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Abstract 

Visual object recognition and classification have wide applications in many areas, e.g., medical, 

consumer, surveillance. Many investigations have been done in this field, yet there exists great 

potentials of improvement in order to bridge the gap between computer vision and human 

recognition system. 

In this thesis, human faces are considered as the object of interest. The motive of this thesis is to 

classify object poses in visual and thermal infrared (IR) images, and then apply a fusion 

technique to improve the classification rate. A thermal IR camera is used to capture thermal 

images, creating a thermal IR face pose database. Both IR and visual face images are used for 

training and testing. A new approach, multi-classifier AdaBoost, is proposed for multi-class 

classification. It is used to classify object poses in visual and IR images. Though individual 

classification of visual or thermal IR images achieves a classification rate around 95%, the 

efficiency is further improved with the fusion of these two types of images (> 98%). The 

classification method is also tested for another database. 

Viewing that a thermal IR camera is an expensive solution for consumer applications, alternative 

equipment such like Near-IR webcam and Kinect are investigated and tested in this work. Using 

images captured by a self-made Near-Infrared (NIR) web-camera or Kinect, our preliminary tests 

indicate the proposed classifier results in approximately similar performance using such images. 
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1 Introduction 
 

n this ever-changing world of engineering and technology, each new day comes with new 

innovation in various fields that wants to imitate the human capabilities. One such area is the 

object recognition and classification where research has led the machine to see and recognize 

like humans. The ability of a human to recognize the object is mimicked by machine learning 

process. Machine learning is a way of training using a learning algorithm which makes the 

machine to respond any query by understanding its relation to trained data. As we are 

concerned in this thesis with object classification, we discuss some of its methods, challenges 

and some applications. The common forms of machine learning are supervised learning and 

unsupervised learning. The supervised learning deals with the training of labeled data and 

classifies the test data into any of the predetermined class. These training with labeled data will 

become a tedious job for a large dataset. Then unsupervised learning uses the inputs without 

labeled classes, and fits a model to the input and classifies with the created model. Supervised 

learning is considered in this thesis. The basic blocks of a supervised learning consist of a feature 

extraction and a classifier. Some unique features from the inputs are extracted and the classifier 

maps these features to the desired output.  

Though these evolving techniques work well in many occasions, yet they fail to perform in some 

conditions. Object classification has to overcome lot of complex challenges. There are several 

parameters that affect the classification and pose a challenge to it. Some of them are variation 

in lighting conditions, different size and shape, complex postures, occlusion, background clutter 

etc. The variations in light condition tend to have the most effect in terms of the facial pose 

classification. The pose changes randomly and hence it is very difficult to train every single 

possibility of pose. Investigations on numerous techniques have been on achieving the 

robustness and accuracy to reduce the complexity. One way is the fusion of thermal and visual 

band images to overcome the limitations of individual classification [1] [2] [3].   

The use of thermal infrared (IR) images has achieved better results where the visual systems fail 

in uncontrolled lighting conditions. The thermal IR band lies in mind-wave infrared (MWIR, 3-

5µm) and long-wave infrared (LWIR, 8-14µm). A thermal image is the visual representation of 

the energy that a body emits and transmits, while it is the reflected one in the case of visual 

imaging. Thermal sensors basically estimate the temperature which is the measure of the 

energy but due to multiple sources the estimate cannot be very accurate. In a thermal imaging 

camera these energy levels are processed to produce a visual interpretation which will be 

considered as the thermal image. This image, as depends upon the thermal sensors, does not 

represent the actual temperature of the object but gives the approximation compared to the 

I 



2 
 

rest. Hence thermal imaging can be utilized in the abnormal light conditions or even in pitch 

darkness giving us an alternative to the visual recognition limitations. However thermal imaging 

is also subject to degradation in face image classification especially when cosmetics are involved 

like glasses which block the thermal emissions. Hence using only thermal images would not be a 

good choice for efficient classification.  

The fusion of these images becomes the ultimate choice to improve the classification rate and 

reduce the complexity. The thermal image is most often captured by a specialized thermal 

camera, which is neither affordable nor easy to obtain for consumer applications. To overcome 

this issue, near infrared images (NIR) are used, which has the same advantage as the thermal 

image. The use of NIR has also resulted in good performance [4].  

1.1 Outline of the work 
The current chapter 1 has given an introduction to object classification, its challenges and 

methods to overcome it. The outline of the rest of the document is listed below. 

 Chapter 2 gives an overview of methods that are investigated for classification of poses. 

Three major elements of the classification block are discussed.  They are feature 

extraction, weak learner and the boosted classifier. Methods for fusion of visual and 

thermal infrared images are also stated in this chapter.  

 Chapter 3 introduces the equipments which are used for the experiment. This chapter 

will enable the reader to know the different equipment that can be considered for 

image fusion. The use of thermal imaging camera and the creation of Chalmers Visual-

thermal database is explained. Procedures for modifying a webcam into near infrared 

webcam are listed. The use of Kinect for visual and infrared image capture is discussed. 

Sample images captured with these equipments are shown. 

 Chapter 4 states the proposed technique for classification of object poses. The detailed 

description of haar-like feature as the feature extraction method is done. The proposed 

Multiclass-AdaBoost algorithm is explained. The method for fusion of the visual and 

thermal classifier is also explained. 

 Chapter 5 shows the results obtained by applying the proposed classifier. The 

performance of the training and the test data is analyzed. The classification rate of using 

visual or thermal, visual and thermal classifiers are compared. The overall improvement 

due to fusion is tabulated. 

 Chapter 6 concludes the thesis work with discussions on the improvement by fusion. 

The extension of the thesis work is included in the future work. 
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2 Background 
 

n this section, we will give an overview of methods that can be used for object classification. 

The object classification can be handled in many ways. We concentrate on supervised 

learning using boosted classifiers. Based on this, a brief block diagram of a classification system 

is shown in Figure 2.1 

 

Figure 2.1: Basic block for classification of objects 

The training database consists of huge number of images with labels that belongs to their 

corresponding class. These training images have redundant information if used without any 

processing. Hence these training images are characterized by their features by some feature 

extraction method. The features give unique property of the image that stands alone from other 

images of other class. These unique features are extracted for all images and used by the 

classifier to classify or group the features of specific class. The classifier can be a simple 

classification algorithm that recognizes the pattern of particular class and classifies accordingly. 

However this becomes a difficult job for a single classifier as there may be many features that 

can be extracted and using only one feature to classify is not sufficient. Hence an ensemble of 

classifiers is used, that combines many simple classifiers and make a final strong classifier for the 

final estimation. The simple procedure of a boosted classifier or ensemble classifier is shown 

Figure 2.1. 

I 
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Figure 2.2: Ensemble of Classifiers 

 

The weak learners or base learners perform only slightly better than a random guessing. Though 

the accuracy of these weak learners is not so accurate, combining many of these simple 

predictions could result in accurate classification. This combination or weighted averaging of the 

weak learners is called as boosting which really improves or boosts the accuracy of the weak 

learners [5]. Many works for improving the boosting algorithms resulted in the AdaBoost 

algorithm introduced by Freund and Schapire [6]. This AdaBoost algorithm simulates the weak 

learner for N number of iterations (or boosting rounds) and picks a best weak classifier in each 

iteration, while reducing weights to correctly classified examples and giving more weight to 

misclassified examples. The algorithm is explained in detail in Section 2.3.  

2.1 Feature Extraction 

2.1.1 Haar-like features 

Haar-like features [7] has been used most often as a feature extraction method due to its 

simplicity and acceptable performance. These intensity-based features are calculated by using 

different size of rectangular features as shown in Figure 2.3. The integral image [7] computation 

makes it easy to extract haar-like features. These features are boosted by AdaBoost classifier 

and have led to good results for face recognition in real time [7].  The detailed procedures for 

computing these features are discussed in 4.2. This particular feature extraction method is used 

in the thesis; however other methods are also investigated. 
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Figure 2.3: Subset of Haar-like feature types 

 

2.1.2 Histogram of Oriented Gradients: 

 

Histogram of Oriented Gradients [HOG] [8] is a method of feature extraction. The HOG is similar 

to edge detectors and SIFT but it is applied differently. HOG uses a single scale block scanning 

densely along the whole image, while SIFT is multi-scale. Step-by-step description of HOG 

explaining with illustrations is given in [8], displayed in Figure 2.4. These HOG features extracted 

from the images are used to classify an object. The HOG uses the orientation histograms from 

each block as a feature vector, where blocks are formed by the dense grid of cells in the images. 

In short, the procedure to obtain HOG is to take first derivative of the input image, compute the 

magnitude of gradient, compute gradient orientations, obtain weights to vote for the 

orientation histogram and finally compute orientation histograms. There are four variants of 

HOG encoding, namely Rectangular HOG (R-HOG), Circular HOG(C-HOG), Bar HOG and Centre-

Surround HOG. Only Rectangular-HOG is discussed in this thesis. R-HOG, which is called so 

because the shape of the blocks considered are either square or rectangular.  

 

Obtaining the orientation histograms is the main task in HOG. Orientation histograms 

with pre-specified bins are calculated for each cell. For each pixel, the gradient magnitude is 

used as the weight to the corresponding orientation bin. Simple way of voting is to consider the 

nearest orientation bin but it results in aliasing. Hence trilinear interpolation as described in [8] 

is considered to vote among the orientation bins. Orientation bins are spaced over [0,180] which 

are ‘unsigned’, where the sign of each gradient is ignored. Orientation bins are spaced over 

[0,360] which are ‘signed’, where the sign of each gradient is considered. ‘Signed’ seems to be 

good choice for human detection; it needs to be verified for pose recognition. The pseudo code 

for the Rectangular HOG is described in Table 2.1.  
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Figure 2.4: An overview of Static HOG feature extraction [8] 

 

Pseudo code: (R-HOG) 

Input: 

 Input Image     

 HOG Descriptor parameters 

o                    

o                      

o                      

o            

Output: Feature vector   {           }   

                                      where,                    ,              
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Steps: 

 Take the first order derivative of Image   in X-axis and Y-axis 

o                      

o            [
  
 
 

] 

 Compute image gradient magnitude     from        

o    √    
        

 Compute gradient orientation     from        

o         (    ⁄ ) in the range [   ] 

 For all Blocks            : 

o Compute weights to vote the orientation histogram 

 Obtain a gaussian window       with            

 Apply the gaussian window to each block to obtain weights 

     
         

o For each pixel, use weights    to vote the  -bin orientation histogram using 

trilinear interpolation method described in [1] 

o Obtain    from the above step of size        

o Apply L2-norm normalization to    

 L2-norm,       √‖  ‖     

Hence   {          } is the HOG feature vector. 
  

Table 2.1: Pseudo code of R-HOG [8] 

 

HOG [8] originally was proposed for human detection. Qiang Zhu et al. [9] has also used HOG as 

feature extraction method for human detection. Computing of HOG features is enhanced by 

using integral HOG. Linear SVM is used as the weak learner for AdaBoost. Cascade of AdaBoost 

is used to reduce the false detection.  

2.2 Week learners 
 

The week learners as shown in Figure 2.2 is a simple classifier whose estimation needs to be little 

better than the random guessing. The weak learner or the base learner was introduced by 

Freund et al. [6] in which the weak learner is boosted by use of AdaBoost. The selection of a 

simple and efficient weak learner is necessary. This is because AdaBoost is used over these week 

learners which simulate these weak learners for many iteration. In each iteration, AdaBoost 

selects a best weak learner and combines all of these best classifiers resulting into a strong 

classifier.  
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2.2.1 Decision tree based weak learner 

 

2.2.1.1 Decision Stumps: 

The decision stumps introduced in [10] is commonly used as a weak learner in AdaBoost. The 

decision stumps are single level decision trees which restrict the classification to a binary case. 

Therefore, for multi-class classification, C4.5 or CART (Classification And Regression Trees) type 

of decision trees can be considered. The pseudo code of the stumps, modified for using as a 

weak learner in AdaBoost is shown Table 2.2 

 

Pseudo code: Weak learner (Stumps) 

Inputs:   {          } be the training samples, represented by feature vectors, 

      {  
    

      
 } for   dimensions. 

               {          } be the corresponding class labels of   , for binary classification 

         

               {          } , be the normalized weights for the input samples, ∑   
 
      

Outputs:   
       , weak hypothesis obtained after applying threshold  . 

Algorithm Steps:  

For                           ;  

 Classify                 

 Calculate Error     ∑                

 Take minimum error              

                                       
   

Classify the test examples using         )          

Table 2.2: Pseudo code for weak learner ‘Stumps’ 

2.2.1.2 C4.5  

Decision tree can be used for classification problems. This involves building a tree from the test 

examples and splitting it into their respective classes. One of the well-known methods of 

growing decision tree is C4.5 [11].  

The algorithm involves dividing the test examples into a subset of examples which is further 

subdivided until all the examples in the subset belongs to a single class. The misclassification 
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impurity is calculated for each node while building a tree. The misclassification impurity      at 

node   is given by [12]. 

          
 

      

where       is the probability of examples belonging to class j. Hence if      is 0, then all the 

examples belong to one class, so no further branches will be drawn from that node. The decision 

tree building process starts with selecting a node. In case of a 2D datasets, which is considered 

in this work, the node is simply a threshold that splits the examples into two regions by having a 

decision boundary parallel to one of the axes. The choice of this threshold is done through an 

exhaustive search over all dimensions such that it maximizes      . 

                               

where   and    are left and right descendent of node  , and       specifies the probability of 

correctly classified examples. A test data is then passed from the root node along the respective 

branch to the end leaf which classifies it to its class. The pseudo code of the algorithm is 

described in Table 2.3. 

 

The Pseudo code: 

Training phase: 

Let ‘  ’ be the training patterns in‘d’ dimensions belonging to   classes. 

 Build tree recursively 

o Sort all examples under node    in all dimensions 

o for    ,         values of      

 calculate         and          

o find best                    

o Create decision node   based on     

 Repeat above step until     , while          , which means all examples under       

belongs to one class. 

 Label             
 

       

Test phase: 

 Classify a test data using the tree obtained from the train process 

o For    find Node     that it belongs to. 

o                          
   

 

Table 2.3: Pseudo code of C4.5 weak classifier 
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2.2.2 Perceptron-based Classifier 

The perceptron is a neural network approach based on combinations of weighted inputs to 

produce a function which classifies the input. Figure 2.5 shows a typical perceptron, where    are 

input examples and    are their corresponding weights. 

 

 

 

 

 

 

The weak learners discussed in 2.2.1 are performed by splitting the input space parallel to the 

axes. While in this method, a linear discriminant function      is used to classify the inputs. The 

perceptron criterion function decides whether or not all the examples are correctly classified 

according to the following equation, 

      ∑      

   

 

where        . It is possible only when the weighted vector   is on the hyperplane that 

classifies both classes. If it is not the case, then the vector   is updated such that it moves close 

to the decision boundary. The update of the weighted vector is given by  

            ∑  

   

 

The pseudo code of the perceptron-based classifier is summarized in Table 2.4. 

 

Pseudo code: 

 Let    and   are training and test examples with ‘d’ dimension and   are their 

corresponding weights. Class 0 and class 1 

 Training; 

o Initialize    ∑      
 
    , T=max iterations, t=0 

 do, t=t+1;  

 if         [  =misclassified example; usually random] 

o update a;                 

 until        
 
   or         

 Return a 

𝑦  

𝑦  

𝑦𝑛 

𝑤  

𝑤  

𝑤𝑛 

 𝑎𝑡  ∑ 𝑦𝑖𝑤𝑖
𝑛
𝑖    

Yes 

𝑎 𝑘     𝑎 𝑘  𝑦𝑚 
if 𝑎𝑘𝑦𝑚    

All inputs correctly classified 

No 

 𝑎𝑡𝑦𝑖    
  𝑖 

k+1 

Figure 2.5: An example model of a perceptron 
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 Classifying Test examples 

o if        

              

o else            
 

Table 2.4: Pseudo code of perceptron-based classifier 

 

2.3 Boosted Classifiers 
 

The Boosted classifier is defined as those classifiers which use the concept of boosting the weak 

learners to improve the classification performance. Instead of building a single efficient 

classifier, simple weak learners are combined to make a strong classifier with efficient 

predictions. The basic idea of boosting is to combine simple guesses into a strong prediction. Let 

          be a set of hypothesis obtained from weak learners, then the combination of these 

results in a strong hypothesis given by 

     ∑       

 

   

 

where,    denotes the weight of the weak hypothesis and it is assigned during the boosting 

iteration  . The AdaBoost(Adaptive Boosting) [6] is the first and popular algorithm using boosted 

classifiers for binary classification. AdaBoost has been used for real time face recognition [7], 

human detection [9] and many other application.  In this section, we will discuss about the 

original AdaBoost, its theoretical analysis, and some of its variants. Also multiclass AdaBoost will 

be studied. 

2.3.1 AdaBoost 

 

The AdaBoost algorithm is an efficient classification algorithm with boosting features. A training 

set of input samples and its labels         is given as the input to the algorithm. Initial weights to 

the training samples have a uniform distribution. The AdaBoost runs for           boosting 

rounds. For each boosting round, the weak learner computes an initial guess and gives a weak 

hypothesis      . Before the next boosting round starts, the weights of the training samples are 

redistributed. The weights of the correctly classified samples are decreased while misclassified 

samples are assigned with increased weights. The motive of AdaBoost is to concentrate on 

hardest examples and improve the classification rate. After T boosting rounds, the final 

hypothesis is the majority voted combination of the entire weak hypothesis. 

The generalized version of AdaBoost [3] with more detailed steps is given in Table 2.5 

 



12 
 

 

Inputs:   {          } be the training samples, usually feature vectors, 

               {          } be the corresponding class labels of input set   ; for binary 

classification          

                  
 

 
 , Normalized weights for the input samples. 

Outputs:     , final hypothesis  

Algorithm Steps:  

For          

 Train weak learner using the distribution or weights    

 Get weak hypothesis         

 Choose       . Usually       
      

  
 ;          

            is the training 

error 

 Update the Distribution:                                 ⁄  

     Where   is a normalization factor to make     to be a distribution. 

              Output the final hypothesis           ∑         
     

Table 2.5: Pseudo code of AdaBoost [13] 

 

Using a simple toy example [14], the concept of AdaBoost is explained below. 

Let   and – be the input example of two classes. The feature response of the input samples is 

shown in Figure 2.6 

 

Figure 2.6: Toy example- Feature response [14] 
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In each boosting round, there are two major steps. One is to find a best weak hypothesis based 

on low error. Simple weak learner, Stumps is considered for this example. The other step is to 

update the distribution of the samples for the next round.  

Boosting round 1 

 

Figure 2.7: Toy Example – Boosting round 1 [14] 

 The stumps uses a vertical hyper plane to classify examples, and selects the lowest error 

        , computing weak hypothesis    

 The weight of the weak hypothesis is calculated as      
      

  
      

 The selected weak hypothesis misclassifies three examples stated as  , the weights of 

these misclassified examples are given more weights while the weight of the other 

samples is reduced. This is shown in the updated distribution   . 

Boosting Round 2 

 

Figure 2.8: Toy Example – Boosting round 2 [14] 

 The weak hypothesis    is selected with error         
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 The weight of the weak hypothesis    is computed as         

 The weights of the misclassified examples in boosting round 2 are modified and the 

distribution is modified for next round. 

 

Boosting Round 3 

 

Figure 2.9: Toy Example – Boosting round 3 [14] 

 In this round a horizontal hyper plane is used by the weak learner. The weak hypothesis 

   is selected with error         

 The weight of the weak hypothesis    is computed as        .  

Final Strong Hypothesis 

 

Figure 2.10: Toy Example –combination of weak hypothesis [14] 

The final hypothesis is the combination of the weak hypothesis with their weights. This is 

computed as, 

                                     

The final hypothesis looks like in Figure 2.11, thereby classifying all the examples. 
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Figure 2.11: Toy Example –Final strong hypothesis [14] 

 

The weights of weak hypothesis:    are weights to the hypothesis    that are inversely 

proportional to the error of the hypothesis. Therefore, the weighted hypothesis defines their 

importance or their contribution to the classification.  This version of AdaBoost gives only 

prediction without confidence. The modified one in [15] defines the confidence rated prediction 

in which the weak hypothesis generates             , the            gives the prediction, 

and the magnitude          is the confidence measure to the weak hypothesis. 

Training Error 

The weak learner needs to perform slightly better than the random guessing for the training 

error to drop exponentially [15]. Let     
 

 
   , then each classifier should be      for some 

     The training error upper bound for a binary case is given by       
 hence the training 

error drops exponentially with the increase of boosting round   . 

Generalization Error 

The generalization error is the test error computed after the test images are classified by the 

trained classifier. The test images are those samples which are not used in the training. These 

test images are used to test the efficiency or classification performance. Generally for any 

database, data are partitioned into training set and testing set.  

 The bound on the generalization error [15] is given as, 

 ̂           ̃ (√
  

 
) 

where,  ̂     is empirical probability of training error on the training samples, 
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                 is the iteration round of boosting, 

                 is the VC-dimension2 of the base classifier space, 

   is the size of the samples. 

Generally generalization error decreases for increase in boosting iterations [15].  

Boosting Margin 

 

Figure 2.12: Representation of Boosting the margin [16] 

Margin [15]  is defined as the shortest distance between the training samples and the class 

boundaries in each class. In other words, it is the distance between the separating hyper plane 

and the samples as shown in Figure 2.12. Margin for the examples       is given as  

             
 ∑         

   

∑     
 
   

 

AdaBoost increases the margin when the boosting continues even if the error reaches zero [15]. 

The increase in the margin leads to a reduced generalization error. Hence instead of considering 

only the prediction, margin should also be investigated to know the stability of the trained 

classifier. If the margin is small, then the classifier is prone to many errors. However, if the 

margin is large, then it will reduce the generalization error. AdaBoost has proved to maximize 

the margin in each boosting rounds. As the iteration of the boosting rounds is increased, the 

AdaBoost tends to maximize the margin.  
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2.3.2 Multiclass AdaBoost: 

AdaBoost is generally designed for binary classification problems, however has been extended 

for multiclass classification. AdaBoost.M1 [6] and AdaBoost.M2 [6] are the direct extension of 

AdaBoost for boosting multiclass classification. Another way of extending binary classification to 

multiclass is reducing it into multiple binary classifications. One such method is AdaBoost.MO 

which uses coding technique to reduce the multiclass to multiple binary classes.  

AdaBoost.M1: 

The basic boosting assumption is that a weak learner should perform little better than the 

random guessing. This criteria is acceptable for binary classification as the probability of 

classifying between two class is just ½. However in case of multiclass classification, this criterion 

is very strong. For example, in case of 4-class, the probability of classifying is ¼ which is far less 

than the usual assumption of ½. Choosing a good weak learner with special focus on minimizing 

the error        tends to have the error decreasing exponentially. The pseudo code of the 

algorithm is given Table 2.6. 

 

 
Inputs:   {          } be the training samples, usually feature vectors, 
               {          }be the corresponding class labels of    

                  
 

 
 , Normalized weights for the input samples. 

 Weak learner:         

Output:     , final hypothesis  

Algorithm Steps:  

For          

 Train weak learner using the distribution or weights    

 Get weak hypothesis         

 Calculate the error of       ∑    
 ⟦          ⟧

 
      

If       , then set       and abort loop 

  Set    
  

      
  

 Update the Distribution:                
  ⟦          ⟧ 

     Normalize      
    

∑         
   

 

              Output the final hypothesis               ∑ (   
 

  
) 

   ⟦          ⟧ 

Table 2.6: Pseudo code for AdaBoost.M1 
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The choice of weak learner for a multiclass classifier needs to be chosen carefully. Decision 

stumps used for binary classification cannot be directly applied for the multi-class classification. 

However, it can be used when it is reduced to multiple binary classification, where for each 

binary classification, stumps can be used as usual. The other weak learner though can 

outperform this are c4.5, CART. Any algorithm that can satisfy the weak learning condition can 

also be used. 

AdaBoost.M2 is another extension of AdaBoost, which uses pseudo-loss criteria instead of usual 

prediction error as the boosting criterion for weak learners. This pseudo-loss is modified in every 

iteration and sent to the weak learner apart from the modified weights. The weak learner is 

designed to minimize the pseudo-loss under the constraint       . The weak hypothesis gives 

the estimation        which means for each case, the prediction is done for all labels, and label 

that is close to 1 defines the final predicted class of that case. This method is somewhat similar 

to ‘one versus all’ strategy, where each class is trained to classify itself from all other classes. 
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3 Equipment 

3.1 Thermal Imaging  
 Thermal Imaging is the device that captures the thermal emissivity of an object. Contrary 

to what a visual camera capturing the reflected light of an object, a thermal camera 

captures the temperature of the object. The idea is to capture the thermal image of face for 

different poses, which are invariant to light. Meanwhile the corresponding visual image should 

also be captured. In this project, a thermal IR camera “Fluke Ti45FT-201” was used for this 

purpose, which is able to capture both thermal image and visual image.  

3.1.1 Thermal IR Camera 

The Fluke Ti45FT-20 IR camera is IR FlexCam Thermal Imaging equipment with IR-Fusion. The TIR 

(hereafter referred for Thermal IR imaging camera) is used in this thesis to capture both visual 

and thermal image. The TIR has a built-in visual lens and an infrared lens shown in Figure 3.1. This 

enables one to capture concurrently both the visual and thermal images from a same scene. 

Though the temperature range of the thermal image was automatically calibrated, it can also be 

changed offline by Fluke SmartView™ software. There was no specific capture environment 

created, instead TIR was taken to individuals around the Chalmers campus when their face 

image was captured. Totally, five poses were considered i.e., Frontal, Right, Left, Up and Down. 

The TIR with right pose captured is shown in Figure 3.1. 

 

Figure 3.1.a: Thermal Camera - Back view 

 

 

Figure 3.1.b: Thermal Camera - Back view 
 

The detailed specification of the captured images and manually cropped images for the training 

is given in Table 3.1. 

                                                             
1 Thanks to Department of Power for lending the thermal imager. 
2 Thanks to Masih and Yixiao who equally contributed in building this database. 

A 
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Type of 
Image 

Visual Image Thermal Image 

Original 
Image 

  
Size 1280x1024 640x480 

Cropped 
image 

  
Size 

(pixels) 
271x389 158x210 

Table 3.1: Original image and the capture image from the thermal camera 

 

3.1.2 Creating Chalmers Visual-Thermal Database  

With the help of TIR camera, the Chalmers Thermal-Visual Database was created2 during the 

thesis work. The images were captured from different locations around the campus at different 

time. Since the capture environment was not confined, the database covers whole real-time 

scenarios with lot of variations, e.g., varying lighting conditions, dissimilar background, with 

glasses & hats, indoor, day and night etc. The whole process of capturing images for this 

database took two weeks to complete. All the captured images were cropped manually to 

remove the background and irrelevant information and make it easy for the training. The 

cropped images are then normalized to a fixed size. Details and sample images of the created 

database is listed in the Table 3.2. 

 

 

 

                                                             
2 Thanks to Masih and Yixiao who equally contributed in building this database. 
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Pose Right Front Left Up Down 

No. of 
samples 

500 506 500 456 460 

Cropped 
Visual 
image 

     

Cropped 
Thermal 
image 

     
Table 3.2: Different pose captured for Chalmers Visual-Thermal Database 

 

3.2 Self-made NIR Webcam 

The Thermal IR camera which was described in the previous section is very costly to use for a 

commercial application. Due to this, the TIR is only used in high-end fields like military and 

research purpose. The basic objective of using NIR images is to make the object visible both 

during the day and night. Instead of choosing the thermal spectrum, coming little closer to the 

visible spectrum gives rise to Near-Infrared spectrum. The Near-Infrared (NIR) falls in the 

infrared spectrum closer to the visible spectrum while the thermal infrared lies in the other end 

of the infrared spectrum. The whole spectrum is shown in Figure 3.2 

 

Figure 3.2: Spectral range of visual and thermal 

The human eye is sensitive only to the visible spectrum, as the name suggests it. Although Near-

infrared exists in normal environment, it is invisible to human eyes. This can be easily viewed by 

an infrared camera, which can capture the infrared light from any source. Hence, instead of 

capturing the thermal emissivity of the objects by the TIR, a simple self-modified web camera is 
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used to capture the Near-Infrared light and provide infrared-like images. This is an alternative 

method providing an infrared image which is invisible light with low cost equipment. 

3.2.1 Procedure to convert a conventional webcam to NIR webcam 

Two webcam of same type is used in this thesis to capture the visual and infrared images. One 

of them is conventional webcam for capturing visual image, while the other is self-modified to 

capture the NIR image.  Since there is a need for external source of infrared illumination, an 

infrared lamp is used. This lamp illuminates the infrared light, which is captured only by the 

modified infrared webcam without having any effect on the visual image that is captured by the 

other visual band webcam.  The following procedure is performed to convert an ordinary 

webcam into an infrared webcam, following the suggestion [17].  

 Unscrew the webcam and remove the camera lens 

 There is an IR filter over the lens, which needs to be removed to make it capture the 

infrared light. 

 After removing the IR filter, replace it with a new developed photo film, so that it avoids 

the entry of visible light. That’s it! An infrared webcam is ready to capture the infrared 

light images.  

   
 
Figure 3.3: Step to make NIR webcam (a) lens of webcam (b) Lens with infrared filter removed 
(c)Infrared filter replace with photo film 

   
It is worth mentioning that there needs to be an infrared illumination alongside the scene so 

that the modified webcam can capture the image. Hence an infrared lamp is used which emits 

the infrared light which is lit besides the webcam to emit the illumination.  Another unmodified 

webcam is used for capturing visual image. Both the webcam needs to be placed such that both 

capture the same scene to avoid image registration issues. The whole experimental setup is 

shown in Figure 3.4 
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Figure 3.4: Visual and NIR webcam Setup 

Although this technique is very simple and cheap, there are some limitations. The image 

captured with the modified NIR webcam is distorted with lot of noise. Another major issue is to 

setup the webcams such that both of them capture the same scene, providing little work to 

image registration. Also the webcam captures a low resolution image. To overcome these 

limitations a single device with built-in visual and infrared camera is chosen. Kinect is used for 

this purpose, which is explained in 3.3 

3.2.2 Demo Experiments 

Sample images were captured from both the webcam in two different scenarios. One with good 

lighting condition termed as ‘day’ and other with bad lighting condition termed as ‘night’. During 

day, the image captured by the visual image webcam and NIR webcam are acceptable for 

classification purpose. During night, when all the lights are turned off, the quality of the visual 

image is very poor. The image could be hardly seen with naked eye and hence it cannot be 

classified correctly. However the NIR images are good even in such dark room, hence enabling 

the system to classify even in such low light conditions. Some of the sample images captured in 

different lighting conditions are listed in Figure 3.5.   
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(a) 

 
(a)  

 
(c)  

 
(d)  

Figure 3.5: Image capture from Visual and NIR webcam: a) Visual Image (Day) b) NIR image (Day) c) 
Visual Image (Night) d) NIR Image (Night) 

 

3.3 KINECT 
The Kinect [18] is an add-on from Microsoft for Xbox game console, which enables a user to be 

controller itself. The Kinect has inbuilt RGB camera, Infrared camera and infrared light projector. 

This enables the device to track the user’s activity and use them to interact to games. Some of 

its inbuilt features used with Xbox are face recognition, motion sensing, gesture recognition, 

voice recognition etc.  

3.3.1 Computer Vision Applications Using Kinect 

Though primarily released to use for gaming purpose, but due to its varied features, the Kinect 

has been used in many computer vision applications. Some of them are listed in an overview.  

 KinEmote is kinect software for windows enabling the user to interact windows with 

hand [19] 

 Doctors are using Kinect in the operation room to navigate the MRI scan image etc. [20] 

 Delta robots are controlled by Kinect to follow the user’s gesture [21], and also  

quadrotor is controlled using Kinect  [22] 
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 The Holographic display using Kinect [23] is built with the help of a LED projector which 

projects the different perspective of the image based on the location of the user. The 

location of the user is tracked by Kinect which controls the perspective projection.  

 3D tele-presence system with real time 3D capture [24] using multiple kinect makes the 

user to interact with anyone in 3D as such the person is beside them. 

 Wi-Go [25]: project that helps the disabled person to do the shopping with ease. This is 

done by enabling the shopping cart to follow the person using Kinect. This makes the 

person to just roll his wheel chair and keep the shopping items in the cart that is 

autonomously following him. Though this system was demonstrated for shopping but 

could be extended to anything where ever there is a need for the disabled person to 

carry things. 

 Controlling the robotic arm using kinect [26] which tracks the user’s arm and the robotic 

arm follows the same action.  

 NAVI (Navigational Aids for the Visually Impaired) uses a helmet mounted kinect to 

navigate the person [27] has been a good use of kinect using it for removing the 

boundaries of the visually impaired. This helps the visually impaired person to guide 

them in moving in indoor environment. It gives a message whenever there is obstacle or 

so. In short it can be said as a GPS system for the blind. 

 Humanoid teleoperation [28] with kinect helps the robot to follow the actions 

performed by the user remotely. 

 A mobile autonomous navigation robot [29] using kinect sensors for detecting objects 

providing wide use from remote learning, collaborative work, homecare, caregiver 

support etc. 

 Optimal camouflage tried with kinect [30] makes the person to be invisible, just one of 

the adventurous kinect hacks. 

 Real time 3D tracking and reconstruction from Microsoft research project KinectFusion 

[31] has really advanced the use of kinect from real gaming application to using its 

individual features for other use. 

 True 3D shopping making the shoppers to try out their desired cloths and accessories 

with having them to wear it out. KinectShop [32] has developed a televise shopping, 

where kinect detects the person and uses the model to allow them to try any 

accessories giving them a live preview. 

3.3.2 Interfacing Kinect to PC 

The Kinect which was released to work with Xbox was hacked [33]  to interface with PC using 

third-party drivers. This opened ways to use its exhaustive features for developing computer 

vision programs. Noticing the overwhelming response and use of kinect features for many 

applications, Microsoft released official versions of Kinect SDK [34] .  

The Kinect shown in Figure 3.7 has following main components, RGB camera, infrared camera 

and infrared projector. The Kinect captures the visual image using the RGB camera, while 

infrared camera is used to capture the infrared image. Depth image is also calculated using the 
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infrared projector and the infrared camera. There is tilt motor that helps the kinect to tilt and 

keep the tracked object in scene.   

Interfacing with PC 

There are two ways of connecting Kinect to PC. One way is to use the official Microsoft SDK 

while the other is to use the third party drivers. The infrared image cannot be captured with the 

former, hence the latter is used.  In particular we are interested to directly interface with 

MATLAB. Though there are many ways to connect it to PC, but the method used in the thesis is 

described below. 

 Requirements: To get it started, following are the check list, 

o Kinect 

o Windows 32-bit (tested with Win 7 and Win XP) 

o Microsoft Visual Studio 2010 

o MATLAB 32-bit (tested with R2011a) 

o Drivers namely OpenNI Binaries [35] , SensorKinect [36] , and OpenNI Compliant 

Middleware Binaries (NITE) [35]. 

o Kinect for MATLAB (a wrapper functions of OpenNI APIs to interface Microsoft 

Kinect) [37] 

 Installation procedures: 

o Install MATLAB and Microsoft Visual Studio 2010 in 32-bit Windows machine 

o Connect the Kinect (the LED wont glow now). 

o Install the drivers OpenNI, SensorKinect, and Nite (in this order). 

o When the drivers are installed correctly, the LED in kinect will glow green 

o If Kinect LED does not glow, manually select the drivers and update it. The 

updated device manager will look like in Figure 3.6.  

 

Figure 3.6: Installed Kinect drivers 
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The Kinect is now interfaced with PC, and using the Kinect MATLAB, now we can extract the 

desired images. Kinect is used in this thesis to obtain the visual image from the RGB camera, 

infrared image from the infrared camera, depth image from the depth sensor (infrared camera 

and the infrared projector). Once the images are extracted it is now given to the classifier for 

training or testing. Since there is not a database of different pose in infrared to train, the 

captures images from kinect cannot be used as of now for testing. Also lack of time restricts 

from creating a new database. However it creates a new path for the future works. 

 

Figure 3.7: Different components in Microsoft Kinect  

3.3.3 Demo Experiments 

The Kinect is now ready to capture the images. These images can be used to train or test the 

classifier. Some of the sample images captured by the Kinect are shown in Figure 3.8 

 

 
                            (a) 

 
            (b) 

 
           (c)       

Figure 3.8: Different images captured from Kinect a) RGB image,   b) Depth Image,  c) Infrared Image 
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4 Classification of Object Poses from 2D Image 

4.1 Overview 
he methodology used in this thesis work is a modified version of AdaBoost [13] enabling 

one to classify object poses through fusion of IR and visual object information. The 

classification procedure may be split into two main blocks, namely feature extraction and the 

classifier. The whole functional block of classification is shown in Figure 4.1. 

 

Figure 4.1: Block diagram of object classification 

4.2 Feature Computation 

The classification procedure starts with extracting unique features from the image and uses it 

for training the classifier. Classifying any image with respect to pixels, would be a difficult task, 

hence features are used, which is unique to different kind of image.  

The feature extraction method described in [7] is used with addition of a new feature type  

(type V). The feature types shown in Figure 4.3 are rectangular window functions that are 

convoluted with images to obtain a feature. For each feature type, the sum of all the pixels in 

black region is subtracted from all the pixels in the white region. This procedure is simplified by 

use of integral image [7] and have been clearly explained in [38]. 

T 
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4.2.1 Computation of Integral Image 

The integral image is calculated by replacing its pixel value by sum of entire pixels until its 

position. This is explained with the help of Figure 4.2 

 

Figure 4.2: Integral image calculation [7] 

For a the above image ‘I’, the pixel at position ‘1’,’2’,’3’,’4’ denotes the sum of all the pixels in 

region A, A+B, A+C, A+B+C+D respectively. This is done for all the pixels of the image. To cross 

check it, the last pixel value will be the sum of all pixel of the image. The final obtained image is 

the integral image. By using this integral image, the computation of the feature value will 

become easier. The procedure for calculation the feature is given below,  

Let   be the actual image and        be the pixel intensity at position x and y. For any pixel in 

image       , integral image is given by         ∑ ∑        
   

 
   . To calculate sum of any 

region in the image  , For example, to calculate the sum of pixels in the region D shown in Figure 

4.2 is            . 

For any feature type in Figure 4.3 the difference of the sum of pixels in the black region and the 

sum of pixels in the white region gives a feature value. This is calculated for all the images which 

results in a feature vector for one haar-like feature with specific type, size(w,h) and location(x,y). 

The type defines anyone of the type shown in the Fig 4.3. The size denotes the width and the 

height of the rectangular region. The location denotes the placement of the rectangle in the 

image. Different type of feature is shown in Figure 4.3. 

 

Figure 4.3: Different feature types. (a) Type I (b)Type II (c)Type III (d)Type IV (e)Type V (new) 
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Sample feature computation 

 

Figure 4.4: Sample feature parameters 

Let   be the image and    be the integral image. Selecting the feature type I, with W=19, H=19, 

x=4, y=7 as shown in Figure 4.4. Let    be sum of pixels in black rectangular region and    be the 

sum of pixels in the white rectangular region.            be its corresponding feature. Hence 

the    is given by 

            ∑ ∑       

     

   

     

   

 

Therefore, 

             ∑ ∑         

     

    

     

    

  

                              

The above computation is done from the image  , but it does a heavy computation. Hence 

Integral image is used now to simplify the computation for the same feature type defined in 

Figure 4.4 

 Define   a zero vector of size    

 W.k.t             hence defining the pixel positions         and replace the 

corresponding positive position with   and negative position with    
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And the final feature vector for type I can be computed from the expression 

                                    

Similarly for other feature types in Figure 4.3 ,   

                                                                               

                           {                        } 

             {                         }  {          

               } 

            {                                       }            

 {                                         } 

This results in a feature computation vector   that is used with any integral image to compute 

the feature easily. The feature is computed as 

        

The feature types (a, b, c, d) are used in [7] and the feature type (e) in Figure 4.3 is new feature 

type introduced in this thesis. Therefor for considering all feature types and possible size and 

location, for an       image, there exist 35686 features which are used as weak learners.  

4.3 Multi-Threshold Weak Learners: 

Once the features are extracted, they are used for training. The weak learner is a simple 

classification algorithm that can classify at least half of them correctly. These weak learners are 

used to build a strong classifier. The weak leaner used in [7] is a single threshold classifier which 

is used for the binary classification. The same concept is used in this thesis but modified to 

obtain a multi-threshold classifier which does the multiclass classification. The feature response 

of one weak learner is shown in Figure 4.5. The Figure 4.5 shows feature response for three 

different classes for one single feature.  

Total features is given by   {               }  ,   = total no. of features =        

and each feature is given by    {    
     

         
} , 

where,   = total number of images in each class,   = total number of class 

Hence for a feature   , the weak learner estimate    is defined as 
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{
 
 

 
 
                                                  

                               

                               

                               

                 

 

where,            ,   is computed for all the features and it determines the placement of 

each class in the feature response graph.     is defined for each of feature   and classifier  .     

is the threshold from left to right, that is computed to give the least error. The feature response 

for one feature             and iteration=1 for the classifier k=1, is shown in the Figure 4.5. 

The chosen weak learner is able to classify most of the samples belonging to right pose, while 

classifying half of the samples of other class. Hence this is chosen as the weak learner for the 

classifier k=1, which concentrates its classification for right pose. 

 

 

Figure 4.5: Multiple threshold weak learner for three classes showing           (horizontal line) 

 

4.4 Multiclass AdaBoost Classifier 

AdaBoost [13]  originally proposed for binary classification has also been extended for multiclass 

classification. But most of the proposed method reduces the multiclass to binary and apply the 

usual algorithm. Though there has been direct multiclass extension in [39], yet a simple 

multiclass boosting is proposed. The method uses the simple rectangular features described in 

[7].  

In this method these simple rectangular features are used to obtain a multiple threshold weak 

learner, unlike single threshold weak learner in [7]. Hence the weak learner by itself is a 
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multiclass classification. The weak learners are used for boosting such that each strong classifier 

obtained uses a set of weak learners that are good at classifying one class. Hence each strong 

classifier is trained to classify one class while the final classification is given by majority vote of 

all strong classifier. The overview of the method is explained in Section 4.4.1. 

The Multiclass AdaBoost classification method involves training ‘K’ strong classifier, each of 

which is made to specialize in classifying one class more accurately. Each classifier chooses a 

weak leaner that could classify its class with less error. Hence all the classifiers are trained to 

perform better in their own class. The final classifier can be a majority vote of all the classifier.  

4.4.1 Pseudo code  

The pseudo code for the classification of multiple classes is given in Table 4.1.  

 

Pseudo code for Classification using Visual/Thermal Images:  

Inputs:   {          } be the training images, 

   {         } be the feature set where    {            } 

               {          } be the corresponding class labels of  , where           ,  =No. 

of Class  

                  
 

 
 , Normalized weights for the input samples. 

 Weak Classifier:         

Output:       is the final hypothesis, where            

Algorithm Steps:  

For          boosting iterations 

For         strong classifiers 

 Train a weak classifier    
  for each feature     

 Choose the best weak learner     minimizing error    
  

   
  * ∑    ⟦   

       ⟧

  { }

 ∑    ⟦   
       ⟧

  { }

+ 

where,      class   for which the classifier   is trained 

⟦ ⟧  {
               
                

 

 Get the weak hypothesis          with error   
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 Calculate the Class error for the selected   
  

 Compute 

    
  * ∑    ⟦  

        ⟧

  { }

+            

 Calculate classifier weights Alpha,        
      (

      
  

   
 )  

Update the weights of the samples: 

   
     

    
   ⟦  

        ⟧          {    }    

where,     samples  m but classified as    

and       
  

  
 

     
  

 

 Normalize    
  

   
 

∑    
  

   

 

 End Loop     

 End Loop     

 Output the strong hypothesis, 

       ∑ ∑    
  ⟦  

      ⟧

 

   

 

   

              

The final estimation is given as 

   ∑       

 

   

              

           
 

       

Table 4.1: Pseudo code of Multiclass AdaBoost 

 The detailed explanation of the Multiclass AdaBoost about choosing a weak learner, computing 

classifier weights, re-weighting the sample weights and final estimation are also discussed. 

4.4.2 Choosing a weak learner 

The Multi-threshold weak learner defined in the 4.3 is used as a weak learner. As we have learnt 

that for a       detector window there are 35686 features. For every iteration, the classifier 

selects the best weak learner based on low class error. However the error that is used as a 

criterion to choose the weak learner needs to be defined. In [13] the weak learner minimizes the 

error,          
           , which is suitable if a single binary classifier or multiple 

independent binary classifiers are used. However in this method, the weak learner chosen in the 
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each strong classifier is a multi-class classifier. Hence the error is calculated based on 

misclassification of its class and misclassification of other class as its class. In other words, error 

is summation of false-positive and false-negative. For example, Let K=1, in which the classifier 

tends to classify more accurately ”Right” samples, then  

                                                          

                                                              

For each boosting iteration ‘t’, classifier ‘k’ for class ‘m’ and feature type ‘j’ , the error is given as, 

   
                                                                         

   
  * ∑    ⟦   

       ⟧

  { }

 ∑    ⟦   
       ⟧

  { }

+ 

                                                      

⟦ ⟧  {
               
                

 

Thereafter the weak learner is chosen so as to minimize the above error    
  

4.4.3 Computing classifier weights 

The weights assigned to the classifier    is given by    in [13] and for binary it is set as 

     
      

  
. However in this case of multiclass it needs to be modified accordingly. The weight 

   is computed for each of the strong classifier and the error    is defined for each class 

separately.  

For the classifier ‘k’, the independent class error    
  is calculated for M classes, and is given by 

   
  * ∑    ⟦  

        ⟧

  { }

+            

Using the above error, weights to the classifier      is assigned. For the classifier ‘k’ trained to 

classify class ’m’, if the corresponding class error    
  is less, then high weights is assigned to the 

classifier for classifying class ‘m’. And thus the corresponding    
  relates to the weight of the 

strong classifier for classifying class m. 

       
      (

      
  

   
 ) 

Taking an example scenario, Let     is the classifier trained to classify class   more accurately, 

hence if the error    
     , then, for this strong classifier, the weight for classifying class   will 

be, 
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     (

     

   
)         

Similarly for the same strong classifier    , the weight for classifying other classes is also 

computed from    
     

     
     

 . This is assumed as the confidence of classifying its class. 

4.4.4 Update of sample weights: 

The weight of the samples in [13] aims at assigning high weights to those which are 

misclassified. Since it deals with binary classification and has a single classifier a general rule is 

applied. But in case of Multiclass-AdaBoost, there are multiple strong classifiers. The motive is to 

make each classifier strongly trained in classifying one class, and also make sure that it does not 

classify samples of other classes as its own trained class. Hence the samples of the parent 

classifier and the samples of other classes that are wrongly classified as the child class are 

considered for weight update given by 

   
     

    
   ⟦  

        ⟧          {    }    

where,     samples  m but classified as   , and       
  

  
 

     
  

 

Considering a simple scenario to explain, let     be the strong parent classifier,     be its 

child class. Two sets of samples are considered for weight update. First set is the samples of 

child class    . In this set the weights of samples that are misclassified as      are given 

high weights. The other set is samples of         that are wrongly classified as     . All 

these samples will be given high weights, to make the classifier concentrates on these samples.  

4.4.5 Final Estimation 

Once all the strong classifiers are trained, then the final hypothesis is given as, 

       ∑ ∑    
  ⟦  

      ⟧

 

   

 

   

              

From the above expression, it is noted that each strong classifier    will compute the 

confidence for all the classes, and then the final confidence for each class  , is given as 

                                                       ∑        

 

   

              

The final estimation of any samples, is the class having the maximum confidence, given by 
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4.5 Fusion of Visual and Thermal Classifier  

The proposed multiclass AdaBoost is designed for fusion of visual and thermal classifiers. The 

algorithm is applied both to the visual and thermal image database. Once the classifiers are 

trained, we obtain individual classifier namely visual and thermal classifier. The individual 

trained classifier has the confidence for each estimated class.  The final estimation is given by 

sum of its weighted estimations. The block diagram showing the fusion of these two trained 

classifier is shown in Figure 4.6. 

 

Figure 4.6: Block diagram of Fusion of Visual and Thermal Classifiers 

The fusion method applied in this thesis can be considered as decision level fusion. However 

weights of both the classifiers are used to estimate the final prediction, which improves the 

classification rate. The pseudo code for the fusion of visual and thermal classifier is given in Table 

4.2. 

 

Pseudo code for Classification using Visual and Thermal Images:  

This method involves fusion of both the visual and thermal classifiers and giving a more accurate 

estimation. The pseudo code is presented below 

Inputs: 

    
                                                                    

    
                                                                  

Algorithm Steps:  

 Compute the individual confidence for each class for visual and thermal images. 

o Confidence for class m for visual image is given as, 

   
  ∑    
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o Confidence for class m for thermal image 

   
  ∑    

    

 

   

              

 

 Combine the confidence weights of both the classifier,  

  
        

       
     

  
      ∑    

        
    

 

   

            

Output: The final estimation is given by, 

           
 

  
                     

Table 4.2: Pseudo code of fusion of visual and thermal classifier 

The algorithm explained in Table 4.2 is about the fusion of visual and thermal classifier as a 

general case. Instead of thermal IR classifier, any other classifier like NIR classifier can also be 

used for fusion. In this thesis work, only visual and thermal classifier is considered. Since there is 

no available database for NIR face images for different pose, a NIR classifier cannot be trained. 

Also creating a NIR was a difficult task to do. However some test with NIR image is done with a 

visual classifier. The experiment that is done using this fusion algorithm is explained in Section 5. 
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5 Experiments and Results 

he algorithm described in the 4.1 is used for classification of facial pose. The experiments 

were conducted using the two databases, namely FERET database and Chalmers Visual-

Thermal Database. All the experiments stated below, uses the methodology described in Section 

4. The weak learner is the multi-threshold classifier explained in 4.3. Although the weak learner 

is multi-class classifier, the estimation performance of the weak learner should be at least equal 

to random guessing. The proposed multiclass AdaBoost is the classifier used for boosting the 

weak learner. The resultant strong classifier from the visual and the thermal images are 

combined using a simple fusion algorithm described in 4.5. 

5.1 FERET Database 
The multiclass AdaBoost is applied to the FERET database [40]. The samples images retrieved 

from FERET database are cropped and resized to 19*19 pixels. The detail of the parameters used 

in the simulation is listed in Table 5.1. 

Number of class: 3 (Right, Frontal, Left) 

Training images in each class: 300 

Image size: 19*19 

Boosting iterations: 30 

Test Images in each class: 100 

Type of Image Visual images 

Table 5.1: Experiment parameters for the classification using FERET database 

 

The FERET profile images were cropped and used in training. All the images were manually 

cropped and used for training. Since the database has only visual images, the fusion block is not 

applied for this database. 

The multiclass AdaBoost is trained and tested with only visual images. The comparison of 

training error and generalization error for all the boosting rounds is shown in Figure 5.1. The 

generalization error is found to decrease with the boosting iterations.  

T 
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Figure 5.1: Classification error for training and test images along boosting iterations 

This experiment is to emphasize on the performance of the multiclass AdaBoost. The concept of 

boosting helps to improve the classification rate if the classifier runs for a longer iteration. 

5.2 Chalmers Visual-Thermal Database 
The Chalmers Visual-Thermal database has both the visual and thermal samples. First the 

classification performance is analyzed individually for the visual images and then for thermal 

images. Finally fusion is applied and compared with the classification rate of only visual and 

thermal classifiers. The detailed specification of the database is already listed in Table 3.2 

5.2.1 Classification Using Visual Images 

Experiment is conducted for only visual images to evaluate its classification performance. The 

experiment parameter for classification using only visual images is listed in Table 5.2. 

Number of 
class: 

Model 1: 3 (Right, Frontal, Left) 

Model 2: 3 (Up, Frontal, Down) 

Training images in each class : 300 

Image size: 19*19 

Boosting iterations: 30 

Test Images in each class: 100 

Type of Image Visual images 

Table 5.2: Experiment parameters for the classification using only Visual images 
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The experiment is conducted for three class classification. Since there are five classes available 

in the database, two models is trained with three classes each. The model 1 is trained with 

Right, Front and Left. The model 2 is trained with Up, Front and down. The classification error is 

given as,  

                     
                           

                    
 

                                     
  

  
 

The classification error for all the boosting iteration for training and testing is shown in Figure 

5.2. From the classification error response, it is evident that the classifier performs well for the 

test data, and the error drops along the boosting rounds. The individual class error for right, 

front and left is computed from model 1, while for up, down is computed from model 2 and it is 

listed in Table 5.3. 

 

Figure 5.2: Classification Error for Model 1 (Right,Front,Left) 
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Figure 5.3: Classification Error for Model 2 (Up, Front, Down) 

 

Pose Type For Training (%) For Testing (%) 

Right 3.3 9.0 

Front 1.0 12.0 

Left 4.0 8.0 

Up 5.0 10.0 

Down 11.3 11.3 

Table 5.3 Classification Error for each pose 

The overall classification rate is given by 

                                                      

The overall percentage of classification rate for only visual images given below, which is 

calculated from the individual class error stated in Table 5.3. False alarm rate for model 1 is also 

calculated for all the poses and shown in Table 5.3. 
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       (%) False alarm (%) 

Training 95.08 4.16 

Testing 89.4 4.83 

Table 5.4: Overall classification rate and false alarm rate 

5.2.2 Classification using Thermal IR images 

The experiment is now conducted with only the thermal IR images. Some of the training images 

are captured with low lighting conditions, which could result is misclassification in the visual 

image classification. However in case of thermal IR images, this does not affect it. This is evident 

from the classification error shown in Figure 5.4: Classification Error for Model 1 (Right, Front, Left). 

The classification rate has improved compared to the classification rate of the visual classifier.  

The error response of model 1 in Figure 5.4 shows that the error has dropped to 0.01, while error 

response of model 2 in Figure 5.5 shows that the error to be 0.2. The reason for high error in 

model 2 is because of usage of similar class. Front, up and down class are considered for this 

model. Due to the some bad samples in these classes, error rate is increased. Analysis into this 

issue shows that the Front class constitutes 90% to this error. Hence the estimation of Front 

class is ignored in this model. Only samples of up and down classes are tested with model 2. 

 

Figure 5.4: Classification Error for Model 1 (Right, Front, Left) 
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Figure 5.5: Classification Error for Model 2 (Up, Front, Down) 

The individual classification error for each class is listed in Table 5.5. 

Pose Type For Training (%) For Testing (%) 

Right 1.0 2.0 

Front 0 1.0 

Left 0.3 0 

Up 5.6 4.0 

Down 1.0 1.0 

Table 5.5: Classification error for each pose 

The overall classification rate and false alarm rate for an only thermal IR image is given in Table 

5.6. 

       (%) False alarm (%) 

Training 98.42 0.66 

Testing 98.4 0.5 

Table 5.6: Overall classification rate and false alarm rate 
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5.2.3 Fusion of Visual and Thermal IR Classification 

The efficiency of the classifier drastically improves after using both the visual and the thermal 

images for the classification purpose. Both have unique features to classify the images. Hence 

the fusion results in better performance than the individual classification results. The 

classification error response for training and testing is given in Figure 5.6. 

 

Figure 5.6: Classification Error for Model 1 (Right, Front, Left) 

 

Figure 5.7: Classification Error for Model 2 (Up, Front, Down) 
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The fusion result for the individual class is listed in Table 5.7. 

Pose Type For Training (%) For Testing (%) 

Right 0 0 

Front 0 1.0 

Left 0 0 

Up  1.3 2.0 

Down 0.3 0.3 

Table 5.7: Classification Error for each pose 

Fusion of visual and thermal images has improved the classification rate for both training and 

testing. The overall classification and false alarm rate for fusion of the visual classifier and the 

thermal IR classifier is given in Table 5.8 

       (%) False alarm (%) 

Training 99.7 0 

Testing 99.34 0.16 

Table 5.8: Overall classification rate and false alarm rate 

 

5.3 Evaluation 

The performance of the fusion of the visual images and the thermal IR images can be evaluated 

by comparing their individual classification and the fused classification results. The comparison 

chart in Figure 5.8 and Figure 5.9 shows their performance. 

It is clear from the comparison, that for all the different poses, the fusion results in low 

classification error than the individual classification error. The overall classification rate has 

increased by using both visual and thermal classifiers. The classification rate improvement is 

shown in Table 5.9. 

 Visual (%) Thermal IR (%) Fused (%) 

Training 95.08 98.42 99.7 

Testing 89.4 98.4 99.34 

Table 5.9: Comparison of classification rate of Visual, thermal and fused classifiers. 
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Figure 5.8: Training Error Comparison of Visual, Thermal and Fused images of all pose 

 

 

Figure 5.9: Testing Error Comparison of Visual, Thermal and Fused images for all pose 

Right Front Left Up Down
0

0.02

0.04

0.06

0.08

0.1

0.12
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r 

fo
r 

T
ra

in
in

g
 D

a
ta

 

 
Visual

Thermal

Fused

Right Front Left Up Down
0

0.02

0.04

0.06

0.08

0.1

0.12

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r 

fo
r 

T
e
s
t 

D
a
ta

 

 
Visual

Thermal

Fused



48 
 

 

 

5.4 Demo Experiment 
The trained classifier model is used to classify the test data. A demo experiment is conducted 

during the presentation of this thesis. Kinect is used to capture the test image. Only Visual 

images are considered for this demo. The model is also evaluated with many complex scenarios 

like occlusion and the results are impressive. Some of the samples estimation of the classifier is 

shown in Figure 5.10 

 

Figure 5.10: Sample classified image by multiclass AdaBoost 
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6 Conclusion 

n this thesis fusion based multiclass classification of visual, thermal IR and NIR images is 

investigated.  The first part is the consideration of images from different spectrum for fusion. 

For this purpose, there different equipment is experimented. Thermal camera is used for 

capturing both the visual and the thermal images. The self-made NIR webcam is used for 

capturing the Near-Infrared images and the visual images. The kinect is interfaced to use its 

inbuilt camera to obtain the visual image, NIR image and the depth image. In the second part,   

these images are used for multiclass classification. The proposed multiclass AdaBoost is used as 

a classifier. The individual classification of the visual and the thermal images are done, and the 

classification rate is 89% and 98% respectively. The fusion of both these classifier is performed 

to improve the classification and the resulting classification rate is 99.3%. Thus the fusion indeed 

improved the classification rate, however due to the restricted use of thermal camera for 

commercial application, alternative method is suggested. The NIR images captured from the 

Kinect and the NIR webcam,  shows that the these images are invariant to light, and thus has the 

advantages of thermal images. Thus the fusion of visual and NIR images enhances the 

classification performance. 

 

6.1 Future Work 

The experiments and results always pave way to some more improvement. In this thesis, after 

investigation for the fusion of the visual and thermal IR images, lot of improvements and future 

work is suggested.  

The classifier technique used can be improved by using a strong weak learner. Hence instead of 

using haar-like features, some intense feature extraction methods like HOG, can be used to 

improve the performance. The multiclass AdaBoost classifier used in this thesis is constrained to 

three class due to weak ‘weak-learner’, this can be extended for 5 or more class classification 

with the use of a strong ‘weak-learner’. The weighted fusion of the individual visual and thermal 

classifier can be improved by use of feature level fusion. Only useful features of both the visual 

and thermal classifiers can be fused, and enhance the classification result. The training of the 

classifier is a time-consuming process. This was evident during the training process for the 

thesis. One way to avoid it is using online learning. Online learning applied to the current 

classifier will greatly improve the performance.  

I 
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The thermal IR cannot be afforded for all the applications; hence NIR was suggested as an 

option. Due to the unavailability of the NIR database for different poses, the classifier was not 

tested on NIR database, which can be done in future to evaluate its performance.  

Kinect can be used for real-time classification, as it has inbuilt NIR and visual camera. The 

classifier can be extended to classify for different scenarios like traffic light classification, human 

behavior classification, expression classification. All the experiments were conducted from still 

images which can be extended for video. Video tracking using both visual and thermal images 

can be studied. Also 3D modeling and tracking using multiple kinect can be investigated. 

The whole thesis work involves training and testing a static image. The improvement can be 

made by shifting from images to classification in video. The same algorithm can be applied to 

video, where each frame needs to be processed individually. The information in the successive 

frames should be considered for good classification in video.  The classification of object can be 

extended to detection and classification of object. As of now, the classifier can only classify a 

detected object. Building a detection algorithm into it will have wide usage in many applications. 
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