

DAT095 Project Renewal
Implementation of a MP3 Player on a FPGA
Master of Science Thesis in the Programme Integrated Electronic System Design

RECEP GÖKHAN ASLAN

CEMIL CAGLAR BÖKE

Chalmers University of Technology / University Of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, August 2011

ii

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

DAT095 Project Renewal

Implementation of MP3 player on FPGA

Recep Gökhan ASLAN

Cemil Caglar BÖKE

© Recep Gökhan ASLAN, August 2011.

© Cemil Caglar BÖKE, August 2011.

Examiner: Sven Knutsson

Chalmers University of Technology / University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden August 2011

iii

Abstract

This thesis has the intention to create a base for renewal of the DAT095 (Electronic

System Design Project) course. As a basis for the new project, implementation of a

LEON3 processor on a FPGA board was done and a MP3 player application was run on

it. The MPG123 [15] application‟s source code was used and modified according to the

system and by using hardware/software co-design techniques a complete system was

designed. The audio interface hardware core was designed according to the

requirements of the digital to analog converter MCP4288 [3]. Necessary interfaces were

implemented according to the AMBA bus. A demonstrator was built on the Digilent

Spartan3 xc3s1000 board [4]. During the analysis of the MP3 decoder, it was seen that

the Inverse Discrete Cosine Transform (IDCT) part of the decoder algorithm was too

computation-intensive and a hardware implementation for that part was made and

attached to the processor‟s AMBA bus as a slave. The MP3 decoder software and the

IDCT hardware were working together to decode the data.

Finally the development platform was changed to Digilent Atlys Spartan6 FPGA

development board [21] that gave a more flexible usage for future works. The LEON3

processors template design was modified according to the needs of the new

development platform and the MPG123 application was run on it.

iv

Acknowledgements

We would like to give our special thanks to our supervisor Sven Knutsson for his

supervision and support of this thesis and to Doctor Magnus Själander for his support

and comments to us.

v

Abbreviations

AHB : Advanced High Performance Bus

AMBA : Advanced Microcontroller Bus Architecture

APB : Advanced Peripheral Bus

ASB : Advanced System Bus

DAC: Digital to Analog Converter

DCT : Discrete Cosine Transform

FPGA : Field Programmable Gate Array

FPU : Floating Point Unit

IDCT : Inverse Discrete Cosine Transform

MMU: Memory Management Unit

OS : Operating System

PCM : Pulse Code Modulation

SPARC: Scalable Processor Architecture

VHDL : Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

vi

vii

Table of Contents

Abstract .. iii

Acknowledgements .. iv

Abbreviations .. v

Table of Contents .. vii

List of Figures and Tables .. viii

1 Introduction ... 1

1.1 Background 1

1.2 Objective and Tasks 1
1.3 Method 2
1.4 Project Materials 3

1.4.1 Development Platform 3

1.4.2 LEON3 Processor 3
1.4.3 GRLIB IP Library 4
1.4.4 Advanced Microcontroller Bus Architecture (AMBA) 4
1.4.5 RTEMS Cross Compilation System (RCC) 5

1.4.6 TSIM 5
1.4.7 GRMON 6

1.5 Development Environment 6

2 Software ... 7

2.1 MPEG – LAYER III (MP3) 7
2.1.1 Introduction 7

2.1.2 MP3 File Structure 7
2.1.3 Encoding 8
2.1.4 Decoding 9

2.2 MPG123 Library 12
2.3 BIN2SREC 15

3 Hardware ... 17

3.1 LEON3 Processor 17

3.2 Audio Core 21
3.2.1 Introduction 21
3.2.2 Implementation 22

3.2.3 Embedded System Simulation and Testing 28
3.3 64-Point IDCT Core 34
3.4 Migrating the Design to Atlys FPGA board 42

3.4.1 Implementation of LEON3 Processor 43

4 Conclusion .. 47

5 Future work ... 48

References.. 49

viii

List of Figures and Tables

Figure 1.1 Block Diagram of LEON3 System .. 5
Figure 2.1 A typical MPEG Layer 3 Encoder .. 8

Figure 2.2 MP3 decoder structure .. 9
Figure 2.3 Overlapped addition operation of the long blocks .. 12
Figure 2.4 MPG123 system performance in Linux .. 13
Figure 2.5 TSIM simulation result of modified MPG123 sofware .. 15
Figure 3.1 Xconfig GUI Window ... 17

Figure 3.2 GRMON Initialization on Command Window ... 19

Figure 3.3 Info sys Result on Command Window ... 20
Figure 3.4 Block Schematic of the Entire System .. 22

Figure 3.5 Timing Diagram for Write Command... 23
Figure 3.6 Simulation output of Hardware Interface .. 24

Table 1. Signals of APB Bus ... 24

Figure 3.7 State Machine for APB Bus .. 25

Figure 3.8 Timing diagram for write and read transfers respectively 26
Figure 3.9 LEON3 Processor System with Audio Core Attached ... 28

Figure 3.10 C code implementation of the Test Program... 29
Figure 3.11 Structure of the Wave File Format ... 30
Figure 3.12 Little Endian Ordering example and Vhdl code implementation 32

Figure 3.13 C code implementation of Wave Player.. 32
Figure 3.14 Modifications in audio.c to use audio core ... 34

Figure 3.15 Profiling output of MP3 Player in GRMON ... 35

Table 2. Cosine Table used in IDCT calculations ... 35
Figure 3.16 Block Diagram of first 2 calculation points of IDCT ... 37
Figure 3.17 Block Diagram of 3

rd
 and 4

th
 calculation points of IDCT 37

Figure 3.18 Block Diagram of last calculation point of IDCT ... 38
Figure 3.19 Entire Simulaton of 64 point IDCT Calculation ... 38

Figure 3.20 Input and output values taken from software and Outputs taken from

Simulation .. 39
Figure 3.21 APB BUS Write part of the IDCT AMBA Interface .. 40
Figure 3.22 APB BUS Read part in IDCT AMBA Interface ... 41
Figure 3.23 Addition of IDCT AMBA interface to leon3mp.vhd .. 41

Figure 3.24 Registers of the IDCT Hardware... 41

Figure 3.25 Modifications in the C code of MPG123 source code .. 42

Figure 3.26 DCM code added to leon3mp.vhd .. 44
Figure 3.27 Profiling result of the MPG123 application with IDCT core 45
Figure 3.28 Modifications in the mpg123.c C code ... 46

1

1 Introduction

This chapter explains the background of this thesis project, purpose, objective and

thesis tasks which lead the studies for developing the project and methods used on

thesis project to achieve set goals.

1.1 Background

Today is the world of embedded systems and processors as they have real time

performance designed for a specific purpose and they offer a simplified system

hardware which reduces the manufacturing costs. Lots of embedded systems are

designed according to needs of technology and processors are the main parts of those

embedded systems. In an embedded system, processors can be used for running

applications and suitable hardware interface designs can be used for getting outputs.

The usage of embedded systems are increasing day by day and lot more work on

embedded systems needs to be done. Therefore renewal of projects according to new

processors and applications become requisite. These new projects will help students

understand the basics of embedded systems; giving them the taste of working with

embedded processors combined with hardware and giving them the experience of how

hardware and software co-design can be done. For example, an embedded system which

has a processor that reads inputs from an interface and performs some form of signal

processing on these, before passing them on to an output interface can be realized.

Moreover in this embedded system, from input to output, some part of the software can

be implemented as an accelerator in hardware for accelerating the system to meet the

performance constraints. Accelerator design can achieve this by realizing excessive

computations with extra hardware and working in parallel with the software.

1.2 Objective and Tasks

The purpose of this master‟s thesis is to implement the LEON3 [1] processor on a

FPGA board and run a suitable application on it. This master‟s thesis will be used later

as a reference design to develop a project that can be used as the base for renewal of the

DAT095 (Electronic System Design Project) course. The new project is intended to be

2

more system oriented and to achieve this low level software and general purpose

processors should be introduced. To achieve the objective of this thesis, five tasks are

introduced at the beginning of the studies. These tasks are:

1. Identifying an application that has a suitable computational kernel, preferably

more than one; that can be isolated and improved by a hardware accelerator.

2. Based on the selected application, identify required input and output interfaces

and the overall system design. This mainly consists of selecting suitable IP cores

from GRLIB (refer to section 1.4.3) and to assemble and configure the system.

3. Considering the runtime system. Should the application be executed directly on

LEON3 or should an operating system be used.

4. Adapting the application to achieve a suitable interface for hardware

acceleration. Algorithmic changes might also be required to allow for efficient

hardware implementations, e.g., removal of floating point operations.

5. Implementing a suitable kernel in hardware that is accessible over the AMBA

bus (refer to section 1.4.4) and interfacing it to the software.

1.3 Method

Thesis work starts with research on GRLIB [1], the LEON processor and software for a

suitable application. A FPGA board needs to be selected as development platform

according to the requirements of selected application and it should preferably be

supported by GRLIB. Reconfiguration of the software to be used in a LEON based

embedded system is required. Analyzing the application for computation excessive parts

and implementing those parts in hardware to accelerate embedded system is a critical

part to achieve.

3

1.4 Project Materials

1.4.1 Development Platform

The development platform used in this project is the Digilent Spartan3 FPGA board [4].

It includes the FPGA XC3S1000-FT256 with on-board I/O devices and 1MB fast

asynchronous SRAM. It is supported by the GRLIB IP library and it has 1000K gates

and it is large enough for the LEON3 processor to be implemented. Moreover, it has 40-

pin expansion connectors which are used for attaching a DAC card to get audio outputs.

The board has these significant features;

 Xilinx Spartan-3 FPGA with twelve 18-bit multipliers, 216Kbits of block RAM,

and up to 500MHz internal clock speeds

 -200 and -1000 versions available

 On-board 2Mbit Platform Flash (XCF02S)

 8 slide switches, 4 pushbuttons, 9 LEDs, and 4-digit seven-segment display

 Serial port, VGA port, and PS/2 mouse/keyboard port

 Three 40-pin expansion connectors

 Three high-current voltage regulators (3.3V, 2.5V, and 1.2V)

 Works with Digilent‟s JTAG3, JTAG USB, and JTAG USB Full Speed cables,

as well as P4 & MultiPRO cables from Xilinx

 1Mbyte on-board 10ns SRAM (256Kb x 32)

1.4.2 LEON3 Processor

The LEON3 is the IP core of a 32-bit processor compliant with the SPARC V8

architecture [9] and it is distributed as a part of the GRLIB IP library provided by

Aeroflex Gaisler [1] with the GNU GPL license. The LEON3 processor has the

following features:

 SPARC V8 instruction set with V8e extensions

 Advanced 7-stage pipeline

 Hardware multiply, divide and MAC units

 Separate instruction and data cache (Harvard architecture) with snooping

4

 Configurable caches: 1 - 4 ways, 1 - 256 Kbytes/way. Random, LRR or LRU

replacement

 Local instruction and data scratch pad RAM, 1 - 512 Kbytes

 SPARC Reference MMU (SRMMU) with configurable TLB

 AMBA-2.0 AHB bus interface

 Advanced on-chip debug support with instruction and data trace buffer

 Large range of software tools: compilers, kernels, simulators and debug

monitors

1.4.3 GRLIB IP Library

The Gaisler Research IP Library (GRLIB) is a library for system-on-chip development,

provided by Aeroflex Gaisler Company. It includes various IP cores and AMBA

AHB/APB (refer to section 1.4.4), a common on-chip bus. In this project, the IP cores

of the LEON3 SPARC processor, 32-bit SRAM controller, 32-bit DDR2 controller and

serial debug link are used. These cores are placed around AMBA AHB/APB after they

are configured by using Xconfig GUI tool (refer to section 3.1). The library can be used

easily with different CAD tools for simulation and synthesis purposes and it has support

for various FPGA platforms. The library is provided under the GNU GPL license.

1.4.4 Advanced Microcontroller Bus Architecture (AMBA)

In GRLIB, AMBA 2.0 [2] with AHB/APB is included which is introduced and

supported by ARM Limited Corporation. The AMBA is an on-chip bus used in the

System-on-Chip (SoC) designs to connect different functional blocks like processors,

memories and peripherals. The AMBA Advanced High-Performance Bus (AHB) is a

multi-master bus which interconnects the blocks with high data rates like the LEON3

processor and memory unit. Other units like the universal asynchronous

receiver/transmitter (UART) which requires low data rates are connected to the system

via the AMBA Advanced Peripheral Bus (APB). An APB is connected to an AHB/APB

bridge which is the only APB master on the bus. The figure 1.1 is an example of a

LEON3 system.

5

Figure 1.1 Block Diagram of LEON3 System [1]

1.4.5 RTEMS Cross Compilation System (RCC)

Real-Time Executive for Multiprocessor Systems (RTEMS) is a free cross compilation

system provided by Aeroflex Gaisler which is used for embedded systems and has been

ported to different processor architectures including SPARC. Applications cross-

compiled with RTEMS Cross Compiler (RCC) [13] can be debugged on the TSIM

LEON simulator [16] and on hardware using GRMON debug monitor [12]. In this

project RTEMS 4.10 version is used.

1.4.6 TSIM

During the development process, it is highly important to simulate target applications

using simulators before debugging on real hardware to shorten development time.

Aeroflex Gaisler provides a licence free, evaluation version of TSIM 2.0 which is

capable of simulating LEON processors and it has an important role in the testing of the

application after it is cross-compiled. TSIM can be run in stand-alone mode which has

various debugging commands to allow the user to change the contents of memory and

registers, insert breakpoints and measure performance. Simulation time is measured

according to integer unit (IU) and floating point unit (FPU) instruction timing. TSIM

can also simulate user defined I/O devices which are loaded as modules written in C

6

language. TSIM has a simulation performance of more than 1MIPS/100 MHz (host

CPU frequency) allowing the user to significantly decrease development process time.

1.4.7 GRMON

GRMON is a debug monitor for LEON processors which is provided by Aeroflex-

Gaisler. By using GRMON, applications can be downloaded to a FPGA board and

executed, the application process can be profiled for performance testing and moreover

all registers and memory are accessible for debug and verification purposes. In this

project, an evaluation version of GRMON provided by Aeroflex Gaisler is used as it is a

license free version.

1.5 Development Environment

The project has been developed on Windows XP and Linux operating systems.

Hardware has been synthesized and downloaded in Windows by using Cygwin [10]

which is a Unix-like environment for Microsoft Windows. In Linux environment

application software has been coded and compiled.

7

2 Software

This chapter explains the structure of the softwares that were used in this thesis project.

2.1 MPEG – LAYER III (MP3)

2.1.1 Introduction

MP3 [17] is the most commonly used audio file format. Actually it refers to MPEG-1 or

MPEG-2 Audio Layer III, a patented digital audio encoding format which uses a form

of lossy data compression and it was designed by the Moving Picture Experts Group

(MPEG). MP3 is not license free; it is based on patents from Fraunhofer IIS, University

of Hannover, AT&T-Bell Labs, Thomson-Brandt, CCETT and other engineers in the

former MPEG group. The standard was finalized in the mid 1990‟s and MP3 files began

to be widely used on the Internet.

The MP3 standard reduces the amount of data required and still sound like

uncompressed audio for most listeners. If a 16-bit, 2-channel uncompressed audio file

with 44.1 KHz sampling frequency is compressed as a MP3 file at 128kbit/s bit rate, the

compression ratio is 11.025. Audio files can also be compressed at higher or lower bit

rates, with resulting higher or lower quality MP3 files. There are different sampling

frequencies and bit rates defined for MPEG Audio. MPEG-1 defines audio compression

at 32 KHz, 44.1 KHz and 48 KHz. The standard also defines a range of bit rates from

8kbit/s to 320kbit/s.

2.1.2 MP3 File Structure

A MP3 file consists of multiple MP3 frames in which a header and data blocks exist

[15]. A frame header block has a length of 32 bits (4bytes). The first 11 bits are all set to

„1‟ to for frame sync. Other important information that can be gathered from the header

are MPEG Audio version, layer description, bit rate, sampling frequency and channel

mode. Data blocks contain compressed audio data in terms of frequencies and

amplitudes. Nowadays, MP3 files have also ID3 metadata placed before or after the

MP3 frames. An ID3 metadata block has information like artist, title and album and the

format which describes the process of including additional information about audio file

8

is called tag format. However, the MP3 standard does not define tag formats and

different MP3 decoders either read information from tags or just treat them as junk data.

2.1.3 Encoding

The MPEG-1 standard does not have an exact specification for encoding, however it

gives examples of psychoacoustic models. Implementers of the standard are supposed to

design their own algorithms to remove parts of the information from the audio input.

This leads to the development of many different encoders each having different

performance and quality [18]. A block diagram of a typical MPEG Layer 3 encoder can

be seen in figure 2.1. As the project is mainly on implementing of a MP3 decoder, the

MP3 encoder is only discussed briefly in the report.

Figure 2.1 A typical MPEG Layer 3 Encoder

2.1.3.1 Filter bank

The filter bank consists of a polyphase filter bank and a Modified Discrete Cosine

Transform (MDCT). The polyphase filter bank includes 32 bandpass filters of equal

width. Digital audio signals taken as input to the filter bank are in frames of 1152 PCM

coded samples. Each frame is divided into two granules of 576 samples. Filter bank

converts these 576 samples in the time domain to frequency components with a

downsampling ratio of 32. As a result, the filter bank block outputs 18 samples for each

of the 32 bandpass filters.

2.1.3.2 Perceptual model

According to psychoacoustics rules, the perceptual model calculates an estimate of the

actual masking threshold or allowed noise for each coder partition by using time domain

input signal and/or the output of the filter bank. These masking thresholds are used by

the quantization and coding block to determine how many bits that are needed to encode

9

each sample. If the quantization noise is lower than the masking threshold, then the

quality of the compressed audio signal is the same as the original audio signal. As a

result, the perceptual model is an important block which determines the quality of the

encoder.

2.1.3.3 Quantization & coding

This block quantizes and codes the spectral components to keep the quantization noise

which is introduced by quantizing below the masking threshold. After quantization,

Huffman coding [23] is used to code the quantized values. Because the music signals

have different local statistics, different Huffman code tables are used for different parts

of the spectrum.

2.1.3.4 Encoding of bitstream

In this block, a bitstream formatter constructs the bitstream which consists of quantized

and coded spectral coefficients and some side information e.g. bit allocation

information.

2.1.4 Decoding

Compared to MP3 encoding, the MPEG-1 standard defines MP3 decoding more

specifically. Most decoders will give the same output within a small rounding tolerance.

In further sections, detailed information about MP3 decoding will be given [14].

Figure 2.2 MP3 decoder structure [14]

10

2.1.4.1 Frame data block format

Each frame consists of one or two granules with 576 samples depending on the layer

type and the decoder processes one granule at a time. If it is MPEG Layer I, there are

two granules and 1152 mono or stereo frequency domain samples and if it is MPEG

Layer II, there is only one granule. Each granule is also divided in 32 sub-blocks each

having 18 frequency lines. So the length of a frame for a fixed bit rate is usually

constant with the exception of a possible deviation of one byte to maintain an exact bit

rate.

A frame is composed of a header block and a data block. In the data block, there are

side info, main data and ancillary data. The side info section has the information needed

to decode the main data such as Huffman table selection, scale factors, requantization

parameters and window selection. It is 17 bytes long in single channel and 32 bytes in

dual channel mode. The main data section has the coded scale factor values and the

Huffman coded frequency lines. For a fixed bit rate, the size depends on the ancillary

data section. The ancillary data is not needed to decode audio data, but it includes the

specific information between the encoder and the decoder of the same software.

The frequency spectrum is from 0 to Fs/2 Hz and this spectrum is divided into 32 equal

sub-bands.

2.1.4.2 Huffman decoding

Huffman decoding is used to decode the amplitude of 576 spectral lines. It is expected

that low spectral frequencies have large amplitudes while high spectral frequencies have

low amplitudes and even zeros. According to this expectation, these 576 spectral lines

are located in five regions; rzero for “0” values, count1 for small values between -1 and

1 and three bigvalue regions for high values.

2.1.4.3 Requantization

A requantization block is used after the Huffman decoding block to convert the

Huffman decoded output to spectral values by using scale factors.

EQ 1. Requantization of samples

11

The equation used in the requantization block can be seen in eq. (1), the C factor in the

equation is gathered from side information and the scale factors.

2.1.4.4 Reordering

In the encoding process, short windows are used to make Huffman coding process more

efficient assuming that samples with closer frequencies have similar values. Therefore

after the samples are requantized, they must be reordered for the scale factor bands, in

other words frequency lines are sorted by subbands, then by frequency. This block is

used only for short blocks, not for long blocks which are only sorted by frequency.

Short blocks have better time resolution than long blocks and are used for transients

where there is large difference between consecutive frames.

2.1.4.5 Alias reduction

An alias reduction block includes eight butterfly calculations for each sub-band and is

used to reduce the aliasing effects of the polyphase filter bank in the encoding process.

2.1.4.6 IMDCT

The IMDCT (Inverse Modified Discrete Cosine Transform) is used to transform the

sub-band samples from frequency domain to time domain.

EQ 2. IMDCT Transform

In the equation, the n value is 12 for short blocks and 36 for long blocks which is

received from the side info in the data block of each frame. If it is a short block, three

transforms are realized for every 6 input values and three vectors of 12 output values are

overlapped with each other. Then 6 zeros are added to the both ends of the vector of 24

output values resulting from overlapping. As a result, a vector of 36 output values is

generated. If it is a long block, an output of 36 values is generated for every 18 input

values. The first half of the current block and second half of the previously saved block

are overlapped. The overlapped addition of the long blocks is shown in the following

figure:

12

Figure 2.3 Overlapped addition operation of the long blocks

As a result, the IMDCT block outputs 18 time-domain samples for each of the 32 sub-

band blocks. After the IMDCT block, a 36 point windowing function is used to

smoothen frame transition. If there is little difference between consecutive frames, a

long window for 36 values is used. If there is large difference, a short window is used to

for better time resolution.

2.1.4.7 Frequency inversion

The frequency inversion block multiplies every odd time sample of every odd sub-band

with -1 to correct for the effect of frequency inversions in the synthesis polyphase filter

bank.

2.1.4.8 Synthesis polyphase filter bank

The synthesis polyphase filter bank uses 32 samples, one from each sub-band block of

18 time-domain samples in each granule and converts it to 18 blocks of 32 PCM

samples.

2.2 MPG123 Library

After a research among different MPEG Audio player and decoder libraries, the

MPG123 library with version 1.13.2 [15] is selected for implementation as it provides

non-floating point execution, compatibility with the RTEMS compiler and is a license-

free, fast real-time library.

13

The MPG123 library provides various features like HTTP support which enables getting

MP3 audio files from a WWW server, outputting different audio file formats like WAV,

SUN audio and CDR file instead of playing the audio file, down sampling, playlist and

equalizer, however many properties are excluded due to the small RAM size of the

FPGA board. Before RTEMS cross-compilation, the MPG123 application is tested in

Linux. In figure 2.4, it is observed that only 680 KB memory and max 1.3% of the

1.86GHz CPU are used.

Figure 2.4 MPG123 system performance in Linux

The CPU frequency needed is calculated as 24 MHz and the working frequency of the

LEON3 processor on Spartan3 is 40 MHz which is generated from the 50 MHz main

clock to meet the timing constraint of the design. It is expected that the MPG123

application can run on the LEON3 processor. However, when memory capacity is

considered, the FPGA board has 1 MB capacity whereas the MPG123 application is 700

KB and uses 680 KB of memory. If unnecessary parts of the application are removed, it

is expected that the application can run with 1 MB RAM.

RTEMS is chosen for cross-compilation of the MPG123 application source code

because it is provided by Gaisler and is supported by the MPG123 library with

configuration options. To use the RTEMS cross-compiler, the source files are

downloaded and added to the path.

export PATH=/opt/rtems-4.10/bin:$PATH

14

Then, the RTEMS options -msoft-float for no floating point operation, -g for debugging

with gdb and mcpu=v8 for generating SPARC V8 mul/div instructions are changed in

the configure file of the library by the following commands and with the make

command the application is cross-compiled.

export CC=sparc-rtems-gcc

export CXX=sparc-rtems-gcc

export CFLAGS='-msoft-float -g -mcpu=v8'

./configure --target=sparc-rtems --host=sparc-rtems --disable-shared

--with-cpu=generic_nofpu

make

After that, a few changes are done to use the application with the LEON3 processor.

When it is used in a Linux terminal, the application uses the getopt library to get options

and filename written in command line in the terminal. However, GRMON does not

accept additional commands, but only the run command. So, the following

modifications in mpg123.c and compat.c are done to have the application select a user-

located MP3 file.

Change in mpg123.c;

 =>

Instead of getting files with the get_next_file function which uses the getopt library, the

filename is given as test.mp3 and stored in the “fname” char string. The “fname” char

string is used as “filename” char string in compat.c and it is located in compat.c by

adding following lines,

Before the following line in compat.c;

After the file is opened in compat.c, MP3 data is loaded from the file descriptor (fd) by

the mpg123_handle. Instead of changing the mpg123_handle, a pointer is defined

starting from the address of 0x400d0000 and a file is created just before the file is

opened by the application. The address range of the RAM is from 0x40000000 to

0x40100000 which corresponds to 1 Mbyte. Because the application is loaded from

15

0x40000000 to 0x400b0000, MP3 data is loaded to 0x400d0000 which is the free part

of the RAM. To load the MP3 file into the LEON3 processor, it is changed to SREC

format by using the BIN2SREC program which is described in the section 2.3.

Before testing the application on the FPGA board with GRMON, it is tested with TSIM

which simulates the LEON3 processor successfully, loads files and runs faster. It makes

us find software errors before moving to FPGA; as a result it decreases the development

time significantly. The simulation report for the application on TSIM is as follows.

Figure 2.5 TSIM simulation result of modified MPG123 sofware

As it can be seen in figure 2.5, the application is run on TSIM successfully and ends

without any errors or traps. By simulating on TSIM, the functionality of the application

is verified. In other words it can be run on the LEON3 processor without any software

errors. After that the application is loaded into the LEON3 processor and it also works

successfully on the GRMON as expected. Further modification before getting the

application to run is done to minimize its size. Http, playlist, streamdump, wav, control-

generic header and C files which do not affect program functionality and lines for

parameters that are not used are removed.

2.3 BIN2SREC

Elf-sparc [13] and s-record [20] are the only supported file formats when using

GRMON to load files into the LEON3 processor‟s memory. Executable and linkable

format for SPARC architecture (ELF-Sparc) is the file format for executable files

16

created by using cross-compilers. As MP3 files are binary data files, which cannot be

compiled with cross-compilers, changing MP3 to s-record format is the only option to

load in the memory. SREC (s-record) is a hexadecimal text encoding for binary data

which was created for the Motorola 6800 processor.

The SREC format has the following structure;

Start Code (S) + Record Type + Byte Count + Address + Data + Checksum

S3 15 40000000 4944330200000000003A545432000034 A0

S3 : Record type: Data sequence with 4 address bytes

15 : Byte count

40000000 : Address

A0: Checksum

The BIN2SREC library [19] is used to convert the MP3 file to a s-record file with the

following options;

./bin2srec -o 400d0000 -a 4 -l 16 test.mp3 >test.srec

GRMON needs the SREC files to have the address in 4 byte and 16 byte data in a line.

The data start address is selected to be after the last program address and in the range of

memory capacity.

17

3 Hardware

This chapter explains the LEON3 processor structure and the hardware

implementations that were made in this thesis project. In addition hardware-software

co-simulation and new development platform are mentioned.

3.1 LEON3 Processor

The starting point of the thesis project is implementation of the LEON3 system using

GRLIB. The implementation is typically done in three steps which are configuration of

the design using xconfig GUI tool, simulation of the design and synthesis and

place&route. The template design of the LEON3 processor is available in GRLIB and

based on three files : config.vhd, leon3mp.vhd and testbench.vhd. The config.vhd file is

containing the configurations that are given from the xconfig GUI tool and the

leon3mp.vhd is the top module of the leon3 processor. The testbench.vhd is a testbench

with external memory and emulating the FPGA board.

Before synthesis and place&route, the LEON3 processor needs to be configured

according to the requirements of the thesis project and the leon3mp.vhd file needs to be

modified according to the configurations. The configuration of the LEON3 processor is

done with the xconfig GUI tool. The xconfig GUI tool is launched by the command

“make xconfig” in the cygwin shell(windows). The GUI window is popping up like in

the figure below.

Figure 3.1 Xconfig GUI Window

From the xconfig GUI tool, the options need to be configured according to the

requirements of the thesis project. In the synthesis part the target technology is selected

as Xilinx-Spartan3 and other options are all disabled. In the Clock generation part, the

clock generator is selected as Xilinx-DCM and the clock multiply is selected as 4 and

18

the clock divider is selected as 5 which are the default values. The processor clock

which is 40 MHz is generated from the 50 MHz main clock by multiplying 4 and

dividing by 5 to satisfy the timing constraint of the design. In the Processor options, the

number of processors is selected as 1 which is the LEON3 SPARC V8 processor. The

options for the integer unit is left as default. The floating point unit is disabled, cache

systems is left as default, MMU and Debug Support Unit is enabled. The AMBA

configuration option is also left as default. For Debug Link option there is just one

alternative which is JTAG Debug link but in the thesis project a serial connection is

used for debugging so changes are made in the config.vhd and leon3mp.vhd file for

using serial connection. The RS232 standard[11] is used for the serial connection

between the computer and the FPGA board. In the leon3mp.vhd file the AHB uart

connection part is modified. The ahbjtag0 component is deleted and only the

component dcom0 is used. With this small modification serial connection with the board

is achieved. In the Peripherals part, Memory Controller, On-chip Ram/ROM, UART

options are left as default and the keyboard option is disabled. After the settings are

made the configurations are saved. After the configuration of the LEON3 processor, pin

assignment in the user constraint file (UCF) of the design is arranged. Synthesis and

place&route is made in Xilinx ISE[6]. Finally the programming file is generated and

loaded to the FPGA board.

In section 1.4.7 information about the debugging monitor GRMON is given. GRMON

can be used for read/write access to all system registers and memory downloading and

execution of LEON3 applications. It has built-in disassembler and trace buffer

management. The applications that are used in this thesis project are loaded with

GRMON using serial communication. In the windows command shell, GRMON can be

started with command line options. The most important options for this thesis project

are “-baud”, “-u”,”-uart com#” and “-nb”. The first option “-baud” is used for setting

the baud rate for the DSU serial link. In this thesis project the baud used is 115200

which is the default baud rate value. The option “-u” is putting UART in FIFO debug

mode and it is enabling both reading and writing to the UART from the monitor

console. In addition “-uart com#” is used for communicating with the target using a

specific port of the host. By default GRMON tries to communicate with the first uart

port of the host. Finally the option “-nb” is used for telling the debugger not to stop on

19

error traps. After starting GRMON with these options, GRMON tries to connect with

the target and when it achieves the connection then it scans the system to detect which

IP cores are present.

This is done by reading the plug&play information which is normally located at address

0xfffff000 on the AHB bus. A debug driver for each recognized IP core is then

initialized, and performs a core-specific initialization sequence if required. For a

memory controller, the initialization sequence would typically consist of a memory

probe operation to detect the amount of attached RAM. After the initialization is

complete, the system configuration is printed:

Figure 3.2 GRMON Initialization on Command Window

After the connection more detailed system information can be printed and the attached

IP cores can be seen by the command “info sys”.

20

Figure 3.3 Info sys Result on Command Window

As can be seen from the detailed system information, the memory address is starting at

0x40000000 and when there is a load of any application, which does not contain any

specific address information, loading starts from the initial adress of the memory by

default. Before an application is loaded, cross-compilation of the source code of the

application is needed because the sparc processor only runs sparc binaries. For the

cross-compilation, the RTEMS LEON/ERC32 Cross-Compiler System is used. In

section 1.4.5 general information about the RTEMS Cross-Compiler System is given

and according to the information and the user‟s manual, the compilations of the source

codes of the applications are made. During the cross-compilation, some useful sparc-

rtems-gcc compiler options are used. The first option is “-msoft-float” which must be

used if there is no FPU in the system. This option is emulating floating point. The other

option used during the cross-compilation is “-mcpu=v8”. This option generates SPARC

V8 mul/div instructions for LEON with hardware multiply and divide configured

system. Moreover option “O2” is used to optimize the code. This option should be used

for optimum performance and minimal code size. After the cross-compilation options

21

are selected, the cross-compilation of the test C code is done. The test code and the

command line to compile the code are shown below.

sparc-rtems-gcc –msoft-float –mcpu=v8 -O2 hello.c -o hello.exe

After the compilation an “exe” format file is generated and ready for loading to the

system. The loading process is done using GRMON. In the GRMON console the

command “load hello.exe” is written and the application is loaded to the board. After

load a “run” command runs the code and the “HELLO” word is written on console and

this verifies that the processor is running correctly and is ready to be used for the audio

core and player applications.

3.2 Audio Core

3.2.1 Introduction

In order to use the decoded values from the MP3 player, an audio core is implemented.

The audio core that is used in this project addresses a circuit board which contains a

digital to analog converter. The converter is followed by a smoothing circuit which is

removing the clock from the output signal. The circuit board is connected to one of the

expansion connectors on the Xilinx Spartan 3 board. The digital to analog converter on

the circuit board is MCP4822 from the vendor Microchip. MCP4822 is a dual channel

12-bit DAC which has Serial Peripheral Interface (SPITM) supporting 20 MHz clock

frequency. In order to communicate with the DAC, a hardware interface needs to be

implemented in VHDL according to the specifications of the DAC and needs to be

attached on the LEON3 processors AMBA/APB Bus as a slave. In the following figure

a simple block schematic of the system is given.

22

Figure 3.4 Block Schematic of the Entire System

3.2.2 Implementation

3.2.2.1 Hardware Interface Design

According to the datasheet of the MCP4288 digital to analog converter, the device is

designed to interface directly with the SPI port of the microcontroller. The converter has

8 pins which are Vdd, CS, SCK, SDI, VoutA,VoutB, AVSS and LDAC.

Communication with the DAC is unidirectional so data cannot be read at the output of

the device. The configuration and data bits are sent to the device via the SDI pin, where

data is being clocked-in at the rising edge of the SCK. The clock data which is sent to

the SCK pin needs to be at most 20 MHz. The CS pin needs to be low during the write

command. The write command of the device is a 16-bit word and the four most

significant bits of the 16-bit word are used for configuring the device and the other 12

bits are data . The four most significant bits of the 16-bit word are used for selecting

DACA or DACB, don‟t care, output gain selection and output power down control

respectively. After each write command, the LDAC pin needs to be low for transfering

the input latch registers to the output latches. In the following figure the timing diagram

for a write command is shown.

23

Figure 3.5 Timing Diagram for Write Command

With the guidance of the information from the data sheet of the DAC, VHDL code for

the interface is written and simulated in Modelsim[5]. The interface has three inputs

which are 12 bit data, main clock and reset. In addition to that there is four outputs

which are SCK, LDAC, CS and DOUT. The main clock of the LEON3 processor is 40

MHz and in the implementation it is used as SCK for the DAC and so it needs to be

slowed down to a frequency higher than 16x44 kHz to send all data bits and generate

the analog value at 44 kHz. When reset is high, new 12 bit datas are taken and the CS

pin goes low. After 16 clock cycles the CS pin goes high and the LDAC pin goes low

for a short time. As the device triggers on the positive edge on the SCK signal, the bits

that are sent have to be placed on DOUT before the positive edge so the data are stable

when the positive edge comes.

3.2.2.2 Simulation and Testing

After the implementation of the VHDL code, the design is simulated in Modelsim for

debugging and then it is ready for testing. During the testing the inputs are given from

the switches of the FPGA board which are 8-bits. The remaining 4-bits are set to „0‟.

The VHDL code is synthesized using Xilinx ISE and a programming file is generated.

The generated file is loaded to the FPGA. The output of the circuit board is connected to

an oscilloscope and for each 8-bit wide digital input value, an analog value is seen on

the oscilloscope. With that stage the testing of the implemented code is done and next

step is attaching the audio core to the AMBA bus of the LEON3 processor.

24

 Figure 3.6 Simulation output of Hardware Interface

3.2.2.3 Bus Selection

The LEON3 processor is using AMBA AHB and APB for connection to the memory

and peripherals. The LEON3 processor needs to be connected to the audio core through

AHB or APB. The first thing to be done is selecting one of these buses.

AMBA AHB is used for high clock frequency and high performance system modules. It

is suitable to use as the main system bus. On the other hand APB is suitable for low

power peripherals and the interface complexity is reduced. Using the audio core as a

master on AHB can increase the bus loading and may decrease the performance of the

processor. According to the AMBA specifications the APB interface is recommended

for simple register-mapped slave devices. Because of these facts, attaching the audio

core to the AMBA APB as a slave is decided.

3.2.2.4 Attaching the Audio Core to AMBA/APB as a Slave

In the section above, selection of the bus is made and using APB for communicating

with LEON3 processor is decided. To attach the audio core to the APB as a slave, an

interface implementation in VHDL is needed.

Before the implementation of the interface, understanding of the specifications of the

APB is important. The APB has eight signals and each name starts with the single letter

„P‟ indicating that they are APB signals. The signals of the APB are:

PCLK Bus clock and rising edge is used for all transfers on APB.

PRESETn APB bus reset signal is active LOW and can be connected to system reset.

PADRR[31:0] APB adress bus with 32-bits wide and driven by peripheral bus bridge unit.

PSELx Indicates that the slave device is selected and transfer of data required.

For each slave unit there is a PSELx signal.

Table 1. Signals of APB Bus

25

PENABLE Used to time all accesses on the peripheral bus. It is used to indicating the

second cycle of an APB transfer. In the middle of the APB transfer the rising

edge of the PENABLE signal occurs.

PWRITE Indicates the direction of the transfer. When HIGH, there is an APB write

access and when LOW there is an APB read access

PRDATA When PWRITE is LOW, read data bus is driven and can be up to 32-bits wide.

PWDATA When PWRITE is HIGH, write data bus is driven and can be up to 32-bits wide.

Table 1. Signals of APB Bus (cont)

According to the AMBA/APB specifications, the APB has three states which are IDLE,

SETUP and ENABLE as in figure 3.7. The IDLE state is a default state for the

peripheral bus and PSELx and PENABLE signals are „0‟ at that time. When a transfer is

required, the bus is moving to SETUP state and the select signal PSELx becomes „1‟.

The bus only stays in that state for one clock cycle and always moves to the ENABLE

state on the rising edge of the clock.

In the ENABLE state the PSELx and PENABLE signals are asserted. This state only

lasts for one clock cycle and the bus returns to IDLE state if there is no more transfers

required. On the other hand if there is another transfer required the bus is returning to

the SETUP state.

Figure 3.7 State Machine for APB Bus

There are two transfers that can be done on APB and they are write and read transfers.

In the write transfer, after the rising edge of the clock, adress, write data, write signal

and select signal are changing. The first clock cycle is the SETUP cycle and at the

26

following clock edge the PENABLE signal is asserted and the ENABLE cycle is taking

place. The adress, data and control signals all remains valid in the ENABLE cycle and

the write transfer is completed at the end of this cycle. At the end of the write transfer

the PENABLE signal is deasserted and the select signal goes LOW except when there is

another transfer to the peripheral. For the read transfer the timing of write, adress, select

and strobe signals are the same as in the write transfer. The slave must provide the data

during the ENABLE cycle and at the end of the ENABLE cycle the data must be

sampled on the rising edge of the clock. For the write transfer the data is read from

PWDATA signal and for read transfer the data is read from PRDATA signal. In the

figure 3.8, the timing diagram for write and read transfers are shown. Between T1-T2

and T4-T5 the IDLE state takes place and between T2-T3 the SETUP state takes place

and between T3-T4 the ENABLE state takes place.

Figure 3.8 Timing diagram for write and read transfers respectively

One of the reasons for using APB is that it has a simple slave interface and in addition

to that it is flexible with many possible options. In the case of write transfer, the data

can be latched on the rising edge of the PCLK, when PSEL is HIGH or on the rising

edge of PENABLE when PSEL is HIGH.

The APB slave interface that is implemented is written according to GRLIB and it has

three inputs which are clock, reset and APBI. The APB master is driving a set of signals

grouped into a VHDL record called APBI. This APBI is sent to all APB slaves. The bus

multiplexer and adress decoder is controlling which slave that is going to be used. The

input record APBI includes the select signals for all slaves in the vector APBI.PSEL and

therefore the APB slave must use a generic called PINDEX ,which is of type integer, for

27

specifiying which PSEL element to use. Beside the inputs, the slave interface has 5

outputs which are APBO and outputs for the audio core which are described in the

hardware interface design section. The APBO is the output record of the active APB

slave and it is forwarded to AHB slave output. In the APB slave interface, the hardware

interface that is implemented to communicate with the audio core is used as a

component. When apbi.psel(pindex), apbi.penable and apbi.pwrite are HIGH the input

data is taken from apbi.pwdata and sent to the component. The apbi.pwdata is the data

coming from the APB and it is 32 bits. For the DAC device, only 12 bits of the

apbi.pwdata can be used and the decision of using the LSBs or MSBs of the data needs

to be taken according to the music data. This will be discussed in the further sections of

this chapter. Besides the data coming from the bus, a spi_reset signal is sent to the

hardware interface for setting the new coming data values and other instances of the

interface. In the write transfer of the APB slave, the spi_reset signal becomes HIGH and

LOW for other cases. When the spi_reset is LOW, the hardware interface starts sending

the values according to the timings and specifications that are mentioned in the

hardware interface design chapter. For the read transfer, an output named „flag‟ is added

to the hardware interface and after the whole 16 bit data is sent to the DAC, the flag

signal becomes „1‟ which is indicating that the hardware can get new values from the

APB bus and it becomes „0‟, when a new 16 bit data set comes. The flag signal is then

used in the APB slave interface. When apbi.psel(pindex) is HIGH, then the flag is sent

to the register to let the software know that new data can be sent. If the flag is LOW

then the software is not sending any values to the bus. A detailed information about the

usage of flag will be given in the futher parts of the chapter.

The slave interface and hardware interface are added to the opencores library. In the

leon3mp.vhd which is the top module of the leon3 processor, the APB slave interface is

added as a component and the signals are connected as in the VHDL code below.

28

The pindex is 9 and it‟s telling that when the APB want to reach the audio core it is

going to select the PSEL‟s 9
th

 element. There are 100 hexadecimal addresses per device.

The address of the AMBA APB is 0x80000000 and the audio core is placed in the

address 0x80000900.

 Figure 3.9 LEON3 Processor System with Audio Core Attached

3.2.3 Embedded System Simulation and Testing

 The audio core is attached to AMBA APB as a slave and testing needs to be done

before using the MP3 player. First a simple test program is used for testing the

communication between the LEON3 processor and the audio core and then software is

used for playing a WAVE file. After those tests the MPG123.exe program is used for

playing MP3 files.

3.2.3.1 Simple Test Program

This program is sending integer values between 1 to 255. At the output of the audio core

the analog values according to these integer values need to be seen if everything works

correctly.

In the implementation of the APB slave interface, it is mentioned that small changes in

the interface are needed according to the input values. The DAC in the audio core is

just using 12 bits as data and the values coming from the APB bus are 32 bits. The least

significant 12 bits of the 32 bit data needs to be used to get the values correctly.

The simple test program is sending values between 1-255 which corresponds to 8 bits

which are the most significant bits of 12 bit data. The other 4 bits are assumed „0‟.

29

According to the input value little changes are done in the slave interface design. For

example the spi_in is the input values which are sent to the hardware interface and the

apbi.pwdata is 32 bits and just 8 bits of the apbi.pwdata is used for getting the values.

After these changes are made in the APB slave interface, the software program is

written in C programming language. The C code of the test program is as below:

Figure 3.10 C code implementation of the Test Program

In the code above, flag_send_data is declared as volatile integer because it is a memory

mapped peripheral register which can be changed asynchronously to the program flow.

If it is not declared volatile, during optimized compilation, it is compiled as not

changeable by peripheral.

Volatile integer flag_send_data is used for sending the value of the integer i which is

changing from 1 to 255 to the address of the register. The address is 0x80000900 where

the audio core is attached. The AMBA APB is writing the values to apbi.pwdata during

the write process and the hardware interface is just taking the least significant 8 bits of

the 32 bit data and sending them to the audio core. The output of the audio core is

changing according to the integer values and the analog values can be seen. This simple

test program verifies that the communication between the LEON3 processor and audio

core is done correctly. After the test stage, the project can be taken to the next step

where a wave file is played.

3.2.3.2 Simple Wave Player

After testing the communication between the LEON3 processor and the audio core, the

next step is to play a wave file. First loading of a wave file to the memory is needed. For

loading the wave file to memory, the BIN2SREC program, which is converting binary

files to Srecord format, is used. In chapter 2.3 information about the Srecord format is

30

given and according to the information, the generated Srec file is changed. The starting

adress of the data is selected as 0x40010000 and the wave player is getting values

starting from that address. Before writing the C code of the wave player, some research

is done about the wave file format.

3.2.3.2.1 Wave File Format

The waveform audio file format which is a Microsoft standard is used for storage of

multimedia files. It is a subset of the RIFF bitstream format [7] which starts with a

header followed by data chunks. The wave file contains a RIFF chunk descriptor and 2

other sub-chunks which are fmt and data chunk. The fmt sub-chunk[8] is containing

information about the format of the sound and the data sub-chunk is indicating the size

of the sound information and contains the raw sound data. The general name for this

format is Canonical Wave file format and the figure below shows the structure of this

file format.

Figure 3.11 Structure of the Wave File Format [8]

The first 4 bytes contains the letter RIFF in ASCI form, after that the 4 bytes are chunk

size which indicates the size of the rest of the chunk. 8
th

 byte to 11
th

 byte contains the

letters WAVE in ASCI form. From 12
th

 to 15
th

 the letters “fmt “ are contained and from

16
th

 to 19
th

 the size of the subchunk is contained. The 20
th

 and 21
st
 bytes are containing

information about the form of compression and if that value is 1 than it indicates that

the audio is PCM. 22
nd

 and 23
rd

 bytes are indicating the number of channels like mono

31

or stereo. From byte 24 to 35 sample rate, byte rate, block align and bits per sample

informations are contained respectively. From the 36
th

 byte the data sub-chunk starts

and it contains the size of the data and actual sound data. The default byte ordering for

a wave file is little-endian and 16 bit samples are stored as 2‟s complement signed

integers which are ranging between -32768 and 32767. Before continuing with the C

code implementation understanding of the little-endian byte ordering is important.

3.2.3.2.2 Little endian byte ordering

According to the wave format specifications, the default byte ordering is little-endian.

In little endian byte ordering the least significant byte is stored in lowest address and the

most significant byte is stored in the highest address. For example if there is a 32 bit

quantity written as FAFBFCFD16. Each hexadecimal represents 4 bits and there is a

need of 8 hexadecimal digits. The bytes are FA, FB, FC and FD. The adresses to store

these bytes are adr0,adr1,adr2 and adr3. According to little-endian byte ordering FA

byte needs to be stored in adr3, FB byte is stored in adr2, FC byte is stored in adr1 and

FD byte is stored in adr0.

The LEON3 processor is using SPARC V8 architecture and the SPARC is a big-endian

architecture which means the most significant byte is stored in the lowest address and

the least significant byte is stored at highest adress. Because of the endianess of the

SPARC architecture changes are made in the AMBA APB slave interface

implementation which will be explained in the next section.

3.2.3.2.3 Changes in APB Slave Interface for playing wave file

After examining the characteristics of wave files, changes are made in the APB Slave

interface. The input wave sound that is used in the test section of the wave player is 16

bit, mono with 44 kHz sampling frequency. The audio data is 16 bit which are stored as

2‟s complement signed integers. The sound is mono channel so every 16 bit set is

containing sound data and when a write transfer is required the APB is sending 32 bits

which contains two 16 bit sets. In the C code implementation the 32 bits need to be

divided into two sections and the 16 bit set which is at the lowest adress is sent to the

APB slave interface first and then the other 16 bit set is sent. In the APB slave interface,

the arrangements of the bits are made according to little-endian issue. Also the 2‟s

complement signed bits are changed to unsigned by adding „1‟ to most significant bit of

the spi_in. The most significant 12 bit of the data is used because of the DAC

32

specifications. The VHDL code and the figure below shows how the arrangements are

made.

Figure 3.12 Little Endian Ordering example and Vhdl code implementation

3.2.3.2.4 C Code Implementation of Wave Player

After the changes are made in the APB slave interface, the C code implementation is

made.

Figure 3.13 C code implementation of Wave Player

33

The simple program is modified to play a wave file. Volatile integer flag_read_data is

added to the code, this checks if the DAC processed previous data by waiting for the

flag output of the DAC to be set. The sound data which are 32 bit started to be taken

from address 0x40010000. The 32 bit data is divided in two 16 bit sets and sent

according to the issues that are mentioned in section 3.2.2.1 to address 0x80000900

where the audio core is attached. After the implementation of the wave player in C

programming language, it is compiled with sparc-rtems-gcc and the generated sparc

object is loaded to the board by GRMON. In addition to that, the sound data is loaded to

address 0x40010000. The outputs of the audio core is connected to a 50 Ohm speaker.

When the wave player program is run in GRMON, the player starts sending the sound

data to the audio core and the music can be heard from the speaker. The wave sound file

that is loaded to the board only contains 10 seconds of music data. The memory on the

FPGA board has 1 MB capacity and if that capacity is increased then longer music data

can be played.

3.2.3.3 MP3 player on chip

In the final step, after verifying audio core functionality with a simple test program and

a simple wave player, the MPG123 software and the AMBA interface are modified to

use the MPG123 application and play MP3 files.

3.2.3.3.1 Changes in MPG123 Software and AMBA Interface

The application has options for different audio outputs. When the application starts to

run, it checks if there is an audio device and if there is not, it flushes the output of the

frames to a dummy buffer. The flush_output function in audio.c is where the output is

sent to the buffer. This function is modified to send output data to DAC by using the

mp3_amba_interface.

34

Figure 3.14 Modifications in audio.c to use audio core

The modified flush_output function gets its input in bytes buffer with the size of count.

The function is modified only for 16-bit, mono MP3 files. In the code above, data in

char declared bytes buffer are taken in to the integer declared data register byte by byte

and then summed with 32768 to change from two‟s compliment to unsigned integer

because DAC accepts unsigned integer input.

Moreover, the mp3_amba_interface is modified as shown below because unlike in the

simple wave player case, the output is in big-endian format.

After the modifications in software and hardware, MPG123 application with audio core

is run successfully.

3.3 64-Point IDCT Core

In section 2.1.4.6 information about the IDCT function of the MP3 player is mentioned.

One of the tasks of the thesis project is selecting a process consuming part of the

software and make a hardware accelerator and an interface for communication with the

AMBA bus. During the profiling of the MP3 player application, it is seen that the 64

point IDCT function is consuming 13.13% of the process and it has less complex

35

computations compared to the 36 point IDCT function. For those reasons, the 64 point

IDCT function is selected and implemented in VHDL as a hardware core and attached

to the LEON3 processor‟s APB bus as a slave. The profiling output of the design

without IDCT core which is taken from the GRMON debug monitor is as follows.

Figure 3.15 Profiling output of MP3 Player in GRMON

The dct64 function used in the mpg123 library is named as 64-point as it uses a buffer

array of 64 which stores input and output data and no further information is provided

about it by developers. The implementation of the IDCT core starts with understanding

of the C code of the 64 point IDCT function and a block diagram is generated according

to the C code and the VHDL code implementation is made according to that block

diagram. As can be seen from the figures 3.16,3.17 and 3.18, the 64 point IDCT has 5

calculation points. Each point contains additions, subtractions and multiplications. The

IDCT core is taking 32 data values which are 32 bits each and giving 32 data values

after IDCT calculations as output. The multiplications are made with cosine values and

for those values cosine tables are generated and used. The cosine table used for the

multiplications is as follows.

costab_1(0) 00802785 costab_1(8) 00be99ee costab_2(0) 00809e8d costab_3(0) 02901b3a

costab_1(1) 0081668b costab_1(9) 00d6df9e costab_2(1) 0085c278 costab_3(1) 00e664d7

costab_1(2) 0083f45b costab_1(10) 00f8fa3b costab_2(2) 0091233f costab_3(2) 0099f1bd

costab_1(3) 0087f268 costab_1(11) 012b606a costab_2(3) 00a5961d costab_3(3) 008281f7

costab_1(4) 008d9838 costab_1(12) 017bf236 costab_2(4) 00c9c480 costab_4(0) 014e7ae9

costab_1(5) 00953b3a costab_1(13) 020ecabc costab_2(5) 010f8893 costab_4(1) 008a8bd4

costab_1(6) 009f5c6e costab_1(14) 3685906 costab_2(6) 01b8f24b costab_4(2) 014e7ae9

costab_1(7) 00acc03d costab_1(15) 0a30a45f costab_2(7) 0519e4e0 costab_4(3) 008a8bd4

costab_5 00b504f3

Table 2. Cosine Table used in IDCT Calculations

36

For the calculations simple vector adder, subtractor and multipliers are implemented

and numeric_std libraries +, - and * operators are used. The simple vector adder makes

addition of two 32 bit signed vectors, the vector subtractor takes one of the input‟s 2‟s

complement and adds it with the other 32 bit signed input vector and in the multiplier,

two 32 bit inputs are multiplied and the resulting 64 bits are shifted to the left 8 bits to

match with the results of C code which uses its own “REAL_MUL” function written in

assembly and its own cosine table. In addition the MSB 32 bits are taken as

multiplication result. When the vector adder, subtractor and multiplier are implemented,

the implementation of the top module is done. The top module contains 4 inputs and 2

outputs which are clk, rst, write, and in_a, read and idct_64 respectively. The write

input is a 1-bit input which is used for checking if the APB bus has finished writing the

32 data values or not. The in_a input is a 1024 bit vector which contains 32 data values

coming from the APB bus. The clk and rst inputs are system clock and reset. The output

read is also a 1-bit value which is used for telling the APB bus that the calculation of the

64 point IDCT is finished. The idct_64 output vector is a 1024 bit vector which contains

the calculated values.

When write input becomes „1‟ then the inputs are taken to an 32 column 32 row array

and the signal for starting the calcultaion is set to „1‟. The Spartan3 board has enough

adders and subtractors so 16 addition and subtraction are made in one cycle but for

multiplier case the Spartan3 board supports twelve 18x18 multipliers so in one cycle

using 4 multiplication is selected and in each point of the IDCT calculation 16

multiplications are needed so for getting the result of the whole multiplications in one

point, 4 clock cycles are needed. The inputs of the multiplier in each point is a value

from the cosine table and the result of the subtraction so the multiplier waits for the

subtraction operation and then starts doing the multiplication. For that reason after each

subtraction finishes, the “sub_fin” signals are set to „1‟ and the multiplier starts

calculation according to that signal‟s value. Each point is connected to each other

because in each point the results coming from the previous point is used and for that

reason calc_fin signals are used for telling the next point if the previous point is finished

or not. When the previous point finishes the calculation than the next point uses the

results coming from there. In the figures 3.16, 3.17 and 3.18 the block diagram of the 64

point IDCT can be seen.

37

Figure 3.16 Block Diagram of first 2 calculation points of IDCT

Figure 3.17 Block Diagram of 3rd and 4th calculation points of IDCT

38

Figure 3.18 Block Diagram of last calculation point of IDCT

After the implementation of the IDCT core, simulation in Modelsim is done. The 32

data input values are taken from the MP3 player software and given to the simulation.

The figure below shows the entire simulation of the 64 point IDCT calculation.

Figure 3.19 Entire Simulaton of 64 point IDCT Calculation

39

During the run of the MP3 player software the input values to the 64 point IDCT

function are printed and taken for use in the simulation. Also the output of the

calculation is taken from the software. First point by point comparison is made. After

each calculation point the results are verified and the errors are fixed. Then at the end

the final result coming from the software and hardware is compared. The test input

values and the output values that are compared can be seen in figure 3.20. The table on

the left shows the values taken from the software and the values on the right shows the

values of the implemented core‟s output.

Figure 3.20 Input and output values taken from software and Outputs taken from Simulation

After the simulations are done in Modelsim, implementation of the APB slave interface

is done. Attaching a peripheral as a APB slave is mentioned in section 3.2.2.4. The steps

that are mentioned in that section is followed. The IDCT AMBA interface uses the

IDCT core which is described in previous section. The IDCT core starts to calculate

40

from 32 given input when the idct_write signal goes high. When the calculation is done,

idct_read signal goes high. The core needs to wait until 32 input data arrives, so the

IDCT interface is the part where each 32-bit input is stored in an input array and sent to

the core. It also gets the output array and sends it to the software one of the 32-bit

outputs at a time.

Figure 3.21 APB BUS Write part of the IDCT AMBA Interface

Software sends the input array to the IDCT interface by using APB Bus Write part as in

figure 3.21. If the IDCT core is ready to get data from the interface, idct_read or flag

signals are high. When the last input is sent by the software, idct_write goes high and

the calculation starts. After the inputs are sent, the software starts to read status of the

IDCT core by checking the idct_read signal with the APB Bus Read part of the

interface as in figure 3.22. When idct_read gets high, 32-bit outputs are taken one by

one.

41

Figure 3.22 APB BUS Read part in IDCT AMBA Interface

The IDCT AMBA interface is located on the APB Bus with pindex 10 which is not used

by any other core in the design. Below is the added part in leon3mp.vhd for the

interface.

Figure 3.23 Addition of IDCT AMBA interface to leon3mp.vhd

Figure 3.24 Registers of the IDCT Hardware

After implementing the IDCT core and attaching the peripheral to the APB Slave,

necessary modifications in MPG123 source code is done to use the IDCT core. 64 point

IDCT calculations are done by the dct64.c in the source code. Because the 5 points of

calculations in the code has time consuming multiplications with additions and

42

subtractions, they are all migrated into the IDCT core. The modified C code has 6

registers which are used to send data to the IDCT core, read data from the IDCT core

and check the IDCT core status which can be observed in figure 3.24.

Figure 3.25 Modifications in the C code of MPG123 source code

Sending of the input array starts after checking the IDCT core status. If the IDCT core is

in reset mode, flag_read_stat is 2 and if it is in ready mode after a previous calculation,

flag_read_stat is 1. Input array located by the b1 pointer are sent to the IDCT core and

flag_send_finished goes low, if idct_write signal in the core goes high which states that

the calculation has started. The idct_write signal is reseted after the calculations has

started by the idct_write_reset register until next data transfer. Then C code waits until

the IDCT core finishes its calculations by checking flag_idct_finished. When the

calculations are done, the output buffer pointed by bufs is loaded with output data from

the IDCT core.

Simulation of the interface is done similar to the core simulations with Modelsim.

Outputs of the software with the IDCT core are compared with outputs without the

IDCT core. Outputs match exactly for different inputs.

3.4 Migrating the Design to Atlys FPGA board

Up to this chapter in the thesis project, the development platform used is Digilent

Spartan3 FPGA board with the FPGA Xilinx XC3S1000-FT256. It has 1000K gates and

1MB fast asynchronous SRAM. The reason for starting the thesis project with this

43

development platform is the support of the GRLIB IP library and the familiarity with

the development platform.

 On the other hand during the process of the thesis project, it was seen that the chosen

platform was not efficient and flexible for future uses. The 1MB SRAM was not enough

for storing long music data and running big applications that need much more memory.

Instead of a development platform that has a small memory and a small number of

gates, Digilent Atlys Spartan6 FPGA development board [21] was a good alternative

platform. It includes a Xilinx Spartan-6 LX45 FPGA which is optimized for high

performance logic and offers 6,822 slices, each containing four 6-input LUTs and eight

flip-flops, 2.1Mbits of fast block RAM, four clock tiles (eight DCMs & four PLLs) and

500MHz+ clock speeds. The board has these significant features;

• Xilinx Spartan-6 LX45 FPGA, 324-pin BGA package

• 128Mbyte DDR2 with 16-bit wide data

• 10/100/1000 Ethernet PHY

• on-board USB2 ports for programming and data transfer

• USB-UART and USB-HID port (for mouse/keyboard)

• AC-97 Codec with line-in, line-out, mic, and headphone

• real-time power monitors on all power rails

• 16Mbyte x4 SPI Flash for configuration and data storage

• 100MHz CMOS oscillator

• 48 I/O‟s routed to expansion connectors

• GPIO includes eight LEDs, six buttons, and eight slide switches

The development platform contains its own AC-97 codec which eliminates the need for

a DAC card. In addition it has 128Mbyte DDR2 memory which is much more flexible

and suitable for future uses. Besides these features, there is one disadvantage of the

development platform. It is not supported by GRLIB IP library so changes and

modifications need to be done in the template design of a similar development platform.

In the next section those changes and modifications will be mentioned.

3.4.1 Implementation of LEON3 Processor

The Xilinx Spartan 6 design in GRLIB is used as a reference design and modified for

Digilent Atlys Spartan 6 board. In the configuration of the LEON3 processor, the

following modifications are done to use the Atlys board. In the clock generation

44

configuration, clock division and multiplication factors are selected as 12 and 6

respectively to get a 50 MHz processor operating frequency. The floating point unit is

closed and MMU is selected. As the Atlys board has a USB-Uart cable, Serial Debug

Link is selected as debug link. In the memory controllers section, the DDR2 SDRAM

controller is closed and the Xilinx MIG DDR2 Controller is selected.

In the new release of GRLIB, there is also the Xilinx Memory Interface Generator to

use DDR2 memory on the board. However, the Atlys board has different clock

properties than the Xilinx board. The main clock in the Xilinx board is 27 MHz and

there is a differential 200 MHz clock to drive the DDR2 memory, whereas the main

clock in the Atlys board is 100 MHz and a 200 MHz clock for DDR2 memory is not

available. To use DDR2 memory, a few changes are done in the design. The DCM (

Digital Clock Manager) core is added to generate the 200 MHz single-ended clock from

the processor clock and the Coregen project is modified to use single-ended clock

instead of differential clock.

Figure 3.26 DCM code added to leon3mp.vhd

The DCM generates the clk200 signal at 200 MHz from the 50 MHz main clock with

12/3 multiplication and division factors. The DCM works with rstraw7 input reset

which is delayed with seven gates. The DCM needs this delay to wait until the 50 MHz

clock has settled. The DCM outputs DCM0_LOCKED signal which goes high when the

clk200 signal is generated. The DDR2 memory needs an asynchronous reset when the

45

200 MHz clock signal is ready, so the DCM0_LOCKED signal together with the

rstraw7 signal is used for reseting the memory.

After all modifications are done, the LEON3 processor is connected via GRMON. By

running the simple hello program successfully, functionality of the processor is verified.

The Atlys board has its own audio chip, however the interface for the audio chip is not

designed due to limited time. Instead of its own audio chip, the DAC card in the design

for Spartan 3 board is used for playing music. The DAC card is connected to 8-pin

Pmod connector of the Atlys board and necessary pin assignments are arranged in the

user constraint file (UCF). Finally, the output of the MPG123 application is tested by

playing the music with the IDCT core and without the IDCT core. As it can be seen in

figures 3.15 and 3.27, the proces time ratio of the dct64 function is decreased to 8.15%

from 13.13%. Test results also show that a test music file of 45 seconds is decoded in 23

seconds without the IDCT core and if the IDCT core is used in the system, the decoding

time is decreased to 21.75 seconds.

Figure 3.27 Profiling result of the MPG123 application with IDCT core

The MPG123 application is also verified by outputing the decoded raw music and

comparing with generated wave music file in Linux environment. As in figure 3.28,

necessary changes in the MPG123 source code are done to store raw music in a

predefined address location. When the decoded audio output is stored in the predefined

address, “dump” command of GRMON is used to dump data in the memory to file in s-

record format.

46

Figure 3.28 Modifications in the mpg123.c C code

47

4 Conclusion

The goal of this thesis work was to construct an embedded system with hardware and

software co-design techniques. According to the objectives, a MP3 player application

was implemented on LEON3 processor based hardware.

A time consuming computational kernel IDCT function has been implemented in

hardware instead of software to speed up the application. In the same way, user defined

IP cores can be added to LEON SoC and different system functions can be realized in

hardware.

Using the APB to connect the DAC core resulted in computational delay between

frames and sound quality was not good enough. The AHB would be a better choice to

connect the DAC core because it can access to memory by using the AHB and get

decoded data for each frame while the LEON3 processor does the decoding

computations and as a result no computational delay occurs.

It is important to use implementation boards supported by GRLIB. As different boards

has different signals or clocks, the modification of the template designs of other boards

are time consuming and the outcome of the modification may not be stable. Moreover,

the USB-Uart connection which is used to connect with GRMON was too slow to

download data and the application to the FPGA and sometimes resulted in DCOM

communication errors. Ethernet connection can be used for better download speed and

stable connection.

The knowledge gained about LEON3 processors and other IP cores like audio or user-

defined cores during the project can help students in their future works and this work

can be a reference design for future implementations.

48

5 Future work

Up to now the thesis tasks mentioned in section 1.2 was completed. An application

(MPG123) that has suitable kernels was identified. Required input and output interfaces

and suitable interface for hardware acceleration were implemented based on the selected

application and the application executed directly on a LEON3 processor. In addition a

suitable kernel in hardware that is accessible over AMBA was implemented and

interfaced to the software.

After the completion of the thesis tasks, it was seen that the project can be improved and

different tasks can be added to the project work. The possible improvements and

different tasks for future work are:

1. As it was mentioned during this report the Digilent Spartan3 FPGA board is not

suitable for future uses according to the memory limitations but the Atlys board

is more flexible and suitable for future uses.

2. The Digilent Atlys Spartan 6 board is ready to use with a LEON3 processor and

different applications other than MPG123 can be run on it. For example, video

player applications can be run and the HDMI video output of the Atlys board

can be used with suitable interface designs.

3. The application was executed directly on a LEON3 processor instead of using an

operating system but for future work an operating system can be used such as

LINUX 2.6 or LINUX 2.0 [22]. Using an operating system has an advantage for

using the MPG123 application in full performance.

4. Using an operating system brings more work to do and suitable driver

implementations and necessary memory mappings need to be done so these can

be also considered as future work.

5. During the thesis an audio core for the Spartan 3 board was implemented and the

DAC card was used for getting the decoded music output but for Atlys board

because of the time limitations a suitable AC97 codec interface was not

implemented so as future work it can also be done.

6. In the thesis project 64 point IDCT was implemented as hardware but for getting

better performance 32 point IDCT could also be implemented as hardware.

49

References

[1] Aeroflex Gaisler, http://www.gaisler.com/products/grlib/grlib.pdf. GRLIB IP

Library User’s Manual.

[2] ARM. AMBA Open Specifications. http://www.arm.com/products/system-

ip/amba/ amba-open-specifications.php.

[3] Digital to Analog Converter Specifications and Data Sheet,

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en024016#1

[4] Xilinx Spartan 3 FPGA Board Information,

http://www.digilentinc.com/Products/Detail.cfm?Prod=S3BOARD

[5] Modelsim Advanced Simulation and Debugging, http://model.com/

[6] Xilinx ISE Design Suite,

http://www.xilinx.com/products/design-tools/ise-design- suite/index.htm

[7] Wave File Format and RIFF Bitstream Format, http://en.wikipedia.org/wiki/WAV

[8] Microsoft Wave File Format

https://ccrma.stanford.edu/courses/422/projects/WaveFormat/

[9] Sparc V8 Architecture, The Sparc Architecture Manuel

[10] Cygwin Shell for GRLIB usage on Windows, http://www.cygwin.com/

[11] RS232 Standard, http://en.wikipedia.org/wiki/RS-232

[12] GRMON Debugging Monitor, Grmon User’s Manual,

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=190&Ite

mid=124

[13] RTEMS LEON/ERC32 Cross-Compiler System (RCC-1.1.99.15)

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=161&Ite

mid=109

[14] K. Salomonsen et al., “Design and Implementation of an MPEG/Audio Layer III

Bitstream Processor,” Master’s thesis, Aalborg University, Denmark, 1997

[15] MP3 Player Source Code, http://mpg123.orgis.org/

[16] TSIM ERC32/LEON simulator,

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=38&Itemi

d=56

50

[17] MPEG Layer III, http://en.wikipedia.org/wiki/Mp3

[18] Karlheinz Brandenburg, “MP3 and AAC explained”, AES 17
th

 International

Conference on High Quality Audio Coding

[19] BIN2SREC library source code, http://www.s-record.com

[20] S-Record File Format, http://en.wikipedia.org/wiki/SREC_(file_format)

[21] Digilent Atlys Spartan6 Board Manual,

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836&Prod=ATLYS

[22] Linux 2.6 for Leon with MMU,

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=160&Ite

mid=108

[23] D.A. Huffman “A method for the Construction of Minimum-Redundancy Codes”,

Proceedings of the I.R.E., September 1952, pp 1098-1102

