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Abstract

In the last decade, we have heard more and more about the need of renew-
able clean energy, but not much has been done. Currently, the wind power
energy is the most popular of all of these green technologies. Thousands of
wind turbines are being invested and installed everywhere worldwide. Thus,
many questions arise.

The aerodynamic loads on the rotor blades are the largest loads acting on
a wind turbine. The horizontal wind turbine types of blades are usually made
of two or three airfoils such as a propeller. In these types of blades, it is the
lift force which makes the rotor turn. The drag force acts perpendicular to
the lift force due to the resistance of the airfoil from the wind and counteracts
the rotation to rotor. Therefore, predicting these loads accurately is one of
the most important parts of the calculations in wind turbine aerodynamics.
Another reason for computing the aerodynamic loads on rotor blades is to
model the aeroelastic response of the entire wind turbine construction. There
are different methods to calculate the aerodynamic loads on a wind turbine
rotor with different level of complexity such as Blade Element Momentum
Method (BEM), Vortex Method, Panel Method and Computational Fluid
Dynamics (CFD). Most aerodynamic codes use BEM (together with many
additions) which is very fast and gives fairly accurate results.

The main goal of this project is studying the Helical Vortex Method.
In this text, helical vortex method has been developed and compared with
Blade-Element Momentum (BEM) theory for the analysis of wind turbine
aerodynamics.

Keywords: Incompressible Flow, Aerodynamics, Wind Turbine,
Vortex Theory, BEM Method, Lifting Line Theory, Helical Vortex
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Nomenclature

Upper-case Roman

A Rotor area, Area, Arbitrary vector field
C Constant
CD Drag coefficient
CF Axial force coefficient
CL Lift coefficient
Cn Power coefficient in normal direction
CP Power coefficient
CQ Torque coefficient
Ct Power coefficient in (parallel) tangential direction
CT Thrust coefficient
Di Induced drag
D′

i Induced drag per unit length
Fviscous Viscous force
F Prandtl tip loss factor
H Hydraulic head
L Lift
L′ Lift per unit length
NB Number of blades
P Shaft power, Arbitrary point
PN Force per unit length in normal direction
PT Force per unit length in (parallel) tangential direction
R Rotor radius
S Surface area, Curve defining the vortex line, Finite wing area
S ′ Parametric variable along the curve
T Thrust, Period
V Velocity
Va Axial velocity
Vij Tangential normalized induced velocity
Vr Radial velocity
Vrel Local velocity, Relative velocity
Vrot Rotational velocity
Vθ Tangential velocity
V0 Free stream velocity (wind velocity)
W Resultant velocity, Downwash velocity
Wij Axial normalized induced velocity
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Wn Normal induced velocity, Induced velocity
Wt Tangential induced velocity
Wy Tangential induced velocity
Wz Axial induced velocity
W ′ Undisturbed resultant velocity vector

Lower-case Roman

a Axial induction factor
a′ Tangential induction factor
b Length of rotor blade
c Chord length
c(r) Local chord
dA Area of annual element of infinitesimal thickness dr
dl Segment of vortex filament
ds Distance element, Vector path of the helix
dη An Infinitesimal segment of the helix
ds An infinitesimal portion of the vortex sheet
dM Normal torque on the control volume, Angular momentum element
dT Normal force on the control volume
dv Vortex filament volume, Fluid element volume
f Body force
f Glauert correction
h Perpendicular distance
m Number of blades
ṁ Mass flow rate
n Normal vector to the rotor plane
n Number of revolution
p Pressure close upstream of the rotor blade
p0 Atmospheric pressure
r Distance vector
r Radius, Radial position (distance)
u Wind speed at the rotor plane
vi Tangential induced velocity
wi Axial induced velocity
u1 Wind speed in the wake
x Arbitrary point where the potential is computed, Local rotational speed

Upper-case Greek

Γ Circulation
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∆p Pressure loss
Ω Angular velocity

Lower-case Greek

αi Induced velocity
αeff Effective angle of attack
αL=0 Zero-incident angle of attack
α Angle of attack
β Twist of the blade
γ Strength of the vortex sheet per unit length
δ Line Dirac delta function
θ Airfoil or local blade pitch
θp Blade pitch
λ Tip speed ratio
ρ Air density
σ Solidity
φ Flow angle, Scalar potential, Constant number
ψ Vector potential
ω Vorticity
ω Angular velocity

Abbreviations

HAWT Horizontal Axis Wind Turbine

subscripts

i Direction, node number
ij Tensor indices
j Direction, node number
k Direction
N Normal
n Normal
T Tangential
t Tangential
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Chapter 1

Introduction

1.1 Aerodynamic Loads Philosophy

Studying the aerodynamics of a wind turbine is very crucial to predict
accurately the blade loads and power output. The wind turbine performance
is connected to different subjects such as creation of three-dimensional, at-
mospheric turbulence, the ground boundary layer, directional and spatial
variations in wind shear, and the effects of an upstream support structure
(tower shadow) [1]. Also, unsteady aerodynamics should be considered to
look into the periodic loads by wind shear in the boundary layer of the earth
and also the effect of the tower shadow [2].

For the last few decades, the aerodynamic performance methods for wind
turbines were based on the blade element momentum (BEM) theory. This
method is fast and simple but it is acceptable only for a limited range of
flow conditions and break-down in the turbulent wake state and the vortex
ring state. There are some modifications based on empirical corrections to
modify the (BEM) method in order to defeat this restriction. But, they are
not relevant for all operating conditions and often go wrong at higher tip
speed ratios.

On the other side, the vortex theory can be a better choice for predicting
aerodynamic performance of wind turbine. The major purpose of the vortex
theory is to build up a solution which considers the effect of finite number of
blades and secondary effects due to wake rotation. So, the complete vortex
system of the rotor should be modeled [2].
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There are two different approaches for vortex theory:

• Free Wake Modelling

• Prescribed Vortex Wake (Rigid Wake)

Free Wake Modelling has been used in rotorcraft applications, but it has not
been used extensively for wind turbine research. In this model, all vortex
elements affect all other vortex elements, so there will be a self-development
in the vortex system translation. As can be seen in next chapters, the funda-
mental equation for vortex method analysis is Biot-Savart law, but in reality,
the nature does not follow the Biot-Savart law for potential flows [3]. One
reason for this deviation of the vortex system development is the viscous
effects. One spectacular characteristic of reality is to concentrate the trail-
ing vorticity from the blades into distinct tip vortices, one for each blade
tip which occurs very rapidly. This fact also occurs for a fixed wing. The
reason for using free wake modelling is the weakness of the rigid wake like
the momentum theory in the turbulent wake/vortex ring condition [2]. On
the other side, the computation cost (CPU time) of the free wake modelling
is high.

Figure 1.1: Schematic of the concentrated tip vortices for an fixed wing

Prescribed vortex wake models such as helical vortex theory have been
used for analysis of wind turbine’s aerodynamics. In the helical vortex

2



method, the rotor blades and trailing vorticity are modeled by lifting line
and helical vortex sheet respectively. The bound circulation which originates
from the lift force created sectionally by the flow passing over the blades,
determines the vortex strength. By dividing the blade into a number of
spanwise sections and knowing the strength and position of the vortices, the
induced velocity around the blade can be found in each section using the
Biot-Savart law and affect the flow as well as the forces acting on the blades.
The relationship between the bound circulation and the lift is defined by
the Kutta-Jukowski theorem and using this together with the definition of
the lift, gives a simple relationship between the bound circulation and the
lift coefficient. It is assumed that a helical filament of the trailing vortices
traveling downstream with a constant velocity, extends sufficiently far down-
stream of the rotor and has a constant diameter. The interactions between
the wake elements are ignored. This method requires an iterative procedure.
Finally, when the iteration is completed and the effective angle of attack at
each section is computed, then the performance parameters of a wind turbine
like lift force, drag force, torque and shaft power can be calculated.

1.2 Basic Model for Vortex Method

In this section, the 3-D inviscid aerodynamic model is discussed [4]. The
aim of this model is to find a more detailed description of the 3-D flow
which develops around a wind turbine. The viscous effects are neglected.
In vortex method, the rotor blades, trailing and shed vorticity in the wake
are introduced by lifting line and surface. On the blade, the vortex strength
is determined from the bound circulation stemming from the amount of lift
which is created locally by the flow past the blades. The spanwise variation
of bound circulation generates the trailing vortices while the shed wake is
generated by a temporal variation and ensures that the total circulation
over each section along the blade remains constant in time. It is recalled
that knowing the strength and position of the vortices, makes it possible to
calculate the induced velocity in any point using the Biot-Savart law (see
Appendix A for its derivation). Also, the bound circulation is found from
airfoil data like the BEM method. The inflow is determined as the vector
sum of the induced velocity, the blade rotational velocity and the undisturbed
wind velocity. The relationship between the bound circulation and the lift
is denoted by the Kutta-Jukowski theorem and using this together with the
definition of the lift coefficient, a simple relationship between the bound
circulation and the lift coefficient can be derived as
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L = ρVrelΓ =
1

2
ρcV 2

relCL ⇒ Γ =
1

2
cVrelCL (1.1)

Moreover, according to vector analysis of fluid dynamics, any velocity field
can be decomposed in a solenoidal part and a rotational part as [5]

V = ∇× Ψ + ∇φ (1.2)

where Ψ is a vector potential and φ a scalar potential. Curl of the eq.(1.2)
yields

∇× V = ∇×∇×Ψ + ∇×∇φ (1.3)

Vector identity gives

∇2Ψ = ∇ (∇ ·Ψ) −∇×∇× Ψ = −∇×∇×Ψ (1.4)

where ∇ (∇ ·Ψ) = 0 since Ψ is a solenoidal vector field (also known as an
incompressible vector field) with divergence zero. From eqs.(1.3), (1.4) and
the definition of vorticity, the Poisson equation for the vector potential is
derived as

∇2Ψ = −Ω (1.5)

where Ω denotes the rotational velocity (∇× V = Ω). The solution of the
Poisson equation is

Ψ (x) =
1

4π

∫

Ω (x′)

| x − x′ |
dv (1.6)

where x and v denote the point where the potential is computed and the
vortex filament volume, respectively. A prime denotes evaluation at the
point of integration x′ which is taken over the region where the vorticity
is non-zero, designated by v. So, the induced velocity field is obtained by
taking the curl of eq.(1.6) as

W (x) = −
1

4π

∫

(x − x′) × Ω

| x − x′ |3
dv (1.7)

1.3 Vortex Wake’s Regions

There is a loss momentum downstream of a wind turbine because of the
wake. The wake shape is produced by interaction between free stream and
vorticity sheets at the blades and trailed downstream of the rotor [6]. As
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mentioned before, this trailing vorticity is similar to the horseshoe vortex
system at finite wing because of the spanwise variation of the bound cir-
culation. On a wind turbine rotor, since the circulation and lift force are
forced to be zero at the tip and root. So, the gradient of circulation in the
radial direction would be great at the blade tip, where a strong trailing vor-
tex results. The trailing vorticity get the helix form downstream and spatial
variation of the wake velocity change the diameter and pitch of the sheet.
Then the induced velocity at any position in the wake can be determined
by the vorticity at all other points by Biot-Savart law. Moreover, the vortex
sheets tend to be rolled up concisely downstream of the rotor blade.

As a result, the vorticity is concentrated at the outer edge of the wake.
The wake shape changes, so we deal with two different regions:

• Outer region with strong tip vortex spiral

• Inner region as a weak diffused vortex sheet
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Chapter 2

Theory of 3-D Aerodynamics

In this chapter, we explain the aerodynamic theory and the fundamental
definitions for Horizontal Axis Wind Turbine (HAWT). Since the rotor blade
of an HAWT is very similar to the fixed wing, the aerodynamic concept of
finite wing will be applicable.

2.1 Vortex Flow

In aerodynamics, we consider a series of non-lifting elementary incom-
pressible flows to model complex incompressible flows, such as uniform flow,
source flow, doublet flow and vortex flow [7]. In simple words, the vortex
flow which includes vortices produces finite lift, and it is modelled as the flow
where all the streamlines are concentric circles about a given point and a ve-
locity along any circular streamline is constant (but vary from one streamline
to another inversely with distance from the common center). Generally, the
vortex flow properties are

• It is an incompressible flow (∇.V = 0) at every point.

• The vortex flow is irrotational (∇× V = 0) at every point except at
the origin where the velocity is infinite.

By introducing Vθ as tangential velocity (see fig.(2.1)), the flow for an
ideal vortex line is given by

Vθ =
C

r
(2.1)

7



Figure 2.1: Vortex flow

where C is obtained by taking the circulation around a given circular stream-
line of radius r as

Γ =

∮

c

V.ds = Vθ(2πr)

Vθ =
Γ

2πr

(2.2)

So, by comparing eqs.(2.1) and (2.2), we get

C =
Γ

2π
(2.3)

where Γ is called the strength of the vortex flow. Equation (2.3) shows that
the circulation taken about all streamlines is the same value as Γ = 2πC.
Also, eq.(2.2) gives the velocity field for a vortex flow of strength Γ.

2.2 Vortex Sheet

To define a vortex sheet [7], we basically consider a straight line perpen-
dicular to the page, going through point O and extending to infinity from
both sides. This line is a straight vortex filament of strength Γ. The induced
flow by straight vortex filament in any plane normal to itself (see fig.(2.2)), is
similar to a point vortex of strength Γ. So, it can be concluded that the point
vortex is a section of a straight vortex filament. We can define vortex sheet as
an infinite number of adjacent straight vortex filaments with infinitesimally
small strength. By introducing γ = γ(s) as the strength of the vortex sheet
per unit length along s, the strength of an infinitesimal portion ds of the
sheet is γds. As can be seen in fig.(2.3), the small section of the vortex sheet

8



Figure 2.2: Vortex filament

Figure 2.3: Vortex sheet
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of strength γds induces an infinitesimally small velocity dW at point P (x, z)
located at the distance of r from ds, so we get

dW =
γds

2πr
(2.4)

which is perpendicular to r. The induced velocity at point P by the entire
vortex sheet is the vector summation of eq.(2.4) from point a to point b.
Therefore we get

dW =

∫ b

a

γds

2πr (s)

The circulation around the airfoil is given by Γ =
∫

γds where the integral
is taken around the total surface of the airfoil. So, we can calculate the lift
force by the Kutta-Jukowski theorem as

L = ρV0Γ

where ρ is the density of the fluid and V0 is the uniform velocity far from the
airfoil.

2.3 Finite Wing and Downwash

In this section, we describe flow over the finite wing (3-D wing) and
evaluate how the spanwise lift distribution affects the upstream flow and
modifies the angle of attack [7].

To find the above, we must study the vortex theory, since a real wind
turbine has blades (wings of finite span) and the aerodynamic characteristics
of a finite wing is different from the properties of its airfoil section because
usual airfoil data is related to flow over 2-D airfoil.

A wing is similar to a beam of finite length whose cross section has the
form of airfoil and therefore the presence of a high pressure region on the
bottom surface and low pressure region on the top surface produces the lift
force. Also, there is a component of flow in the spanwise direction for the
finite wing as a 3-D body.

Due to pressure imbalance, there is air leakage at the wing tip where air
flows from the bottom surface to the top surface and curl around the tip.
As a result, the spanwise component of flow makes the top surface flow to
be deflected from the tip toward the wing root and bottom surface to be
deflected from the root toward the wing tip (see fig.(2.4). Furthermore, at
the trailing edge, there is a jump in the tangential velocity. The air leakage
around the wing tip also creates a circulatory motion as a continuous sheet of
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Figure 2.4: Streamlines flowing upper and lower surface of a wing

streamwise vorticity in the wake behind the wing. Since the trailing vortices
curl up around the strong tip vortices in a real flow, the vortex system looks
like fig.(2.6). These wing-tip vortices downstream of the wing, induce a small

Figure 2.5: Vortex system on a wing

downward component of air velocity in the neighborhood of the wing itself.
These wing-tip vortices contain a large amount of translational and rotational
kinetic energy. In fig.(2.7), the two vortices tend to entrain the surrounding
air and this secondary movement induces a small velocity component in the
downward direction at the wing. This downward component from all vortices
at a section of the wing is called downwash, denoted by W . In turn, the
vector combination of the downwash with the free stream velocity V0 produces

11



Figure 2.6: Schematic of wing-tip vortices

Figure 2.7: Wing-tip vortices from a rectangular wing
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a local relative wind tilted downward in the vicinity of each section of the
wing, so the local angle of attack at each section is reduced by αi . The local

Figure 2.8: Effect on downwash on the local flow over a local airfoil section
of a finite wing.

lift force by definition is perpendicular to the local relative wind. So, there
is a component of the local lift force in the direction of V0 which means that
there is a drag force created by the downwash. This drag force is defined as
induced drag which is a type of pressure drag denoted by Di.

1Also, at the tip
of the wing, the induced velocity obtains a value which exactly ensures zero
lift force. According to fig.(2.8), we can categorize the downwash effects as

• Reducing the angle of attack for each section.

• Creating a component of drag force (induced drag Di).

2.4 The Biot-Savart Law and Helmholtz’s The-

orems

As mentioned before, the vortex filament of strength Γ induces a flow
field in the surrounding space and it can be used as a model for the flow over
an airfoil for small angles of attack [7].

1The local lift force is different from the global lift force which is perpendicular to the
free stream V0.
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According to Biot-Savart law, the velocity induced by the segment of a
vortex filament which is created by trailing vortices (free vortices) at any
arbitrary point P in space is equal to (see eq.(A.37))

dW =
Γ

4π

ds× r

| r |3
(2.5)

In the analysis of inviscid incompressible flow, the Helmholtz’s theorem

Figure 2.9: Vortex filament and Biot-Savart law concept

describes the behaviour of the vortex filament as

• The strength of a vortex filament is constant along its length.

• A vortex filament cannot end in a fluid; It must extend to the bound-
aries of the fluid (which can be ±∞) or form a closed path.

These theorems are inevitable to explain the following sections. Finally, the
concept of lift distribution along the span of a finite wing is presented. In
general, most finite wings have variable chords and they are also twisted so
that the angle of attack α is not the same at different spanwise locations.
Likewise, most wings are constructed by different airfoil sections along the
span. Accordingly, the lift force per unit span at different locations is not the
same. Hence, there will be a lift distribution per unit length along the wing
(blade), i.e. L′ = L′(y) where L′ denotes the lift per unit length. Therefore,
according to the Kutta-Jukowski theorem, the circulation is also a function
of y, i.e.

Γ(y) =
L′(y)

ρV0

14



Figure 2.10: Lift distribution along a wing

Because of the pressure balancing from the bottom to the top of the wing
exactly at y = −b/2, y = b/2 , there is no lift at the tips, see fig.(2.10). Now,
we need to calculate the lift distribution L(y) (or the circulation distribution
Γ(y)) for a finite-wing.

2.5 Prandtl’s Classical Lifting-Line Theory

This theory is used to calculate the characteristics of a finite-wing (or
blade) [7]. According to this theory, a vortex filament of strength Γ bounded
to a fixed location in a flow (a so-called bound vortex) will sense a force
L = ρV0Γ according to the Kutta-Jukowski theorem. This bound vortex is
in contrast to a free vortex moving with the same fluid elements through-
out a flow. So, a finite wing of span b can be modeled as a bound vortex
from y = −b/2 to y = b/2. Since a vortex filament cannot end in the fluid
(according to the Helmholtz’s theorem and also because ∇ · ω = 0), so it is
concluded that that the vortex filament continues as two free vortices trailing
downstream of the wing tips to infinity as in fig.(2.11). This vortex including
the bound and the two free vortices is like a horseshoe, a so-called horseshoe
vortex. According to fig.(2.12), it is obvious that the bound vortex induces
no velocity along its axis whereas the two trailing vortices both contribute to
the downward induced velocity along the bound vortex. By taking the origin
at the center of the bound vortex (see eq.(2.5)), the contributions from the
left trailing vortex (trailing from −b/2) and form the right trailing vortex
(trailing from +b/2), respectively are as belows. Recall that Biot-Savart law
reads as

15



Figure 2.11: Modelling of the finite wing with a bound vortex

Figure 2.12: Downwash distribution for a single horseshoe vortex along the
y axis.
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W =
1

4π

∫

Γ× rds

|r|3

For the left trailing vortex, r = (x,− (b/2 − y) , 0) and Γ = (Γ, 0, 0) which
gives

WL (y) =
Γ

4π

∫

∞

0

(b/2 − y) dx
(

x2 + (b/2 − y)2
)3/2

=
Γ

4π (b/2 − y)

[

x
(

x2 + (b/2 − y)2
)1/2

]

∞

0

= −
Γ

4π

1

(b/2 − y)

For the right trailing vortex, r = (x, b/2 + y, 0) and Γ = (−Γ, 0, 0) which
yields

WR (y) =
Γ

4π

∫

∞

0

(b/2 + y) dx
(

x2 + (b/2 + y)2
)3/2

=
Γ

4π (b/2 + y)

[

x
(

x2 + (b/2 + y)2
)1/2

]

∞

0

= −
Γ

4π

1

(b/2 + y)

Since both contributions are in the downward directions, then we get

W (y) = −
Γ

4π (b/2 + y)
−

Γ

4π (b/2 − y)

W (y) = −
Γ

4π

b

(b/2)2 − y2

(2.6)

Simulation of a finite wing with downwash distribution due to the single
horseshoe cannot be realistic, so instead of modeling the wing by a single
horseshoe vortex, we can superimpose a large number of horseshoe vortices
while each of them has a different length of the bound vortex but with all
the bound vortices coincident along a single line, called the lifting line. By
considering an infinite number of horseshoe vortices of small strength dΓ
which are superimposed along the lifting line (see fig.(2.14)), we can get the
related equation as

W (y0) = −
1

4π

+b/2
∫

−b/2

(
dΓ

dy
)dy

y0 − y
(2.7)

Equation (2.7) gives the value of the induced velocity W at y0 due to all
trailing vortices. In practice, the singularity in eq.(2.7) (where y0 = y) is
avoided because the point y is located at a distance x0 downstream of y0.
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Figure 2.13: Superposition of a finite number of horseshoe vortices along the
lifting line

Figure 2.14: Superposition of an infinite number of horseshoe vortices along
the lifting line
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The integral limits will change from (0 to ∞) to (x0 to ∞). Now, we are
interested to find out Γ(y) for a given finite wing, along with its corresponding
total lift and induced drag. From fig.(2.8), we get

αi(y0) = tan−1

(

−
W (y0)

V0

)

If αi is small, it can be approximated as

αi(y0) = −
W (y0)

V0

(2.8)

By substituting eq.(2.7) into eq.(2.8), we get

αi(y0) =
1

4πV0

+b/2
∫

−b/2

(

dΓ

dy

)

dy

y0 − y
(2.9)

From eq.(2.7), it is obvious that the downwash varies across the span. Ac-
cording to the relation of αeff = αg −αi and eq.(2.8), we find that αeff also
varies along the span, i.e. αeff = αeff (y0). By combination of the lift coeffi-
cient definition and the Kutta-Jukowski theorem for the local airfoil section
located at y0 we get

L′ =
1

2
ρV 2

0 c (y0)CL = ρV0Γ (y0)

CL =
2Γ (y0)

V0c (y0)

(2.10)

where c (y0) is the local chord length. Also, from the thin airfoil theory, we
know that

CL = 2π[αeff (y0) − αL=0] (2.11)

Substituting eq.(2.10) into eq.(2.11) gives

αeff =
Γ(y0)

πV0c(y0)
+ αL=0 (2.12)

As we know, αeff = αg − αi , so we obtain

αg (y0) =
Γ (y0)

πV0c (y0)
+ αL=0 (y0) +

1

4πV0

+b/2
∫

−b/2

(

dΓ

dy

)

dy

y0 − y
(2.13)
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The above equation is the fundamental equation of Prandtl’s lifting line
theory. The solution of eq.(2.13) gives Γ = Γ(y0) where y0 changes along
the span from −b/2 to b/2. Then we can calculate the parameters of a finite
wing as below

• The lift distribution (from Kutta-Jukowski theorem) by

L′(y0) = ρV0Γ(y0) (2.14)

• The total lift by

L =

+b/2
∫

−b/2

L′ (y)dy ⇒ L = ρV0

+b/2
∫

−b/2

Γ (y)dy (2.15)

and the lift coefficient as

CL =
L

1

2
ρV 2

0 S
=

2

V0S

+b/2
∫

−b/2

Γ (y)dy (2.16)

where S is area of a finite wing.

• The induced drag by

D′

i = L′

i sinαi ⇒ D′

i = L′

iαi (2.17)

Di =

+b/2
∫

−b/2

L′(y)αi(y)dy ⇒ Di = ρV0

+b/2
∫

−b/2

Γ(y)αi(y)dy (2.18)

and the induced drag coefficient as

CD =
Di

1

2
ρV 2

0 S
=

2

V0S

+b/2
∫

−b/2

Γ (y)αi (y)dy (2.19)
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2.6 Vortex Wake System of a Wind Turbine

The rotor of Horizontal-Axis Wind Turbine (HAWT) consists of a number
of blades [5]. These blades are in the form of a finite wing. By cutting the
rotor blades at radial distance r parallel to the rotational axis as in fig.(2.15),
we find a cascade of airfoils. The relation between the local velocity Vrel, axial

Figure 2.15: Rotor of a three-bladed wind turbine with rotor radius R

velocity Va, rotational velocity Vrot, the local angle of attack α and the local
pitch of airfoil θ are shown in fig.(2.16). It is obvious that

Figure 2.16: Rotor radial cut in a wind turbine showing airfoils at r/R

tanφ =
Va

Vrot
(2.20)
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so, the local angle of attack at each section of blade is determined by

α = φ− θ (2.21)

since θ is constant at each section of the blade. On a horizontal axis wind
turbine, the free vortices due to the rotating blades create a vortex sheet
aligned in a helical path behind the rotor. The strong tip vortices are located
at the edge of the rotor wake and the root vortices are located along the
axis of the rotor as fig.(2.17). The vortex system induces an axial velocity

Figure 2.17: Schematic of the vortex system behind the rotor of a wind
turbine

component opposite to the direction of the wind and a tangential velocity
component opposite to the rotation of the wind turbine’s rotor blades. The
induced velocity in the axial direction is estimated by the axial induction
factor a as aV0, where V0 is the free stream. The induced tangential velocity
due to the rotor wake is estimated by the tangential induction factor a′ as
2a′Ωr. Note that the induced tangential velocity is opposite to the tangential
velocity of the rotor blade. Since the upstream flow of the rotor does not
rotate, the tangential induced velocity in the rotor plane is approximately
a′Ωr (an average of upstream and downstream value), where Ω denotes the
angular velocity of the rotor and r is the radial distance from the rotational
axis.

If a and a′ are known, a 2-D equivalent angle of attack could be found
from eqs.(2.20) and (2.21), where
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Va = (1 − a)V0 (2.22)

Vrot = (1 + a′)Ωr (2.23)

Moreover, if the lift CL(α) and drag CD(α) coefficients are known for the
airfoils used along the blades, it is easy to compute the force distribution.
By integrating this distribution along the span, the global loads such as the
shaft power output and the root bending moments of the blades are found. It
is the purpose of the Blade Element Momentum (BEM) method to compute
the induction factors a and a′ as well as the loads on a wind turbine.

2.6.1 Axial Momentum Theory

The application of a wind turbine is to extract mechanical energy from the
kinetic energy of the wind. In this section, we try to find a simple 1-D model
for an ideal rotor [5]. In this model, the rotor is simulated as an ideal actuator
disk so that it is frictionless and without any rotational velocity component
in the wake. In our assumption, the rotor disc acts as a drag device (sudden
pressure reduction in the rotor plane) which reduces the wind speed from V0

far upstream of the rotor to u at the rotor plane and u1 in the wake. Thus,
we see the divergence streamlines as fig.(2.18).

Figure 2.18: Streamline around the rotor blade and the axial velocity and
pressure upstream and downstream of the rotor
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The drag force can be calculated by the pressure drop over the rotor.
As can be seen, there is a small pressure rise from the atmospheric level p0

to p close upstream of the rotor blade before a discontinuous pressure drop
∆p over the rotor. Downstream of the rotor, the pressure has continuously
regained its original value p0. The Mach number is small and since the flow is
incompressible, so the density is constant and as a result, the axial velocity
must decrease continuously from V0 to u as fig.(2.18). By using the ideal
rotor assumption, it is convenient to derive some relationship between the
velocities V0, u, u1, thrust T and the shaft power P . By definition, the thrust
is the force in the streamwise direction obtained from the pressure drop over
the rotor and it is the reason for the wind speed reduction from V0 to u1. So,
we can write

T = ∆pA (2.24)

where A = πR2 is the rotor area. Since our flow is stationary, incompressible
and frictionless and there is no external force on the fluid (both upstream
and downstream), we can use the Bernoulli equation from far upstream to
just in front of the rotor and from just behind the rotor to far downstream
in the wake as

p0 +
1

2
ρV 2

0 = p +
1

2
ρu2 (2.25)

p− ∆p+
1

2
ρu2 = p0 +

1

2
ρu2

1 (2.26)

by combination of the eqs.(2.25) and (2.26)

∆p =
1

2
ρ(V 2

0 − u2

1) (2.27)

Now, we can apply the axial momentum equation integral form on the circular
control volume as shown in fig.(2.19). The general form of the momentum
equation is

∂

∂t

y

cv

ρVdv +
x

cs

(ρV.dA)V = −
x

cs

pdA +
y

cv

ρfdv + Fviscous (2.28)

for our case, we get

∂

∂t

y

cv

ρu(x, y, z)dv +
x

cs

(ρV.dA)u(x, y, z) = −T (2.29)

by applying the assumptions of an ideal rotor, eq.(2.29) gives

ρu2

1A1 + ρV 2

0 (Acv − A1) + ṁsideV0 − ρV 2

0 Acv = −T (2.30)
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Figure 2.19: Circular control volume around the wind turbine

from the mass conservation we have

ṁside = ρA1(V0 − u1) (2.31)

and by applying mass conservation between A and A1, we get

ṁ = ρuA = ρu1A1 (2.32)

Combining eqs.(2.30), (2.31) and (2.32) gives

T = ρuA(V0 − u1) = ṁ(V0 − u1) (2.33)

Replacing the thrust by the pressure drop over the rotor as eq.(2.24) and
using the pressure drop from eq.(2.27) yields

u =
1

2
(V0 + u1) (2.34)

It is seen that the velocity in the rotor plane is the arithmetic mean of the
wind speed V0 and the velocity in the wake u1.

2 We assumed that the flow
is frictionless. So, by applying the integral energy equation on the previous
circular control volume, we can get the shaft power P .

P = ṁ(
1

2
V 2

0 +
p0

ρ
−

1

2
u2

1 −
p0

ρ
) (2.35)

2In general, this is not true when rotation occurs in the slipstream.
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since ṁ = ρuA, then we get

P =
1

2
ρuA

(

V 2

0 − u2

1

)

(2.36)

As we discuss later, the axial induction factor a is defined as

a =
V0 − u

Vo

(2.37)

so, we get
u = (1 − a)V0 (2.38)

Combining eq.(2.34) with eq.(2.38) yields

u1 = (1 − 2a)V0 (2.39)

and by substituting eq.(2.39) into eqs.(2.36) and (2.33), we get

P = 2ρV 3

0 a(1 − a)2A (2.40)

T = 2ρV 2

0 a(1 − a)A (2.41)

The available power by the rotor is

Pavailable =
1

2
ṁV 2

0 =
1

2
ρAV 3

0 (2.42)

The power coefficient CP and the thrust coefficient CT are defined as

CP =
P

1

2
ρAV 3

0

(2.43)

CT =
P

1

2
ρAV 2

0

(2.44)

Applying the eqs.(2.40) and (2.41) for the power and thrust equations give

CP = 4a(1 − a)2 (2.45)

CT = 4a(1 − a) (2.46)

To obtain the maximum value of CP , differentiating gives

dCP

da
= 4(1 − a)(1 − 3a) (2.47)
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Figure 2.20: Power coefficient vs. Tip speed ratio (Betz limit vs. Glauert
optimum)

We can see that for a = 1/3 the theoretical power coefficient for ideal wind
turbine has its maximum value as CP,max = 16/27 which is known as Betz
limit.

When the rotation of the wake is not included, CP is constant for all tip
speed ratios due to the Betz limit (CP,max = 16/27). By considering the wake
rotation, the value of the power decreases as the tip speed ratio decreases
due to the Glauert optimum. The thrust coefficient CT has a maximum
value of 1 at a = 0.5. There is a problem for values of a ≥ 0.5 because of
the wake velocity where it becomes zero or even negative (see eq. 2.39). So,
the momentum theory is not applicable in this condition and an empirical
correction has to be made. The eqs.(2.45) and (2.46) are shown in fig.(2.21).
We must also note that experiments prove that the assumption of an ideal
wind turbine resulting in eq.(2.44) are applicable for an axial induction factor
a of less than approximately 0.4 [5]. If the momentum theory was valid for
higher values of a, the velocity in the wake become negative (see eq.(2.39)).
In a wind turbine, at low wind speeds, we have a high thrust coefficient
CT and thus a high axial induction factor a. The reason that the simple
momentum theory is not valid for values of a greater than approximately
0.4, is that the free shear layer at the edge of the wake becomes unstable
when the velocity jump (V0 − u1) becomes too large and eddies transporting
momentum from the outer flow into the wake are created. This phenomena is
called turbulent wake state. Also, the higher values of axial induction factor
give a negative wake velocity according to eq.(2.38).
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Figure 2.21: Variation of CP and CT with axial induction factor for an ideal
HAWT.

2.6.2 General Momentum Theory

The blade element theory assumes that each blade element operates inde-
pendently of all the other elements [8]. It is obvious that this theory cannot
give more than a rough approximation. The dominant part of the energy
loss occurs in the operation of a rotor blade even if it operates in a perfect
fluid. The momentum theory assumes that the air to be a perfect fluid. On
the other hand, the momentum theory does not try to solve the complete
rotor blade problem and must be modified for practical issues. The general
momentum theory replaces rotor blade by an ideal mechanism, the so-called
actuator disk. The action that this disk is supposed to exert on the fluid
represents the main features of the action exerted by the rotor blade. Since
the axial velocity of the air is decreased by the rotor blade, this body of
revolution must have a larger diameter downstream compared to upstream.
In the case of an actual rotor blade rotating with the angular velocity, the
flow is not strictly steady but it is quasi-steady, even periodic with mn pe-
riods per second where m is the number of blades and n is the number of
revolution as Ω = 2πn. But, the idealized flow pattern in the momentum
theory is supposed to be strictly steady, at least outside an infinitesimal re-
gion surrounding the actuator disk. In a strictly steady continuous flow no
exchange of power between the perfect fluid and a rigid body immersed in
it is possible. To account for the energy exchange occurring in the case of a
rotor blade, the momentum theory needs another assumption. The regions
upstream and downstream of the rotor blade are supposed to be separated
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by an infinitesimal region in which sudden changes of pressure and velocity
occur. That is, the flow between the boundaries is assumed to be contin-
uous except in the immediate neighborhood of the actuator disk where the
following discontinuities are accepted:

• The pressure has different values on the two sides of this disk (p on the
upstream side and p − ∆p downstream). The integral extended over
the disk area represents the rotor blade thrust T .

• The fluid particles passing through the disk region can here suddenly
change their tangential velocity component to the circular paths due
to the rotating rotor blade.

The assumption of a steady (not periodic) motion outside the disk region
will be justified the larger the number of blades, since the number of periods
per second increases with m. This is why the theory of the actuator disk is
often referred to as the theory of a rotor blade with an infinite number of
blades.

In the previous section, the axial momentum theory was based on the
assumption of the no rotational motion in the slipstream and therefore, the
rotor blade was replaced by an actuator disc. In general, the slipstream will
have a rotational motion given to it by the reaction of the torque of the rotor
blade and its rotational motion denotes a more energy loss. So, we must
extend the previous theory to involve the effects of the rotational motion. To
do this, another assumption must be made so that the actuator disc can also
give a rotational component to the fluid velocity while the axial and radial
components remain unaltered.

Let r be the radial distance of any annular element of the rotor blade
and let u and v be the axial and radial components of the fluid velocity
respectively. Let p be the pressure immediately in front of the rotor blade
and ∆p be the decrease of the pressure behind the rotor blade, associated
with an angular velocity ω. In the final wake, let p1 be the pressure, u1 the
axial velocity and ω1 the angular velocity at a radial distance r1 from the
axis of the slipstream. The continuity equation for the annular element of
flow gives

u1r1dr1 = urdr (2.48)

since the angular momentum of the fluid moving down the slipstream is
constant, we get

ω1r
2

1 = ωr2 (2.49)

Furthermore, the element of torque of the rotor blade is equal to the angular
momentum given in unit time to the corresponding annular element of the
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Figure 2.22: control volume around the wind turbine

slipstream. So, it gives

dM = ρuωr2dA (2.50)

Using the Bernoulli equation to the flow upstream and downstream the rotor
blade yields

H0 = p0 +
1

2
ρV 2

0 = p+
1

2
ρ(u2 + v2) (2.51)

H1 = p− ∆p+
1

2
ρ(u2 + v2 + ω2r2) = p1 +

1

2
ρ(u2

1 + ω2

1r
2) (2.52)

so,

∆H = H1 −H0 = −∆p+
1

2
ρω2r2 (2.53)

Also, the total pressure head can be stated as

p0 − p1 =
1

2
ρ(u2

1 − V 2

0 ) +
1

2
ρω2

1r
2

1 − (H1 −H0) (2.54)

or

p0 − p1 =
1

2
ρ(u2

1 − V 2

0 ) +
1

2
ρ(ω2

1r
2

1 − ω2r2) + ∆p (2.55)

In general, the pressure p1 in the slipstream is more than the external pressure
p0 owing to the rotation of the slipstream about its axis. Applying the
Bernoulli equation to the flow relative to the rotor blades rotating with the
angular velocity Ω, the relative angular velocity increases from Ω to Ω + ω
and hence the decrease of pressure is

∆p =
1

2
ρ[(Ω + ω)2 − Ω2]r2 = ρ(Ω +

1

2
ω)ωr2 (2.56)
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Finally, by combination of the eq.(2.49), (2.54) and (2.56), we get the pressure
drop in the wake.

p0 − p1 =
1

2
ρ(u2

1 − V 2

0 ) +
1

2
ρ(r2

1ω
2

1 − r2ω2) + ∆p (2.57)

p0 − p1 =
1

2
ρ(u2

1 − V 2

0 ) + ρω2

1r
2

1(Ω +
1

2
ω) (2.58)

To solve the above equations, we need some assumptions. In general, the
angular velocity ω given to the slipstream is very small compared with the
angular velocity Ω of the rotor blade, so the terms including ω2 are negligible.
Another assumption is that the pressure in the wake p1 is equal to the far
upstream pressure p0 of the fluid and the pressure drop ∆p across the rotor
blade is equal to the total pressure head reduction (H1−H0). The equations
related to the thrust and axial velocity are then similar to the axial momen-
tum theory. Again, the axial velocity at the rotor plane is considered as the
arithmetic mean of the axial velocity V0 and slipstream velocity u1. Thus,
by applying the equations of axial momentum in the differential form at an
arbitrary cut of the rotor plane, we get

dT = 2ρu(u− V0)dA = 4πρV 2(1 − a)ardr (2.59)

alternatively,

dT = ∆pdA = 2πρ(Ω +
1

2
ω)ωr3dr (2.60)

By introducing ω = 2a′Ω, then we get

dT = 4πρΩ2(1 + a′)a′r3dr (2.61)

The relation between axial and rotational induced factors a and a′ is obtained
by comparing the eq.(2.59), (2.60), so,

V 2

0 (1 − a) = Ω2r2(1 + a′)a′ (2.62)

At the end, the torque element regarding the eq.(2.50) is

dM = ρuωr2dA = 4πρV0Ω(1 − a)a′r3dr (2.63)

As we know, dP = ωdM , so the total power is obtained by integrating dP
from 0 to R as

P = 4πρΩ2V0

R
∫

0

a′(1 − a)r3dr (2.64)
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By introducing λ =
ΩR

V0

as the tip speed ratio 3 and x =
Ωr

V0

as the local

rotational speed at radius r, we get from eq.(2.62) that

x2(1 + a′)a′ = (1 − a)a (2.65)

If the local angles of attack are below stall, then a and a′ are not independent
because the reacting force according to potential flow theory is perpendicu-
lar to the local velocity seen by the blade according to the Kutta-Jukowski
theorem. The total induced velocity W must be in the direction of the force
and thus perpendicular to the local velocity.

2.6.3 The Vortex System of a Rotor Blade

According to the airfoil theory, the lift force L per unit length of an airfoil
section in 2-D motion is related to the circulation Γ around its contour by
the Kutta-Jukowski theorem as L = ρV0Γ. By defining the chord length of
the airfoil section as c , the lift force can be stated as below related to the
lift coefficient CL,

L =
1

2
ρCLV

2

0 c (2.66)

so, we get from the Kutta-Jukowski theorem

Γ =
1

2
CLV0c (2.67)

It is obvious that there must be a circulation of the flow around the rotor
blade to produce the aerodynamic force experienced by the blades. In gen-
eral, the circulation Γ around the blade element will vary along the blade, but
for simplification, we assume that the circulation is constant along the blade
although it is not possible physically. Also, we can describe the existence
of this circulation in different way, so that there is a vortex line of strength
Γ bound to the blade and running along it from root to the tip. Accord-
ing to the Helmholtz’s theorem, a vortex line cannot begin or end suddenly;
unless it develops closed curve around the body and to be continued as a
free vortex line in the fluid. Thus, it follows that the general motion of the
fluid is a trailing vortex behind the body.4 The free vortex springing from
the root of the rotor blade will be a straight line along the axis of the rotor
and its strength will be BΓ for a rotor with B blades. The tip vortices, each

3The tip speed ratio imposes the operating condition of a wind turbine and has a direct
effect on the induction factors a and a

′.
4In reality, the trailing vortices are dissipated by viscosity far behind the rotor.
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Figure 2.23: The schematic of the system of trailing vortices of a rotor blade

of strength Γ, will be of helical shape and will trace out roughly the paths
described by the tips of the rotor blades. The rotation of the axial vortex
is the same as that of the rotor whereas the rotation of the tip vortices is
of the opposite direction. These vortex lines constitute the slipstream of the
rotor and the motion of the fluid in the slipstream can be calculated as the
induced velocity of this vortex system. Due to the variation of circulation
along the blade, trailing vortices will arise not only at the root and tip of
the blade, but also from each point of its trailing edge. So, the increase of
circulation between the two points of the blade is equal to the strength of
the helical vortex springing from this element but with opposite sign. The
disturbance of the flow by a rotor can be considered as the induced veloc-
ity of the complete vortex system, including the bound vortices of the rotor
blades and the free vortex sheets of the slipstream. Finally, by considering
the induced velocity of the system of free vortices springing from the airfoil,
the behaviour of an element of an airfoil is the same as in 2-D motion based
on the theory of airfoils of finite span developed by Prandtl.

2.6.4 The Induced Angular Velocity

The force on the blades not only has a component in the flow direction,
but also it must have a tangential component due to the shaft torque [8].
The reaction of the shaft torque must be transmitted with opposite sign to
the wind as a change of angular velocity. As a result, the streamlines in
the wake follow a helical path from the superposition of the streamwise and
rotational velocities (see fig.(2.24)).

The transfer of rotational motion takes place entirely across the thickness
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Figure 2.24: Helical wake of a HAWT

of the disk. The change in angular velocity is expressed in terms of a angular
flow induction factor a′. Upstream the disk, the angular velocity is zero
and the induced angular velocity at the rotor plane is equal to the a′Ωr (an
average of upstream and downstream value) where r is a radial distance from
the axis of rotation. Downstream of the disk, the tangential velocity is 2a′Ωr.
Since the induced tangential velocity is produced in reaction to the torque,
it is in opposite direction of the blade motion. Now, we can complete the
velocity triangle as fig.(2.25).

Figure 2.25: Velocity triangle for a section of the blade
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Chapter 3

The Blade Element Momentum
(BEM) Method

The Blade Element Momentum method combines the Blade Element The-
ory and the Momentum Theory1. In this method, we assume that aerody-
namic forces acting on a blade element can be estimated as the force on a
airfoil of the same cross-section, advancing through the air with the uniform
velocity Vrel at the angle of attack α and that the force on the whole blade can
be derived by adding the contributions of all the elements along the blade.
Also, there is no induction between consecutive blade elements except in so
far as such induction modifies the characteristics of the same airfoil section.
In the Blade Element Theory, we also consider some assumptions related to
the blade behaviour. These are:

1. The operation of an element is not affected by the adjacent elements
of the same blade.

2. The effective velocity of the element through the air is the vector re-
sultant of the axial velocity V0 and the rotational velocity Ωr.

3. The airfoil characteristics is used for the blade elements.

4. The force from the blades acting on the flow is constant at each annular
element. This stands for the rotor with an infinite number of blades.2

According to the Blade Element Momentum (BEM) method, the steady
loads, thrust and power can be calculated for different operation conditions

1Most part of this chapter has been extracted from [5].
2The Prandtl’s tip loss factor is applied to modify this assumption for a rotor with a

finite number of blades.
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of wind speed, rotational speed and pitch angle. For unsteady purposes to
calculate time series of the loads, some engineering models must be imple-
mented. As mentioned above, the BEM method joins the momentum theory
with the local conditions at the actual blades and dividing the stream tube
into N annular elements of height dr as shown in fig.(3.1). Therefore, the
lateral boundary of these elements consists of streamlines and thus there is
no flow across the elements.3 From the ideal rotor, we obtained the required

Figure 3.1: Annular control volume

equations (eq.2.59 and 2.63) for the thrust and torque in previous sections.

dT = 4πρV 2

0 a (1 − a) rdr (3.1)

dM = 4πρV0Ω (1 − a) a′r3dr (3.2)

It is obvious that the relative velocity Vrel seen by a section of the blade
is a combination of the axial velocity V0 (1 − a) and the angular velocity
(1 + a′) Ωr at the rotor plane as fig.(3.2). By definition, θ is the local pitch
of the blade (the angle between the chord line and the plane of rotation).
It consists of the pitch angle4 θp (the angle between the tip chord and the
rotor plane) and the twist of the blade β which is measured relative to the
tip chord. Hence, θ = θp + β. Also, φ is the angle between the plane of

3The only difference between the actuator annulus and the actuator disk is that the
pressure on the surfaces of a thin-walled tube is not uniform. This may give rise to an
axial force on the tube since it is not cylindrical.

4The pitch angle is the angle at which the blade surface contacts the wind. It is often
variable to ensure optimum operation of the turbine in varying wind conditions and to
prevent electrical overload and over speed in high winds. Gears in the hub of the rotor
allow the pitch to be varied.
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Figure 3.2: Velocities at the rotor plane

rotation and the relative velocity Vrel. According to fig.(3.2), the local angle
of attack α is defined as

α = φ− θ (3.3)

Moreover, it is found that

(a) positive pitch angle (b) zero pitch angle (c) negative pitch angle

Figure 3.3: Flow and blade angles of a blade element

tanφ =
(1 − a)V0

(1 + a′) Ωr
(3.4)

In addition, by knowing the lift coefficient CL , drag coefficient CD and the
chord length c of each airfoil, the lift L and drag D forces per length can be
computed as
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L =
1

2
ρCLV

2

relc (3.5)

D =
1

2
ρCDV

2

relc (3.6)

By definition, the lift and drag forces are perpendicular and parallel to the
velocity seen by the rotor respectively. In order to calculate the forces which
are normal and tangential to the rotor plane, we must decompose the above
lift and drag forces into these directions as fig.(3.4). Therefore, we get

Figure 3.4: Decomposition of the lift L and drag D forces into the rotor plane

PN = L cosφ+D sin φ (3.7)

PT = L sin φ−D cos φ (3.8)

By normalizing the eqs.(3.7) and (3.8) with
1

2
ρV 2

relc , we get

Cn = CL cosφ+ CD sinφ (3.9)

Ct = CL sinφ− CD cosφ (3.10)

where

Cn =
PN

1

2
ρV 2

relc
(3.11)
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Ct =
PT

1

2
ρV 2

relc
(3.12)

From fig.(3.2), it can be seen that

Vrel sinφ = V0 (1 − a) (3.13)

Vrel cos φ = Ωr (1 + a′) (3.14)

Now, we define the solidity as the portion of the annular area in the control
volume covered by the blades as

σ (r) =
c (r)NB

2πr
(3.15)

where NB, c (r) and r denote the number of blades, the local chord and
the radial position of the control volume, respectively. Since PN and PT are
forces per unit length, the normal force and the torque on the control volume
of thickness dr are

dT = NBPNdr (3.16)

dM = rNBPTdr (3.17)

Combination of eqs.(3.11), (3.13) and (3.16) gives

dT =
1

2
ρcNB

V 2
0 (1 − a)2

sin2 φ
Cndr (3.18)

Similarly, combination of eqs.(3.12), (3.13), (3.14) and (3.17) yields

dM =
1

2
ρcNB

V0 (1 − a) Ωr (1 + a′)

sinφ cosφ
Ctrdr (3.19)

Finally, if eqs.(3.18) and (3.1) for dT are equalized and eq.(3.15) is applied,
then the axial induction factor is obtained as

a =
1

4 sin2 φ

σCn
+ 1

(3.20)

If eqs.(3.19) and (3.2) for dM are equalized, the angular induction factor is
obtained as

a′ =
1

4 sinφ cosφ

σCt
− 1

(3.21)

Now, we have all required equations in BEM model. As we assumed that
there is no radial dependency for different control volumes in BEM method,
so each section can be evaluated separately. The BEM model algorithm
includes the following steps:
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1. Initialize a and a′; generally a = a′ = 0.

2. Calculate the flow angle φ using eq.(3.4)

3. Calculate the local angle of attack using eq.(3.3)

4. Read CL(α) and CD (α) from the table.

5. Calculate Cn and Ct from eqs.(3.9) and (3.10)

6. Calculate a and a′ from eqs.(3.20) and (3.21)

7. If a and a′ has changed more than a certain tolerance, go to step (2)
otherwise finish.

8. Calculate the local loads on the portion of the blades.

The above steps are shown in fig.(3.5). Because of the assumption which
was made at the BEM model, here we need two corrections to the above
algorithm. The first one corrects the assumption of the infinite number
of blades and the second one is an empirical relation between the thrust
coefficient CT and an axial induction factor a when it becomes greater than
approximately 0.4. The corrections are:

1. Prandtl’s Tip Loss Factor

Prandtl’s tip loss factor adjusts the assumption of an infinite number
of blades. So, instead of using eqs.(3.20) and (3.21), the following
relations are used for a and a′

a =
1

4F sin2 φ

σCn
+ 1

(3.22)

a′ =
1

4F sin φ cosφ

σCn

− 1

(3.23)

where F and f (Glauert Correction) are defined as

F =
2

π
cos−1 (exp (−f)) (3.24)

f =
NB

2

R− r

r sinφ
(3.25)

Recall that NB, R, r and φ are defined as the number of blades, rotor
radius, local radial position and flow angle, respectively.
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2. Glauert Correction

The simple momentum theory is valid only for small values of axial
induction factor and it is not valid for values larger than approximately
0.4. In this condition, empirical relations between the thrust coefficient
CT and a would be performed to meet the experiments. The relation
is given by [5]

CT =

{

4a (1 − a)F if a < ac

4 (a2
c + (1 − 2ac) a)F if a > ac

(3.26)

where ac = 0.2 and F is Prandtl’s tip loss factor. So instead of
eqs.(3.22) and (3.23), for a < ac

a =
1

4F sin2 φ

σCn
+ 1

(3.27)

otherwise

a =
1

2
[2 +K (1 − 2ac) −

√

(K (1 − 2ac) + 2)2 + 4 (Ka2
c − 1)] (3.28)

where

K =
4F sin2 φ

σCn

(3.29)
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Figure 3.5: Flow chart for the numerical procedure
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Chapter 4

Helical Vortex Method
(Influence Coefficient Method)

4.1 Introduction

In this chapter, the Helical Vortex Method (Influence Coefficient Method)
is introduced for analysis of wind turbine aerodynamic performance [9]. In
this method, the turbine blade is modeled as a lifting line where the trailing
vortices are shed along the blade span. It should be noted that this model is
based on the prescribed wake model which means that the geometry of the
wake is known as a helix. For evaluation of aerodynamic performance, the
Biot-Savart law and Kutta-Jukowski theorem have been used. Therefore, the
induced velocity and circulation can be calculated at the blade section.

The rotor blade is replaced by a lifting line with the bound circulation
varying along its span. Then, the blade is divided into a number of segments.
Each segment is presented by a helical horseshoe vortex. The induced ve-
locities produced by all trailing vortices at the control point of each segment
are calculated by the Biot-Savart law. Then, by using the Kutta-Jukowski
theorem and 2-D sectional airfoils data (lift and drag coefficients vs. angle
of attack), the aerodynamic forces acting on the blade are calculated. Recall
that the air flow is modeled as inviscid-incompressible flow.

Also, in this model the local pitch of each trailing vortex leaving the blade
has been taken into account. This means that the rotor blade does not create
a uniform helical vortex surface with constant pitch in the radial, axial and
tangential directions. It is assumed that for helical motion of the trailing
vortices, the helix pitch angle is calculated by induced velocity at the point
where this helical vortex is emanated. Finally, the dependency of the wake
model to the induced velocity at each radial position causes a non-linearity
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in the equation system, so an iterative method must be used.

4.2 Assumptions

Like every model, there are some assumptions to be made:

1. The flow streamline is steady and parallel to the rotating axis of wind
turbine.

2. The blade is presented by a lifting line located at a quarter chord behind
the leading edge with a varying circulation distribution along its span.

3. The 2-D flow conditions is considered for each blade segment while
the influence of induced rotational and axial velocities is taken into
account. The induced radial velocity is not taken into account since it
does not influence lift or drag.

4. The elastic effects of the blades are disregarded, so it is assumed that
the blades remain straight and stand in the rotational plane.

5. Each component of the trailing vortices springing from the blade has a
helical shape with constant pitch angle along the axial direction. This
pitch angle is equal to the pitch angle at the point where the trailing
vortices shed from. So, there is no expansion of the wake.

4.3 Rotor Geometry

The rotor of radius R has been equally divided into N segments. The
aerodynamic characteristics along the blade such as chord C and local pitch
angle θ are known. Similarly, the rotational speed Ω and free stream velocity
V0 are known.

According to fig.(4.1), the (x, y, z) Cartesian coordinate system builds
up from the hub center. The axis system is defined as x axis through the
quarter chord line of the blade and z axis indicating to the positive down-
wind direction. As mentioned before, the blade is divided into N segments
and the points of each segment are referred by xj (j = 1, 2, .., N + 1). This
segmentation may be either uniform or non-uniform. As shown in fig.(4.2),
each segment consists of a bound vortex of constant strength Γi and a control
point Ci = (xi, 0, 0). From the ends of the bound vortex segment, two free
vortices shed at j, j+1 and develop as helical vortices to infinity. As a result,
the bound vortex segment and the two trailing helical vortices build a helical
horseshoe vortex.
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Figure 4.1: Coordinate axes and blade division

Figure 4.2: Helical horseshoe vortex for a segment of a blade
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4.4 Induced Velocities

The components of induced velocity in the y and z directions are de-
fined as vij and wij respectively at the blade, at the control point (xi, 0, 0).
This induced velocity originates as a small helical vortex segment at point
(xj , yj, zj) on the helical trailing vortex line jumping from the point (xj , 0, 0)
with circulation equal to one. Then the total normalized induced velocities
induced by helical vortex lines Vij and Wij can be determined by applying
the Biot-Savart law as

Vij =
1

4πR

∞
∫

0

vijdθ (4.1)

Wij =
1

4πR

∞
∫

0

wijdθ (4.2)

vij =

NB
∑

n=1

h [−η (cos θ′ + θ sin θ′) + r]

[h2θ2 + η2 + r2 − 2rη cos θ′]
3

2

(4.3)

wij =
NB
∑

n=1

η2 − rη cos θ′

[h2θ2 + η2 + r2 − 2rη cos θ′]
3

2

(4.4)

where

η =
xj

R

r =
xi

R

θ′ = θ +
2π (n− 1)

NB

where θ is azimuthal angle of the blade and n = 1, ..., NB. Also, h is defined
as

h =
V0 − wj

R

(

Ω −

(

vj

xj

)) (4.5)

It should be noted that vj and wj are circumferential and axial induced veloc-
ities at the radial location of point of emanating of this vortex element. By

introducing the following terms as non-dimensional parameters Γi =
Γi

R2Ω
,

vi =
vi

RΩ
and wi =

wi

RΩ
, we find that all NB horseshoe vortices j of the
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NB blades induce the non-dimensional velocities V ijΓij and W ijΓij at the
control point xi. The influence coefficients V ij and W ij are defined as

V ij =
1

4π

∞
∫

0

(vi,j+1 − vi,j) dθ (4.6)

W ij =
1

4π

∞
∫

0

(wi,j+1 − wi,j) dθ (4.7)

Then, the total induced velocities at the control point xi will be the sum of
the portions of all the horseshoe vortices.

vi =
NB
∑

j=1

V ijΓij (4.8)

wi =
NB
∑

j=1

WijΓij (4.9)

Since it has been assumed that we are dealing with the incompressible flow,
so the numerical integration is done only to a limited azimuthal angle. Also,
because of the symmetry, there is no any additional induction velocity along
the blades by the bound vortices of the lifting lines.

4.5 Distribution of Circulation

By using the Kutta-Jukowski theorem, we can calculate the forces acting
on the blade. The related equation can be written as

Li = ρWiΓi (4.10)

where ρ is density of air and Wi is the resultant velocity at xi. According to
fig.(4.3), it can be written that

αeff = αg − αi (4.11)

where αeff , αg and αi are effective, geometric and induced angles of attack
respectively. The geometric and induced angle of attack are given by

αg (i) = tan−1

(

V0

xiΩ

)

− θi (4.12)
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Figure 4.3: velocity component at the blade cross section

αi (i) =
Wn (i)

Wi

(4.13)

where Wn (i) = (v2
i + w2

i )
1/2

. By using an iterative method, the circulation
distribution along the blade can be computed. The above steps is shown
in fig.(4.4). Then, the axial force, torque and power for each blade can be
calculated by summing the axial force, torque and power elements over all
of the segments. Finally, the total axial force, torque and power of the wind
turbine rotor blades can be written as

F =

xtip=R
∫

xhub

1

2
ρNBcW 2 (CL cos φ+ CD sinφ) dx (4.14)

Q =

xtip=R
∫

xhub

1

2
ρNBcW 2 (CL sinφ− CD cos φ)xdx (4.15)

P =

xtip=R
∫

xhub

1

2
ρNBcW 2 (CL sin φ− CD cosφ)xΩdx (4.16)

where φ is the relative flow angle. The axial force, torque and power coeffi-
cients are defined as non-dimensional parameters as
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CF =
F

1

2
ρπR2V 2

0

(4.17)

CQ =
Q

1

2
ρπR3V 2

0

(4.18)

CP =
P

1

2
ρπR2V 3

0

(4.19)

It should be noted that the analytical form of airfoil data have been used in
the calculation of CL and CD as

If α < αs = 0.2rad (11.45◦)

CL = 2πα

CD = 0.01 + 0.5α2
(4.20)

If α ≥ αs = 0.2rad (11.45◦)

CL = 2παstall

CD = 0.01 + 0.5α2
(4.21)

49



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Start

Read Input Data

Iter = 1

9:E; L ¥9ñ:E;6 E9á:E;6�

�:Á$áØê:E;F �$:E;;��$:E;� Q rärrs

No Yes

9:E; L9ñ:E;�
%Åáâß×:E; L %ÅáÚØâà:E;�

Á$:E; L s

t
%:E;9:E;%Åáâß×:E;

463
�

+PAN L +PAN E s
%Åáâß×:E; L %ÅááØê:E;�

Print Output Data 

Calculate the 
performance values

ÙÜ:E; L 9á:E;
9ñ:E;�

R:Eá F; LÍ± D:F;>Fß:E;:���:à E àÞ;E à ���:à E àÞ;;E N:E;?:N:E;6 F tN:E;ß:E; ���:à E àÞ;E ß:E;6 E D:F;6à6;7 6W @à
¶

4

Ç»

Þ@5

�

S:Eá F; LÍ± >D:�;6 F N:E;ß:E; ���:à E àÞ;?:N:E;6 F tN:E;ß:E; ���:à E àÞ;E ß:E;6 E D:F;6à6;7 6W @à
¶

4

Ç»

Þ@5

�

R:E; L 43LÍ s

vè
± �$ÜÝkRÜáÝ>5 F RÜáÝo
¶

4

@à

Ç»

Ý@5

M ����������������������������á��������������������������S:E; L 43LÍ s

vè
± �$ÜÝkSÜáÝ>5 FSÜáÝo
¶

4

@à

Ç»

Ý@5

M�
9á:E; L ¥R:E;6 ES:E;6 ���������������������������� á 9:E; L ¥9ñ:E;6 E9:E;6

D:F; L 84 FS:F;
4 F3F lR:F;

T:F;pG
�

ÙØÙÙ:E; L ÙÚ:E;F ÙÜ:E;
%ÅááØê:E; L %Å:ÙØÙÙ;:E;�

Á$áØê:E; L s

t
%:E;9:E;%ÅááØê:E;

463
�

End 

YES 

NO

Figure 4.4: Flow chart for the numerical procedure
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Chapter 5

Helical Vortex Sheet Method

In this chapter, the theoretical development of the helical vortex sheet
method for prediction of the aerodynamics loads on wind turbine blades is
introduced [10]. In this method, it is assumed that the collection of the
trailing vortices which originate from each blade element construct a helical
vortex sheet (due to blade rotation) behind of each rotor blade which con-
tinues to infinity far downstream of the blades. This vortex sheet creates
induced velocities on each blade element. Therefore, the Biot-Savart law is
applied to compute these induced velocities. Contrary to the BEM method,
we avoid the axial induction factor a and tangential induction factor a′.

5.1 Introduction

In this analysis, the induced velocity is calculated by the Biot-Savart law.
It is assumed that a filament of the trailing vortices has a helical shape and
it extends to infinity down stream of the rotor blades with a constant diam-
eter. Also, it is assumed that these helical vortices are moving downstream
with a constant velocity which is equal to the inflow velocity through the
rotor’s plane of rotation. This means that the interactions between the wake
elements are ignored. To model the blade, the lifting line theory is used.
In addition, we consider a continuous variation of circulation in the radial
direction, and the integration is performed for the whole helical vortex sheet
in the trailing wake to compute the induced velocities.

5.2 Vortex Theory for HAWT

Generally, each element of the blade can be handled as a 2-D airfoil section
subject to a local resultant velocityW . The local lift of the blade element, dL,
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is related to the circulation Γ around the airfoil. The local resultant velocity
is the vector sum of the free stream velocity V0, the circumferential velocity
of the section Ωr and the induced velocity Wn. For each blade element, the
Kutta-Jukowski theorem can be written as

dL = ρWΓdr (5.1)

where ρ is the local density of the air, dr is the length of the blade element
and W is the relative velocity.

Generally, the circulation Γ around the blade changes along the blade

length as
dΓ

dr
dr between the points r and r+dr. From the vortex continuity,

it can be concluded that a trailing vortex filament originates from the blade
element and continues to infinity far downstream of the blade. Since trailing
vortices emanate from all points along the blade, a helical vortex sheet is
constituted. The number of vortex sheets are equal to the number of blades.
The trailing vortex sheets induce velocity distribution in the rotor plane. The
local resultant velocity W for each blade element is obtained by vector sum
of this induced velocity along with the wind velocity and rotational velocity.
This local resultant velocity is used to compute the lift on the blade element
by using the Kutta-Jukowski theorem.

5.3 General Assumptions

There are some assumptions for analyzing the aerodynamic performance
of HAWT which can be stated as follow:

1. The air stream is considered as inviscid-incompressible flow.

2. The wind velocity is always parallel to the rotor shaft axis and constant
along the blade.

3. The relative velocity of a blade element to the air stream is equal to
the velocity when the blade element is located in a 2-D stream with
the same relative velocity.

4. The trailing vortex system is helical with constant pitch and diameter,
continuing infinitely far down stream of the blade and traveling with a
constant velocity determined at the rotor. In reality, the wake is not
rigid and expands radially in the downstream direction.

5. The effect of hub on the rotor flow is neglected.
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6. The slipstream expansion, related to the gradual decrease of axial ve-
locity behind the rotor by reduction in pressure behind the rotor, is
neglected.

5.4 Coordinate System

The physical model and coordinate systems for the analysis are shown
in figs.(5.1) and (5.2). The Cartesian coordinates X, Y , Z are fixed in a
space. The Z axis is the rotation axis and the XY plane is considered as
the rotation plane. In addition, the Z coordinate is defined as the distance
measured from the rotor to a segment of trailing vortex parallel to the axis
of rotor rotation. The second coordinate system is a cylindrical coordinate
system (r, θ, z) which is fixed to the rotating blade. The r axis is made
along the blade, the θ axis measures the azimuthal angle measured from the
kth blade and the z axis is the axis of rotation. It is assumed that the blade
whose induced velocity is to be calculated, to be coincident with the X axis
as in fig.(5.2).

Figure 5.1: Physical model of helical vortex sheet

5.5 Calculation of Induced Velocity

As mentioned before, it is assumed that the trailing vortex filament from
a blade element extends infinitely far downstream of the rotor. Moreover,
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Figure 5.2: Geometry of helical vortex and the coordinate systems

this vortex induces a velocity field which can be calculated by Biot-Savart
law. This law is expressed in vector differential form as

dWinduced (r′) =
dΓ

4π

(s − r′) × dη

|s− r′|3
(5.2)

In this equation, dWinduced is the differential velocity induced at a point r′

on the blade due to a segment dη of the trailing vortex filament emanated at

point r on the kth blade. Also,
dΓ

dr
dr is the circulation change between the

points r and r + dr along the blade which is equal to the circulation of the
trailing vortex from the blade element dr. Vectors s, r′ and dη are defined
as (see Appendix B)

r′ = r′i (5.3)

s = r cos (θ + θk) i + r sin (θ + θk) j + rθ tanφk (5.4)

dη = rdθ {− sin (θ + θk) i + cos (θ + θk) j + tanφk} (5.5)

In the above equations, θ is the azimuthal angular variable of the helix mea-
sured from the kth blade and φ is the helix pitch. For simplicity, h = r tanφ
and also it is considered that φ is related to the inflow velocity U and the
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rotational velocity of rotor Ωr by

tanφ =
U

rΩ +Wy
(5.6)

then

h = r tanφ =
U

Ω +
Wy

r

(5.7)

Now, eqs.(5.4) and (5.5) may be expressed as

s = r cos (θ + θk) i + r sin (θ + θk) j + hθk (5.8)

dη = dθ {−r sin (θ + θk) i + r cos (θ + θk) j + hk} (5.9)

So, the cross product in the eq.(5.2) can be written as

(s− r′) × dη = dθ {hr [sin (θ + θk) − θ cos (θ + θk)] i

+ h [r′ − r cos (θ + θk) − rθ sin (θ + θk)] j

+
[

r2 − rr′ cos (θ + θk)
]

k
}

(5.10)

| s − r′ |=
(

r2 − 2rr′ cos (θ + θk) + r′
2

+ h2θ2

)1/2

(5.11)

For simplicity, A =| s−r′ | and dWinduced is decomposed into its components
as

dWinduced = dWxi + dWyj + dWzk (5.12)

Therefore, by combining eqs.(5.2), (5.10), (5.11) and (5.12) and considering
the number of helical vortices NB originating from each blade element lo-
cated at distance r from the rotation axis, the induced velocity components
can be written

dWx =

dΓ

dr
dr

4π

NB
∑

1

∞
∫

0

hr [sin (θ + θk) − θ cos (θ + θk)]

A3
dθ (5.13)

dWy =

dΓ

dr
dr

4π

NB
∑

1

∞
∫

0

h [r′ − r cos (θ + θk) − rθ sin (θ + θk)]

A3
dθ (5.14)

dWz =

dΓ

dr
dr

4π

NB
∑

1

∞
∫

0

[r2 − rr′ cos (θ + θk)]

A3
dθ (5.15)
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where NB is number of blades, k denotes the corresponding blade and

θk =
2π(NB − k)

NB
(5.16)

The induced velocity components at r′ due to a single helical vortex fila-
ment originating from the kth blade section located at r along the blade can
be calculated by integrating eqs.(5.13), (5.14) and (5.15) with respect to θ
from zero to infinity. For simplicity and since we are dealing with inviscid-
incompressible flow, the integrating can be computed from zero to 6D with
respect to θ. Here, 6D is considered as a distance where the effect of the
induced velocity on the blade by the helical vortex sheet is significant. Also,
it is assumed that blade with k = NB always coincide with the X axis.

If the diameter of the vortex helix is constant, then dWx = 0. Also, if
the induced velocity at radius r′ is decomposed into the normal and parallel
directions with respect to the undisturbed velocity W ′ of the blade element
(see fig.(5.3.)), it can be written as

dWn = dWz cosφ′ − dWy sin φ′ (5.17)

dWt = dWz sinφ′ + dWy cosφ′ (5.18)

where

φ′ = tan−1

(

V0

rΩ

)

(5.19)

By integrating eqs.(5.17) and (5.18) along the blade from the hub radius
rhub to the tip radius rtip = R, the total components of induced velocity are
calculated.

Wt is always zero everywhere on the blade. Therefore, the total induced
velocity at point r′ of the blade by all trailing vortices emanating from the
blade is equal to the dWn. In eq.(5.17) at point r = r′ when θ = θk = 0,
a singularity occurs (a denominator goes to zero). In practice, it can never
occur since r′ is located at a quarter of the chord of the blade and r is always
located downstream of the trailing edge. The parameter h is re-written as

h =
V0 −Wn cosφ′

Ω +
Wn sinφ′

r

5.6 Governing Equations

In order to formulate the governing equation, it should be noted that
the blade section is placed at a geometric angle of attack αg with respect to
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Figure 5.3: Velocity diagram and induced velocity components

the undisturbed incoming fluid velocity W ′, and the induced angle of attack
αi, which is created by induced velocity, makes each blade element to see a
smaller angle of attack, the so-called effective angle of attack αeff

αeff = αg − αi (5.20)

The induced angle of attack may be expressed from fig.(5.4) as

αi = tan−1
Wn

W ′
(5.21)

The geometric angle of attack can be computed from fig.(5.4) as

αg = tan−1

(

V0

rΩ

)

− θ (5.22)

where θ is defined as the local pitch angle of the blade element. The Kutta-
Jukowski theorem defines the relation between circulation and lift coefficient
at each section as

L = ρWΓ (5.23)

Also, lift coefficient is defined as

CL =
L

1

2
ρW 2c

(5.24)
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Figure 5.4: Velocity diagram and the induced velocity components

Combination of eqs.(5.23) and (5.24) yields

Γ =
1

2
cWCL (5.25)

where c is the chord of the blade section.

5.7 Numerical Procedure

To start the calculation, each blade of the wind turbine is divided into M
sections with M nodes along the blade for computing the required variables.
These partitions may be either uniform or non-uniform. For simplicity, each
rotor blade of the wind turbine is divided into number of sections similarly.
The induced velocity as mentioned before, is computed by direct integration
of the Biot-Savart law. This induced velocity is used to calculate the induced
angle of attack distribution which in turn may be used to evaluate different
performance variables, e.g., rotor power, rotor thrust, etc. To accomplish all
of these, the circulation distribution along the blade Γ (r), must be known.
This distribution is constructed so that the circulation at both the blade tip
rtip = R and the blade hub r = rhub is zero. Now, all the required equations
have been introduced. A numerical iterative method can be obtained as
fig.(5.5).
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5.8 Power, Torque and Drag On a HAWT

After finishing the iterative process and calculating the effective angle of
attack, the rotor power P , torque Q and axial force F can be computed as
follow

F =

rtip
∫

rhub

(

1

2
ρNBcW 2

)

(CL cosφ+ CD sinφ) dr (5.26)

Q =

rtip
∫

rhub

(

1

2
ρNBcW 2

)

(CL sin φ− CD cosφ) rdr (5.27)

P =

rtip
∫

rhub

(

1

2
ρNBcW 2

)

(CL sinφ− CD cosφ) Ωrdr (5.28)

where CL and CD are the sectional lift and drag coefficients respectively
defined as

CL =
dL

1

2
ρW 2cdr

(5.29)

CD =
dD

1

2
ρW 2cdr

(5.30)
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Figure 5.5: Flow chart for the numerical procedure
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Chapter 6

Results

In this chapter, the aerodynamics performance of HAWT for four differ-
ent cases have been evaluated by the three mentioned methods; BEM, Vortex
Method 1 (Helical Vortex Method by Influence Coefficient Method) and Vor-
tex Method 2 (Helical Vortex Sheet). The results are compared to each
other. In each case, the Blade Aerodynamics Properties and Basic Machine
Parameters have been introduced by related tables.

In the tables of the Distributed Blade Aerodynamic Properties, the blade
nodes radial position, twist angle, pitch angle, element length, chord length
and the airfoil type of each blade segment have been determined. Each node
is located at the middle of the segment as control point and the calculated
parameters such as circulation Γ, induced αi and effective αeff angles of
attack are stored there.

In the tables of Basic Machine Parameters, the gross properties of each
machine have been presented.

It may happen that the wind turbine blades operate in the stalled region
occurring at large angles of attack. In this situation, airfoil data have to be
modified. Since the existed tables are based on the 2-D measurements, so
it is necessary to consider 3-D effects on the aerodynamics coefficient tables
(CL and CD) such as rotational stall delay, dynamic-stall, etc. For each case,
please see the related reference.

In all cases, the variation of Reynolds number along the blade has been
neglected.

In order to calculate the wind turbine performance, first we must compute
the circulation distribution along the blade. It should be noted that the
calculated output power is not the rotor power because of the losses in the
power transmission.
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Node
Radial Position Twist Pitch Element Length Chord Airfoil

(m) (deg) (deg) (m) (m) Type

1 11.75 13.31 0 4.10 4.56 DU40
2 15.85 11.48 0 4.10 4.65 DU35
3 19.95 10.16 0 4.10 4.46 DU35
4 24.05 9.01 0 4.10 4.25 DU30
5 28.15 7.79 0 4.10 4.01 DU25
6 32.25 6.54 0 4.10 3.75 DU25
7 36.35 5.36 0 4.10 3.50 DU21
8 40.45 4.18 0 4.10 3.26 DU21
9 44.55 3.12 0 4.10 3.01 NACA64
10 48.65 2.32 0 4.10 2.76 NACA64
11 52.75 1.52 0 4.10 2.52 NACA64
12 56.16 0.86 0 2.73 2.31 NACA64
13 58.90 0.37 0 2.73 2.09 NACA64
14 61.63 0.11 0 2.73 1.42 NACA64

Table 6.1: Blade aerodynamics properties of ”NREL Offshore 5−MW Base-
line” HAWT

Item Description

Rating Power [MW ] 5
No. of Blades 3
Rotor Radius [m] 63.0
Hub Radius [m] 1.5
Rated Wind Speed [m/s] 11.4
Rated Rotor Speed [rpm] 12.1
Tip Speed Ratio (RΩ/V0) 7

Table 6.2: Basic machine parameters of ”NREL Offshore 5−MW Baseline”
HAWT
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6.1 Case 1

• NREL Offshore 5 −MW Baseline

The blade aerodynamics properties and basic machine parameters of the
”NREL Offshore 5 −MW Baseline” [11] are given in tables (6.1) and (6.2).
According to fig.(6.1), it can be seen that the effective circulation (Γ) values
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Figure 6.1: Distribution of circulation (Γ) along the blade

have been decreased compared with the geometric circulation. The reason
for this reduction is the effect of the induced velocity. In nodes where the
effective circulation value is larger than the geometric ones it is due to stall
condition. In this condition, instead of circulation reduction, there will be
an increasing value for the circulation. The results show good agreement
between the different methods. As we discussed before, fig.(6.2) verifies the
theory of rotating blades and downwash effect (induced velocity) where it
decreases the angle of attack seen by the blade airfoil sections. Figure (6.3)
shows the values of axial induction velocity along the blade.The negative
values of the axial induction velocity approves the wake theory behind the
rotor blade. The positive effect of the tangential induced velocity can be
seen in fig.(6.4). Near the hub, the BEM method shows a larger values for
tangential induced velocities compared with the vortex methods.

Figure (6.5) shows the total induced velocity along the blade. It shows
that the induced tangential velocity is dominant component compared with
the induced axial velocity.
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Figure 6.2: Distribution of angle of attack (αeff) along the blade
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Figure 6.3: Distribution of axial induction velocity (Wz) along the blade
normalized by R2Ω
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Figure 6.4: Distribution of tangential induction velocity (Wy) along the blade
normalized by R2Ω
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Figure 6.5: Distribution of total induction velocity (Wn) along the blade
normalized by R2Ω
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Figure 6.6: Distribution of tangential force (PT ) with respect to the rotor
plane

The tangential and normal force at the rotor plane are shown in figs.(6.6)
and (6.7). There is a uniform tangential force, except at the tip and root,
along the blade. The normal force increases linearly and reaches its maximum
value at the tip. Also, the magnitude of the normal force compared with
tangential force is significant. Figures (6.8) and (6.9) show the distribution
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Figure 6.7: Distribution of normal force (PN) with respect to the rotor plane

of geometric properties (twist angle and chord length) for the blade.
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Figure 6.9: Distribution of twist angle along the blade
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Node
Radial Position Twist Pitch Element Length Chord Airfoil

(m) (deg) (deg) (m) (m) Type

1 1.50 0 4.00 0.60 1.00 Thin Airfoil
2 2.10 0 4.00 0.60 1.00 Thin Airfoil
3 2.70 0 4.00 0.60 1.00 Thin Airfoil
4 3.30 0 4.00 0.60 1.00 Thin Airfoil
5 3.90 0 4.00 0.60 1.00 Thin Airfoil
6 4.35 0 4.00 0.30 1.00 Thin Airfoil
7 4.80 0 4.00 0.60 1.00 Thin Airfoil
8 5.25 0 4.00 0.30 1.00 Thin Airfoil
9 5.55 0 4.00 0.30 1.00 Thin Airfoil
10 5.85 0 4.00 0.60 1.00 Thin Airfoil

Table 6.3: Blade aerodynamics properties of ”AA” HAWT

Item Description

Rating Power [kW ] 41.0
No. of Blades 2
Rotor Radius [m] 6.0
Hub Radius [m] 1.2
Rated Wind Speed [m/s] 11.4
Rated Rotor Speed [rpm] 117.8
Tip Speed Ratio (RΩ/V0) 6.5

Table 6.4: Basic machine parameters of ”AA” HAWT

6.2 Case 2

• Analytical Airfoil (AA)

The blade aerodynamics properties and basic machine parameters of the
”AA” [9] are given in tables (6.3) and (6.4). Figure (6.10) shows the
difference between the effective circulation (Γ) values and the geometric cir-
culation. The rotor blade experiences smaller circulation values compared to
the geometric ones. There is a good agreement between different methods,
however vortex method 2 predicts smaller values for the region near the tip.
According to fig.(6.11), we can see that the reduction of effective angle of
attack is larger near the hub compared with the tip region. It means that
the induced velocity magnitude near the root is larger than near the tip.
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Figure 6.10: Distribution of circulation (Γ) along the blade
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Figure 6.11: Distribution of angle of attack (αeff ) along the blade
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Figure 6.12: Distribution of axial induction velocity (Wz) along the blade
normalized by R2Ω

The values of axial induction velocity along the blade can be seen in fig.(6.12).
The larger values of the axial induced velocity for the vortex method 2 (near
the tip) is connected to the smaller value of the circulation predicted by this
method.Figure (6.13) shows larger values for the BEM method near the hub
compared with the vortex methods.
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Figure 6.13: Distribution of tangential induction velocity (Wy) along the
blade normalized by R2Ω
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Figure 6.14: Distribution of total induction velocity (Wn) along the blade
normalized by R2Ω
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Figure 6.15: Distribution of tangential force (PT ) with respect to the rotor
plane

Figures (6.15) and (6.16) show the distribution of normal and tangential
forces at the rotor plane. Like the last case, the smooth variation of tangen-
tial force and the maximum value of normal force at the tip is obvious. As
can be seen in figs.(6.17) and (6.18), the blades of the Case 2 has constant
chord length and twist angle.
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Figure 6.16: Distribution of normal force (PN) with respect to the rotor plane
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Figure 6.17: Distribution of chord length along the blade
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Figure 6.18: Distribution of twist angle along the blade

Node
Radial Position Twist Pitch Element Length Chord Airfoil

(m) (deg) (deg) (m) (m) Type

1 1.52 14.04 5.00 0.40 0.71 NREL S809
2 1.80 9.67 5.00 0.27 0.68 NREL S809
3 2.07 6.75 5.00 0.27 0.65 NREL S809
4 2.35 4.84 5.00 0.27 0.63 NREL S809
5 2.63 3.48 5.00 0.27 0.60 NREL S809
6 2.90 2.40 5.00 0.27 0.57 NREL S809
7 3.18 1.51 5.00 0.27 0.54 NREL S809
8 3.46 0.76 5.00 0.27 0.51 NREL S809
9 3.73 0.09 5.00 0.27 0.49 NREL S809
10 4.01 -0.55 5.00 0.27 0.46 NREL S809
11 4.29 -1.11 5.00 0.27 0.43 NREL S809
12 4.56 -1.55 5.00 0.27 0.40 NREL S809
13 4.84 -1.84 5.00 0.27 0.37 NREL S809
14 5.12 -2.08 5.00 0.27 0.35 NREL S809
15 5.39 -2.36 5.00 0.27 0.32 NREL S809

Table 6.5: Blade aerodynamics properties of ”CER-NREL” HAWT
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Item Description

Rating Power [kW ] 4.7
No. of Blades 2
Rotor Radius [m] 5.53
Hub Radius [m] 1.26
Rated Wind Speed [m/s] 6.3
Rated Rotor Speed [rpm] 72.0
Tip Speed Ratio (RΩ/V0) 6.5

Table 6.6: Basic machine parameters of ”CER-NREL” HAWT

6.3 Case 3

• CER-NREL

The blade aerodynamics properties and basic machine parameters of the
”CER − NREL” [12] are given in tables (6.5) and (6.6). Figure (6.19)
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Figure 6.19: Distribution of circulation (Γ) along the blade

shows the distribution of the circulation along the blade for case 3. As can
be seen, the reduction of the circulation due to the induced velocity is ev-
ident. According to fig.(6.20), the effective angle of attack is in agreement
with the downwash concept.
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Figure 6.20: Distribution of angle of attack (αeff ) along the blade
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Figure 6.21: Distribution of axial induction velocity (Wz) along the blade
normalized by R2Ω
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Figure 6.22: Distribution of tangential induction velocity (Wy) along the
blade normalized by R2Ω
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Figure 6.23: Distribution of total induction velocity (Wn) along the blade
normalized by R2Ω
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Figure 6.24: Distribution of tangential force (PT ) with respect to the rotor
plane
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Figure 6.25: Distribution of normal force (PN) with respect to the rotor plane
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The negative values of axial induced velocity, the positive values of
tangential velocity and its prevalent role on the total induced velocity is seen
in figs.(6.21), (6.22) and (6.23). Similar to the other cases, the smooth vari-
ation of the tangential force and the largest values of normal force near the
tip can be seen in figs.(6.24) and (6.25). The variation of the chord length
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Figure 6.26: Distribution of chord length along the blade
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Figure 6.27: Distribution of twist angle along the blade

and twist angle for the case 3 is shown in figs.(6.26) and (6.27).
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Node
Radial Position Twist Pitch Element Length Chord Airfoil

(m) (deg) (deg) (m) (m) Type

1 7 11.50 0 1.5 1.51 FFA-W3-241
2 8 8.30 0 1.00 1.45 FFA-W3-241
3 9 6.60 0 1.00 1.39 FFA-W3-221
4 10 5.20 0 1.00 1.32 FFA-W3-221
5 11 4.50 0 1.00 1.26 FFA-W3-221
6 12 3.55 0 1.00 1.20 FFA-W3-221
7 13 2.77 0 1.00 1.13 LM-2-18
8 14 2.15 0 1.00 1.06 LM-2-18
9 15 1.59 0 1.00 0.99 LM-2-18
10 16 1.12 0 1.00 0.92 LM-2-18
11 17 0.75 0 1.00 0.84 LM-2-18
12 18 0.4 0 1.00 0.74 LM-2-18
13 19 0.15 0 0.75 0.59 LM-2-15
14 19.5 0.06 0 0.50 0.46 LM-2-13
15 20 0.01 0 0.75 0.28 LM-2-13

Table 6.7: Blade aerodynamics properties of ”Nordtank-500” HAWT

Item Description

Rating Power [kW ] 260
No. of Blades 3
Rotor Radius [m] 20.5
Hub Radius [m] 6.0
Rated Wind Speed [m/s] 8.95
Rated Rotor Speed [rpm] 27.1
Tip Speed Ratio (RΩ/V0) 6.5

Table 6.8: Basic machine parameters of ”Nordtank-500” HAWT
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6.4 Case 4

• Nordtank-500

The blade aerodynamic properties and basic machine parameters of the
”Nordtank − 500” are given in tables (6.7) and (6.8).
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Figure 6.28: Distribution of circulation (Γ) along the blade

In this case, because of lack of exact data for the airfoil type of the blade
segments, significant oscillation are found in the all figures. Still, the results
show their agreement with the theory and the other cases. Therefore, we can
deduce that the resolution to capture the accurate result in vortex method 2
is much more sensitive compared with the BEM method.
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Figure 6.29: Distribution of angle of attack (αeff ) along the blade
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Figure 6.30: Distribution of axial induction velocity (Wz) along the blade
normalized by R2Ω
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Figure 6.31: Distribution of tangential induction velocity (Wy) along the
blade normalized by R2Ω
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Figure 6.32: Distribution of total induction velocity (Wn) along the blade
normalized by R2Ω
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Figure 6.33: Distribution of tangential force (PT ) with respect to the rotor
plane
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Figure 6.34: Distribution of normal force (PN) with respect to the rotor plane
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Figure 6.35: Distribution of chord length along the blade
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Figure 6.36: Distribution of twist angle along the blade

84



6.5 Conclusion

The difference between the methods can be categorized as below:

1. The circulation values by BEM and Vortex method 1 are similar. How-
ever, BEM method gives somewhat larger values at the root. This
means that we need empirical relation for the hub region (like the
Prandtl’s tip correction factor). Moreover, Vortex method 2 yields
larger values for circulation except for the tip.

2. The three methods predict the effective angle of attacks similar to each
other.

3. The axial induced velocity for both BEM and Vortex method are ap-
proximately the same whereas vortex method 2 shows a greater values
except for the tip. The tangential induced velocity decreases from root
to tip, but the slope of this reduction for BEM method is greater than
the other methods which means that calculated values by BEM is the
largest at root.

4. The tangential force seems to be nearly the same for BEM method and
Vortex method 1 while the BEM method predicts slightly larger values
at the root.

6.6 Future Work

In order to improve the results and to close the models to reality, a lot of
efforts should be done. Here, some of them is mentioned.

In order to remove oscillations in the results, the distribution of the con-
trol points should be refined by interpolating of airfoil profile data in the
regions of tip and root, where the circulation varies rapidly.

Lift and drag coefficients (CL and CD) for a certain airfoil profile vary
with Reynolds number. This means that they are a function of local Reynolds
number. Therefore, the values of CL and CD should be looked up (as input
data) in tables with an appropriate Reynolds number.

The blade surface roughness should be also included to get more accu-
rate results. In addition, there need some corrections for 3D behaviour of
2D airfoil data, such as rotational stall delay and dynamic-stall hysteresis
parameters.

Since the prescribed wake model does not predict highly accurate aero-
dynamic parameters for HAWT in cases where there are small variations in
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the wake geometry specifically when this geometry cannot be prescribed with
an acceptable accuracy, then free wake modelling will be a suitable solution
where the vortex wake elements are allowed to convect and deform under the
action of the local velocity field. In this case, application of the Biot-Savart
law should be modified by some physical concepts such as vortex filament
core thickness, vortex curvature effect (self induction mechanism) and etc. It
may need to add some term(s) to the induced velocity gained by Biot-Savart
law. Also, the vortex ring concept may help for construction the model for
correctional term(s).

The other unsteadiness parameters including periodic (wind speed, inflow,
yaw, ...) and non-periodic (wind turbulence, wake dynamics, ...) flow field
factors should be studied.
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Appendix A

Derivation of Biot-Savart
Equation

The vorticity Ω = Ω (r, t) is the curl of the velocity1

Ω = ∇×V (A.1)

According to the Green’s theorem, which is a special case of Stokes’ the-
orem, the circulation Γ =

∮

C
V ·ds around any closed curve C can be related

from the vorticity by the equation

Γ =

∮

C

V.ds =
x

S

∇× V · ndS =
x

S

Ω · ndS (A.2)

where S is any surface whose boundary is the curve C.

A.1 Vortex Line, Surface, Tube and Filament

The field lines of the vorticity field are called vortex lines. A vortex line is
represented as shown in fig.(A.1). At any point in the flow field, the direction
of the vorticity vector is given, by the direction, at that point, of the vortex
line passing through that point. Hence,

Ω × ds = 0 (A.3)

where ds is an element of a vortex line. In Cartesian, if we write

Ω = (Ωx,Ωy,Ωz) (A.4)

1Most part of this chapter has been extracted from [13].
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Figure A.1: Vortex line

So, eq.(A.3) becomes
dx

Ωx

=
dy

Ωy

=
dz

Ωz

(A.5)

Figure A.2: Vortex surface

If at any instant of time, we draw an arbitrary line in the flow field and
draw the vortex lines passing through that line, a surface is formed. Such a
surface is called vortex surface and is represented as shown in fig.(A.2).
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Figure A.3: Vortex tube

If we consider a closed curve and draw all the vortex lines passing through
it, a tube is formed. Such a tube is called a vortex tube and is represented
as shown in fig.(A.3). A vortex tube of infinitesimal cross-sectional area is
known as a vortex filament.

A.2 Vorticity Field as a Divergence Field

Since the vorticity is the curl of another vector field, we have

∇ · (∇×V) = ∇ ·Ω = 0 (A.6)

Thus, vorticity is a divergenceless field. Consider at any instant, a region of
space R enclosed by a closed surface S. We then have{

S

Ω · ndS =
y

R

∇ · Ωdv = 0 (A.7)

This equation states that the (net) outflow of vorticity through any closed
surface is zero. This is true at every instant of time.

A.3 Spatial Conservation of Vorticity: Strength

of a Vortex Tube

Consider at any instant, a vortex tube in the flow field. Denote by R the
region space enclosed between the wall of the tube and any two surfaces S1
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and S2 which cut the tube (see fig.(A.4)). Then, according to eq.(A.7), the
outflow of the vorticity through the surface S of the region R vanishes. We
therefore write

x

S1

Ω · ndS +
x

S2

Ω · ndS +
x

Sw

Ω · ndS =
{

S

Ω · ndS = 0 (A.8)

Here Sw denotes the surface of the wall of the tube in the portion under

Figure A.4: Illustrating the derivation of the spatial conservation of vorticity

consideration. On the wall of the tube, Ω lies in the surface Sw. Hence the
integral over Sw vanishes x

Sw

Ω · ndS = 0 (A.9)

Consequently, we obtain
x

S1

Ω · ndS +
x

S2

Ω · ndS = 0 (A.10)

In this equation n is an outward normal, outward with reference to the region
R. If we draw the normals on the surfaces S1 and S2 in the same direction, e.g.
(streamwise direction) and denote them by n1 and n2 respectively, eq.(A.10)
may be rewritten as

x

S1

Ω · n1dS =
x

S2

Ω · n2dS (A.11)
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This states that the flow of vorticity through any cross-sectional surface S1

of a vortex tube is equal to the flow of vorticity through any other cross-
sectional surface S2 of the tube. This is true at every instant of time. If
S denotes any cross-sectional surface of the vortex tube, eq.(A.11) may be
expressed as x

S

Ω · ndS = Constant (A.12)

This states that the flow of vorticity through any cross-sectional surface of
a vortex tube is a constant all along the tube. This is true at every instant
of time. In view of the intimate relation between circulation and vorticity,
the result in eq.(A.12) may be expressed equivalently in terms of circulation.
Let D denote any closed curve that embraces the vortex tube (D encloses
the tube and lies on its wall). Then, using eqs.(A.2) and (A.12), we have

ΓD =
x

S

Ω · ndS = Constant (A.13)

This states that the circulation around any closed curve embracing a vortex
tube is constant all along the tube. This is true at every instant of time.
Equation (A.13) expresses the spatial conservation of vorticity in the sense
implied by that equation. For a vortex filament of variable cross-sectional
area dS, this equation takes the form

Γc = Ω · ndS = Constant (A.14)

where ndS is any cross-sectional area of the filament and c is the boundary
curve of ndS. If we take n in the direction of Ω, eq.(A.14) reduces to

Γc = ΩdS = Constant (A.15)

This shows that the vorticity at any section of a vortex filament is inversely
proportional to its cross-sectional area. An important consequence of the
spatial conservation of vorticity is that a vortex tube, and so also a vortex
filament or a vortex line, cannot begin or end abruptly in a fluid. It should
either form a closed ring or end at infinity or at a solid or free surface. The
circulation around any closed curve embracing a vortex tube, or equivalently
the outflow of vorticity through any cross section of the tube, is a character-
istic of the tube as a whole and is called the strength of the vortex tube. If
we consider a vortex filament of variable cross-sectional area and shrink the
area to zero in such a way that the vorticity goes to infinity as the area goes
to zero, and the strength. of the filament remains constant, we arrive at the
conception of a vortex filament with concentrated vorticity.
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A.4 Consequences of the Theorems of Helmholtz

and Kelvin

1. A surface which is a vortex sheet at one instant remains a vortex sheet
for all times. We further state that fluid particles that are part of a
vortex sheet at some instant are part of it for all times. Furthermore,
it follows that fluid particles that are part of a vortex tube (or of a
vortex filament or of a vortex line) at some instant are part of it for all
times.

2. The circulation around a vortex tube, or equivalently the strength of a
vortex tube, remains a constant for all times as the tube floats along,
regardless of the changes experienced by the vortex tube.

The spatial conservation of vorticity as expressed by eq.(A.13) and the
consequences, as described above, of the theorem on the permanence of vor-
ticity or circulation, are usually referred to as Helmholtz’s theorems of vortex
motion. The spatial conservation of vorticity is purely a kinematic property,
for it directly follows from the fact that the divergence of any curl vector is
zero, i.e. eq.(A.6).

A.5 Velocity Field Due to Vortex Distribu-

tion in an Incompressible Fluid

In applications one is concerned with the problem of expressing the ve-
locity field in terms of the vorticity field. To obtain the velocity V (r, t) in
terms of the vorticity Ω (r, t) we need to invert the equation

Ω = ∇× V (A.16)

We do this as follows. Considering an incompressible fluid, we have

∇ · V = 0 (A.17)

On the basis of this relation, we may express V as the curl of some other
vector field, say of A (r, t). Hence we set

V = ∇×A (A.18)

Since the curl of any gradient vector is zero, the vector A is indeterminate
to the extent of the gradient of a scalar function of position and time. From
eq.(A.18), it follows that

∇× V = ∇× (∇× A) = ∇ (∇ · A) −∇2A (A.19)

92



We now stipulate that
∇ · A = 0 (A.20)

This is permissible since A is indeterminate to the extent of a gradient vector.
From eqs.(A.19), (A.20) and (A.16), we obtain

∇2A = −∇×V = −Ω (A.21)

This is Poisson’s equation for A. We call A a vector potential. Once A is
determined as a solution of eq.(A.21), the velocity field may be deduced from
eq.(A.18). In Cartesian, if we express

A = (Ax, Ay, Az) (A.22)

Ω = (Ωx,Ωy,Ωz) (A.23)

The solution of eq.(A.21) is expressed by Green’s formula as

A (r, t) =
1

4π

y

R

Ω (s, t)

| r− s |
dv (s) (A.24)

where Ω (s, t) dv is an element of the vortex distribution situated at the point
s and R is the region in which the vorticity is distributed (see fig.(A.5)).
Note that the integration is with respect to the coordinates of the vortex
distribution, i.e. s and not r. The velocity field is then given by

Figure A.5: Nomenclature used in the derivation of the velocity resulting
from a vortex distribution
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V = ∇× A =
1

4π
∇×

(y

R

Ω (s, t)

| r − s |
dv (s)

)

(A.25)

If we denote by δA the contribution to A at r due to the-vortex element Ωdv
situated at S and similarly by δV the contribution to V at r, we have

δA (r, t) =
1

4π

Ω (s, t)

| r− s |
dv (s) (A.26)

δV (r, t) =
1

4π
∇r ×

(

Ω (s, t)

| r − s |
dv (s)

)

(A.27)

We include the subscript r on the curl to emphasize that the curl is to be
taken with respect to the coordinates of the point r.

A.6 Velocity Field of a Vortex Filament: Biot-

Savart Law

Consider a vortex filament of strength Γ. Choose a volume element dv of
this filament as the cylinder formed by a cross-sectional surface ndS and an
element of length dl along the filament (see fig.(A.6)). Then the contribution
to the vector potential A at a field point r, from the vortex element at s is
given by

δA (r) =
1

4π

Ω (s)

| r − s |
(ndS · dl) (A.28)

Since we have

dl =
Ω

Ω
dl (A.29)

and

Ω · ndS = Γ (A.30)

Equation (A.28) may be rewritten as

δA (r) =
Γ

4π

dl

| r − s |
(A.31)

The contribution to the velocity at the point r from the element of the
filament is then given by

δV (r) = ∇r ×

(

Γ

4π

dl

| r − s |

)

(A.32)
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Figure A.6: Nomenclature used in the derivation of the Biot-Savart law

In carrying out the curl operation, we keep s fixed. We know that

∇× (φF) = (∇φ× F) + (φ∇× F)

Here

F =
Γdl

4π

φ =
1

| r − s |

Since, ∇×dl = 0 then φ∇× F = 0. Also, ∇φ = −
(r − s)

| r − s |3
. Now, eq.(A.32)

reduces to

δV (r) =
Γ

4π

dl × (r − s)

| r − s |3
(A.33)

This is known as the Biot-Savart law. The velocity at r due to the whole
vortex filament is obtained by integration of eq.(A.33) over the length of the
filament. We thus have

V (r) =
Γ

4π

∫

dl × (r − s)

| r − s |3
(A.34)

Since Γ is the strength of the filament, it is a constant and hence appears
outside the integral.
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There is another method for the derivation of the Biot-Savart law. We
consider an infinitely thin vortex filament (also closed). Let n,b, t be the
unit vectors of normal, bi-normal, and tangent, respectively, and xn, xb, xt

are the coordinates along these directions. The vorticity can be written as

Ω = Γδ (xn) δ (xb) t (A.35)

where δ is Dirac’s Delta Function. Substituting eq.(A.35) in eq.(1.7)

W =
Γ

4π

∫

δ (xn) δ (xb)
t × (x − x′)

| x − x′ |3
dxndxbdxt

W = −
Γ

4π

∮

∆r × ds

| x − x′ |3

(A.36)

where dV = dxndxbdxt and tdxt = ds. Equation (A.36) is derived for the
coordinate system bounded to a curve. In an unbounded domain with no
interior boundaries and the absolute coordinate system, we can write [14]

W (x) = −
Γ

4π

∫

C

(x − x′)

| x − x′ |3
×
∂x′

∂s′
ds′ (A.37)
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Appendix B

Helix Equation

A helix is a curve in 3-D space. It is characterized by the fact that the
tangent line at any point makes a constant angle with a fixed line called the
axis.

The parametric equations of a circular helix path s can be written as

s =











x(t) = r cos (ωt+ θ0)

y(t) = r sin (ωt+ θ0)

z(t) = V0t

(B.1)

where r is circle radius, ω is rotational velocity, θ0 is initial angle of rotation,
t is time and V0 is translational velocity of helix in z direction (parallel to
helix axis), respectively.

According to angular velocity ω definition, one revolution is equal to 2π
radians, so

ω =
2π

T
(B.2)

where T is period measured in seconds.
Equation of angular motion with constant angular velocity gives

θ = ωt+ θ0 (B.3)

where for θ0 = 0 reads
θ = ωt (B.4)

Helix pitch angle φ is defined as

φ = tan−1

(

V0

rω

)

(B.5)

Combining eqs.(B.4) and (B.5) yields

V0t = rθ tanφ (B.6)
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Now, we can rewrite eq.(B.1) as

s =











x(t) = r cos (θ + θ0)

y(t) = r sin (θ + θ0)

z(t) = rθ tanφ

(B.7)

or
s = r cos (θ + θ0) i + r sin (θ + θ0) j + rθ tanφk (B.8)

Also, the derivative of s with respect to θ reads as

ds = dθ[−r sin (θ + θ0) i + r cos (θ + θ0) j + r tanφk] (B.9)
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