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ABSTRACT

Agent-Based Modeling (ABM) is a powerful simulatitechnique with applications in
several fields, in particular social sciences. fAifal Stock Market (ASM), introduced
by a group of researchers at Santa Fe Instituté) (8Rhe mid 90’s, is one of the
pioneering works in which the application of agbased modeling is examined being
used to model a stock market and to study econdmeicavior. A number of
heterogeneous agents form a market in which thegy dnd sell shares of a single
introduced asset and they make their decision upeim expectations of the market
which is determined from their aggregate expeatatiovhile they improve their
predictions based on the response they get frormtrket. The computer simulation of
the model gives a market dynamics which has siiidarwith real market data. The
internal evolution of agents has a direct effectt@market dynamics, and the learning
speed of agents controls the overall qualitativaratteristics of the market. With
emphasis on the role of evolution of agents in thrsficial stock market, an
implementation of the model has been done and asfaves have been studied.

Keywords: Complex Adaptive Systems, Agent-Based éMiod, Artificial Stock
Market, Genetic Algorithms, Computational Economics
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| ntroduction

Complex adaptive systems, agent-based modelingjciatt societies, emergence,
computational economics, evolutionary algorithmsj dounded rationality are topics
that all are connected to an artificial stock mafkeSM) model. Such a model is a good
example of agent-based modeling in which a grouggehts interact in a market to buy
and sell shares and as a result, one can see kew tthther simple agents can emulate a
market which has some properties of a real makeeimplementation of a model, in
addition to the certain benefits that it can cdnité to the model itself, can make one
learn more about all topics involved in it. This lwas no exception to this idea,
especially regarding agent-based modeling whichthesery first aim of this work.

In this chapter, complex systems and agent-basedklng are shortly explained
mostly as to their terminological aspects. Othanteand expressions will be explained
later when they are used. Then the literature spmeding to the model is reviewed
followed by the organization of the whole work.

1.1. Complex Systems

A complex systens a system of many entities which act indepengenton their own
simple rules and interact with each other and withenvironment without any central
control in the system, though the collective bebawi the system is not only nontrivial
and hardly predictable, but also exhibits one oremaroperties like emergence, self-
organization, non-linearity, and chaos. Althougleréh are several definitions by
different scientists for the term “complex systeragtl they seem to deviate especially
in boundaries which are blurred enough to add cerifyl to the definition of complex
systems itself, the general concept is the sameé.célonies, nervous system and the
brain, body immune system, economies, social strest climate, modern energy
systems, and a living cell are all examples of dempystems and have been studied.
Components of a complex system can learn from eéxpex and evolve through a
mechanism in order to improve their behavior anddapt themselves to changes in a



way they could be able to increase their succegheochance of survival. When this
adaptation is significantly involved in the systamd plays a large role, such systems
often calledcomplex adaptive systen®s stock market is a very good example of such
systems; traders consider the market history armanldrom their mistakes and
successes, so they improve their predictions arkerdacision upon that. Most of the
examples of complex systems mentioned before @ adaptive, like body immune
system, nervous system and ant colonies.

Self-organizationis one of the main properties of complex systehhe appearance
of resulting global behavior from interacting indival entities as a coherent structure
or pattern is called self-organization. Since thereeither an internal controller nor an
external part that imposes a planned pattern,dofes interesting. There are several
examples of self-organization in different fieldsflock of birds is an example that you
may encounter or already have seen in the nataeh Bird behaves according to three
simple rules: separation, alignment, and cohegisra result, flocking behavior of birds
gets form as a complex motion of the flock of bivdsch benefits them in several ways
and would be very difficult to produce otherwismaigine how hard it would be to plan
such a motion individually for each part of sucsyatem to get that result.

Emergenceis another main property of complex systems whiesults from the
interactions of the components. It also is defibgdlifferent scientist in different ways.
Goldstein [1] defines emergent athé arising of novel and coherent structures,
patterns and properties during the process of sajfnization in complex systeins
More details of this definition are explained bytagn common interrelated properties
emergent phenomena share. They all are radicallglnooherent or correlated, global
or at macro level, dynamical, and ostensive. Tlaee also examples of emergence
everywhere. Traffic jam is an example where cassparts of the system, behave on
simple rules but the complex phenomenon of trgdfic sometimes emerges.

Considering these two, self-organization and enrarge Mitchell [2] brings an
alternative definition for complex systemst 8ystem that exhibits nontrivial emergent
and self-organizing behavidts

1.2. Agent-Based Modeling

By the advent of fast computers, reductionism heenlreplacing with holistic approach
to study systems. Although reducing a system tetavwamber of parameter has its own
benefits and has been useful in the history ofneeieand also is still used in many
practical solutions, one can do a deeper studys tmore real and reliable, by
considering details of the system as much as pessthudy of complex systems has
been involved in this approach and agent-based IngdéABM) is one of the best
modeling techniques to do so. It relies on the pasweomputers and by taking details
of the systems into account, provides the possibib explore the dynamic of the
systems which are impossible to explore by purénemaatical methods.

In ABM a systems is modeled according to a bottgnapproach; individual entities
in the system are modeled as autonomous agent$ wait individually operate, thus
providing a description of the system as it existaality. These agents can memories
their experiences during the time evolution of thedel. They can learn and adapt
through mechanisms like classifier systems, arifineural networks, and evolutionary
algorithms. They make decision upon rules of tbgin and what they have learnt and
then they behave individually as a result. A stockket is a good place for ABM to be



applied. Traders are modeled as heterogeneoussagént learn from their experience
and buy and sell shares and operate like realrsadleile a typical asset is introduced.
The interaction of these agents makes a markeestieg to be studied from different
aspects.

ABM has important benefits. First of all, it canptare emergent phenomena.
According to Bonabeau [3], the ability of ABM toptare emergent phenomena drives
other benefits of it which are natural descriptadrihe system and flexibility. So, ABM
is suitable to use when there is potential for gymer phenomena. On the other hand,
the bottom up approach in ABM helps with understagdof what constitutes an
explanation for such a phenomenon. This has begnrea motivation for scientists to
apply ABM to different fields such as social stgdilm order to approach social
phenomena this way instead of using traditional eliad perspective Artificial
societiesare result of applying ABM to social system ané ased in experimental
social studies, computational economics, urban tmagleand so on.

When the model is close to the natural descriptibthe system, behavior of the
individuals can clearly be defined. This also inles complexity in the behavior of
individuals that might not be possible to consider traditional modeling using
differential equations which gives an exponentisg¢ to complexity of the model and
making it impossible to handle. Moreover, one cald atochasticity to the model
wherever and in every level it is needed and thisat possible to do in an aggregate
equation. Finally, crucial stage of validation acalibration is easier to do since an
expert can understand the model easier and firelations with reality.

Flexibility of the ABM is apparent. One can easihgrease the number of agents,
their behavioral characteristics, rules of theiteractions, and levels of description.
However, one should be careful when considering ftekibility since it may add more
complexity than what is needed and may misleadsthdy without a precise and well
planned investigation approach. This flexibilitydanatural description of the system
can bring a load of parameters to the model whiabukl be carefully considered in
order not to lose tractability.

1.3. Literature Survey

It is about two decades now that computer simuiatiopave made use of autonomous
agents in economics and finance. During this periodny scientists have made
attempts to answer questions in the rather newd fofl agent-based computational
finance and economics. Artificial stock market mlotgis the subject of study in this
work but since the implementation of the model In@sn considered at first, a complete
systematic literature review has not been aimealigh if not impossible, it might be
very difficult to include all aspects of such a qoax system. However, several articles
have been considered in order to learn about ts@rlyi of progressions in artificial
stock market modeling.

The platforms and structures used in main researaghé¢he field of agent-based
computational finance are not common and a broagpeoison is difficult as discusses
LeBaron [4]. He summarizes six papers in detaim@lwith references to many other
related works. Simple agent benchmarks, zero igégit traders, foreign exchange
markets and experiments, costly information andnieg, and neural network based
agents are all included in the studied literataraddition to the Santa Fe artificial stock



market model which will be discussed more in dstail this work and is one of the
most adventuresome artificial market projects eBdren mentions.

In 1994, Palmeet al. [5] published an artificial stock market model.itgg agent-
based modeling techniques, artificial stock mavkas studied. The article explains how
a number of simple agents can form an artificiatkeasimilar to the real market and
notice the price dynamics that emerges as a rebtitie interaction of these agents. In
this model, agents use classifier system to mage tfading decision and they evolve
using genetic algorithms.

Later, Arthuret al. [6], the same group of people, introduced SFI-ABMwvhich
agents are able to forecast and make their dectsionaximize their utility function
upon their predictions instead of using classiBgstem of condition-action. Agents
decide how much share they buy or sell based anghetictions. In each time step, the
price is cleared through a mechanism based onithard offer in the market. The
model is later explained more by LeBartral.[7]. It is shown that agents can adapt to
the market of low learning rate and create a homoge rational expectation regime
while complex regime emerges when the parametéingas changed and there is a
higher learning rate. The model replicates timeieseproperties of real market.
Emergence of technical trading, temporary bubbfesaashes, are part of conclusions
mentioned.

Palmeret al. [8] continue working on the model adding some ricdiions and
changes to the parameter settings,providing the agents with more information. It is
found that parameter settings in general and gpaltyf learning speed play a key role
in transition of the market from homogeneous ratioaxpectation equilibrium to
complex regime. In fact, the rational expectatiguikbrium is a local attractor. They
also suggest multiple stocks, impact of wealth,rmmpd predictions, transition details,
information control, and strategic behavior as sobjpf study and extension of the
model for future plans at the time.

LeBaron [9] provides a guide for researchers istect in building their own
artificial financial market. He outlines designuss involved on such a work, namely:
agents, trading, securities, evolution, benchmanksalibration, and time. Moving
towards realism and validation, better understajpdingeneric properties of the system,
make applications out of agent-based models, aridrieg to the other areas of
economic and social science are possible directionduture of the researches on
model that LeBaron concludes.

Time horizon is the main concern of LeBaron [10]ilesthe structure of the model
has many differences in comparison to original A6M. First of all, time horizon in
which agents evolve, is studied as long- and dharizon to see its effects on the
results. The constant absolute risk aversion assomis replaced with constant relative
risk aversion so wealthier agents will have a gmeampact on the market. A
feedforward neural network with a single hiddent isnused instead of classifier-based
trading rules. Finally, the mechanism for agentadquire information is changed and a
central pool of rules is used by agents instealbadl rules of agents in original SFI-
ASM.

Joshiet. al.[11, 12] use game theory to study SFI-ASM. The tamt strategy of
technical trading arises due to a multi-personopes’'s dilemma and results in a
symmetric Nash equilibrium [11]. The learning spéedlso studied from a game point



of view and results show a unique strategic Nagshlibgqum which is interpreted to be
a sub-optimal equilibrium due to market inefficigrand lower earnings of traders [12].

Ehrentreich [15] suggest corrections to the SFI-A$M finds the mutation operator
in the original model upwardly biased that suggestseased level of technical trading
hence corrected version is unable to generate itmdhtrading. However, two different
regimes and other conclusions of the previous madelstill partly present in results
from his model. Later he focuses more on technicading [14] and the issue of
evolution in the model by providing tools to judtpe relative importance of selection
and genetic drift with arbitrary mutation operatdthrentreich later published a
thorough exploration in the model and differenuess regarding it as a book [15]. The
book is not only an excellent reference to the be#nning and empirical literature in
finance, but also an important piece of work foderstanding the dynamics of models
with interacting learning agents as LeBaron meistionthe foreword of the book. In
addition to what he discusses in [13,14], he alsdiss the dynamics of wealth and the
complexity of that.

1.4. Organization of the Work

In this work, the attempt has been to implementatginal SFI-ASM explained in [6,
7]. In chapter 2, the resulting implemented ai@icstock market model and its
structure will be explained in details. In chafgethe implementation of the model will
be considered. It will also contain experimentsedwith the model and corresponding
results and discussions. Finally, comes what isiptesto conclude out of the whole
work in chapter 4.



The M odél

The basic structure of the model is more or lessstime in various versions of the SFI-
ASM. A number of agents interact with each othewyibg and selling assets through a
trading mechanism while an evolutionary algorithetpls agents to adapt themselves to
the changes in the market and improve their behavimaximize their utility function.

In this chapter, the building blocks of the mankat be introduced. In the organization
of the building blocks, suggestions in [9] are édased. The market will be explained
by its components. Starting from securities, agemits be explained later and the
internal evolution of them will come in a separsg¢etion. Then trading mechanism will
be discussed and the chapter will be finished titghtime issues and the benchmarks.
In each section, terms used will be explained tmoesextents subject to the constraint of
scope of this work. Corresponding mathematical esgions will also be introduced.
All of the mathematical expressions, if not statede borrowed from SFI-ASM
literature [6, 7, 15].

2.1.  Securities

The economic components of the market are set Uge tas simple as possible. There
are two assets present in the market. There iskafnree part of the market that pays
cash money a constant interest rate 'tbm an infinite supply.

On the other hand, there is a single security & riarket which pays agents a
stochastic dividend in each period which is assumi@dbe a mean-reverting
autoregressive -AR(1)- process as below

de=d+p(di_y—d) + pe (2.1)

in which d, denotes the dividend at timed is the dividend mearp is the speed of
mean reversion, ang, is the stochastic shock which is chosen from amabr
distribution with mean zero and variam;ﬁ This process is aimed for providing a large
amount of persistence in the dividend process witlgetting close to nonstationary



dividend processes [7]. The pripg for the stock at each time step will be determined
through trading mechanism which will be discussedrlin this chapter.

2.2. Agents

Agents play role of traders who would be preserd neal market. There are a number
of agents §), each has some properties and an internal egalatechanism. With the
aim of maximizing their utilities, they take act®@at each trading opportunitye. in
each time step, and may either buy or sell sharegs they create a market which
evolves along time and in which they interact. Takenany decision, agents consider
their preferences and act upon.

2.2.1. Preferences

Agents are constant absolute risk aversion (CARWgstors with the degree of risk
aversionl and a utility function of the form beldw

UW,) = —e 2.2)
W, stands for the wealth of an agent at titmend they are homogenous with respect to
their utility function that their degree of riskergion is the same. They all are myopic

in one period that they only consider their expgataof next period’'s price and
dividend to maximize their utility function subjetct their budget constraint:

Wisr = Xe(Deg1 + depr) + (A + )W — pexy) (2.3)

In which x; stands for the number of shares an agent ownmattt It is known that
under the normality assumption for the distributodiprice and dividend, the amount of
stockx; that an agent desires to hold at titrie calculated as below:

%, = ﬁt(Pt+1‘;‘Z-tz+1)_(1+7”)pt (2.4)
tp+d

In this equationf,(ps+, + d¢4,) indicates an agent’s expectation at time stejpout

summation of price and dividend in the next perigg,, ; is the variance of time series

of this combination of stock’s price plus dividendhich is empirically observed while

time evolves. This relation holds only under noityadf the stock prices and this holds

when there exists a rational expectation equilinri®therwise, the distribution of the

stock price is not clearly known and the connectmm CARA utility maximizer will

be broken [7]. To form their expectations, agersts a forecasting mechanism based on

the certain information they consider and keep tipda

2.2.2. Forecasting

Forecasting is possible by existence of a poolutdsrthat each agent has individually
access to. Each rule consists of a set of basipepiies: condition part, predictor,

fitness, and forecast accuracy. The two parts aflitmn and predictor, together form

the “condition-forecast” mechanism and are alstedatondition-forecast rules which is
a modification of Holland’s “condition-action” clsi§ier systerf.

! Since the equations are given for each agenragierties specific to agents would have an inidext
is omitted for ease of notations unless it was s&ag.
2 An example of this classifier system can be foimé].



The condition partof a rule is a vector which is checked against|8mo market
state so has the same type and length as the nséaket The market state is a vector of
binary bits of market descriptors which reveal®infation from the current state and
the history of the market. These bits may contamdémental, technical, or any other
information one would like to consider. Thendamentalinformation considers
dividend price ratio. For instance, the ratio atemultiplied by interest over dividend
is compared to a number, say 0.75, and if it igigrethe corresponding bit will take 1,
otherwise zero. Theechnical information is based on the moving average type
information. Whether the price is greater thanriean of price during last ten periods
could be the information contained in one of thehtecal bits. Beside this, bits of the
condition part are ternary and holding either Ogrl#. If a bit of rule aims to check the
corresponding market descriptor and see if it meddine market descriptor or not, it
will be set and will take either 1 or O. If a bdrdains #, it means that bit is unset and is
ignoring the corresponding market descriptor, ¢@responding information, and it is
called ‘don’t car€ bit in literature. Thus a condition part of aeuhatches the market
state if all 0 or 1 bits of it match the correspimigdmarket descriptors. Table 2.1. shows
typical examples of a few condition part with 12sbchecked against a typical market
state.

Bits 1| 2| 3| 4| 5| 6/ 7/ 8§ 9 1p11|12| matches?
marketstate | O | O 1| 1| 1| 1] O 1 24 QO 1 O -
rule 1 O # | #| 1| 1| # # # # # # 0 yes
rule 2 ##|#| #| O # 1 # # 1 # # no
rule 3 O|#| O #| #| # # 4 # # 1 # no
rule 4 #10| #| #| #| 1| O # 1y # # # yes
Table 2.1. Checking condition part of 4 rules agaimarket state.

Then comes thepredictor. Predictor is a vector that accompanies the roke f
prediction and forming expectation of the agentthis model, a linear forecasting is
chosen that using a vector of two real value eléemy@nandb, predicts the value for
sum of price and dividend for the next period bamedurrent period’s values of them:

Et(pt+1 +diyq) = alpe +dy) +b (2.5)

Predictors are randomly initialized in a certaingheorhood and they will be changed
and corrected while agents evolve.

After all agents are done with forming their expéicns, price will be determined
through trading mechanism and then agents can aempalized price and dividend
with their expectations and measure how well thelies has made predictions. They
calculate moving average of squared forecast agdrelow:

ve = (1= 1)y + (e + do) — Bepe + )] 2.6)
And considering equation (2.5) it can be writterbakw:
vE = (1 - l) Vit l [(pe +d¢e) —a(pe-1 + de—1) + b] (2.7)

This value is calculated for each rule of each ageparately. Parameterrepresents
size of the time window that agents take into aotda consider past information in
calculating error variance. This value is used pl&es. First, it is used as variance of
rule’s estimate which is used in the equation (2h)s



Second, it is used to calculate fitness valueterrtle:
fi=K—v?—Cs (2.9)

In this equationK is an irrelevant constarg,stands for specificity which is number of
bits set to either 0 or 1 that do not ignore cqroesling market descriptor, ardis the
levied cost per bit for specificity. This bit cost purposed to get sure about the
purposefulness of each used bit in terms of fotewas

Finally, inverse ofv? indicates the forecast accuracy of the rule. Tioege all
elements of a rule are defined and they can be aséallows in the time section.

Each agent has a zero intelligence rule and keegerig the time and if none of its
rules got activated, it will enter the market analde using this rule. The agent may
update predictors of this rule but all bits of thi¢e will stay unset as are initialized so,
at the beginning of the simulation. All other rubgsart from this zero intelligence rule,
will evolve and will be improved through an evolrtary mechanism.

2.3. Evolution

Agents learn and improve their behavior using imfation from the current state and
the history of the market and through their owreiinél evolution. There is no direct
communication between agents and their rules aey ithact to what other agents do
only through the market and by means of informatlogy get on price and dividend.
Thus there is no imitative behavior present amayenes. The evolutionary part of the
internal process of agents uses a genetic algotilamapplies selection, crossover, and
mutation to replace poorly performing rules withanbetter ones. To generate new
offspring, with a crossover probability, which issmall number here like 0.1, the
crossover operator is applied. Otherwise, the dfigpwill be generated by only
mutation.

The selection is performed based on fitness of the rules. Athe&sarning
opportunity, a certain amount of badly performel@suegarding their fitness value will
be selected and thrown away. Then to generate ffspriag rules, parents are chosen
by the selection which performs according to a $mpurnament selection. Two rules
are chosen completely randomly, and the bettemolhée selected with the probability
equal to the tournament probability. This represeat tournament selection of
tournament size 2. One can go further and incréasdournament size but it is not
aimed in this model.

The crossoveroperator takes 2 parents each time and generatesofispring by
doing a uniform crossover. As to condition paristmeans that the crossover will
perform bit by bit and for each new bit of offsgjnt selects from either of the two
parents with the same probability. This gives tbedition part of the offspring which
table 2.2. gives an example for.

bits 1/2|3(4|5|6|7|8]|9]10(11|12
parent 1 #HAE| L |#|#|0|0|#|#|0|#]|1
parent 2 HO|#|1|#|#|1|0|#|#|1|#
offspring #O|#|1|(#|0|1|#|#|0|1|#

Table 2.2. An example of uniform crossover on ctadipart of the two parents.



As for prediction values there are 3 probable at®with the same probability:

(a, b) is selected from either of the two parents whid $ame probability.

a is taken from one parent ahdrom the other parent.

a andb are accuracy weighed average of parents.

The forecasting accuracy and error variance arelgiset to the linear average of their
parents.

The mutation operator works bit by bit on the rule and eachebiblves with a bit
mutation probability which is a small number lik®8. The mutation operator used in
[6,7] is changed by Ehrentreich as introduced B].[But here, the original operator is
used. Each bit is flapped according to bit traosiforobabilities given in table 2.3.

0| 1] #

0| O] 1/3|2/3
1 ]1/3] 0|23

# | 13| 1/3|1/3
Table 2.3. The transition probabilities for bitsemhthey are mutated. The left most
column corresponds to the bits of parent, and ifistin top corresponds to the

offspring.

The real valued prediction paiig, b), may be replaced by either choosing a new
random number in the range or taking from parenadiging a little perturbation. The
probability for both cases are the same and isleiguf.2. Otherwise, the value is
simply taken from parent without any change. Theavee of the offspring is set to the
average of all rules of the agent. If this new eakiless than the variance of the parent,
less an absolute deviation, it will be set to tredran of the all other rules.

24. Trading mechanism

Price dynamics is the main property of the mar&did studied, and trading mechanism
is going to directly influence it. Therefore it ggaan important role in the model. There
are three known trading mechanism used in the fsldliscusses LeBaron [9]. First
method used in early models of stock market isyple mechanism based on offer and
demand. This mechanism acts once at each tradipgrtopity, i.e. time step, and
increases the price in response to excess demahdiea versa as was used in [5].
Second, is the method used here in this work, irchva local equilibrium can be found
using an iterative approach in the design of magket will be explained thoroughly
later. Finally, comes the modeling of actual trgdmechanism which needs learning
and adaptation in the mechanism and beside itsnéalyas, brings some complications
into the model as well.

Trading happens according to the decisions ageake rand the price is determined
through an iterative procedure. A specialist tatifers and bids of all agents under
current price which becomes first trial price. Buen of all agents desired shares should
not exceed the sum of shares present in the malkethis model, one share is
introduced for each agent at the beginning of tlaeket, thus the following constraint
helps the specialist to find the price:

N 2E=N (2.10)
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If given price did not clear the market, the spkstiacalculates new price according to
the following equation:

Prial = Plria(1+n(B — 0)) (2.11)
In which B andO show the total bid and offer respectivejyis step length in iterative
procedure, an@& counts the iterations. If this new price does cletir the market, the
iterations will continue until finding clearing pg for the stock.

This mechanism resembles an auction for findingepriSpecialist declares prices
and agents resubmit bids and offers until the ntaskelear. Although it is not what
happens in reality, the analogy between them caneXjgained as follows. The
specialists in a real market have information fréime past. They also use their
experience, books, and other sources of knowledgeirgormation. Therefore, they
have a keen feel of demand function in their majijet

25. Time

Evolutionary processes in the model give rise ftednt time issues like any other
model in which agents and adaptation are preserd.i€sue is the time horizons agents
use to keep history and information from past mkxiof the market. This has been
matter of question and different researchers hidareint beliefs on using short or long
memory agents. In this work agents use a rathert smemory and they are
homogenous in this aspect. The market state, in Kkaeps a set of information which
includes information from past 500 periods in tbadest case, and reveals this for
agents to use and agents are also designed tousald this type of information only.

The second issue with time would be the speedashieg. How fast should agents
adapt themselves with changes has a direct effettemarket dynamics. This will be
discussed later in the experiments and one cadifesent speed of learning results in
coherent differences in the market dynamics.

The third issue is synchronicity. In a real markedt all traders do trading in the
same day or at the same time. They may do in diftesime occasions instead. But here
in the model, agents are considered to take pattartrading all in every time period
and synchronously. However, in each period, iheotetically possible that some of
the agents may appear not to trade according topgheferences and this may result in
asynchronicity present in the real market. Morepwasynchronicity is present in the
evolutionary process and not all agents invoke gemégorithm at the same time but
according to a probability determined by learnipge.

A more general question about time would be thaticel between time period in the
model and the time in reality. Does a time periedresent a day in reality? Then a
250000 periods would be about 685 years and 2&ykarperiod represents an hour.
Such questions seem very important to be answarethby are contained in a bigger
subject of validation which is still an open mattdrdiscussion in both agent-based
modeling in general and artificial stock market mlodpecifically. Nobody has
answered such questions thoroughly neither thik\was aimed to.

It is also a good point to discuss the timing & thodel. At the beginning of each
time period, new dividend is introduced to the neareind market state gets updated.
Then agents start checking condition part of alth&fir rules against the market state.
All rules matched the market state get activatexthEagent chooses the most accurate
of its activated rules to form its expectation amder the trading. They submit their bid
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or offer. The specialist. gathers all submissiams taies to find the best price that clears
market according to the trading mechanism and agelg@sires may also get
recalculated. When the new price is found tradilages is complete and agents update
their properties, including wealth, cash money, amumber of shares. They also
calculate error of their activated rules and updhtar error variance and accuracy.
Finally, they evolve subject to their learning spp@ad the new time period starts over.

2.6. Benchmarks

As already mentioned, validation and calibratiomtans an open set of questions in
agent-based models of artificial stock market. $bepe of this work is not defined to
move towards answering questions of that type.dtwte a point in validation world is
needed for any kind of modeling, the homogenoummal expectation equilibrium
(HREE) is chosen here to be a criterion for the ehathd when the model gives results,
they can be compared to. Thus a very first questidhe model is whether agents can
find HREE themselves and market converges to squhiterium.

Since agents are homogenous with respect to tbgied of absolute risk aversion,
the homogenous rational expectation equilibrium BHERcan be calculated considering
linear price and dividend relation assumed in tredast mechanism.

E{ffE (peyy + diyy) = a5 (pg + dp) + bIREE (2.12)

In which a#REE and bHREE are prediction real values corresponding HREE cardbe
analytically calculated. Considering the lineaatign of price and dividend:

piREE =fd, + g (2.13)

parameterg andg shall be calculated. A homogenous equilibrium rseslhagents to
hold an optimal amount of share, namely one shatéer desired amount in equation
(2.4). Thus one can write:

Et(pt+1 +dip) —(A+7r)p = /10t2,p+d (2.14)

The expectation of the sum of next period’s priod dividend can be calculated as
below:

Et(pt+1 +dip1) = Et((l +f)depitg) =g+ Et ((1 + f)(c? +p(d; — d) + Iit+1))
=g+E 1+ U= p)d+p(1+)de + (1 + Pites )
=g+A+HA- P)Cz +p(1+ f)Et(dt) + 1+ f)Et(;ut+1)

Then considering that the expected value uoffor next time step is zero since
u:~N(0,072), one can end up with equation below for the exgzbualue.

Et(pt+1 +dey) =g+ (1 +f)(1—P)&+P(1 + f)d; (2.15)
And plugging this into the equation 2.14 and ugriy3 again, also noting that the result
should hold for all times and the right side of dguation 2.13 is constant, finishes the
solving of the equation fgf andg as below.
f=-L (2.16)

1+r—-p

_ (+Na-p)d-2a} .4
T

(217
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And a§+d can easily be calculated using equation 2.13 akidd the variance:
var(p; +d;) = var((l + f)dt) (2.18)
Thus
opva = (1 + f)?var(d,) (219

And from equation (2.1) and properties of a finsiet of sentences from an AR(1)
process, one can write:

var(d,) = o} (2.20)
Thus:
Opra = (1 + f)?0; Z2)

Therefore, the HREE forecast parameters which agembuld seek in HREE regime
are:

afREE = p (2.21)

bHREE = (1 — p) ((1 +£)d + g) (2.22)
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The Experiment

The vast number of parameters which usually exmstthe agent-based models,
contributes complexity to implementation of suchdmls. This makes agent-based
models very prone to generate delusive results.eMar, the power of agent-based
modeling relies mostly on computational approaalstimaking well implementation
and management of parameters very crucial. Inahapter, starting from a word on
implementation, the experiment design and the pat@msetting will follow. Then
results from the experiments will be discussed.

3.1. Theimplementation

The original model of SFI-ASM was implemented inj&bive-C [6], and later it was
converted to other programming languages like Jewgl15]. Johnson [16] has
developed a swarm version of the model and made #gddition to other information
and links to some other versions and updates, ablailon the intern&t MATLAB is
also used by LeBaron [10] for implementation of thedel.

In this work, there have been some exercises WIthTMAB using struct to
implement the structure of the model and propeuifethe agents. But there are good
reasons to do such an implementation in an objeeti®d programming language. It is
easier to debug the program going through differelsisses and testing them
independently in an object-oriented program rathan trying to check the flow of the
data in procedural programming languages. Johnsoglwdes a few advantages of
object-oriented programming in [16]. In object-oied programming data is
encapsulated into the classes and is retrieved wheded instead of leaving it about
with the risk of being accidentally altered and kg with classes is better than
working with pointers. Therefore, C# is used agprmming language and entities has
been arranged in classes. Different objects aredated as they exist in reality and in

% Seehttp://artstkmkt.sourceforge.net
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the model. The isolation of different entities een kept as will be seen later and this
provides the opportunity to easily extend the madelerms of some parameters like
number of stocks. Moreover, this makes it easienamage variables and parameters in
the model.

There are classes afarket stock agent rule and a class of evolutionary methods
for agents to use. Agents have a number of inssaoictherule class. They can execute
methods liketrade and by that, they submit their bids or offer te tnark, where the
specialist stays. When the specialists declaresndve price, agents’ properties get
updated and their rules get corrected and from tongme, upon the learning speed,
they use methods in evolutionary class to impriwes toehavior.

3.2. Parameter settings

The main parameter setting in the work is borrodech the original model discussed
in [6], [7]. This not only makes the replication thle original model possible, but also
provides the possibility of comparing the resufice different entities are put into
different classes in the implementation, parametdues are arranged and introduced
here according to the same classification. Thisesakeasier to compare the report and
the information in it with the implementation andsa simplifies any new
implementation.

The market class simply includes agents and asBe¢se is also a specialist who at
each time period uses the data from the whole maukée finds the market clearing
price through a number of iterations. This numbasyut to 10 in the original model
[6] but here since the speed of computers allowyitmuch more time to find a market
clearing price. However, if this did not happere trest try will be declared as price for
that period. Moreover, since a mathematically exachber for price in a computational
method is out of reach, trials of the specialisthecked against a thresho&} X for the
difference between sum of agents’ desired numbeshafes in equation 2.10 and the
total number of shares in the markat, The step size in price finding iterations is
calculated after running the program for some tiares$ measuring the number of times
that market clearing price is found. Table 3.1 espnts all initial values for parameter
setting of the market.

Parameter Description Notation Value
Number of agents N 25
Number of holdings (with stochastic paying) - 1
Number of risk free bond - 1
Interest rate for risk free bond T 0.1
Number of iterations for finding market clearingqe - 200
Threshold for cleared market Oy 1

Table 3.1. Parameter values for the market inithalation.

The market will not allow agents to go short forrmthan 5 shares in each time step.
There is also a limit considered for the maximumegowhich is 200 and off course the
price cannot be negative. These assumptions hgpeaeg to have a small effect only
at early stages of the market and they do notenfte results.
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Agent is another class and includes some othanpeters. They are homogenous in
terms of their risk aversion degree which is saaneafl. The number of rules for agents
are also the same. All corresponding parametergedound in table 3.2.

Parameter Description Notation Value
Number of rules M 100
Risk aversion degree y 0.5
Initial cash - 2000
Initial number of share - 1

Table 3.2. Parameter values for agents in the siioul.

Rules are randomly initialized according to thechamism described in previous
chapter (see section 2.2.2). The correspondingesain their initialization and other
parameters come in the table 3.3.

Parameter Description Notation Value
Number of condition bits ] 12
Probability of turning a bit on: equal to 1 - 0.05
Probability of turning a bit off: equal to O - 0.05
Real value predictor range a [0.7,1.2]
Real value predictor range b [—10,19]
Initial value of error variance v2 4
Time window size T 75
Cost per bit usage C 0.005
Fitness constant K 100

Table 3.3. Parameter values for rules in the sitimrla

There is one holding instance of the stock clagk iaqpays a stochastic dividend
based on an AR(1) process and using parametersvatuii table 3.4.

Parameter Description Notation Value
Number of holdings - 1
Speed of mean reversion p 0.95
Dividend average d 10
Variance of stochastic shock a,f 0.0744

Table 3.4. Parameter values for stock in the sifimria

These parameters form the input to the model aed tne can test to see if the
model simulation confirms known basics and hereEHRan be interpreted as one of
the outputs that can evaluate the simulation ieappin the results. Table 3.5 represents
parameter values which are calculated analytiGally form the expectations here from
the simulation.

16



Calculation of the parameter Notatign Value
p/(A+71—p) f 6.3333
(A+HA-p)d—205,) /T g 16.6667
p afREE 0.95
1-p)(@+d+g) pHREE 45

Table 3.5. Analytically calculated parameter values

It would be beneficial to mention that the teuﬁd in calculation equation of is
calculated using equation 2.21 whers calculated.

Another part of initial settings belongs to the idigion of the market state. The
market state can include as much information asnoaye wish to. Jostet. al.[11, 12]
use 64 bits including 3 dummy bits and Ehrentrdit] includes 32 bits of both
fundamental and technical bits, so 64 bits in tdd#re, same as the original model, 12
bits of information are included in the market st&8 fundamental bits and 4 technical
bits have been used while last two bits are alveayso one and zero regardless of what
is happening in the market. Table 3.6 represehigfarmation included in the market
state of the model used for simulation in this work

Condition Bits
Price x interest / dividend > 1/4 1
Price x interest / dividend > 1/2 2
Price x interest / dividend > 3/4 3
Price x interest / dividend > 7/8 4
Price x interest / dividend >1 5
Price x interest / dividend > 9/8 6
Price > 5-period moving average 7
Price > 10-period moving average 8
Price > 100-period moving average 9
Price > 500-period moving average 10
1 11
0 12

Table 3.6. Condition bits of the market state.

Finally, different values in evolutionary procest the program, especially the
learning speed, play an important role in the satioh. Table 3.7 shows different
parameter setting in genetic algorithm used fotgian of agents.

Parameter Description Notation Value
Crossover probability P, 0.1
Mutation probability P, 0.9
Bit mutation probability Pym 0.03
Percentage of worse rules to be replaced - 20

Table 3.7. Parameter values for evolutionary meishaim the simulation.
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3.3. Design of the experiment

Since the first aim of this work has been replivgitthe original model, the first
experiment, same as in the original model, is teckhif the model can reach the
homogenous rational expectation regime as discusstte benchmark section in 2.6.
To do so, the model is first run for 250000 peritmtet the agents and the market have
enough time to evolve and then the price seriegdsrded for 10000 periods and is
compared to the linear price dividend assumptiotiirst place. Recalling predictors
used for prediction one can write:

Per1 tdepr =a+b(p+dy) +& (3.1)

In this equationg; represents residual value and will be used toyaeahe structure.
This experiment is done for two learning speeds;gdnetic algorithm is invoked every
1000 periods for slow learning regime and every @&@od for the fast learning regime.
This learning speed, as will be seen in the rescdts highly affect the result and move
a homogenous rational expectation equilibrium talsaa complex regime. However,
the effect of this parameter is not thoroughly sddhere and the question of the
optimal learning speed or the range of learningedpeorresponding with transition
from an equilibrium to a complex regime is left neavered here but one can find more
on this in [15].

34. Reaults

There are many different aspects that the modelbeaniewed from. Basic statistical
analysis has been the first method to study redutt: early implementation and
comparing them with real market data hence evalgatie model and implementation
as a whole. Price dynamics has been the first mdoof the model to be studied but it
can be followed by many other properties definethenxmodel. Trading volume, effect
of wealth, level of bit usage, the evolutionary megsm, and effect of learning speed
are all examples of data that can be extractedugfircsimulation for any directed
analysis. Moreover, other questions can be askedtla®m model can be tailored to
answer them, like game theoretic questions discussg 1, 12].

Here, with the limited scope of this work, pricendynics is plotted out and will be
discussed. The level of bit usage is another detacted through simulation and will
also be studied. Finally the predictors of the ég@nll be investigated.

3.4.1. Pricedynamics

Resulting price dynamics for different scenarios idlustrated in figure 3.1. As can be
seen, price, similar to the real market data, ajgpEabe persistent in the results from
simulation while following the persistency in dieidd series. In comparison with the
fast learning regime, slow learning agents seefmetonuch more successful to follow
the REE benchmark. This benchmark is calculatedptwited based on the given input
dividend series and the linear relation assumegd®t dividend and price in REE (see
equation 2.13). When the genetic algorithm is iracbknore frequently, while all other

parameters are kept the same, the system exhiffggedt behavior which is apparent
in terms of expected variations for the price segleown in the figure. Other properties
of the fast learning regime deviates more from tenchmark. Basically, such

differences has been the reason for naming the #awing regime the “HREE”
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regime and calling the fast learning regime “compl@ the corresponding literature
and by main authors.
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Figure 3.1. Price dynamics for different learnipgads. Faster learning speed results
in complex regime in which the price dynamics isffam the homogenous rational
expectation equilibrium.

When analyzings; as already discussed, the resulting standard tiavigs a bit
different from what is mentioned in the literaturegarding the original model.
However, it confirms that in the fast learning ragi results deviate more from the
benchmark. The standard deviation for slow learmegme is closer to the benchmark
than the complex regime. It also shows less exkesssis than the complex regime.
Table 3.8 compares results from the model withotiiginal model [7].

o Slow learning Fast learning
Description
SFI This work SFI This work
Standard Deviation 2.135 2.054 2.147 1.877
Excess Kurtosis 0.072 0.72 0.320 1.092

Table 3.8. Two statistical properties of #yeextracted from price series compared to
the results from original SFI-ASM.

3.4.2. Bit usage

The fraction of bits set in the market by agents been another output data of ASM
studied here. Recalling the definition, a bit iswken it carries information and is set to
either O or 1. In the original SFI-ASM, there waseamergence of technical trading in
complex regime recognized by authors [6]. But latehrentreich brought another
implementation which did not confirm that but thber conclusion regarding bit usage
in the original model: there are higher level ofjegate bit usage when the agents learn
and evolve on a faster pace. However, results der@ot confirm neither of them.
Figure 3.2 shows how technical bits are going tdesdown in both regimes and on a

lower value for the faster one. The moving averafythe total fraction of bits set are
plotted for both regimes.
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Figure 3.2. The moving average of total fractioniemhnical bits set.

Figure 3.2 shows that agents tend to use techmfaimation less often. However,
it does not mean that they do not use the infoonatiey have. They use fundamental
information they have also the useless informat@ibfast two bits of condition part of
their rules. These can be seen while having a doolustrations of fraction of different
kinds of information bits set in figure 3.3.
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Figure 3.3. The moving average of total fractiotit$ set for different kind of
information.

3.4.3. Predictors

Prediction parametersz and b, are randomized in ranggg,1.2] and [—10,19]
respectively. While the market evolves along tintlee winning rules prediction
parameters line up on a direction passing through denter of the region, which
basically is the point where parameters correspuntlh the benchmark exist. In the
slow learning regime, they line up slowly but onaader that all points seem to belong
to the same line. In the fast learning regime, thegn lose a bit of their order on the
line and some of the predictors stay away fromlitteeand also from the center of the
region. Figure 3.4 shows snapshots of the disiobuif the prediction parameters of all
agents at different time steps for both regimes.
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21



3.5. Discussion

Stylized properties of the overall outcome of ateysof simple individuals has been
one of the interesting subjects to study and agaséd modeling of an artificial stock
market is one of the best examples for that inatttiéicial world. The implementation
shows how some simple agents without any commuarcatith each other and relying
only on their internal evolutionary mechanism aimiotigh interactions with the
environment, can construct a market with stylizedpprties of a real market. The
internal evolution of the agents hence becomesnid@n for their cognition and given a
sufficient amount of time, those simple agents banome members of a rationally
performing market formed by themselves.

It is apparent from figure 3.1 that agents havestroicted a market similar to the real
market. They have been successful to follow theddivd variations and reach the
benchmark when the learning speed is slow. Theangksion considered for the agents
seems to result in a lower price in fast learniegime. The standard deviation of the
price in slow learning regime seems very close hatvis expected,e. 2. There are also
more excess kurtosis than in results from the walgiSFI-ASM. These differences
would be due to some differences in parameters ustte implementation liké,, in
table 3.1. There is also a small difference in\thdance of the random shock in the
input dividend series.

Studying fraction of the bits set shows agentsioanusly use information they have
while each agent always owns a zero intelligende @ rule without any bit set. This
may infer that zero intelligence agents would netals successful as current agents at
least in terms of generating a rational market.

The order appeared in predictors’ space in figudesgéems interesting. Instead of
gathering around the center of the region, theg lip on a direction passing through the
center. Increasing the learning speed, has noeteadents to achieve the predictors of
the benchmark. Instead, it has resulted in scagjesf a few of predictors and this may
explain the deviation the complex regime has from henchmark. On the other hand,
since there seems to be a linear relation betwaesnpeters: andb, it seems that the
interacting mechanism of agents results in elinbmatof one of the prediction
parameters, as it can be calculated upon the ather This is more true for slow
learning regime than for the complex regime whefeva scattered points are present.
Figure 3.4 shows snapshots of the distributiorhefgdrediction parameters of the agents
at different time steps for both regimes.
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Conclusions and
Future Work

SFI-ASM might be the most difficult artificial magk model to implement. There are
too many parameters and they all need to be trezteully. Although the calibration
of the model at its current level was previouslyedy main authors of the SFI-ASM,
there still are some considerations even at thislld’rice finding mechanism is one
issue to be considered. Price is calculated thr@ungiterative procedure using equation
2.11. It needs a thorough attention finding a $lgtestep lengthy, in that equation.
This in addition to other problems with the SFI-AS8Awell discussed by LeBaron in
[17]. Another issue with the mechanism which sgetiauses to find the market
clearing price, happens when setting the thresfmidhe equation. Solving such an
equation computationally needs taking a threshldby which the market is supposed
to be cleared. When setting this number equal & tre simulation goes on well and
one can get results as in this report. But, thiesimold is equal to 4 percent of the total
amount of stock and if one considers trading voluinis more than trading volume in
some periods or at least the error it contribudesonsiderable. Therefore it seems to be
crucial to increase the resolution. However, da@ogresults in unstable market with an
oscillating price dynamics. This has been the easend, = 0.01. This, beside other
consideration, may affect the results in one wayaoother. Therefore, one should
consciously have them in mind and reconsider theforb any generalization about
results. However, there is no direct way to elirtenall errors or to instantly measure
the dimensions and effect weight of each paramefbus further research and
investigations are needed in this regard.
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41. Conclusions

It can be concluded that agents in existing medmarand settings, have succeed to
reach homogenous REE themselves. In addition towheen they learn faster, they can
form a market much more similar to a real markait Bow similar is the dividend
series to empirical data and how much applicabéeréisult would be in dealing with
real world financial problems are questions oftwaliing with real data that still remain
unanswered for some reasons. Shortcomings of thdelmas counts LeBaron [17],
economically uninteresting properties of the modahd more importantly the
availability of other modern models have made #etHithis model less interesting.

Study of bit usage shows that agents use informahey have access to. Thus it
might be better to use more information and lor@estrings for condition part, as did
Joshi et. al. and Ehrentreich in their works [11-15]. Howevehjst needs some
considerations and first of all, desired goals spekific questions that the model would
be expecting to answer shall be defined first. @tige, the sensitivity of the model to
parameters could make such a change less helgfténieich has answered a question
of the type in [15] after well defining the questio

The evolutionary part of the model remains the mtgresting part and plays the
role of a heart to body of the model. Although Hitreich [13, 15] suggests some
corrections in the genetic algorithm mechanism spetifically the mutation operator,
the existing mechanism has also been successfd. ifiterpretation of the order
appeared in the predictors arrangement needs mweestigation to see if it is a design
consequence or not.

Finally, to learn and deeply understand the agaseth modeling, SFI-ASM is a very
good choice and provides one with the opportuniteedearn a lot about details of
planning the whole system, evolutionary mechanisand programming issues.
However, putting some additional goals into theterty by advancing the model for
instance, would make the whole work more inspirgagd would result in more
promising conclusions.

4.2. Futureworks

It is necessary to conduct a complete set of statistests on cross section of a
sufficient number of runs to have more robust fsswds previously done in
corresponding literature. This can provide moreiabd¢ comparison of this
implementation with original model. Then it woul@ Inore interesting to investigate
the order appeared in predictors and to see #nthe of any specific interpretation. It is
also worth to check trading volume again as well.

Further research possibilities of the model itbal$é already been well described by
Palmeret. al.in [8]. They suggest using multiple stocks in thedel, impact of wealth,
improved predictions, transition details, infornoaticontrol, and strategic behavior as
subjects of study and extension of the model fauruplan. However, LeBaron, one of
the main builders of the SFI-ASM has stopped wagkam this model after about a
decade research on that [17] and has moved to wibéern models. If not stopping the
work on this model, it is necessary to find a goedy to correct or improve
inefficiencies of the model and to enrich finan@apects of it. In that case, it may not
be called SFI-ASM anymore and this may already happened as Ehrentreich
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mentions in his book [15]. But the main idea andittire of the model will keep its
uniqueness.

It would also be interesting to use possibiliti¢ghas stage, and to be specific, the
internet to put the model available online throagiplications so that human can enter
the market as users in a game or so. This wouldigeathe opportunity to conduct
studies on a market that partially benefits readlérs’ behavior. A work of the kind is
done by Gulyast. al.and described in [18, 19].
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