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Abstract

The aim of the thesis was to develop and implement several computer vision methods that
would be needed in the implementation of an autonomous mobile robot for delivering inter-
office mail/messages. In particular we present algorithms for camera calibration, robot home
position identification, and the detection and recognition of objects present in the robots oper-
ating environment.

The robot camera calibration is performed using the Bouguet toolbox. For the robot position-
ing the Hough transform is applied to detect the dominant lines in the images. The orientation
of the lines is used for moving the robot to the home position, which is the starting point for
subsequent robot navigation. The Harris corner detector is used in an algorithm for detect-
ing office doorplates. An external OCR (optical character recognition) system was evaluated
for the task of recognizing the name on a doorplate. Finally a classifier (kNN) was developed
for discriminating between two objects, the ceiling and floor, present in the robots operating
environment based on grey-level co-occurrence matrix textural features. A feature selection
strategy based on the Bhattacharyya distance was used.

The accuracy of the camera calibration was verified by reconstructing a 3D object of known
dimensions and estimating its size from the reconstruction. The positioning and detection
algorithms were developed and assessed in a controlled office operating environment. The
orientation of the lines detected using the Hough transform was sufficient for controlling the
robots position. The corners of the doorplates were correctly detected except when images
were affected by saturation or strong reflection. In the texture based classification experiment
a classification accuracy (leave-one-out) of 97 % was obtained. The results collectively demon-
strate the efficacy of the developed algorithms within the experimental operating environment.
Planned future work includes extending and developing these algorithms to work robustly in
a more realistic office environment and to implement a fully functioning autonomous mobile
robot for delivering office mail and messages.
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1 Introduction

.
During the last decade, robot vision has found widespread applications in industry, medi-

cal, public service and etc. Several studies have been done in this area; a new global vision
system for tracking of multiple mobile robots is suggested in [1], a new 3D sensing system, in
which the laser-structured-lighting method is basically utilized because of the robustness on
the nature of the navigation environment and the easy extraction of feature information of in-
terest, is proposed in [2]. Computer vision has been also widely used in biomedical engineering
applications, for instance, in [3] a robot-tweezer manipulation system used to solve the prob-
lem of automatic transportation of biological cells, where optical tweezers function as special
robot end effectors is presented. The accuracy and the precision of the daVinci (Intuitive Sur-
gical, Sunnyvale, CA, USA) surgical system using robot are quantified in [4], and a prototype
robotic system designed to assist vitreoretinal surgery and to evaluate its accuracy and maneu-
verability is developed in [5] Moreover, researchers try to design robots for public service and
industrial applications, for instance a robot is used to guide people through the museum [6], a
generic methodology for the synthesis of industrial robot applications with sensory feedback
at the end-effector level is presented in [7], and a neural network-based vision inspection sys-
tem interfaced with a robot to detect and report IC (Integrated Circuit)lead defects on-line is
presented in [8].

The main concept of this thesis is divided in two parts. The first one called geometric robot
positioning, which is moving the robot to a desired location in the robot operation environment.
The second application is to use the robot for message delivery purpose. And two effective
algorithms are presented to solve these tasks.

In addition, it is essential for the robot to distinguish objects within its operation environ-
ment. There are different methods for reaching this goal. In this thesis some methods such as
the texture analysis approach mainly based on Haralick ´s features [9] are used. In order to
classify objects placed in the robot environment kNN classifier [10] is used.

The rest of thesis is organized as follows.
Chapters 2 gives overview the general coordinate systems involved in robotic applications,

and make a relation between them based on algebraic tools will be presented. Then, the ba-
sic structure of the pinhole camera model and its calibration process will be studied. Finally,
different lens distortions which can affect image quality will be explained briefly.

Chapter 3 the general structure of the robot used in this thesis will be introduced. In addi-
tion, the robot operation environment will be explained in detail. Then, two applications for
the autonomous mobile robot will be defined. Chapter 4, object discrimination using texture
analysis and classification approach will be discussed. Chapter 5 will present the experimental
results. Finally, conclusion and future work will be discussed in Chapter 6.
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2 Background

This chapter introduces the general coordinate systems involved in robotic applications, and
make a relation between them based on algebraic tools such as, rotation and translation trans-
formation. The basic structure of the pinhole camera model and its calibration process will be
introduced. Then, different lens distortions which can affect image quality will be explained
briefly.

2.1 Coordinate system

Movement in robotics is mainly considered as the local change of a rigid object in relation to
another rigid object [11]. In this context, translation is defined as the movement of all mass of
a rigid object with the same direction and speed on parallel tracks and rotation is running the
mass points along concentric tracks by revolving a rigid axis. Thus, every movement in robot
point of view can be modeled as combination of the rotation and the translation [11]. Moreover,
object position measurement is usually performed in the Cartesian coordinate system. In the
robotic applications it is necessary to have several coordinate systems. Apart from the robot
operation environment coordinate system, the number of coordinate systems mainly depend
on the number of sensors used on a robot and these coordinate systems can be connected with
the simple algebraic transformation such as the rotation (R) and the translation (T), the princi-
ple idea of the rotation and translation is also shown in Fig.2.1. As an example, the equipped
robot with a camera, the origin R and C could be based on the robot and the camera respec-
tively, and coordinate of the robot operation environment is specified by the origin W (Fig.2.2).
In order to calculate the orientation of the camera coordinate system with respect to the robot
coordinate system, the transformation matrix between both coordinate systems are calculated
using (2.6).

αC =

 1 0 0
0 cos α − sin α

0 sin α cos α

 (2.1)

βC =

 cos β 0 sin β

0 1 0
− sin β 0 cos β

 (2.2)

γC =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (2.3)

R = αC.βC.γC (2.4)
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Figure 2.1: Six degree of freedom (i.e., XR, YR and ZR are translation, and αC, βC, γC are rotation
in XYZ coordinates).

where angles αC, βC, γC are defined as the rotation of the camera around the XR-axis, YR-axis,
ZR-axis of the robot origin (R), respectively.

T =

 1 0 XR

0 1 YR

0 0 ZR

 (2.5)

where XR, YR and ZR are the position of the robot in the robot reference coordinate system. XC

YC

ZC

 = R ·

 XR

YR

ZR

+ T (2.6)

where XC, YC and ZC are the position of the camera mounted on the robot.

2.2 The Pinhole Camera Model

The pinhole camera is the simplest 3D camera model. Its simplicity enables better understand-
ing of the camera parameters, but also it is the basis for the definition of more complex camera
models [13]. In the pinhole camera model, each point of an object in space is projected on a
point in a plane called the image plane, which forms the image of the 3D scene. Since the hole
diameter is infinitesimal (optical center), every ray of light coming from each 3D point in the
scene will pass only through it. Thus, each image sensor element will be affected by a single
ray of light. As a result, all points in space are focused. In fact pinhole camera is perfectly
suited for modeling the focal length parameter, which controls the zoom factor [13].

However, the major drawback of this model is that it does not cover most of the character-
istics and parameters of real cameras, such as the blur associated to out of focus objects and
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Figure 2.2: Coordinate system of robot-vision system where the origin R and C are based on the robot
and the camera respectively, and W is coordinate of the robot operation environment.

the control of the amount of light incident on the sensor. Typically these visual effects are
associated to the focal lens and the iris or diaphragm mounted alongside the camera.

2.2.1 The Pinhole Camera Calibration

The pinhole camera calibration procedure requires two steps [11], and it should be noted that
the calibration doesn’t include the nonlinear effect of the lens distortion (i.e., radial and tan-
gential). In the first step the relationship between a point (Xi, Yi, Zi)

T in the world coordinate
system and its corresponding point in the image coordinate (xi, yi)

T is extracted using a homo-
geneous projection 3x4 matrix, which is denoted by A. The goal is to calculate the projection
matrix coefficients which are defined by aij. In projection matrix; equations are used to show
the relationship between a point in the robot operation environment coordinate system and its
corresponding point in the image coordinate.

A =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 (2.7)

 Kx
Ky
K

 = A ·


X
Y
Z
1

 (2.8)

Using the previous matrix transformation (2.8), the output coordinate values are obtained in
the homogeneous coordinates. Thus it is necessary to perform final conversion between the ho-

5 CHALMERS, Master’s Thesis 2011:June



mogeneous coordinates (X, Y, Z, 1)T to the Cartesian coordinates (x, y)T. This is accomplished
by:

x =
a11X + a12Y + a13Z + a14

a31X + a32Y + a33Z + a34

y =
a21X + a22Y + a23Z + a24

a31X + a32Y + a33Z + a34
(2.9)

a11X + a12Y + a13Z + a14 − x(a31X + a32Y + a33Z + a34) = 0

a21X + a22Y + a23Z + a24 − y(a31X + a32Y + a33Z + a34) = 0 (2.10)

where it can be assumed that K = 1 [14].
According to (2.10) for a known point in the world coordinate and its corresponding point in

the image coordinate system two linear equations are available. Consequently, for N projection
points, the equation can be written [15]:

[
Xi Yi Zi 1 0 0 0 0 −(xiXi) −(xiYi) −(xiZi) −xi

0 0 0 0 Xi Yi Zi 1 −(yiXi) −(yiYi) −(yiZi) −yi

]



a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34


= 0

(2.11)

where i = 1...N, which is the number of points in the world coordinate and its corresponding
points in the image coordinate. In addition, for estimating the parameters (i.e., a11.....a34) it is
assumed that a34 = 1 [16]. Based on this assumption (2.11) can be solved with pseudoinverse
technique. But the drawback of this estimation is that if the correct value of a34 is close to
zero, a singularity is introduced. Because of this fact, the constraint a2

31 + a2
32 + a2

33 = 1 were
suggested [17], which is singularity free. The parameters a11.....a34 don’t have any physical
meaning. Therefore the first step where their values are estimated can be considered as the
implicit camera calibration stage [14].

In summary (2.11) can be written [15]:

WX = 0 (2.12)

where W is the matrix obtained from the calibration points, X is the coefficients of the projection
matrix .
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2.2.2 Internal and External Camera Parameters

In the second step of the pinhole camera calibration, the internal and external parameters of
camera are calculated [11]. Moreover, in order to extract physical camera parameters from
(2.11) a method based on RQ decomposition were proposed [15]. The decomposition is defined
as follows:

A = λV−1B−1FRT (2.13)

V =

 1 0 −x0

0 1 −y0

0 0 1

 (2.14)

B =

 1 + k1 k2 0
k2 1− k1 0
0 0 1

 (2.15)

F =

 f 0 0
0 f 0
0 0 1

 (2.16)

where A is projection matrix, λ is an overall scaling factor, and the matrices V, B, and F
contain internal parameters of the camera which are focal length f , principal point (x0, y0), and
coefficients for linear distortion (k1, k2). The External parameters of the camera are defined
in the matrices R and T which are the rotation and translation, respectively,from the object
coordinate system to the camera coordinate system.

2.2.3 Lens Distortion

As mentioned before, the pinhole camera is a efficient model for understanding the general
structure of the camera but the problem is, since it is not equipped with a lens it does not have
ability to model the possible effect of the lens on the image quality. In [18] three types of dis-
tortion are introduced. The first one, named tangential distortion, is caused by imperfect lens
shape that is produced manufacturing. But the effect of this type of distortion is insignificant.
Because of this fact in most practical situations the effect of this type of distortion is ignored.
But radial distortion is one of the most ordinary visual distortions of images seen through a
lens. This happens because the magnification at the edge of a lens is differing from its center.
There are two types of radial lens distortion [18].

Equation of Optical Distortion In radial distortion the pixels value (gray level) doesn’t change
at all, the only thing that is changed the pixel coordinates. In the other words, they are distorted
radially from the center of image. The optical distortion is governed by [18]:

r
′
= r + k1r3 + k2r5 + k3r5 + k5r7 + ... (2.17)

where r is the original radius and r
′
the distorted radius, and the degree of distortion is given

by the distortion coefficient (k1, k2, k3, k5). This equation is modeled in terms of infinite series.

7 CHALMERS, Master’s Thesis 2011:June



Figure 2.3: Original image (left), effect of the barrel (middle), effect of the pincushion (right)

According to [12], for vast majority of computer vision applications the radial distortion can be
safely approximated to finite series using the first two terms of (2.17), which is given by:

r
′
= r + kr3. (2.18)

Type of the radial distortion strongly depends on the sign of the distortion coefficient (i.e.
pincushion radial distortion where k is positive and negative k is referred to as barrel distor-
tion). The effect of pinchusion and barrel distortion are shown in Fig. 2.3 in the right and
middle, respectively.

2.2.4 Camera Calibration toolbox

The Calibration process is an important step in any computer vision application. It is the pro-
cess of determining the internal camera geometric and optical characteristics (intrinsic param-
eters) and/or the 3-D position and orientation of the camera frame relative to the world co-
ordinate system (extrinsic parameters) [12]. In many cases, accuracy of the machine vision
performance strongly depends on the accuracy of the camera calibration process. There have
been many different proposed methods of calibration (e.g. [16], [15]). But one of the most effi-
cient camera calibration toolbox is presented by Bouguet [19]. This toolbox is developed based
on calibration methods that are defined by Heikkilä [14] and Zhang [21]. This method requires
some images of planar patterns with known geometry. In our calibration process the patterns
consist of 9 by 7 squares like a chest board. This software is found to be efficient in this applica-
tion. In the rest of this section the process of the camera calibration based on Bouguet toolbox
[19] will be presented.

Unit conversion

The focal length which is calculated by Bouguet’s toolbox is in pixel units [19]. In practical
applications it is necessary to convert it to the millimeter units. For reaching this goal, size of
each pixel should be calculated. In this project a CCD camera [20] with 640x480 pixel resolution
has been used. In order to calculate each pixel dimension, relation between the image size and
dimension of the camera monitor should take into account. Assume that the image size is nxm

CHALMERS, Master’s Thesis 2011:June 8



where n is number of the pixels in the row of the image, and m is number of columns of the
image, and dimension of monitor of the camera is NxM centimeter, where N and M are the
length and height of the monitor respectively. Therefore, dimension of each pixel is calculated
by:

α =
N
n

cm (2.19)

β =
M
m

cm (2.20)

where α and β are length and height of each pixel respectively. Thus, pixel value could be easily
converted to millimeter value by:

mm = (pixels ∗ 25.4)/dpi (2.21)

where dpi is number of pixel in each inch. The result of implementing this formula has been
shown in Table 5.2.

Object extraction

In this step, it is possible to extract an object dimension from the image plane using the focal
length and the dimension of each pixel. As it is shown in Fig.2.4 two triangle (CPP

′
,Cii

′
) are

similar, therefore, objects can be extracted using:

Figure 2.4: Object extraction

f
f + Z

=
∆x

∆X
=

∆y

∆Y
(2.22)

∆X =
∆x.Z + f .∆x

f
(2.23)

∆Y =
∆y.Z + f .∆y

f
(2.24)

9 CHALMERS, Master’s Thesis 2011:June



where ∆X and ∆Y are the dimension of the object in the robot operation environment, ∆x and
∆y are the dimension of the object in the image plane, f is the focal length and Z is the known
distance from the object to the image plane.
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3 Autonomous Mobile Robot Applications.

In this chapter the general structure of the robot and environment of the robot operation will
be introduced. Besides, two missions for the autonomous mobile robot will be defined. Finally,
two algorithms will be presented in order to handle the robot positioning and message delivery
applications.

3.1 Robot Structure

In this section, the basic structure of the robot named mBase, which is used in this project will
be introduced.

3.1.1 mBase Robot

Mbase-MR5 is a robot designed and developed by the company MoviRobotics [22], to be used
by research groups and universities.To work with this platform a personal computer (PC) with
RS232 port, Linux operation system, and at least four megabytes free hard disk is required. This
robot is not equipped with a camera and it works based on control engineering techniques. A
physical view of the robot is shown in Fig. 3.1. The model and characteristic of the robot is also
detailed in Table (3.1).

3.2 Environment Specification

In this section the robot operation environment will be explained. The robot is tested in a
known corridor with a following specification (i.e., 6 meters long, 2.5 meters width, 2.5 meters
height, there are four rooms whose access doors symmetrically placed by pairs on both sides,
and one exit door is placed at the end of corridor). A sketch of this model is shown in Fig. 3.2.

3.3 Robot Missions

There are two missions suggested as applications in this thesis. The first one called geometric
robotic positioning, this process strongly depends on assignment task for the robot [11]. Using
this method can help the autonomous robot for measuring the robot position at any time. In our
robotic application, the robot is drive in the environment, which was explained in the previous
section, in this application it is necessary for it to be placed in the center of corridor.

There are two justifications for it: If the robot equipped with a fixed camera it will have be
able to visualize both sides of the corridor. Besides, it can be good idea if the user locates the
safe distance between robot and the walls, because in some situations robot sensors have some

11



Figure 3.1: A view of mBase robot in the lab.

Table 3.1: Robot basic features
Model mBase -MR5
Robot measures 53 cm. (L) x 46 cm. (W) x 31 cm. (H)
Lateral wheels Diameter:20 cm. Pneumatic and air tube.
Castor wheel Diameter: 5 cm.
Maximum Trans. Vel. 1.5 m/s
Minimum Rot. Vel. 900/s
Motors 12V / 6.1 Nm max / Redu \cing 19.7 : 1
Encoder resolution 500 CPR
Weight 10 Kg (platform), 26 Kg (robot with battery)
Load capacity 16 Kg
Sensors Four infrared , Encoders, Gyro, Accelerometer
Case construction Aluminum and plastic machining
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Figure 3.2: Robot operation environment.

delays to send a command about objects. Therefore the probability of robot crashing with the
objects placed in its work place will reduce.

The second mission is assigned for message delivery purpose. The robot should navigate in
the corridor and send a message after recognizing the address . As it was mentioned there are
four room placed in the corridor so the robot has to search for suitable features to detect the
doors. The doors generally can introduce by two vertical lines. Line detection algorithms need
edge structure of image as an input. Consequently, thus, the edge detection techniques should
be applied on image before line detection. In the next step, the robot should look for doorplate,
which is placed on the door, the same as before the doorplate should be defined with some
features. The doorplates are designed as rectangle-shapes, therefore extract four corner points
of the doorplates could be a good solution for doorplate recognition.

Besides, the robot has to be able to read the names, which assures a correct delivery. As
a result, it is essential to include an OCR (Optical Character Recognition) [23] algorithm as a
part of the process, which will be presented in the following. Therefore, the robot can read
the doorplates during the navigation process. So, it is able to determine which address the
message must be delivered. Furthermore, the objects in the environment also can be classified
using texture analysis and supervised classifier.

The proposed algorithms for the robot missions will be explained in more details in the fol-
lowing section.

13 CHALMERS, Master’s Thesis 2011:June



Figure 3.3: Algorithm for geometric robot positioning.

3.4 Algorithms for Handling the Missions

In this section, two efficient algorithms will be proposed to handle the robot missions. The first
algorithm involve in the geometric robot positioning, then the calibrated robot will be assigned
for it application (i.e., message delivery).

3.5 Geometric Robot Positioning

In this thesis the robot is designed for the message delivery application in the known corridor
[11]. For this application it is essential for the robot to be placed in the center of the corridor
in order to have ability to visualize both sides of the corridor. Consequently, in order to mea-
sure the robot position in the environment reference point(s) has/have to be defined. In this
application vertical lines of the door side are defined as the reference points. Main steps of the
algorithm are illustrated in Fig. 3.3.
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3.5.1 Canny Edge Detection

The purpose of edge detection in general is to significantly reduce the amount of data in an im-
age, while preserving the structural properties to be used for further image processing. Several
edge detection algorithms exist, and this part focuses on a particular one developed by John
F. Canny [24]. Due to its well performance, it has become one of the standard edge detection
methods and it is still used in research [25].

The Canny operator works in a multi-stage process. At the initial step all the images are
smoothed by Gaussian convolution. Then a simple 2-D first derivative operator such as Sobel
operator, is applied to the smoothed image in order to highlight the regions with high first
spatial derivatives (3.1). After this process the edge strengths can be determined using (3.2)
but it doesn’t give information about gradient orientation in the image. Thus, the gradient
orientation can be estimated as (3.3). The algorithm then tracks along the top of these ridges
and sets to zero all pixels that are not actually on the ridge top so as to give a thin line in the
output, a process known as non-maximal suppression. The tracking process exhibits hysteresis
controlled by two thresholds: T1 and T2, with T1 > T2. Tracking can only begin at a point on
a ridge higher than T1. Tracking then continues in the directions out from that point until the
height of the ridge falls below T2. This processing helps to ensure that noisy edges are not
broken up into multiple edge fragments.

In general, the width of the Gaussian kernel used in the smoothing phase, and the upper
and lower thresholds used by the tracker can control the effect of the Canny operator [24].
Detector’s sensitivity to noise is reduced by increasing the width of the Gaussian kernel, at the
same time some of the finer detail in the image will be loosed. Moreover, the localization error
in the detected edges also increases slightly as the Gaussian width is increased [24]. Setting the
lower threshold too high will cause noisy edges to break up (see Fig. 3.5), on the other hand,
setting the upper threshold too hight remove efficient edges (see Fig. 3.6). Normally, the upper
tracking threshold can be set high and the lower threshold low for good results this statement
is illustrated in Fig. 3.7.

Gx =

 −1 0 1
−2 0 2
−1 0 1



Gy =

 1 2 1
0 0 0
−1 −2 −1

 (3.1)

where Gx, and Gy are Sobel operators in x,y direction, respectively.

|G| =
√

G2
x + G2

y (3.2)

θ = arctan(

∣∣Gy
∣∣

|Gx|
) (3.3)

where |G|, and θ are defined as amplitude of gradient, and direction of gradient, respectively.
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Figure 3.4: Original test image.

Figure 3.5: Canny result T1 = 0.0169, T2 = 0.0388.
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Figure 3.6: Canny result T1 = 0.58, T2 = 0.0188.

Figure 3.7: Canny result T1 = 0.3469, T2 = 0.0008.
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Hough Transform

The Hough transform (HT), named after Paul Hough who patented the method [26], is a pow-
erful global method for detecting lines. It transforms between the Cartesian space and a pa-
rameter space in which a straight line (or other boundary formulation) can be defined.

Theory of Hough Transform

Hough transform (HT) mainly consider to detect the possible straight lines in an image. For
every point or pixel coordinates in the image, all the straight lines passing through that point
with varying values of line slope and its intersect parameters should be calculated by:

yi = mxi + c (3.4)

where (xi, yi) is a pixel coordinate in an image, and m and c , respectively, are slope and intersect
of the straight lines passing through the pixel in the image. In addition, This statement has been
shown in Fig. 3.8.

Figure 3.8: Lines through a point in the Cartesian Coordinate.

If the previous equation is expressed in terms of (m, c) instead of (xi, yi), then (3.4) can be
defined by:

c = yi −mxi (3.5)

Moreover, the idea behind (3.5) is shown in Fig. 3.9.
According to these statements, it is clear that each different line through the point or pixel

(xi, yi) corresponds to one of the point on the line in (m, c) domain.
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Figure 3.9: Parameter space.

Hough Transform Algorithm

1. Detect all the edge points utilizing suitable edge detection (often Canny edge detection).

2. Quantize the (m, c) space into a two-dimensional matrix H with appropriate quantization
level.

3. Initialize the matrix H to zero.

4. Each element of H(mi, ci) which corresponds to an edge point is incriminated by 1. The
result is a histogram or a vote matrix showing the frequency of edge points corresponding
to certain (m, c) (i.e., points lying on a common line).

5. The histogram H is thresholded where only the large valued elements are taken. These
elements correspond to lines in the original image [27].

Practical Issue

But previous definition of Hough transform has some significant problems. It can give mis-
leading results when objects happen to be aligned by chance. This causes another disadvantage
which is that the detected lines are infinite lines described by their (m, c) values, rather than
finite lines with defined end points. To avoid the problem of infinite m values which occurs
when vertical lines exist in the image. In the following the alternative formula can be given
using:

x sin(θ) + y cos(θ) = ρ (3.6)

According to Fig. 3.10 a point (x, y) space is now represented by a curve in (ρ, θ) space rather
than a straight line.
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Figure 3.10: The representation of a line (x, y)in (ρ, θ)coordinates.

3.6 Message Delivery Application

In the following a efficient algorithm for the message delivery mission will be explained in
detail. Initially,the positioned robot gather information about its operation environment using
camera mounted over it. Since the robot task is message delivery, the room should be detected,
the vertical lines of the door sides (which are defined the door position) are detected using
Hough transform, which was explained in the previous section. The robot should also have
ability to detect the doorplates, which is given the office owner name. In order to reach this
goal corner detection should be applied. Afterward, the robot must be able to read the names,
which assures a correct delivery. An OCR module must therefore be part of the process. The
explained algorithm has been depicted in Fig. 3.11.

3.6.1 Corner Detection

Corners in images represent critical information in describing object features that are essential
for pattern recognition and identification. As a result a number of corner detection methods
have been proposed in the past like [28], and [29]. In this part of the thesis the Harris corner
detector is used to detect the rectangle shape of the doorplates. The Harris corner detector
is a popular interest point detector due to its strong invariance to rotation, scale, illumination
variation and noise [30]. This detector is based on the local auto-correlation function of a signal,
this function measures the local changes of the signal with patches shifted by a small amount
in different directions. A discrete predecessor of the Harris algorithm was presented in [29],
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Figure 3.11: Algoritm of message-delivery robot.
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the discreteness refers to the shifting of the patches. The Harris corner detection is governed
by the following equations:

S(x, y) = ∑
W
[I(xi, yi)− I(xi + ∆x, yi + ∆y)]2 (3.7)

where S(x, y) is defined as auto-correlation function, I(., .) denotes the image function, and
point (xi, yi) in the Gaussian window W centered on (x, y).

The shifted image is approximated by a Taylor expansion truncated to the first order terms.

I(xi + ∆x, yi + ∆y) ≈ I(xi, yi) + [Ix(xi, yi)Iy(xi, yi)] .

[
∆x
∆y

]
(3.8)

where Ix(., .) and Iy(., .) denote the partial derivatives in x and y direction, respectively.
Substituting approximation (3.8) into (3.7) yields.

S(x, y) = [∆x ∆y] · C(x, y) .

[
∆x
∆y

]
(3.9)

C(x, y) =

[
< I2

x > < Ix Iy >

< Ix Iy > < I2
y >

]
(3.10)

where C(x, y) captures the intensity structure of the local neighborhood. Let λ1, λ2 be the
eigenvalue of the matrix C(x, y)

1. If λ1 = 0, λ2 = 0 then this pixel (x, y) has no features of interest.

2. λ1 = 0, and λ2 > 0, then an edge is found.

3. λ1 >> 0, and λ2 >> 0, then a corner is found.

Harris [31] suggested that exact eigenvalue computation can be avoided by calculating the
response function which is defined by:

R(C) = det(C)− K · trace2(C) (3.11)

where det(C) is the determinant of the local structure matrix C, and K is tunable parameter
where its value is from 0.04 to 0.15, and trace2(C), is the sum of the elements in the main
diagonal of C.

Harris corner detector algorithm

1. Filter the image with a Gaussian kernel.

2. Estimate intensity gradient in two perpendicular direction for each pixel, ∂ f (x,y)
∂x , ∂ f (x,y)

∂y .
This is performed using a 1D convolution with the kernel approximating the derivative.

3. For each pixel and a given neighborhood window:
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• Calculate local structure matrix C.

• Evaluate the response function R(C).

4. Choose the best candidates for corners by selecting a threshold on the response function
R(C) and perform non-maximal suppression [27].

3.6.2 Optical Character Recognition

Optical character recognition (OCR) is defined as the process of converting images of machine
printed or handwritten numerals, letters, and symbols into a computer-processable format.
This is a powerful technique, that has great ability to handle less restricted forms of text, accord-
ing to this issue OCR has been introduced as the most important application area in machine
perception [23].

OCR Systems As it is shown in Fig. 3.12 the structure of OCR system contains three logical
components [23]:

1. Input text : Input text can be text images.

2. OCR software block.

• Document analysis (extracting individual character images).

• Recognizing these images (based on shape).

• Contextual processing (either to correct misclassification made by recognition algorithm
or to limit recognition choice).

3. Recognition result which is sent to application using an output interface.

OCR Software Block

Document analysis: In general, extracting the text from image document is performed by a
process called document analysis [23]. In this process poor quality of text image is compen-
sated. Some image processing techniques such as image enhancement, line removal and noise
removal are applied. Image enhancement methods emphasize character versus non-character
discrimination. Line removal, lines which may interfere with character recognition, and noise
removal suppress portions of the image that are not part of characters. In addition, many OCR
systems use connected component analysis in order to isolate individual characters from the
text image [23].

Character recognition: Two essential components in a character recognition algorithm are
the feature extractor and the classifier [23]. All the characters are described by a set of descrip-
tors which are determined by feature analysis. The derived features are then used as input to
the character classifier. One of the most common classification methods is template matching
in this method matching, individual image pixels are used as features.
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Figure 3.12: General structure of an OCR system [23].

In this thesis template matching classifier is performed by comparing an input character im-
age with a set of templates (or prototypes) from each character class. Each comparison results
in a similarity measure between the input character and the template. One measure increases
the amount of similarity when a pixel in the observed character is identical with the same pixel
in the template image. If the pixels differ, the measure of similarity may be decreased. At the
end, the character identity is assigned as the identity of the most similar template [23].

Contextual Processing: Result from character recognition is not perfect and it is normally
merged with some misspelling error. Thus, the result of recognition can be post-processed to
correct the recognition errors [23].
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4 Object detection

In this chapter object detection methods based on color models and texture analysis will be
discussed. In addition, supervised classifier will be used for evaluating discrimination power
of the texture features.

4.1 Texture Analysis

4.1.1 Introduction

Texture is one of the most important characteristics used in determining objects or regions of
interest from different types of images [9]. Like photomicrograph, a aerial, or satellite im-
ages. Different studies have shown that human eyes are mostly sensitive to three fundamental
features (i.e., spectral, textural, and contextual) [9]. These pattern elements used in human
interpretation of color photographs [9]. Spectral features are described in the context of electro-
magnetic spectrum, which varies between the visible or infrared band of electromagnetic field,
whereas texture features contain information within spectrum bands. On the other hand, con-
textual features contain information around interested regions in the images being analyzed.

Among these three features (spectral, textural, and contextual) our eyes are mostly sensitive
to tonal and textural features. This thesis is mainly focused on texture features. Texture is
repeating pattern of local variations in image color/intensity or something consisting of mutu-
ally related elements. Some types of the texture which can be analyzed with texture analysis
are shown as an example in Fig. 4.1.

In fact, most of the significant information about structural arrangement of surface, and their
relationship to the surrounding environment are included in texture. Texture features are quite
computational resistant, therefore different studies had been done to extract efficient texture in-
formation [9]. Relative frequencies of various gray levels on the normalized image [32], power
spectra restricted first-and second-order Markov meshes employed autocorrelation functions
[33]. Their methods were efficient in some extent, but all of them have the same drawback, no
specific definition or model for texture were proposed in their methods.

But the most effective texture features were suggested by Haralick [9], he defined fourteen
efficient features based on the statistical nature of texture.

4.1.2 Textural Features Equation

Texture analysis is one of those areas in image processing which still lacks fundamental knowl-
edge. Many different empirical and semi-empirical methods to texture analysis have been
proposed. In general, texture analysis problems are divided into four main groups:
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Figure 4.1: Textures example: (a) grass, (b) cork, (c) knitted fabric [34].

• Classification: The goal is to assign an unknown sample image to one of a set of known
texture classes.

• Segmentation: Partitioning of an image into homogeneous properties with respect to tex-
ture.

• Synthesis: Building a model of image texture, which can then be used for generating the
texture.

• Shape from texture: Texture in the 2D image is used to estimate surface orientations in the
3D scene.

As it was mentioned previously, the procedure that was suggested by Haralick [9] for obtain-
ing the textural features of an image is based on the assumption that the texture information on
an image I is contained in the overall or average spatial relationship, which the gray tones in the
image I have to one another. More specifically, Haralick assumed that this texture information
is adequately specified by a set of gray tone spatial-dependence matrices which are computed
for various angular relationships and distances between neighboring resolution cell pairs on
the image. All of Haralick’s textural features are derived from these angular nearest-neighbor
gray tone spatial-dependence matrices.

In this method, image to be analyzed is rectangular and has Nx, and Ny resolution cells
in the horizontal and vertical directions, respectively. The method is applied to a quantized
version of the input image (gray scale with Ng = 8 level). He also defined ”Gray Level co-
occurrence Matrix” (GLCM) which are based on the repeated occurrence of gray level in the
texture. The GLCM Pϕ,d(a, b), for an image of size MxN, is a matrix of non-normalized fre-
quencies describing how frequently two pixels with gray level a, b are separated by distance in
d direction ϕ, and it is implemented on the four different directions (0, 45, 90, 135) degrees and
distance d. An example of co-occurrence Matrix in horizontal direction with the unit distance
is shown Fig. 4.2.

GLCM is performed in the four different directions :

P(i, j, d, 0◦) = # {[(k, l), (m, n)] ∈ L, k−m = 0, |l − n| = d, I(k, l) = i, I(m, n) = j} (4.1)
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Figure 4.2: 4x4 image (right), spatial relationships of pixels in horizontal direction with the unit distance
(right) (d = 1).

P(i, j, d, 45
◦
) = # {[(k, l), (m, n)] ∈ L, |k−m| = d, |l − n| = −d, I(k, l) = i, I(m, n) = j} (4.2)

P(i, j, d, 90
◦
) = # {[(k, l), (m, n)] ∈ L, |k−m| = d, l − n = 0, I(k, l) = i, I(m, n) = j} (4.3)

P(i, j, d, 135
◦
) = # {[(k, l), (m, n)] ∈ L, |k−m| = d, |l − n| = d, I(k, l) = i, I(m, n) = j} (4.4)

L = LxxLy (4.5)

where #{...} refer to number of set, and Lx and Ly are horizontal and vertical spatial domain,
and L is the set of resolution cells of the image ordered by their row-column designations, and
# denotes the number of elements in the set. Moreover, these matrices are symmetric:

P(i, j, d, a) = P(j, i, d, a) (4.6)

Haralick [9] defined fourteen features based on GLCM, and all of them are addressed in
Appendix I.

4.1.3 Classification

Introduction

Pattern recognition, one of the most important aspects of artificial intelligence, is an appropriate
field for the development, validation and comparison of different learning techniques: statisti-
cal or structural, supervised, inductive or deductive [10].
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In machine learning and pattern recognition an object is described using pattern, which can
be provided utilizing a transducer or sensor connected to the recognition system in the form
of a data set. For the classification process it is essential that characteristic information about
observed pattern is confined in this data set, so-called a pattern-signature or fingerprint [10].

The data which is provided using a sensor or transducer have a random nature, as a result
the statistical approach mainly is used for analyzing data for pattern recognition. Furthermore,
a supervised classifier is utilized for analysis of the data. In this database there are labeled
patterns belonging to the M predefined classes ω1, ω2, ω3,...., ωM. The labeled patterns are
repeatedly introduced to the classifier in order to derive a decision rule optimizing a given
criterion [10].

The general structure of a supervised statistical classification chain is presented in Fig. ??. In
general, the aim of classification is to classify any unknown pattern using its signature.

The supervised classification consists of the three following steps [10]:

• Feature vector extraction from the data recorded by a sensor, named signatures, for in-
stance Haralick [9] feature which will allow the different classes to be separated.

• Data analysis: it is used to reduce the initial dimension of the feature space, at the same
time keeping the discriminant properties of extracted features.

• Classification: is the decision step and associates a label with an unknown pattern [10].

For extracting a feature vector, there is no specific rule for finding the best salient features
and their nature mainly depends on the application. However, many different techniques such
as statistical methods are involved in this step [10].

Figure 4.3: Supervised statistical classification flowchart [10].

Data Analysis method

The data analysis methods are mainly concerned about selecting a subset of basic elements
from a set of feature vectors, while keeping discriminant properties of extracted features. As it
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is shown in Fig. 4.3, it is the step between extracted features from signatures and the classifica-
tion process.

Generally, there are two types of data analysis approaches for reducing the feature space
using feature selection. The methods using sequential methods, for instance SFS (sequential
forward selection), SBS (sequential backward selection). But, they don’t have the ability to
remove the whole feature redundancy [10].

Principal Component Analysis (PCA) One of the well known linear method for data analysis
is the Kahunen-Loeve transform (KLT) or the principal component analysis method (PCA),
which maximizes the variance of projected vectors [10]. It is defined by a matrix having as
rows the eigenvectors of the feature space covariance matrix Σx.

This matrix, the PCA algorithm reduces the feature vector dimension based on redundancy
removal between the projection vector components. This process performed continuously,
since the PCA removes any redundancy between the components of the projected vectors. The
final covariance matrix results in the transformed space in diagonal form [10]:

Σy = KΣxKT = diag[λ2λ3....λn] (4.7)

where Σxand feature space covariance matrix and {λi}i=1..n referred as the eigenvalues of ma-
trix. But the PCA output results don’t give any information about their labels [10]. For instance,
if this algorithm use on a feature matrix which contains information like temperature, pressure,
etc, it has ability to reduce the number of dimensions of feature vector, without much loss of
information [35], but it doesn’t have ability to clarify which label (temperature, or pressure) is
more valuable, in the other word the PCA algorithm is an unsupervised data analysis method.

Supervised Classifiers

The classifier is the decision element of a pattern recognition system. The result of the two
previous stages, which extracted the most essential information about input pattern (images or
signals), will be evaluated using a classifier in order to make the decision about the quality of
the features. The general structure of a supervised classifier is shown in Fig. 4.4. The imple-
mentation such a classifier is equivalent to finding out, during the training phase, and to using,
during the test phase, which is defined by:

x ∈ ωi ⇒ gi(x) = max[gj(x)] (4.8)

where x is feature vector, ω1, ω2, ω3,...., ωM are labeled patterns belonging to the M prede-
fined classes, and g1, g2,g3, ..., gM are called the discriminant functions.

kNN (k-nearest neighbor) classifier kNN classifiers are the most commonly supervised clas-
sification techniques in pattern recognition applications. In this classifier the voting kNN (k-
Nearest Neighbour) classifier assigns an unknown sample to a majority class of its k nearest
neighbours. The decision rule is very simple and can be generalized to the multi class case (see
Fig. 4.5).
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Figure 4.4: General structure of supervised classifier [10].

Figure 4.5: kNN classifier principle. Vk(x) is the kth order neighborhood of the unknown vector x and
dmin is a distance to the nearest neighbor [10].
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For computing a given x the k-nearest neighbors from training set the Euclidean pattern
distance is measured (4.9). Then, x will be assigned to a majority class of its k-nearest neighbors.

d(x, xi) =

√√√√ D

∑
j=1

(xj − xij)2 (4.9)

where d(x, xi) is an Euclidean distance between vectors x and xi and D is dimensionality of the
feature vector x = [x1x2 x3...xD] and xi = [xi1xi2 xi3...xiD].

Classifier testing The final step is the classifier’s performance evaluation. We need to estimate
the classifier’s probability of error (error rate), i.e. how many errors (wrong classifications) we
expect when using the classifier. The straightforward way to evaluate a classifier is simply
counting the number of errors on an independent test data set. The estimate of the classifier’s
error rate is then the ratio:

E =
Ne

N
(4.10)

where E is error rate, N is the number of test samples, and Ne is the number of misclassified
samples.
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5 Experimental Results

This chapter is divided in two parts; first, the camera which is used in this thesis will be cali-
brated using Bouguet toolbox [19], and the size of a test object will be reconstructed from the
image plane. The second part is organized in three examples: example 2 will demonstrate the
geometric robot positioning. The message delivery task will be examined in example 3. The
objects, which are placed in the robot operation environment, will be classified using texture
analysis and kNN classifier and the results of the process will be presented in example 4.

Example 1 The camera used in this project (Finepix J10 [20] ) will be calibrated using Bouguet’s toolbox
[19]. In addition, an object will be extracted from image plane using mathematical approach which were
explained in chapter 2.

1. Necessary Patterns For Calibration. Different images of the pattern grids from different
view angles and orientations are captured (see Fig. 5.1).

Figure 5.1: 25 patterns captured by camera
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2. Corner Extraction

In order to compute the amount of lens distortion, it is essential to extract the corners of
each square in the pattern grids (see Fig. 5.2).

Figure 5.2: Detect Corners on Pattern grid.

3. Calculating Camera Internal Parameters

In this toolbox four camera internal parameters are considered:

• Focal length (In pixel value): f

• Displacement of the center of the image (Principal point) .

• Distortion coefficients (Radial and tangential): k

• Angle between x and y pixel axes (Skew coefficient).

Internal parameters of the camera which are calculated using the toolbox, are shown in
Table 5.1. The toolbox also has the ability to calculate rotation and translation of the
camera. Besides, it is able to plot the relative positions of the grids with respect to the
camera (see Fig. 5.3) and the position of the camera regarding to cthe coordinate of robot
operation environment in a 3D plot like the one shown in Fig. 5.4.

In order to make a decision on the appropriate distortion model to use, it is sometimes
very efficient to visualize the distortion effect on the image, and the importance of the
radial component versus the tangential component of distortion [19].
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Table 5.1: Camera internal parameters
Paramenter name Parameters value Parameters error
Focal Length ( f ) [677.852 680.841] ± [2.896 2.825]
Principal point [309.828 245.802] ± [3.478 3.019]
Skew coefficient [0.00000 ] ±[ 0.00000]
Distortions (K) [−0.16807 0.11262 0.00008 −0.00223 ] ± [0.01482

0.08262 0.00091
0.00105 ]

Figure 5.3: Extrinsic parameters (camera-center).
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Figure 5.4: Extrinsic camera parameters (world center).

Figure 5.5: Radial component of the distortion model.
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Figure 5.6: Tangential component of the distortion model.

Figure 5.7: Complete distortion model.
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Table 5.2: Camera internal parameters in millimeter
Size of each Pixel (cm) dpi Focal length (mm) Error (mm) Object dimension (cm)
[0.008 0.0079] [312 312] [55.095 55.338] [0.2354 0.2296] [8.45 26.73]

The radial component of distortion is shown in Fig. 5.5. Each arrow represents the ef-
fective displacement of a pixel induced by the lens distortion. According to Fig. 5.6,
which shows the impact of the tangential distortion, maximum induced displacement is
0.6 pixels (at the upper left corner of the image). Furthermore, the effect of the complete
distortion model (radial + tangential) on each pixel of the images observes that points
at the corners of the image are displaced by as much as 14 pixels (see Fig. 5.7). This
plot is very similar to the radial distortion plot, showing the tangential component could
very well be discarded in the complete distortion model. In these figures ‘+’ indicates
distorted corner points, and ‘o’ represents the actual corner point.

4. Object reconstruction

In the following the object which is shown in Fig. 5.8 will be extracted from the image
plane. For reaching this goal size of each pixel in x, y direction is calculated using (
2.19- 2.20), and the pixel values are converted to the millimeter (2.21). Assuming that the
distance to the object is known, the size of the object is calculated (2.22- 2.23). The process
is summarized is in Table Table 5.2.

Figure 5.8: Reconstruct the object dimension from the image plane. Z =80cm, x=68cm, y=215cm
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Example 2 The presented algorithm for the geometric robot positioning has been tested in the known
environment (corridor with length 6 meters long 2.5 meters height, and 2.5 meters width). In addition,
there are four rooms whose access doors symmetrically placed by pairs on both sides (in the right and
the left side), the whole corridor is shown in Fig. 5.9. In the initial step, the robot should be centered
within its operation environment. According to the algorithm 3.3 choosing the reference points are quite
necessary. The reference points must be a rigid objects [11]. In this case, two vertical lines which belong
to the edges around the doors are chosen as the reference points (see Fig. 5.10). The practical issue of this
algorithm has been presented in this example.

Figure 5.9: The whole corridor image.

Figure 5.10: Reference image for the robot positioning.
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Figure 5.11: using Canny edge detection. Strongest lines are extracted from image (white edges).

According to the geometric robot positioning, in the first place it is essential to extract the
edges of images Canny edge detection (see Fig. 5.11).

Figure 5.12: Detected lines marked with‘�’ on the vote histogram.

In the next step, Hough transform will be applied to the result of the previous step in order to
segment the vertical lines which are used to determine the robot orientation in the scene. If the
angle of each line is closer to 90 degrees then robot is centered within its operation environment.
The vertical detected lines on the Hough ’s vote histogram, which are presented with distance
(ρ)-orientation (θ), is shown in Fig. 5.12. In addition detected lines on the image have been
shown in Fig. 5.13. Other possible orientations of the robot have been shown in Figs. 5.14-5.19.
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According to Table 5.3 the orientation of the robot, which is presented in Fig. 5.12 is closer to
90 degrees which means that it is centered. Therefore, it can be used for rest of the process.

Figure 5.13: Line segments in the centered (well positioned) robot.

Figure 5.14: Detected lines marked with‘�’ on the vote histogram (right-tilted).
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Figure 5.15: Line segments in the right-tilted robot.

Figure 5.16: Detected lines marked with‘�’ on the vote histogram (left-tilted).

Table 5.3: Result of the robot positioning of the robot in different orientation
Figure The angles of the detected lines and the robot orientation orientation
5.14 [86, 91, 90, 87] right-tilted
5.16) [86, 45, 86, 89] left-tilted
5.18 [84, 85, 92, 90] down-tilted
5.12 [90, 89, 90, 89] well positioned
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Figure 5.17: Line segments in the left-tilted robot.

Figure 5.18: Detected lines marked with ‘�’ on the vote histogram (down-tilted).
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Figure 5.19: Line segments in the down-tilted robot.

Example 3 The well-positioned robot (not tilted robot) will be utilized for a message delivery mission
(see Fig. 3.11). In this example the robot should search a door and then detect a doorplate. The doorplate
image will be applied to the OCR program for character recognition. The robot must also be able to
recognize, which assures a correct delivery (OCR algorithm must apply).The results of these process are
shown in Fig. 5.21. This process is repeated continuously until the robot find the correct address.

Figure 5.20: Corner detection (left), edge map of the detected corner (right).

The OCR program used in this thesis is based on the template matching [23]. It only has
ability to recognize the upper case. Moreover, the space and dot (.) between two words do not
recognize, also it has a problem to distinguish between (I and 1), and non-English characters
such as Spanish ñ (see Figs. 5.22, and 5.23). But if these issues are considered this algorithm
can work satisfactory (see Figure 5.21).
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Figure 5.21: Result of using OCR program on text part of the image.

Figure 5.22: Result of using OCR program on text part of the image.

Figure 5.23: Result of using OCR program on text part of the image.
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Example 4 The purpose of this experiment is to classify the objects which are placed on the robot oper-
ation environment based on the texture analysis and using classification method (kNN classifier). In the
robotic application the designed classifier should have the ability to distinguish between, the floor and
the ceiling images of the corridor (see Fig. 5.24).

Figure 5.24: Texture image ceiling (left), floor (right).

The texture analysis and classification consist of following steps:

Step1:Image histogram equalization and image quantization: Normally, qualities of im-
ages which are captured by camera are affected by variation in lightening (illumination), and
the lens distortion. Consequently, the images lose some of their contrast and efficient informa-
tion. In order to overcome this problem it is effective to perform histogram equalization which
can improve areas of lower contrast to gain a higher contrast. Therefore, usable data can be
extracted from the images. The input images are originally represented with 8 bits (256 gray
levels). This will result in huge GLCM (i.e., 256x256) in order to avoid this problem Haralick [9]
suggested that images can be quantized into 8 gray level (Ng = 8). The result of these process
is shown in Fig. 5.25.

Step2: Feature Extraction (textural features): In the second step, feature vectors are extracted
from the quantized image. Originally, Haralick [9] suggested a set of 14 textural features (see
Appendix I). Here we select 4 of them (i.e., angular second moment, contrast, correlation, and
entropy) and average of them in four different directions (0,45,90,135), with a unit distance. In
total, feature vector will consist of twenty features (see Table 5.4). One image gives us only one
instance of the feature vector. To obtain a better representation of texture, the image could be
divided into a set of smaller parts and calculate the features from them. In this thesis, images
are divided into sub-images (blocks) of 32x32 pixels. It is also desirable to normalize the feature
values to the same mean and the same variance. In this way we make the features equally
important (see Fig. 5.26 ).

CHALMERS, Master’s Thesis 2011:June 46



Figure 5.25: Histogram equalized and quantized to eight gray levels (Ng = 8) images of ceiling (left),
floor (right).

Table 5.4: Texture features used in this experiment (asm=angular second momentum,
con=contrast, cor=correlation, ent=entropy, see Appendix I).

Feature number Feature name (distance d=1)
1 asm 0 deg
2 asm 45 deg
3 asm 90 deg
4 asm 135 deg
5 con 0 deg
6 con 45 deg
7 con 90 deg
8 con 135 deg
9 cor 0 deg
10 cor 45 deg
11 cor 90 deg
12 cor 135 deg
13 ent 0 deg
14 ent 45 deg
15 ent 90 deg
16 ent 135 deg
17 asm average
18 con average
19 cor average
20 ent average
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Figure 5.26: Training images ceiling (left), floor (right). The grid square represents 32x32 sub-image
taken as training samples.

Step3: Feature Selection:
Feature selection is a process of finding the best feature subset from the fixed set of the orig-

inal features. Usually more features leads to better performance. However, irrelevant features
may result in performance degradation thus we need to select an optimal set of features [36].
To determine the best feature subset one needs to examine all possible subsets of size p. To
choose the best subset of size p from set of d thus requires examination:(

d
p

)
=

d!
p!(d− p)!

(5.1)

In this thesis some efficient visual tools are used (i.e., Non-parametric density function using
1-D plot, which is used to show overlapping between samples for the univariate case (just one
feature), and 2-D scatter plot, which is a chart for displaying values for two variables (feature
pairs)) in order to investigate the distribution of the overlapping region between classes. Apart
from visual investigation, it is possible to use numerical values using Bhattacharyya distance
(BD) [37] in order to select the features. This method measures the separability of the classes.
For multivariate Gaussian distributions the Bhattacharyya distance (BD) is expressed :

BD =
1
8
(m1 −m2)

TS−1(m1 −m2) +
1
2

ln{ det(S)√
(det(S1)det(S2)

} (5.2)

S =
S1 + S2

2
(5.3)

where mi is the class mean matrix and Si is the class covariance matrix.

• Numerical values using Bhattacharyya distance for evaluating the 1-D and 2-D fea-
tures: In this step, BD of the single features (1-D) and feature pairs (2-D) are calculated
using (5.2). And, their results are summarized in Tables (5.5-5.6). The results of Bhat-
tacharrya distance are also presented as diagrams in Figs. 5.27-5.28.
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Table 5.5: Numerical values for Bhattacharyya distance for the univariate distributions (1-D
features).

number of the feature name of the feature BD
1 asm0 0.21
2 asm45 0.25
3 asm90 0.23
4 asm135 0.02
5 con0 0.34
6 con45 0.14
7 con90 0.25
8 con135 0.42
9 cor0 2.1
10 cor45 0.29
11 cor90 0.79
12 cor135 2.8
13 ent0 0.12
14 ent45 0.02
15 ent90 0.14
16 ent135 0.11
17 asm average 0.22
18 con average 0.29
19 cor average 2.2
20 ent average 0.14

Figure 5.27: The Bhattacharyya distance (BD) for univariate distributions (1-D features). The highest
BD is for feature # 9 (cor0), feature# 12 (cor135), and feature# 19 (cor average) .
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Table 5.6: Numerical values for Bhattacharyya distance for the 2-D features.
Feature pairs number number of the features name of the feature BD
1 (9,4) (cor0,asm135) 27
2 (17,4) (asm average,asm135) 0.16
3 (11,16) (cor90,ent135) 0.78
4 (9,10) (cor0,cor45) 2
5 (9,12) (cor0,cor135) 8.2
6 (12,19) (cor135,cor average) 0.37
7 (9,19) (cor0,cor average) 5.7
8 (12,16) (cor135,ent135) 8.2
9 (12,1) (cor135,asm0) 13
10 (13,18) (ent0,con average) 0.5
11 (9,20) (cor0,ent average) 7.4
12 (19,5) (cor average,con0) 1.8
13 (14,19) (ent45,cor average) 8
14 (7,10) (con90, cor45) 1.2
15 (9,12) (cor0,cor135) 8.1
16 (3,7) (asm90,con90) 2.3
17 (15,9) (ent90, cor0) 21
18 (10,12) (cor45,cor135) 3.1
19 (14,8) (ent45,con135) 0.6
20 (4,2) (asm0,asm135) 0.25

Figure 5.28: The Bhattacharyya distance (BD) for bivariate distributions (2-D features). The largest BD
values are for feature pairs# 1 ( cor0, asm135), feature pairs # 17 (ent90, cor0), feature pairs
# 8 (cor135, ent135), and feature pairs# 3 (cor90, ent135).
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• 1-D density plots, and 2-D scattersplot: In Fig.5.29, and Fig.5.30 we present 1-D density
plot and 2-D scatterplot, with the highest BD values. The visual judgment of overlapping
regions of the classes shows that, there is a small overlapping between the classes. There-
fore, the features with large BD values usually cause well separation between classes.

Figure 5.29: Non-parametric density function estimation for the best univariate features. Cor0 (a),
Cor135 (b), Cor average (c) .

51 CHALMERS, Master’s Thesis 2011:June



Figure 5.30: 2-D scatter plots of features having high discriminatory power (high BD) between ceiling
and floor (class1==floor sample,class0==ceiling sample ).
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Table 5.7: LOO error rates of selected 1-D features, using kNN classifier (k=1, number of sam-
ples N=234).

feature number name of feature error rates
9 cor0 0.06
12 cor135 0.03
19 cor average 0.06

Table 5.8: LOO error rates of selected 2-D features, using kNN classifier (k=1, number of sam-
ples N=234)

feature pairs number name of feature error rate
(9,4) (cor0, asm135) 0.04
(15,9) (ent90, cor0) 0.04
(12,16) (cor135, ent135) 0.03
(11,16) (cor90, ent135) 0.04

Step5: Classifier ’s performance evaluation.
The best subset of the 1-D and 2-D features, which are selected in the feature selection using

BD are used in KNN classifier in order to classify an unknown samples, and evaluate the per-
formance of the classifier by calculating the error rates (4.10). Here we use leave-one-out (LOO)
error rate estimation method.

According to Tables (5.7-5.8) error rate for 1-D and 2-D, using most discriminative features
from the feature selection part are efficient for classification problem, in order to make decision
between ceiling and floor. In this experiment we obtained 97% classification accuracy, which
maybe not sufficient in the robot applications. Moreover, this performance may be optimisti-
cally biased because we did not use an independent test data set for evaluation.
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6 Discussion

In this thesis we used the Bouguet toolbox for camera calibration purpose. The extracted cam-
era parameters were used for reconstruction of the test object from the image plane. The esti-
mated size of the object was in agreement with the real size, which means that the calibration
part works satisfactory.
In the robot positioning task, we have investigated orientation of the extracted lines and the
real orientation of the robot (i.e., how it is tilted). We could use orientation of the lines to in-
fer the tilt of the robot. However, in some cases the Hough transform could detect some false
lines and these lines should be excluded when making decision about the robot movement.
In Canny edge detection step we used some predefined thresholds. To avoid many unwanted
edges we manually selected different thresholds. However, this would be preferable to make
this step automatically.
In the task of message delivery we use the corner detection for finding the door plates. The
result of corner detection using Harris operator can be affected by illumination and it can lead
to the false positive results. Therefore, in order to use this algorithm we should avoid sat-
urated images and detect possible reflections. In this thesis we have used the external OCR
program which made some errors in distinguishing non-English characters which means OCR
part should be improved.
The classification problem we have studied consisted of discrimination of relatively simple ob-
jects like ceiling and floor. We obtained high classification accuracy (97 % ). However, this
maybe not sufficient in the real robotic applications. To improve the accuracy we may intro-
duce invariant features with respect to scale and rotation. Many of the images (captured by the
robot) are distorted because of the perspective projection. In such a case it will be beneficial to
perform the perspective distortion correction before the step of image feature extraction. The
classifier should be tested test on the independent test set in order to get less biased estimator
of the accuracy. Moreover, we need system that can recognize different objects (e.g., doors,
lightening, tables, etc). We have presented different algorithms for the robotic applications.
These algorithms solve only a part of the problems encountered in robot vision and robot navi-
gation. The developed algorithms are planned to be used in larger systems using mobile robot
applications
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AppendixI: Haralick ’s texture features

Feature equation Description
f1 = ∑

i
∑

j
(i, j)p(i, j) Autocorrelation

f2

Ng−1

= ∑
k=0

k2 px−y

Contrast:(con)
A difference moment and measures the contrast

or the local variation present in an image.
f3 = ∑

i
∑

j
p(i, j)2 Angular second moment (asm)

f4 = −∑
i

∑
j

p(i, j) log(p(i, j)) Entropy (ent)

f5 =
Ng

∑
i=1

Ng

∑
j=1

p2(i, j)
homogeneity:

A measure homogeneity of the image

f6 = MAX
i,j

p(i, j) Maximum Probability

f7 =
Ng

∑
i=1

Ng

∑(i− µ)2

j=1
p(i, j) Sum of Square : Variance

f8 =
2Ng

∑
i=2

ipx+y(i) Sum of Average

f9 =
2Ng

∑
i=2

(i− f8)2 px+y(i) Sum of Variance

f10 =
2Ng

−∑
i=2

px+y(i) log(px+y(i)) Sum of Entropy

f11 = variance of px−y Difference variance

f12 =
2Ng

−∑
i=2

px−y(i) log(px−y(i)) Difference Entropy

f13 = HXY−HXY1
max(HX,HY) Information Measure of Correlation1

f14 =
√

1− exp(−2(HXY2− HXY)) Information Measure of Correlation2
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Feature notation Description

Ng
Number of distinct gray levels
in the quantized image.

R =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)
Number of neighboring
resolution cell pairs.

p(i, j) = P(i,j)
R

(i, j)th entry in a normalized
gray-tone cooccurrence matrix

.

px(i) =
Ng

∑
j=1

p(i, j)
ith entry in the marginal-probability matrix
obtained by summing the rows of p(i, j).

py(j) =
Ng

∑
i=1

p(i, j)
jth entry in the marginal-probability matrix
obtained by summing the rows of p(i, j).

px+y =
Ng

∑
i=1

Ng

∑
j=1

p(i, j) i + j = k and k = 2, 3, ..., 2Ng

px−y =
Ng

∑
i=1

Ng

∑
j=1

p(i, j) |i + j| = k and k = 0, 1, ..., Ng − 1

HXY1 =
Ng

−∑
i=1

Ng

∑
j=1

p(i, j) log(px(i)py(j)) Parameter of IMCORR1

HXY2 =
Ng

−∑
i=1

Ng

∑
j=1

px(i)py(j) log(px(i)py(i)) Parameter of IMCORR2

µx =
Ng

∑
i=1

Ng

∑
j=1

ip(i, j) Mean value of the px(i)

µy =
Ng

∑
i=1

Ng

∑
j=1

jp(i, j) Mean value of the py(j)

σx =

{
Ng

∑
i=1

Ng

∑
j=1

i2 p(i, j)− (
Ng

∑
i=1

Ng

∑
j=1

ip(i, j))2

}0.5

Standard deviation of the px(i).

σy =

{
Ng

∑
i=1

Ng

∑
j=1

j2 p(i, j)− (
Ng

∑
i=1

Ng

∑
j=1

jp(i, j))2

}0.5

Standard deviation of the py(j).
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