential properties of every building block should be
described by mathematics, e. g. by equations (algebraic or differential), diagrams
or tables. This chapter presents the mathematics for the building blocks used. The
building blocks are referred to as “components”, although not all building blocks
are physical components. They may be regarded as model components.

The most important components presented in this chapter are the gearbox
transmission and the clutch. Furthermore, the torque converter, the tyre slip, the
engine, the driving resistance and the linear damper are presented. These
components do not store any energy. They just produce, transmit or consume
energy. Energy storing components described are inertia and elasticily. They store
kinetic and potential energy, respectively. See table 3.1.

The reason for separation into components that store and do not store energy is
perhaps more easily understood in light of the next chapter, which deals with the
system equations. The components that do not store energy only generate
algebraic equations. The energy storing components generate differential equations.

The subject of this work requires, as described in chapter 1, proper models for the
gearbox transmission and the clutches. These components are treated more
carefully, as is described in the beginning of this chapter. Moreover, the gearbox
with clutches must cooperate with the rest of the driveline components. These
components are modelled in a more conventional way, as is described at the end of
this chapter.
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Table 3.1: Classification of components

Components
Components not storing energy Components storing energy

Energy Energy Energy
producing transmitting consuming | Inertia Elasticity
components components components

without losses | with losses
Engine Gearbox Torque Driving Flywheel, | Drive shafts

(driving) transmission, | converter, | resistance, | Vehicle
Clutch Tyre slip, | Engine
(sticking) Clutch (braking)
(slipping)

3.0.1 Positive senses of velocity and torque

There are many ways of defining positive senses of vector quantities, such as
velocity and torque. The basic rule used in this report is that velocity and torque
are defined at the same point, a node. Furthermore, the product of velocity and
torque is power. Therefore, power is also a quantity defined at a node. The
positive senses of velocity and torque are chosen in such a way that the power is
positive when energy is transmitted in an assumed direction. This direction is
defined as a positive sense, or direction, of the power.

In this report, the power direction is from left to right in the figures. All nodes are
therefore drawn on horizontal lines. This basic rules leaves two ways of defining
positive senses, as shown in figure 3.1.

node node node
a) ————@=<+— M M —»>-@<we— M M ———
—p ——p —b
w w w
node node node
b) ——————e@—+ M M ~a—@— ) M <—e———
—~— ~~— ~t——
w w w

Figure 3.1: Two ways of defining positive senses of velocilies and torques al « node

There is no reason to exclude either of the two ways given in figure 3.1. However,

it is often convenient not to mix them, since the equations for an intermediate
component would change then.

This work deals with clutches. When both clutch halves are studied, there will be
two nodes, i. e. two velocities and two torques. However, it is suitable also to
define relative velocity and clutch torque. The product of these quantities is
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power. Therefore, clutch power is also defined. The positive senses of relative
velocity and clutch torque are chosen as:

Wrel = Wleft — Wright

Mauwen = Miep = Moign
The clutch power is then the power loss in the clutch, since:
Pclutch - Mclutch T Wrel = Pleft - Pright = Rnput - Poutput = PIoss

Let us assume an energy consuming friction model, e. g. Coulombian friction.
Then the power loss must always be positive (or zero). The clutch torque must
then have the same sign as the relative velocity.

3.1 Gearbox transmission

When shifting between two speed ratios in a gearbox, there are two branches in
which the power may be transmitted; one for each ratio. In order to control which
way the power is transmitted, each branch includes a clutch.

To avoid interruption in the transmission of power, the torque in a clutch is
controlled when the clutch is slipping. Therefore, the clutches are force conditioned
(German: kraftschliissig) rather then form conditioned (formschlussig).

3.1.1 Two-clutch gearbox with two power shafts

In the simplest and absolutely most common case there is just one clutch included
in each branch. This makes two active clutches in a gear shift. Furthermore, there
are usually just one input and one output shaft. Such a gearbox can be drawn
schematically as in figure 3.2.

Assume that the transmission is linear with respect to velocity. This implies that
the velocity equations can be written as linear equations. Examples of such
transmissions are all gear and chain transmissions and, if the slip is neglected also,
for example belt transmissions.

The most common design of a transmission results in two degrees of freedom with
respect to velocity (w-dof). The IN- and OUT-shafts have to be linearly
independent. This means that the velocity equations can be written as follows:

Wheetl, 1/1 =) . w - ~ P
retl ) _ /,L’”\ Lout N or Wy =1,-& (3.1)
WrelH Vigiv —twour wouT
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L

il

il

I.N GEARBOX OU'T
TRANSMISSION .

IN: power input node
OUT: power output node
L,H: clutches

H

——

Figure 3.2: Two-clutch gearboz with one input and one output shaft

Here, the i-constants are speed ratios. They are determined by ratios of
appropriate radii. For gear transmissions this is equivalent to ratios of the
corresponding number of teeth.

The gearbox transmission is assumed to contain neither energy storing components
(inertias or elasticities) nor energy consuming components (velocity or torque
losses). The torque equations can then be written:

Min
MouTt

=" R . M =1 M 3.2
[ 1LOUT tHOUT ] [ My ] o Mo (3:2)

The torque matrix Ip; can be derived directly from the velocity matrix I, as
follows. More details are shown in appendix A.

1 0

3.1.2 Physical interpretation of i:-constants

Figure 3.3 shows one possible layout for the schematic gearbox in figure 3.2. In
this layout the i-constants can be interpreted as the direct speed ratios between
the power shafts and the clutch halves.
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LN = =z n/zin
ZLIN zr,0UT /
iL,our = —zouT/r.0UT
IN ouT
ZINn zouT ] .
= THIN = —2H (N[ZIN
iH,0UT = —ZouT/zH,00T

ZHIN ZH,0UT

il

Figure 3.3: One possible layout of the gearboz. z denotes number of teeth.

The velocity equations for the gearbox in figure 3.3 become:

wa = win/iL N
WB = WoUT * IL,0UT
we = win[igin
Wp = WoUT * *H,0UT

WrellL = W4 — WB = WIN[ILIN — WoUT * iL0UT
WrelH = We —Wwp = wlN/ZH.IN — WouT " tHOoUT

The relative velocities can be written in matrix form. Then the same matrix
equation is obtained as for the gearbox in figure 3.2.

Note that wg,wp,we and wp in figure 3.3 are not necessarily the same as the
corresponding velocities of the gearbox in figure 3.2. Only the relative velocities
agree fully.

In the general case the gearbox may contain more complex transmissions, for
instance planetary gears. Then the i-constants cannot be interpreted as direct
speed ratios. They are more probably just constants describing the influence of the
velocities of the power shafts on the relative velocities of the clutches. They also
describe the influence of the clutch torques on the torques of the power shalfts.

In appendix B there is a numerical example of how the i-constants are found for a
gearbox with planctary gears.

3.1.3  Multi-clutch gearbox with several power shafts

By writing the equations in matrix form as is the case in equations 3.1 and 3.2. a
3 ! )

general approach is achieved to nearly all vehicle transmissions during ratio

change. However. the restriction to two power shafts is limiting when any of the
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speed ratios includes a torque split gear, for example through a torque converter.
In that case there are normally two input shafts. Extra power shafts could also be
used for considering inertia, elasticity or damping in the gearbox. The restriction
to two clutches is limiting when the lock-up operation of a torque converter is
analysed. In this case, just one clutch is active. The formulas could also be used
for a controlled limited slip differential. In that case there is one input shaft, two
output shafts and one clutch.

Let us study gearboxes with several input and output shafts and with no
restriction in the number of clutches. The gearbox can be drawn schematically as
in figure 3.4.

C1 C2 CI
) ) ) ) OUT1
— ] —e—
IN2 ouT?2
_ PN GEARBOX .
TRANSMISSION
e S
INN OUTM

Figure 3.4: Multi-clulch gearboz with several input and output shafts

Let us assume N input and M output shafts, according to figure 3.4. Furthermore,
there are I clutches. Their relative velocities are assumed to be a linear
combination of the velocities of L shafts among the input and output shafts.

The equations can be written in a similar way as for the simpler gearbox in
figure 3.2. The general model in figure 3.4 is probably more extensive than is
needed in most practical cases. The equations may describe the gearbox
transmission during shifts between just two gears, but also a gearbox during all
shifts. The complete equations are shown in Appendix A.

For practical use it is seldom necessary to deal with more complex gearboxes than
in the following three examples.

Torque-split example: The

gearbox transmission has two in- Torque L

put shafts, one output shaft and converter i_| |..]

two clutches. There are three w-

dof with the input and output From I GEARBOX To

shafts linearly independent. The e TRANS- ——.\ﬂeds
IN? MISSION ouUT

lows:

equations can be written as fol- [_‘ ’_l
H




All

r . . . WIN1
Wrett, | _ | Vicawr Vigane ~ipouvr | ' 3.4)
wrarr | | Viwave inanve —imour wine (3.
- wouT
[ My Vigive Vigin M
Minz | = | Virine /imana | - [ ML } (3.5)
| Mour iLOUT  UHOUT "
Converter lock-up example:
The gearbox transmission has two
input shafts, one output shaft
and one clutch for locking up. Torque c
There are two w-dof with, for in- converter
stance, one of the input shafts ]—_H_]
and the output shaft linearly in- From Nl GEARBOX To
dependent. The equations can be engine TRANS- wheels
written as follows (subscript C for N2 | MISSION [opp
clutch):
{ Wrel ] _ { l/icine  ~icour ] i { WIN2 } (3.6)
WIN1 V/iinviive  —iinvyour wour -
[ M, } _ { Vicane —1/inine } _ [ Mc ] (3.7)
Mour lc0UT  —UN1L0UT Min '
Controlled limited slip differ-
ential example: The gearbox
transmission (i. e. the differen- c
tial) has one input shaft, two out- I_I
put shafts and one clutch. There
are two w-dof with, for instance, From | spARBOX 2[‘7:_1_T0 left wheel
the two output shafts linearly in- eneme TRANS- o To right wheel
; . MISSION
dependent. Then, the equations IN OUT?
can be written as follows:
[ Whel J _ ’i Vicour: —1/icours } | wouT: (3.8)
wiv || Vivour:  Vivours woUT? o
{Mow J _ I ~icour inour: J [ Mc } (3.9)
Mourz | | icovrs 1/inours My '
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3.2 Clutches

The most characteristic feature of a clutch is that it operates in two different
phases: the clutch halves either stick or slip. This makes the clutch very difficult
to analyse.

There are also other phenomena that make the clutch a complex transmission
component, such as:

e VARYING COEFFICIENT OF FRICTION WHILE SLIPPING. The most
essential parameter at that phenomenon is the sliding velocity, but the
contact pressure and the temperature also influence.

e THE LANDING PHASE. When the clutch engages, the friction surfaces have
to reach each other to make contact. This takes some time, since the clutches
are oil immersed and the oil has to be squeezed out. The torque, due to
Coulombian friction, therefore is delayed with respect to the control pressure.

e THE VISCOUS PART OF THE TORQUE. During the landing phase there
is an oil film between the clutch halves. During this time interval, there can
be a viscous torque, caused by shear stresses in the oil film. The total torque
can be either less or greater than what one should expect if only Coulombian
friction were considered. This may be observed as either a positive or a
negative time delay, respectively.

A gearbox transmission, as shown above, may have several clutches. The analysis
of such compound components leads to similar phases as for the single clutch.

3.2.1 Single clutch

In the model presented below it is assumed that the torque in a slipping clutch is
only weakly dependent on the relative velocity. Therefore, the model is not
suitable for including the viscous part of the torque.

The static torque capacities in both directions, ¢* and ¢~ {¢* > 0, ¢™ <0) in
figure 3.5, are regarded as known functions of time. The capacity may be
calculated as proportional to the hydraulic control pressure and the static
coefficient of friction. If desired, the capacity may be adjusted, in order to consider
phenomena during the landing phase. However, such adjustment is difficult, and 1s
not treated in this work. The difference in torque capacity in the two directions
makes it possible to analyse even band brakes and one-way clutches.

The torque during the slipping phase is a given fraction, @ (0 < @ < 1) in
figure 3.5, of the static torque capacity, c. The fraction « is a function of wr, but
it is only weakly dependent on w. This makes the torque and velocity
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approximately independent of each other, except for the phase switches. The most
proper way to determine the a function should be by means of dynamic testing.

A'Ic:lutch

cHOT POSSIIJ’II;VE

STICK

y
a(y) - le= ()]

Wrel

NEGATIVE ()t
SLIP

Figure 3.5: Three phases of a single clutch

A single clutch is a component with four quantities: two velocities (Wiesr and wyign)
and two torques (Mp.s; and M, in,). In the slip phase there are two w-dof and no
M-dof. This means that the surroundings may determine both velocities. The
torques are then prescribed by the clutch. In the stick phase there is one w-dof and
one M-dof. This means that the surroundings may determine one velocity and one
torque. The clutch then prescribes the other velocity and the other torque.

Phase switch conditions are shown in figure 3.6.

Me < ¢~ Me > ¢t
NEGATIVE S ¢ STICK €2 IPOSITIVE

SLIP Wrel 2 0 Wrel S 0 SLIP

Figure 3.6: Phase switch conditions of a single clutch. “>” should be read “becomes
greater than”.

The following types of friction can be defined:

e Pure Coulombian friction, where a = 1
o Velocity independent Coulombian friction, where o # 1 and is constant

o Velocity dependent Coulombian friction, where o = ()
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The following clutch designs can be identified:

o Disc-clutch,where ¢t = —c~
o One-way clutch, where either ¢* = 4co and ¢ =0 or ¢™ = —oco and ¢* =0
o Band brake, where ct /¢~ = —e*9¢ or ¢t [c™ = —e Handle

3.2.2 Two-clutch gearbox

The models for gearbox and clutches described above may be linked. Let us
consider a gearbox with two clutches. It could be described with the 3% =
gearbox phases. The phases are shown in figure 3.7 and the phase switch
conditions in figure 3.8. Notation is given in table 3.2. Figures 3.7 and 3.8 should
be compared with figures 3.5 and 3.6, which are drawn for a single clutch.

Table 3.2: Notation for gearboz phases of a two-clutch gearbox

type of phase | phase clutch L clutch H

PP | positive slip | positive slip
Slip NP | negative slip | positive slip
phases NN | negative slip | negative slip
PN | positive slip | negative slip
7P stick positive ship

Stick NZ | negative slip stick
phases ZN stick negative shp

PZ | positive slip stick

Lock-up phase | ZZ stick stick

The first four phases in table 3.2 are called slip phases. They agree very well with
the slip phases of a single clutch. If there is one input and one output shaft, there
will be two w-dof but no M-dof, as in the single clutch case.

The next four phases in table 3.2 are called stick phases. They agree very well
with the stick phases of a single clutch. If the gearbox has one input and one
output shaft, there will be one w-dof and one M-dof, as in the single clutch case.

"The last phase in table 3.2 is called the lock-up phase. It has no correspondence
with the single clutch case. A gearbox with one input and one output shaft, will
lhave no w-dof (i. e. no shaft is able to rotate) but two M-dof.

A gearbox during a powershift normally just passes through some of the nine
phases. For instance, an upshift may start in stick phase ZP, pass through slip
phase NP and end up in stick phase NZ.
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Wrell
ZP(line) PP(area)
NP (area)
NZ(line) ZZ(point)
\ - Wrell
PZ(line)
ZN(line)
NN(area) PN(area)
My
NP (point)

: ine)
s | g
(1 S " ap - cf;
NZ(line) ZZ(arealwithin | PZ(lipe) H
! dashed| box) '
"
E : ap eyl
" lez; |

NN(point)

ar ey |

lez | °L

Figure 3.7: Nine phases of a two-clutch gearboz. The lower diagram is only valid
when a s constant for both clutches.
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- o ot
NP My <c¢f 7P Mg > ¢} PP
Mp > CZ
+ + My > ch +
MH>C” ML < cf MH>CH H A{H>CH
L
MH > c}t
+
NZ 7z M > ¢ PZ
Mp < cr
My > CZ
My < cy My <o My < cg My <cy |My<cp
My <cp
NN ZN PN
M < cr My > cz
Wret 2 0 Wrerr <0
NP ad zp - PP
Wrell S 0
Wrel < 0 Wrerr > 0 wretg < 0 Wrell < 0 wretl < 0
wretg <0
Wrell < 0
NZ oL >0 Z7 PZ
3
Wrell S 0
wretty 2 0 Wrer, > 0 wreth 2 0 wret 20wy 2 0
wretg 2 0
\
NN Weetr, 2> 0 ZN Wretr, <0 Py

Figure 3.8: Phase switches of a two-clutch gearboz.
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3.3 Torque converter

The hydrodynamic torque converter adopted here has two active shafts. The input
shaft P is connected to the pump. The output shaft T is connected to the turbine.
The Trilok type of converter is very common. In a Trilok converter there is a third
impeller, the reactor, which is connected to ground via a one-way clutch.

Definition of quantities: Available equations:
v =wr/wp 1= p(v)

4= Mr/Mp A= A% (v)

A= Mpjw}

There are two velocities and two torques. In almost every case, we may prescribe
any two of them and calculate the other two using algebraic equations.

The torque converter as a physical component also has essential inertias, especially
the pump. The torque converter as a model component has no inertia. However,
this can be considered by placing inertias outside the model component.

50

P A BN/ /2]

2

3.20
0
>,

2,0l

2,40
L
1.50

T g
/ \
One-way \ \
clutch a
S A

connected =
to ground /‘ \ \

1,60

i I \
P T el s 14
® ® R £ 0.20 0.40 0.60 0.80 T
a) Physical component’ b) Characteristics

Figure 3.9: Torque converter of Trilok type
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3.4 Tyre slip

When dealing with the tyre, there are two velocities to consider: the angular
velocity of the wheel and the linear velocity of the road (or the wheel translation).
There are two loads: the torque about the wheel centre and the traction force from
the road. All velocities and loads are transformed to angular quantities.

If we want to consider the mass properties of the wheel, we should place inertias
outside the tyre slip component. The rotational inertia of the wheel should be
placed on the drive shaft side (to the left in figure 3.11 a). The translational inertia
of the wheel should be placed on the road side (to the right in figure 3.11 a).

Definition of quantities: Available equations:
M uheet =torque from drive shafts M,oad = Myoaa(s) (figure 3.11 b)
F.,.a =wheel traction force Mheer = Moad

A/[road = Froad ’ Rwheel

Wyhee! =angular velocity of wheel
Vroad =linear velocity of wheel centre
Wroad = Uroad/ Ruwheel

8 = (Wwheel = Wroad)/Wwheet = Slip

Figure 3.10: Tyre slip as a physical component

1 Mroad/[IOSNmJ

o
&
~

3.00

Wheel
centre —— Road g
——— o @— _.',
8 S
0,00 0.20 0.40 0.60 0.60 1.00
a) Model b) Characteristic

Figure 3.11: Tyre slip as a model component
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3.5 Engine

The steady state characteristics of the engine are used. This means that the engine
torque can be calculated if the velocity and the throttle opening are known.

Definition of quantities: Available equations:
wg = velocity of engine Mg = Mg(wg,z) (figure 3.12 a)
Mg =torque of engine z = z(t)

z =throttle opening (0 <z < 1)

3.6 Driving resistance

The driving resistance of the vehicle is a function of velocity. All quantities are
transformed into angular quantities.

Definition of quantities: Available equation:

vy =linear velocity of the vehicle My = My(wv) (figure 3.12 1)
wy = vy [ Ryheel

Iy =driving resistance (force)

My = Fy + Rypea

z
A M, /[0%4m] A M, /0% m]
" X=1.00 <
A ——
o > —— -
; oo | Uy |1 & o 4]
‘ | g
70.00 1.50 3.00 4% 6.00 7‘50 o 0.50 1.00 1.50 2,00 ‘2"5“»
a) Engine b) Driving resistance

Figure 3.12: Engine and driving vesistance characleristics
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3.7 Inertia

Moving bodies are able to store kinetic energy. In this work, every moving body is
transformed to appear as a rotating one and is always characterized by its moment
of inertia J. For translating inertias, i. e. the wheel or the vehicle, the equivalent
moment of inertia is calculated as J = m - R%, ,,, where m is the mass.

Definition of quantities: Available equations:
See figures 3.13 a) and 3.1.  w;, = (M, — M)/J (Newton’s second law)
Wy = Wy

3.8 Elasticity

Elastic components are able to store potential energy. As for inertias, all
elasticities can be transformed to torsional elasticities.

Definition of quantities: Available equations:
See figures 3.13 b) and 3.1. M, = M;(M),w; — wy) (constitutive equation)
Ml = M2

In order to explain the constitutive equation, let us study some different kinds of
elastic components. A linearly elastic component is characterized by the
constitutive equation:

M = Mg+ k- (¢1 —p2) where My and k are constants

or its derivative:

M=k (w1 — wr)
A quadratic constitutive equation is:
M = My + k- (o1 —p2) - [o1 — 2l

Differentiating with respect to time and using the inverse constitutive equation
yields:

M=2 k- |M— M (w —ws)

A more general constitutive equation reads:

M = M(p1 — ¢2)
M = M(M,w —w;)
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k
o J le— ——Q—J\ / \ /I—O‘
1 2 1 2
a) Inertia b) Elasticity

Figure 3.13: Inertia and elasticity
3.9 Linear damper

Torque converter, tyre slip and driving resistance are examples of non-linear
dampers. In fact the engine also acts like a damper, but with negative damping
(production of energy). In the examples in the next chapter linear dampers are
introduced. Very few real dampers are linear ones.

Definition of quantities: Available equation:
See figures 3.14 and 3.1. M; =d-(w —w,;) (constitutive equation)
M, =M,
d
ﬂ——_{ .
1 — 2

Figure 3.14: Linear damper
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Chapter 4

System equations

4.1 A set of initial value problems

The equations of the complete driveline system constitute an initial value problem
(IV-problem), or in fact a set of IV-problems. The deviation from an ordinary
(single) IV-problem is caused by the presence of clutches. Clutches are components
working in different phases, see chapter 3.

A single IV-problem can be formulated as follows:

Determine §(t) for t¥ <t <t when g = f(g],t) and F(t'V) = ¢

When the differential equation and initial values are defined, the solution is
obtained using suitable numerical methods. There is a great deal of computer
software available for this purpose.

The function fis formally written as an explicit function. Theoretically, it may be
implicitly determined, as long as there is an unambiguous derivative (37) for each
state (¢,t). In the case of linear equations, it is usually possible to write fin
explicit form. In the case of nonlinear equations, this is not always possible. Then
one has to accept an implicit form, supplied with a strategy for an iterative
solution. A common situation for drivelines including clutches is that the iteration
may be carried out recursively, starting from an estimated torque of a slipping
clutch. This is mostly a satisfactory recursive formula, since the torque is well
known in advance, thanks to Coulombian friction and known direction of the shp.

Because of the phase switches, we have to write a set of IV-problems. This means
that different (single) IV-problems have to be solved in different time intervals.
The difficulty is that we do not know either ¢, or ' for each single IV-problem
in advance.
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For each phase we have to determine the following:

- -

e Differential equation of the system (y = f(7,1))

e Phase switch conditions
((#,t) determines if the phase should be switched and to what phase)

e New initial values
(7"V should be determined by previous (#,t) and phase)

It should be noted that the components of the vector 7 do not necessarily have to
be the same in the different phases.

4.2 Reference example

The theory of modelling dynamic systems may be formulated in a very general
way. The present report deals with models for driveline mechanics. Therefore, an
illustrative example is introduced, see figure 4.1. The reader should be aware that
certain terms will be used which have not yet been defined. They are defined later
in this chapter.

Clutch 1,

positive Clutch 2,

slip stick

l dy

Dependent
state
variables: (wsd) M
Algebraic
variables: a1y Mey,wpan Wz My Mca,wrer Wy  wouT

Figure 4.1: Reference ezample of driveline system

The equations of the system in figure 4.1 can be written:

Differential equations (level 0): Algebraic equations (level 1):
W = (MIN - MCI)/JI My = M[N(t)
={Mc ~ Ml)/JZ Mo, = a(w,en) < (t)

waq = (My — M) /(Js + Jy) wz = w3g + Ma/dy

A.l] = k] (UJQ — (.UI) Wy = woyTt + MB/dZ

Mz =ky (W — e

Mz = k3 (wag — w,) Algebraic equations (level 2):
Wrell = W1 — Wy
Md = M1 -

wout = wour(t)
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The equations above define the six state derivatives from the six dependent state
variables and time. The nine algebraic variables are calculated as intermediate
results. The calculations should be carried out in the following order: level 2, level
1 and finally level 0. This order makes the calculation explicit, as is needed in
practice. The order within a level is not stipulated.

The equations are valid as long as no clutch switches phase. The phase switches
can be handled in the following way:

o For clutch No 1, a phase switch is detected when w,. becomes < 0. The
clutch sticks and the two state variables w; and w, are no longer accurate.
Instead the state variable w;, should be used. w2 is the common velocity of
inertias 1 and 2.

o For clutch No 2, a phase switch is detected when M3 becomes > ef or <c5.
The clutch slips and the state variable way is no longer accurate. Instead the
state variables w3 and wy should be used. w3 and wy are the velocities of
inertias 3 and 4.

4.3 Algebraic variables and functions

To handle the problem in practice, there are sometimes reasons to introduce
algebraic variables, T. In principal we get g = f(&), where & = g(7,t). The
equation Z = § is an algebraic equation. Also the phase switch conditions and the
initial values may be expressed in Z.

The following types of variables may be defined:

Independent (state) variable: The time ¢
o (Dependent) state variables: The elements in ¥

(Dependent) state derivatives: The elements in v

e Algebraic variables: The elements in £

The state variables (#,t) should contain just enough information needed to
examine everything about the system. The algebraic variables are a kind of
auxiliary variables and they may be as many as desired.
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The algebraic variables and equations may be introduced at several levels and the
functions may use information that is evaluated at higher levels:
level 0: y = f(f], 52, 53,52‘4, N ,:EN,];, t)

level 1: Iy :g]($2,$31147~ ~)1‘N)y$i)
level 22 I = 2(3»'371:4, -,l‘N,y,t)

level N: i"N = g-.N(:lj,t)

Some reasons for introducing algebraic variables could be:
e To reach variables that are not state variables
e To structure the calculation of the derivatives

e To solve a problem with varying sets of state variables, without the computer
software knowing about it

Levels are introduced to show in which order the equations should be evaluated.
Evaluating the levels in backward order makes the calculation explicit, or at least
defines a recursive iteration strategy. The forward order of the levels often shows a
logical order of thinking when deriving the equations.

4.4 Constraints

Constraints are algebraic equations that define relationships between state
variables, both the dependent (7) and the independent one (t). If there are
constraints, we cannot integrate the state variables involved separately.

In fact, constraints tell us that we have chosen too many state variables. For each
constraint, the number of state variables should be reduced by one. The physical
quantity, corresponding to the former state variables, may then become an
algebraic variable. This new algebraic variable can be calculated using the former
constraint which now is an algebraic equation.

Let us study how constraints can appear in a system of torsional mechanics.
Assume that velocities of inertias and torques of elasticities are chosen as state
variables. State constraints occur for instance when two inertias (or two
elasticities) are connected to each other by a gear transmission. It could also be
exemplified by an inertia with prescribed velocity or an elasticity with prescribed
torque.

In such simple systems that are treated in this work, it is usually no trouble with
eliminating the constraints.
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4.5 Physical quantities versus state variables

The dependent state variables are determined by the differential equations. The
variables that appear as first derivatives of time are the dependent state variables.
A higher order differential equation is thought to be written as a system of first
order differential equations.

When making a mathematical description of the model, we use equations such as
Newton’s second law of motion, constitutive equations for elasticities and dampers
and prescribed time functions. We should make use of all equations for all
components in some way. However, it is not clear which equations should be used
as differential equations. It will depend on which variables we want as state
variables.

As seen in the reference example, we use the state variables velocities of inertias
and torques in elasticities. The common feature of these state variables is that
they describe the level of energy stored in the components. With this approach,
only energy storing components become dynamic (i.e. generate differential
equations).

It should be noted that the conventional way of modelling mechanical systems is to
use positions and their corresponding velocities of inertias as state
variables. In the case of driveline mechanics, torques are of more interest than
positions. Therefore, the conventional modelling technique is not so attractive.

There is also another reason for not using the conventional technique. Using that
approach it is difficult (not impossible) to model connecting points without inertia
(for instance, nodes z and y in the reference example). Positions must be used as
state variables, without using the corresponding velocities as state variables. (.
and ¢, in the reference example.)

With the conventional approach the following state variables should have been
used in the reference example:

@1, Oy Pz, P34y Py, W1, w2 and wzg  (wy and w, should not be state variables!)
Of course it would be possible to use relative positions:

01, (P2 — @z), (9r — @31), (Pag — Py)y Wi, W and wy,

Multiplying by the stiffnesses yields:

w1, My, My, My, wy, wp and wsy

In this case conventional modelling is just a complex way of using the velocities
and torques as state variables. There is no doubt that it is easier to start from
velocities and torques as state variables.
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4.6 Number of state variables

By increasing the number of state variables, we should get a more relevant
description of the real world. However, there are many reasons for not using too
many state variables. For example, the numerical calculations become more
uncertain. It should always be considered whether the numerical method used is
qualified to solve the mathematical model. The results may also be more difficult
to interpret.

A common reason for increasing the number of state variables is the possibility of
systematizing the building of the model and the derivation of equations. This is
sometimes a good reason, for example when dealing with more complex systems.
However, in the case of drivelines this is not so.

An example, which calls for care, is elasticity directly connected to a damper (for
instance k3 and dj in the reference example). The systematized approach forces us
to introduce a small inertia (¢ ~ 0) between these two components. Then the
velocity (w) of this small inertia is made into a state variable, with a corresponding
differential equation: & = (M} — My)/e. This leads to a stiff differential equation,
which is often difficult to solve by means of numerical methods. To avoid such
problems, simply set the inertia as zero. Then the differential equation becomes an
algebraic equation: 0 = M, — M, and the velocity becomes an algebraic variable.
The problem is no longer stiff.

Another example is a clutch connecting two inertias (e. g. both the clutches in the
reference example). In order to systematize, the natural way is to use the velocities
of the two inertias as state variables all the time. The torque of the clutch then
has to be modelled as a continuous function of the relative velocity. When the
relative velocity is close to zero the torque is almost discontinuous. It is calculated
as M = d - (w; — w;), where d is large and this makes the problem stiff for small
relative velocities. Separating the phases leads to a set of non-stiff differential
equations, which are more easily solved. In the stick phase it is only necessary to
use one state variable: the common velocity of the inertias. In the slip phase two
state variables have to be used: the velocities of both inertias.

4.7 Examples of systems including clutches

The equations for systems including clutches are shown below. Two examples are
shown here: one with a single clutch and the other with a gearbox. More examples
can be seen in appendix C.
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There are three main problems for each phase:

e Determine the differential equation
e Determine the phase switch condition
o Calculate initial values
The phase switch conditions are discussed in chapter 3. When the clutch torque

exceeds the torque capacity, the phase should be switched from stick to slip. When
the relative velocity changes sign, the phase should be switched from slip to stick.

In the examples we just study one of the slip phases and one of the stick phases.
The structure of the equations are the same for the other slip and stick phases.

4.7.1 Inertia — clutch — inertia

This system demands two state variables (w; and w;) when the clutch is slipping.
In the stick phase just one state variable is required (w2). M; and M; are
considered as known variables from an outer system.

Slip phase: Stick phase:
Differential equations (level 0): Differential equation (level 0):
U.Jl :(All—M)/Jl L;)12:(M1—M2)/(J1+J2)

U:)'z = (M - MQ)/J2
Algebraic equation (level 1):

Algebraic equations (level 1): M=(J, - My +Jy- Ma)/(Jy + J2)
M= a(wrel) ' C(t) Wret = 0
Algebraic equations (level 2): Initial value:
wrel =T wly = (J1-wi + Jo w2}/ (i + J2)
Initial values:
wlw = W2

v

Wy = W2
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As seen above, evaluating the levels in backward order, yields an explicit
calculation of the state derivatives.

In the stick phase, the clutch torque M should be calculated at the algebraic
level 1. The torque is not needed in the differential equation, but it is needed to
detect a phase switch to slip phases. The formula for calculating M in the stick
phase, is derived from the constraint of equal acceleration of the two inertias:
Mi-M _ M_M;

/S
It should be noted that w!y is calculated based on conservation of momentum.
Theoretically we could have used either wf) = w,; or wiy = w,, because w; = w,
when switching to stick phase. However, numerical errors can cause w; # wy and,
therefore, conservation of momentum seems to be the best approach.

4.7.2 Inertia — gearbox — inertia

L
nin
—e— J, €— GEARBOX —e J» —e—

o]

The gearbox is assumed here to have two clutches, one input shaft and one output
shaft. The lock-up phase (both clutches sticking) is not considered.

In a slip phase there are two state variables (w; and wy). In the stick phase there is
just one and it is a velocity. For instance we may choose the velocity of inertia 2.
This state variable will be named wog. The same notation will be used as in
chapter 3. The notation i, means iy v - ir,ovr, which is the overall speed ratio of
the lower gear. M; and M, are known variables from an outer system.
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Slip phase (both clutches slip): Stick phase (if L sticks):
Differential equations (level 0): Differential equations (level 0):
o1 = (M; — M)/ wao = (Mour — Ma)/J

Wy = (MOUT — M)/
Algebraic equations (level 1):

Algebraic equations (level 1): (Mn, Moyr, M)T = A - (My, My, M)"
Min My, . .
{ Moy ] 197 [ My Algebraic equations (level 2):

My = a(wran) - cu(l)
Algebraic equations (level 2):
My, = ap(wrer) - cu(t)

My = ag(wren) - cu(t)

Algebraic equations (level 3):
(win, wren)” = B - (wretr, wour)”

Algebraic equations (level 4):

Algebraic equations (level 3):

Weeir, = 0
[ Wrell ] =1, [ wiN } WoUT = W
WrelH wWouT
Algebraic equations (level 4): Initial values:
win = w; wit =} Jr-w + Sy @) /(3 T+ )
WouTt = Wr

Initial values (if L was
sticking in the previous phase):

v _ -

Wy =17 W3
v _

Wy = Wao

In the stick phase, we use the matrices A and B. The matrix A can be derived
from the torque matrix equation and the constraint between w; and w,. This
constraint demands that the acceleration of Jy is iy, times the acceleration of J,.
which yields:

MMy — gy Mowz=My o Jo - My +ig - Jy - My = Jy My + i Jy - Mour

Insertion of the torque matrix equation gives:

M

1./1[4‘”\,7 1./1H,IN 0 0 ]MH 1 0 1\/111\'

irovr irour O 0 o | 0 1 | Mo

0 0 Jy ip- Ml Jo ip-Jy out
2

From this we can derive A by using elementary matrix manipulations. In the same
way, matrix B can be derived from the velocity matrix equation. A become a

3 x 3-matrix and contain Ji, J; and i-constants. B will become a 2 x 2-matrix and
contain just ¢-constants.

The calculation of wf) is based on conservation of momentum, as for the case
“inertia — clutch — inertia”. The term % - Jy is the inertia J; being transformed to
the output shaft.
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Chapter 5

Dimensionless equations

Both the gearbox equations and the system equations can be written in a
dimensionless form. The gearbox studied in this chapter has one input shaft, one
output shaft and two clutches. The clutches are assumed to act with pure
Coulombian friction. The driveline used is highly simplified. The model is shown

in figure 5.1.
,—-(F—
L

——YF T o GEARBOX & e
L

Figure 5.1: Simple driveline model

I
b
I

In this chapter the gearbox equations are presented first, and then the system
equations are presented. In junction with the gearbox equations, some phenomena
are defined and discussed, viz.: tie-up, flare and ratio change with one-way clutch.
In junction with the system equations torque phases and inertia phases are defined
and discussed. Finally, two numerical examples are presented.
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5.1 Dimensionless gearbox equations

We start from the equations in chapter 3. The following applies to the gearbox in
figure 3.2.

wear, | _ | Yican —trour | | wiv (5.1)
WrelH l/ig N —iHoUT wouT
Miv | _ | Viean Vewan | | Mo (5.2)
Mour {LOUT  LH,0UT My 4
Equations for each clutch:
M = —c(t)
Negative slip wrer < 0
stick if w,e becomes > 0
Wrel = 0
- —c(t) £ M < 4¢ft)
Stick positive slip if M becomes > +c(t)
negative slip if M becomes < —c(t)
M = +c(t)
Positive slip Wret > 0
stick if w, becomes < 0
(5.3)

The following defines our dimensionless quantities. Two new variables s and Frey
are also defined. Reference variables wy.; and M,.s are used. They will, later on,
be set as woyr and My, respectively.

wan = win/(iLIN TLoUT * Wres)
W.oUT = WoUT/Wref
Wretsl, = Wrell/(1L,0UT * Wrey)
Wretert = Wretrr [((ELIN - TL0UT/EHIN) - Wres)
Mun = Min/M.
M.our = Mout/(ivin -irour - Mrcy)
M., = Mp/(isin - Mres)
M.y = Mu/Guin - Mees)
e, = (en/liLan - Mrgsl) - sign(Prey)
e = (cu/limin - Mees]) - sign(FPres)
Py = tpin-tLour s Mees - wres
. o nncivour

LHIN - LHOUT
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Note that $ = touwer gear/higher gear, Which means the ratio span of the two gears
involved. If the gears involved are both forward, or both reverse, the span will be
s > 1. When one forward and one reverse gear are involved, let us define the onc
with the highest |¢| as the gear H. The span will then be s < —1. However, the
case of negative span is of very little practical interest. As seen below,
dimensionless velocity and torque equations, the span is the only parameter
needed to determine the velocity and torque matrices.

The sign of P,.; will tell us the direction of power flow at the gear L. This will be
made clearer later, when we decide which physical quantities should be reference
quantities.

Both torque capacities ¢z and ¢y are positive. This is not necessarily true for the
dimensionless torque capacities c,r, and c,. The dimensionless torque capacities
will have the same sign as P,.;.

Insertion of the dimensionless quantities yields:
WrelxLL I -1 WaIN
- . 5.4
Pl S T R il o

My 1 _[1 1] [ My
AltOUT - 1 1/3 M_H

and for each clutch:

o
n
-~

M, = —c.(t)
Wrels < 0
stick if wyer. becomes > 0

Negative slip

Wretx = 0

—a(t) < M. < Fe(t)

positive slip if M, becomes > +c,(t) > 0
negative slip if M, becomes < —¢,(1) < 0

|
:{%mo
|
|

Stick (if P.ey > 0)

— +eu(t) < M, < —c.(t)
Stick (if Prey < 0) positive slip if M, becomes < +¢.{1) <0
negative slip if M, becomes > —c.(t) > 0
M, = +e.(2)

Wrels > O

stick if wye. becomes < 0

Positive slip
(5.6)

It should be noted that the sign of the dimensionless slip does not always coincide
with the sign of the real slip.
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Equations 5.4 and 5.5 can be interpreted in a specific gearbox layout shown in
figure 5.2. The speed ratios are not drawn as gears but as belts.

*IN Tl +OUT

| —
Figure 5.2: A specific gearboz layout, interpretated from the dimensionless velocity

and torque equations. The sign ¢ means diameter of belt pulley.

Let us establish the following definitions of power:

Real powers: Dimensionless powers:
Pin = My -wiy Pan = M.y -wan = Pin/Prey
Pour = Mour - wout Pour = M.our wwour = Pour/Pres
Pr = My wearL P.r = M, Wl = Pp/P.s
Py = My wran Py = M.y WrelkH = Py/Prs

In the driveline model we will choose the engine torque as reference torque and the
vehicle velocity as reference velocity. These quantities are approximately constant
during the ratio change. Before introducing the driveline model, it is therefore
suitable to set M,y = M;n and w,.; = wour- Table 5.1 shows a study of the
quantities when the transmission works solely at each gear.

P..; can now be interpreted as the power transmitted from the engine to the
vehicle at gear L. Let us then consider the fact that the dimensionless input and
output powers are positive for the gear L, as shown in table 5.1. The sign of Py
indicates the direction of the real power flow at that gear. If P.o; > 0, the gearbox
{ransmits power from the engine to the wheels. If P,y < 0, the gearbox transmits
power from the wheels to the engine i. e. braking by engine.

5.1.1 Tie-up and flare

The terms tie-up (German: positive Uberschneidung) and flare (negative
Uberschneidung) are used frequently in the literature. They can be strictly defined
by the dimensionless torque capacities c.p, and c.q.

Let us first establish the fact that ratio changes can be described as paths in a
¢.1, c.r-diagram. Furthermore, in such a diagram, the first quadrant is for ratio
changes with P,y > 0. The third quadrant is for ratio changes with P, < 0. The
second and fourth quadrant are never used, since ¢,y and c,; never have different
signs.

The torque capacity path for an upshift starts from a point where c.py = 0 and
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Table 5.1: Dimensionless quantities when the transmission works solely at each gear.
Wref = WOUT and ]Wref = Af[[N.

[GEAR] L [ H ]
IC.Ll 2 1 0
IC.Hl 0 Z 1
WaIN 1 1/s

WeoUT 1

Wrelsl, 0 1/8 -1
Wrels H 1-— 1/8 0
M. N 1 1

M.our 1 1/s
M. 1 0
M.y 0 1
P:-IN 1 1/8
P.our 1 /s
P, 0 0
P,y 0 0

lear] 2 1. The end point is |e.y| > 1 and cup, = 0. A downshift will have the start
and end points reversed.

When changing ratio the two clutches can be either too much or too little engaged
with respect to M,.; = Myn. The first condition is known as tie-up and the other
flare. Tie-up results in loss of torque, since one clutch counteracts the other. Flare
results in loss of velocity, since both clutches slip.

Strictly, we define:

e TIE-UP implies |e.p + c.y] > 1, but eup, - oy # 0

o FLARE implies |c. + c.py] < 1

Ratio changes may pass through both the tie-up and flare areas. Examples of ratio
changes that are strictly tie-up or flare are shown in figure 5.3.

5.1.2 Shift with one-way clutch

Neither tie-up nor flare is desirable. The way of balancing between them is to
follow the line between (0, 1) and (1,0). Of course this is very hard to do with two
hydraulically controlled clutches. However, replacing one clutch with a one-way
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Flare 1 4.

Figure 5.3: Tie-up and flare

clutch means that this clutch never counteracts the ordinary clutch. This is an
easy way to balance between tie-up and flare. Then only the ordinary clutch has to
be controlled.

Studying table 5.1 and assuming s > 1, the following demands on the one-way
clutch can be established:

e A one-way clutch replacing clutch L demands locking for positive
M, = Mp/[(ig v - M.es) and unlocking for negative
Oretal, = Wretl/ (FLIN * Wref)-

e A one-way clutch replacing clutch H demands locking for positive
M.y = My /(isrin - Myes) and unlocking for positive values of
Wretett = Wretr [ ((AL,IN *3LOUT) * SHIN * Wref)

Now, if a one-way clutch locks for real torque in one direction, it will unlock for
real relative velocity in the other direction. Studying the signs, we find that the
one-way clutch should replace clutch L when P,y > 0, and clutch H when

Pre/ < 0.

Most commercial automatic transmissions use one-way clutches in the lower gear
in some of their ratio changes. The advantages are obvious; correct change without
tie-up or flare and easier means of control. The drawbacks are the higher price and
weight, but also that ratio changes with reversed power flow will have a phase of
totally interrupted power transmission. This means that braking by engine is not
possible at the lower gear. If engine braking is desired, it is necessary to engage an
ordinary clutch connected in parallel to the one-way clutch.




A37

5.2 Dimensionless system equations

The model is shown in figure 5.1. This model cannot be expected to give anything
but a rough picture of the ratio change. For instance, no oscillations will be seen
because of the lack of elasticity. Furthermore, the torque variation will be a bit
nonsmooth because of the absence of elasticity and damping. However, thanks to
the simplicity of the model, it is easy to write the system equations in
dimensionless form.

The system equations become very similar to the example “inertia — gearbox —
inertia” in chapter 4. However, the velocity of the vehicle is not a state variable,
since Jy = co. In the slip phase (both clutches slip) we will have one state variable
win or in the dimensionless case w,yy. In the stick phase (one clutch sticks) we
will have no state variables at all. The lock-up phase (both clutches stick) is not
treated.

As reference quantities we use: Wrey = wy and M,.; = Mp. The interesting
quantities are the velocity of the engine (wyy or w,.n) and the traction force of the
vehicle (MOUT or M‘OUT)~

5.2.1 Torque phases

In the literature, the stick phases (one of the clutches sticks) are referred to as
torque phases because, with this simple model, it is only the torques that change.
The changes are governed by the following algebraic equations:

If L sticks If H sticks
Insertion of w,ernr, = 0 and w.opr = 1 Insertion of wyepy = 0 and w.opy = 1
in equation 5.4 yields: in equation 5.4 yields:
wan = 1 wan = 1
woovur = 1 woour = 1
Wrels, = 0 WrelsL = i -1
WrelsH = I - i WrelxH = 0
Insertion of M,y = c.y - sign(werenr) Insertion of M., = c.p, - sign(wyerr,)
and M.;y =1 in equation 5.5 yields: and M,y = 1 in equation 5.5 yields:
M.y = 1-cp-sign(l -1 M., = cp-sign(i-1)
M.y = cy-sign(l—1) My = 1—c. - sign(i —1)
Mgy = 1 Mgy =1
M.ouvr = 1—!1 —il'C-H M.ouvr = %*Ii——l"c,[‘

Figure 5.4 shows possible areas for both stick phases when s > 1. They are
obtained by inserting the last equations for M,; and M,y in the phase switch
condition from equation 5.6: —|c.| < [M.| < +]e.|. Iso-torque curves for M.y
when s = 2 are also shown in figure 5.4.
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Possible areas for stick phases when s > 1 [so-torque curves for M.oyr when s = 2

Figure 5.4: Stick phases

5.2.2 Inertia phases

The slip phases (both clutches slip) are often referred to as inertia phases because,
with this simple model, it is mainly the velocities that change. The changes are
governed by the differential equation of the inertia.

Let us introduce:

te = t[tres (ﬁ is marked with a prime)

Jo=J ip N - L,0UT - Wres [ (Mres - treg)

1t is convenient to chose {,.; as the total time for the ratio change. Then the
t.-axis will extend from 0 to 1. Note that sign(J.) = sign(P.s). If the reference
velocity is constant, the dimensionless equations are as follows:

wyy = (1=Man)/J.
wour = 1
Wretel, = Wan — 1
WretsH = Won — /s
M. = cusign(w.y —1)
M.y = c.y - sign(wan —1/s)
Mun = - sign(wan — 1) + copr - sign{wan — 1/s)
Moour = cop-sign(way — 1) + (cay/s) - sign(w.an — 1/s)

The sign of w';p can be presented in diagrams displaying c,y versus ¢, as shown
in figure 5.5, where s > 1. Iso-torque curves for M,oyr are shown in figure 5.6.
They are drawn for s = 2.
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Figure 5.5: Signs of wl;y when s > 1

wn <1l/s<1

1/s <wgn <1

/s <1 <wan

oL N3 / N
+1 , ' CoH ' ’ i =1 Col
+
M.our = —cop —cup/s M.ovur = —c.p +cou/s M.our = +¢er + Cali /s
Figure 5.6: Iso-torque curves for M.oyt when s = 2
5.2.3 “Aquarium” diagram

One way of illustrating the path of a ratio change is to draw it in a
three-dimensional diagram with ¢,z c.y and w.;y on the axes, as shown in
figure 5.7. Such a diagram is referred to here as an aquarium diagram.

A shift can be described as travelling on platforms (torque phases or stick phases)
and jumping between them (inertia phases or slip phases). In the stick phases the
velocities are constant but the torques are determined by the clutches. In the slip
phases the velocities change according to Newton’s second law of motion;
acceleration takes place towards a stable position (a stick phase) or towards
infinite velocities.

The ways of travelling in the diagram are now to be explained. Firstly, the
coordinates c.yr and c., are known, since the hydraulic control pressure to each
clutch is regarded as a known function of time. Thus, we just have to determine
whether w, y is changing, and if so, up or down. Let us imagine the drawn
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volumes as full of water. Place a table tennis ball somewhere at the known
coordinates ¢,g, ... The ball will float upwards if it is within the volumes with
water. The ball will drop down if it is outside the volumes. However, the amount
of acceleration |w';xy| cannot be determined only through this diagram.

WeIN

CH

Figure 5.7: Aquarium diagram when s > 1. The scale on the w,n-azis is not linear.

5.2.4 Numerical examples

There are, of course, an infinite number of different ways of performing ratio
changes. When making them dimensionless, the number is reduced, but still
infinite. Broadly speaking, one should discuss different combinations of:

o s> 1and s < —1 (negative ratio span s is of very little interest)
e Up- and downshifts

e Power direction (different signs of Pr.)

o Tie-up, flare and one-way clutch

e Total time of the ratio change

There are too many such combinations to fit in this report. As numerical examples
presented below, just two ratio changes are chosen, viz.: upshift with flare and
downshift with tie-up. The power direction is from engine to vehicle, Prey > 0.
The ratio span s = 2 and the dimensionless inertia J. = 0.5 are used. These are
representative for a passenger car shifting between gear 1 and 2, with engine at
medium to high speed and wide open throttle.
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Upshift with flare

The solution in the time domain is shown in figure 5.10. The path in the aquarium
diagram is shown in figure 5.8 and described below:

1. Torque phase, where L sticks
2. Inertia phase, where w/;y is positive. The engine accelerates.

3. When c.y becomes > 1, another inertia phase is valid. In this phase W’y is
negative. The engine decelerates.

4. When w,n passes from > 1 to < 1, yet another inertia phase enters, but
Wiy is still negative,

5. We reach the final torque phase, where H sticks.

A S—— 0
wiv - @1 ® é 0

WeIN 0

@
© o

I( k i

0,5 . @
® oo

CoH

Figure 5.8: Aquartum diagram for an upshift with flare
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Downshift with tie-up

The solution in the time domain is shown in figure 5.11. The path in the aquarium
diagram is shown in figure 5.9 and described below:

1. Torque phase where H sticks

2. When ¢, becomes > —1 + c.y, an inertia phase takes place. The engine
accelerates (w.;y > 0) until w. sy reaches the value of 1.

3. A torque phase is entered, where L sticks.

WeIN 1 0

WeIN 0

WeIN

Coll

Figure 5.9: Aquarium diagram for a downshift with tie-up
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Figure 5.10: Solution in time domain for upshift with flare
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Figure 5.11: Solution in time domain for downshift with tie-up
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Chapter 6

Final driveline model

Torque
converter
Engine AT L Drive
fiywheel shafts Vehicle
inertia [4“_] elasticity Tyre inertia Driving
Engine PLTIR ka slip resistance
‘Mg —e— Jg GEAR +W—0—Q——0' Jy e— My !
R o F IN2 BOXJ ouT w Vol
H
E : Engine IN1 : Input No 1 to gearbox W : Wheel
F : Flywheel IN2 : Input No 2 to gearbox R : Road
P : Pump OUT : Output from gearbox V : Vehicle
T : Turbine

Figure 6.1: Final driveline model

In this chapter simulations of a complete driveline are shown. The model shown in
figure 6.1 has been used. The system equations are very similar to those in the last

example {C.5) in appendix C. The differences are:

In this chapter

In example C.5

Model description

Torque converter
Tyre slip
Engine, Mg

Driving resistance, My

Linear damper, d;
Linear damper, d;
Outer torque, M,
Outer torque, Ms

See section 3.3
See section 3.4
See section 3.5
See section 3.6

Verifying tests have been carried out. Numerical data for the model are chosen to
correspond to the vehicle used in these tests. The following should be particularly

noted:

o The inertia Jg is the inertia of the moving parts of the engine with the
inertia of the torque converter pump with its oil included.
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e The inertia of the torque converter turbine is neglected. It is only
approximately 10% of Jg, including its oil content.

e The stiffness kq is the stiffness of three elasticities in series: the drive shafts,
the tyre (in torsion) and the wheel suspension (in the longitudinal direction

of the vehicle).

e Neither the rotational nor translational inertia of the wheel are considered,
since they hardly affect the most essential oscillation modes. These modes
are the rigid body mode and the mode with one single node very near Jy.

6.1 Tests and simulations

The most important data are the torque capacities of the clutches (¢, and cg), the
engine velocity (wg) and the vehicle traction torque (Mpg). These are the only
variables presented in the examples below. In addition, the time instants for phase
switches are marked with notation according to table 3.2. Three tests with their
corresponding simulations are presented (see table 6.1).

Table 6.1: Tested and simulated ratio changes

Case No. Gear before shift Gear after shift Ratio | Throttle
and shift Gear No. and | Clutch | Gear No. and Clutch span | opening
direction |} use of converter use of converter
One- Multi-disc
1 1 way 2 and band | ~ 1.8 1.0
Upshift Common brake Common brake in
parallel
2 3 Multi- 4 Band
Upshift Torque disc Lock-up brake ~ 1.3 1.0
split clutch (bypassed)
3 3 Multi- 2 One-
Downshift Torque disc Common way ~ 14 0.1
split clutch brake
6.1.1 Tests

The tests were performed in a passenger car with front wheel drive driving on the
road. The automatic transmission was the same as in appendix B. Test results for
the cases in table 6.1 are shown in figures 6.2, 6.4, 6.6 and 6.8.

The torque capacities are calculated from the measured hydraulic control pressurcs
to the clutches:
c=p-(p- A= Freurn) - £+ N ; multi-disc clutches and multi-disc brakes
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c= (e"'a ~1):(p+ A— Freturn) - B ; band brakes in self-wrapping direction
c=(1- e #P) . (p- A — Freturn) - R ; band brakes in the other direction

where p = measured hydraulic pressure, A = piston area, Frewrn = force in the
return spring and centrifugal forces in the oil, R = friction radius, N = number of
friction surfaces, 8 = wrapping angle of band brake

The traction torque is measured by special wheels, equipped with force sensors
between hub and rim. The torque presented is an arithmetic mean value of the left
and right wheel torque.

The phase switches are estimated from measured velocities of the planetary gear in
the automatic transmission. From these velocities, the relative velocities can be
calculated.

6.1.2 Simulations

The torque capacities from the tests were used as input data. The engine velocity
and the traction torque are the output data. A constant coefficient of dynamic
friction was used. Simulation results are shown in figures 6.3, 6.5, 6.7 and 6.9.

6.1.3 Tests versus simulations

Case 1: Upshift with one-way clutch (Figures 6.2 and 6.3)
The torque in the clutch of the higher gear is split between the multi-disc and the
band brake. The multi-disc brake takes approximately 70% of the clutch torque.

There are two main differences between the test and the simulation results:

e The oscillations of approximately 11 Hz in the traction torque is due to a
first order imbalance in the wheels, which rotate at 11 rps.

e There is a peak in the measured traction torque at ¢ = 1.25 s. This peak is
not seen in the simulations. It probably comes from a viscous part of the
clutch torque, which has not been included in the model. Such a viscous part
may be seen in {Henriksson 1989}, which is an experimental work on the very
same multi-disc clutch as is used here. The viscous part of the clutch torque
is briefly discussed in section 3.2.

Case 2: Upshift to lock-up gear (Figures 6.4, 6.5, 6.6 and 6.7)
The shift is done with a weak tie-up, which may be observed as a slight decrease of
the engine velocity for 1.15 <t < 1.25s.

The system is much less damped at the higher gear because of the lock-up of the
torque converter. This results in some oscillations in the engine velocity and the
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traction force, which is seen for 1.8 <t < 2.1 s (test) and 1.75 <t < 1.9 s
(simulation).

We will discuss three differences between the tests and the simulations:

e Analogously with the previous case, the imbalance in the wheels introduces
an oscillation in the traction force. In this case it is of approximately 24 Hz,
which coincides very well with the velocity of the wheels.

e The oscillations directly after the inertia phase differ in frequency. The test
shows 8 Hz and the simulation 16 Hz. A possible explanation is that the
engine block with its suspension participates in the oscillations. This is not
considered in the model. Simply introducing the wheel rotational and
translational inertia in the model would not decrease that frequency
sufficiently.

e The third difference is the most serious one. The simulation shows a very
quick response from hydraulic pressure to clutch torque in the clutch of the
higher gear. The test shows that the clutch torque responds as if there were
a delay in the torque capacity. There is probably such a delay because the oil
has to be squeezed out before the clutch can land and develop Coulombian
friction. A very rough correction of the torque capacity of the clutch of the
higher gear is shown in figure 6.7. This shows that the model is able to
produce results more like the tests.

Case 3: Downshift from torque-split gear (Figures 6.8 and 6.9)
The test and simulations mainly differ in the following four points:

e The imbalance in the wheel is noticed as an oscillation of 4 to 5 Hz. This
coincides well with the velocity of the wheels.

e For ¢ < 0.9 5, we also notice a higher frequency, 42 Hz. The engine velocity is
21 rps. It is then quite obvious that this is the combustion frequency of the
four cylinder four-stroke engine. This disturbance is not seen at higher
engine velocities because the signals have been filtered.

e There is also an oscillation of 20 Hz, for ¢ > 1 5. One possible explanation of
this is that some higher mode oscillation of the driveline is excited by the
wheel velocity of 4 rps=4 Hz, which is a fifth of the oscillation frequency,
i.e. 4 Hz/20 Hz=1/5.

e The traction torque for ¢ > 1.1 s also differs. The test results show a slower
rise of the torque (1.1 <t < 1.4 s) but to a higher torque level (¢ > 1.4s). A
reasonable explanation of this is found in incorrect characteristics of the
engine. The engine characteristics at low velocities and low throttle openings
are difficult to estimate.
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Conclusions

The model presented in this study is suitable for simulating the global mechanics
of a ratio change. The differences between test and simulation results can mainly
be explained on the basis of incorrect input data. There is a particular need for
further work that makes it possible to translate the hydraulic pressure to a torque
capacity during the landing phase of the clutch.

A simplified model can be analysed in a dimensionless way. The essential
phenomena can thus easily be explained. A ratio change can be studied in an
“aquarium diagram”.

The following three points are useful when simulating ratio changes in
powershifting transmissions. They are presented in a general form, since they
ought to be of interest for other dynamic transmission problems as well.

e Matrix equations

Matrix equations are very powerful when dealing with complex transmission
systems. The requirement is transmissions that are linear with respect to velocity
and torque. This is the case with most transmissions, when losses are neglected.

e Velocity and torque as state variables

Velocity of inertias and torques of elasticities are suitable to use as state variables
in transmission dynamics. The differential equations are easily derived from this
point of view. This is also an easy way to handle systems without inertias between
all the components. It leads to more reliable numerical solutions than if a small
inertia had been used between the components.

e Separating phases in dynamic systems

Certain components operate in different phases. This constitutes different
differential equations, which are valid in different time intervals. One example is
systems including clutches with Coulombian friction. It is convenient to solve such
a problem as a set of initial value problems. This also leads to more reliable
numerical solutions than if the system had been approximated by one with just a
single phase.
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Appendix A

Transmission matrix equations

Start with a transmission as shown in figure A.1

Q1—e—
Q2—e—

QN—e—|
TRANSMISSION
pl—e—
[2—e—

pM——F

Figure A.1: Transmission with input shafts only
Assume that:
o The transmission is linear with respect to velocity.

e There are V w-dof.

e The {2-nodes are linearily independent with respect to velocity.
Then the following velocity equation can be written:

wul wm
Wa2 | (MxN)- w02
: | matrix :

Wupf wanN

(A1)
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Assume that the torque equations can be written as:

Mﬂl M,ul
- Maq, (NxM)— M, -
Ma = : T matrix | : =T - M, (4.2)
Man Mum

This last assumption can be verified by checking the power equilibrium. Power
equilibrium of all N + M nodes should be valid. The power input in every node is
M- w.

SP=0= MT &, +M§ Sa=0

Substituting the velocity and torque equations into the power equilibrium gives:
MT T, Go+ MP T Ga=0=Ty=-I (A.3)

The same kind of fundamental correlation between velocity and torque may also
be seen in [Sanger 1975] and [Pichard 1977].

Below the same procedure is carried out for a transmission with both input nodes,
output nodes and clutches.

Output nodes are treated in a very similar way to input nodes. The difference is
just that P = M -w means output power.

Clutches are treated somewhat differently from input nodes and output nodes. In
a first approach, we note that a clutch has two shafts and therefore two velocities
and two torques. However, it is appropriate to use only one torque, since the end
torques are equal. Furthermore, it is appropriate to use the relative velocity. The
positive senses of clutch torque (M¢) and relative velocity (wret) are chosen in such
a way that Pc = Mc - wre means output power, i. e. power loss. The clutches are
placed among the p-nodes, which normally is the case in a gearbox.

The complete transmission could be drawn as in figure A.2.

Velocity equations:

-
Wrel

G, =| Gun | = | matrix -[i"‘”” }:L-wo (A.A4)
- woouT
WLoUT
Torque equations:
- Mc
- M, matrix ~ -
Mn_[ ~ ]:[ } My | =1In- M, (A.5)
Maour —

A4u0 uT
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—e— —e—
L —a —e— -
darn, Marn dnout, Maout
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TRANSMISSION
—e— —e—
L —e— —e— _ ~
GurN, Murn . Guour, MuouT
o] L o

Figure A.2: Transmission with input shafts, output shafts and clutches

Power equilibrium requires:
Py = Poyr

T — T - 4T - T - T  ~
Moy - @aiv + My - Guiv = Maoyr - Saout + Moyt - Gpovr + ME - Gra

T o7 ~ — WT. 3 IT 3T -
Mgan - Gain — Maoyr - Gaour = Mg + Gra — M1y - Suin + MIoyr - Guour

- T .
E 0 i Q/fn IN L warn
0 —-E MQOUT QQOUT

- T
E 0 0 Mc Drel
= 0 -E 0 | | My - BN
0 0 E MyOUT &)‘yOUT

where E and 0 are identity and null matrices, respectively. This can be written:

T

E 0 o A\T 3 E 0 o0 . )

0 -E - Mg “Bg = 0 -E 0| M, y
0 0 E

Substituting the velocity and torque equations (A.4 and A.5) gives:

E o T E o o] _\"
<[0 _E}-IM-M#) Go=| |0 —E o |-M, | L
0 0 E
E 0 0
E 0
s [z o]0 % 0]
0 0 E
E 0 0
Finally: IM:[(E); WOE]JS- 0 —E 0 (A.6)
0 0 E
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Appendix B

Examples of gearbox matrices

D
fixed I::
C é
fixed = ==
Torque N
converter Positive
sense of
ﬂ—————B velocity
— ——p
A L
E l ' 3 |23 z2
IN1 9
‘ 1 4 ouT
From engine N ~ To wheels

IN2

Figure B.1: Automatic transmission

Table B.1: Gear/clutch table

Clutch— | E{ A | C | D | B | Speed ratio if no | Use of

Gear slip in converter | converter

1 e ° 2.579 Common

2 o | o 1.407 Common

3’ N ° 1 Common

3 o | o 1 Torque split

3”7 e | e e 1 Lock-up

4 e o 0.742 Lock-up (bypassed)
R o | e —2.882 Common

This appendix shows how the gearbox matrices in chapter 3 are derived. An
automatic transmission with planetary gears is used as the example. The layout is
shown in figure B.1. Table B.1 shows which clutches are engaged at each gear.
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B.1 Equations

Conventional analysis of planetary gears (Willis’ equation) yields:

(w2 —wy)/(ws —w1) = z4/2z2 = Raq
(w3 —wi)/(ws —w1) = —24/23 = Ray

Node 4 is directly connected to node OUT, which yields:
Wwq = WouT
Define the following relative velocities:

Wreld = WINY — W2
WrelB = WIN1 — W3
Wrete = 0 — w3
wreip = 0 —wy
WrelE = WIN2 — W1

These equations may be written on matrix form:

[0 ] [Bu—1 1 0 =Ry 00 07

0 Ry—1 0 1 —Ry 00 0 w‘

0 0 0 0 1 00 —1 2
weaa | | 0 -1 0 0 10 0 s
s | 0 0 -1 0 10 0 wa
WrelC 0 0 -1 0 00 0 wIN
WrelD -1 0 0 0 00 0 wIN?
lweag] | -1 0 0 0 01 o0 | LwoUT]

For numerical calculations the following numbers are used:

Roy = 24/z, = 98/38 =~ 2.57895
R34 = "‘24/23 = “98/34 ~ —2.88235

B.2 Matrix manipulations

The velocities w;, wy, w3 and wy can be eliminated from the equation B.1:

el -1 0 0 0 Wreld Busl_] 0 1 fusl
R3s—1 _ WrelB Rau—1 Ru—-l
RSTO0 -1 0 0 f o | = e 01— Bued
=L 0 0 -1 © e =1 0 Hae
3241—1 WrelD Ry—1 Ryy—1
= 6 0 0 -1 ~1 -1 e

Rag—-1 WrelE Ray—1

(B.1)
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Inserting numerical values gives:

Wrel 4

24588 -1 0 0 0 —3.4588 0 3.4588

—24588 0 —1 0 0 B || 24588 0 3.4588

—06333 0 0 -1 0 el | = | —0.6333 0 1.6333

~06333 0 0 0 -1 relD -0.6333 —1 1.6333
WrelE

B.2.1 One clutch steadily engaged

WIN1
WIN2

wouTr

Ratio changes where exactly one clutch is steadily engaged during the shift can be
analysed by putting the corresponding relative velocity w,.r = 0. For instance, ratio
changes between gears 1, 2, 3’ and 3 should use w4 = 0. Equation B.2 may then
be rewritten in the following way for each of the five clutches steadily engaged:

wreia =0 = (wreua,wrezc,wrem,wrezE)T
1—2 Buzl g Rl 3.4588 0 —3.4588
R Rag—1 WINy WINT
—Busl g ﬁgj—_—l— - 2.4588 0 —3.4588 | | " (B.3)
Ri_ 0 R | emn ) =) 06333 0 ~1.6333 || I 1
2 2 oUT oUT
. TR - 0.6333 1 —1.6333
WrelB = 0 = (wreIAawreIC)wrelDawrelE)T
1— Bl g Ru=t g 1.4067 0 —1.4067
Ras 34 WIN1 WIN1
-1 0 0 . -1 0 0 _ (B4
= 33;_ 0 g —1 || o 7| 02576 0 —0.7424 e 4)
iy ouUT ouT
e B 02576 1 —0.7424
WrelC = 0 = (wrelAawrelB>wreIDywrelE)T =
10 fumg—1 " 1 0 —1.4067
1 0 0 . IN1 _ 1 0 0 WIN1 B5
00 g -1 | 2™ 17100 —074a24 WINz (B-5)
01 -1 ovr 0 1 —0.7424 | LOUT
Wretp =0 = (Wretdr WrelBs WrelCs WrelE) T =
(1 0 —Roa " 1 0 —2.5789 "
1 0 —Ray MUl 00 2.8824 m
0 0 —Ra {:}””2 =100 28824 | | Y™ (B.6)
01 0 our 01 0 wouT
Wretg =0 = (Wreldy WrelBs Wreles WretD) | =
(1 Rogq—1 —Ros . 1 15789 —2.5789 "
1 Reyg—1 —Rey | | M} |1 38824 28824 | | IV (B.7)
0 Rge—1 —Ry w“"z T 0 —3.8824 2.8824 :’“V"’ :
0 1 0 oUT 0 1 0 ouT
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Identification of the I -matrix

When shifting between gears 1 and 2 clutch A is steadily engaged. This means
wret4 = 0 and equation B.3 is valid. Clutch D is renamed clutch L, since it is
engaged at the lower gear. Clutch C is renamed clutch H, since it is engaged at the
higher gear.

The essential parts of equation B.3 are:

1 — Ry WIN1
Wrell, — —
re — Rﬁ‘ -]—l R R—Qi 1 . WINg
WrelH —pa= 0 R -
Ray—1 Ra4—1 wouT

This 2 x 3-matrix is the I,-matrix and the i-constants may be identified as:

inint = Rog — 1 =1.5789

iLiN2 = 1/0 = oo

tpour = Ragf(Rey — 1) = 1.6333

tg Nt = ~(Raq — 1)/(Raq — 1) = 0.4067
ignve = 1/0 = £o0

tmour =1 = (Raq — 1)/(Raq — 1) = 3.4588

The gearbox may now be treated as simply a box containing the I,-matrix. This is
shown in figure B.2. Figure B.3 shows what is inside the box in figure B.2.

L
1
1!
IN1
_——] T
GEARBOX __82__
IN2 TRANSMISSION
——-.—__.
H

__”__

Figure B.2: Two-clutch gearbox with two input shafts and one oulpul shaft
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fixed fixed

E E Clutch A is
! ' steadily engaged
B ‘
‘ I I . Clutches B and E are
. — . steadily disengaged
: A ] :
‘ E )

IN1T :

Ay o

Figure B.3: Shifting between gears 1 and 2
B.2.2 Two clutches steadily engaged

Ratio changes where two clutches are steadily engaged during the shift, can be
analysed by setting their relative velocities equal to zero. However, this reduces
the number of w-dof from three to two. Therefore, we should place one of the
velocities of the power shafts among the relative velocities. For instance, ratio
changes between the gears 3 and 3” should use wyeis = wreip = 0. Here it is
convenient to place wyy; among the relative velocities. Equation B.8 below
corresponds to the previous equation B.2.

WrelA = WrelE = 0 = (wrelBywrelCa WrelDy WIN )T =

Raqg — Ros Raqy — Ry —5.4613 5.4613

Ry —1 —Ra4 [ wine } _ | —3.8824 2.8824 | [ WIN2 ] (B.5)
-1 0 WouT -1 0 wour ’

1— Ry Ry —1.5789 2.5789

Identification of the I, -matrix
When shifting between gears 3 and 3”, clutch B is the only active clutch. This
ratio change is a lock-up operation of the torque converter.

The essential parts of equation B.8 are:

WyelB — Ras — Ras Ry — Ry | WiN?
WiNny 1= Ry Ry wouT

This 2 x 2-matrix is the I,-matrix.
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B.2.3 No clutches steadily engaged

In attempting to treat all ratio changes by the same matrix equation a problem
arises, since there are to many w-dof. It is impossible to determine all relative
velocities only by the velocities of the three power shafts. It is then convenient to
introduce an additional power shaft. It is convenient to chose the shaft with the
largest amount of inertia. In this case it is likely to be the planet carrier (shaft 1 in
figure B.1). Let us call the corresponding node IN3. Equation B.1 may then be
extended by the equation:

W) = WIN3

The equation corresponding to equation B.2 is then:

WrelA 1 0 Ryy—1 —Ry w

WrelB 1 0 Ray—1 —Ryy o

WrelC = 00 R34 -1 -—R34 . w1N2 (Bg)
WrelD 00 -1 0 I3

WyelE 01 —1 0 wour

Insertion of numerical values gives:

WrelA 1 0 15789 —2.5789

WrelB 1 0 —3.8824 2.88%4 wIN
wrete | =10 0 —3.8824 28824 | .| wWIM2
WrelD 00 -1 0 WIN3
WrelE 01 -1 0 wour

Identification of the I -matrix

When shifting between all gears the 5 x 4-matrix in equation B.9 is the I,-matrix.
The gearbox may now be treated as simply a box containing this matrix. Using
this approach it would be possible to handle all ratio changes, not only those
between the gears presented in table B.1. However, it is very difficult to handle all
phases. The gearbox would be able to work in 3° = 243 gearbox phases! (Each
clutch has 3 phases as discussed in chapter 3.)
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Appendix C

Examples of systems including
clutches

Some examples of systems including clutches where shown in chapter 4. This
appendix gives further examples.

C.1 Inertia — clutch — damper — inertia

1 T 2
+J_%._{ P -

This case generates very little trouble because the same state variables (w;, and w;)
may be used in both the slip and the stick phases. No new initial values have to be
calculated. M; and M, may be thought of as known variables, calculated from an
outer system.

Both phases:

Differential equations (level 0):
Wy = (M1 — A{[)/Jl
(;.)2 = (M - Mg)/.]z




Slip phase:

Algebraic equations (level 1):

a = a(wrer)

Algebraic equations (level 2):

Wrel = W1 — Wy

Algebraic equations (level 3):

wy =wy + M/d

A6S

Stick phase:

Algebraic equations (level 1):
M=d (w, —wy)

Algebraic equations (level 2):
Wz = Wy — Wrel

Algebraic equations (level 3):
Wrel = O

Algebraic equations (level 4):
M= a-cft)

In the slip phase the algebraic equations define « implicitly. Evaluating levels 1-4
in backward order makes a recursive iteration. The following recursive formula can
be obtained:

a = afw — (w2 + a-c(t)/d)) (o is a function of itself)

Fast convergence will be achieved, since o is only weakly dependent on w,... A
starting value of o may, for instance, be o« from the previous time instant. When o
is determined, then level 1 should be evaluated.

Using velocity independent Coulombian friction (constant «) there is no need to
iterate. The torque M could be determined directly by the level 4, but the other
levels must be evaluated anyway in order to get a value of w,, to check the phase
switch condition.

C.2 Inertia — damper — clutch — damper —

inertia

1 ] =z Y 2
—Q—Jl‘—‘—o—H—o——{ Jy +e—

This example is very similar to the previous one. The difference obtained is an
iteration in the stick phase as well. This iteration is somewhat different from the
slip phase iteration. State variables in both phases are w; and wy. M and M, may
be thought of as known variables, calculated from an outer system.




Both phases:

Differential equations (level 0):

or = (M — M)
by = (M — M)/ T2

Slip phase:

Algebraic equations (level 1):

a = a(wra)

Algebraic equations (level 2):

Wrel = Wy — Wy

Algebraic equations (level 3):

wr = wy — MJd;
wy :UJ2+M/d2

Stick phase:

Algebraic equations (level 1):
M :dl . (w‘ —wz)

Algebraic equations {level 2):
Wy = Wy + Wrel

Algebraic equations (level 3):
Wy = Wy + M/d2

Wyel = 0

Algebraic equations (level 4):
M=a-c(t)

The slip phase is almost identical with the previous example. The same kind of
recursive iteration may be carried out. The stick phase also needs an iteration,
which is not the case in the previous example. This iteration is in principal
different from the one in the slip phase. The recursive formula defines M as a
function of M. It is more difficult to guess a good starting value for the torque M,
when the clutch is not slipping.

It is usually possible to determine the equation for both dampers together. This is
especially easy when the dampers are linear. The total damping constant d can be
calculated as:

., . . :
d= 7irg (two linear dampers in series)

Then the stick phase equations become explicit:

(Alternative) Stick phase:

Algebraic equations (level 1):
Wy = Wy + Wrel

Algebraic equations (level 2):
Wy = Wy + M/dg

Wrel = 0

Algebraic equations (level 3):
M=d (w —w,y)

Levels 1-2 are only added to calculate w,, w, and w,.. They are not really needed
to calculate the state derivatives at level 0.
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C.3 Inertia — clutch — elasticity /damper —
inertia

k

— b 5 e

d

This system demands three state variables when sticking (w;, w; and M). The
same three state variables can be used when slipping. Therefore, this system
demands no new initial values. There are three torques involved: the clutch torque
(M