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Symbolic Reachability Computation Using the Disjunctive Partitioning
Technique in Supervisory Control Theory

Z. Fei, K. Åkesson and B. Lennartson

Abstract— Supervisory Control Theory (SCT) is a model-
based framework for automatically synthesizing a supervisor
that minimally restricts the behavior of a plant such that
a given specification is fulfilled. A problem, which prevents
SCT from having a major breakthrough industrially, is that
the supervisory synthesis often suffers from the state-space
explosion problem. To alleviate this problem, a well-known
strategy is to represent and explore the state-space symbolically
by using Binary Decision Diagrams. Based on this principle,
an efficient symbolic state-space traversal approach, depending
on the disjunctive partitioning technique, is presented and the
correctness of it is proved. Finally, the efficiency of the presented
approach is demonstrated on a set of benchmark examples.

I. INTRODUCTION

In Supervisory Control Theory (SCT) [1], [2], [3], given the
model of a discrete event system (DES) to be controlled,
the plant, and the intended behavior, the specification, a
supervisor can be automatically synthesized, guaranteeing
that the closed-loop system always fulfills the given spec-
ification. Here the aforementioned supervisor is said to be
minimally restrictive, meaning the plant is given the greatest
amount of freedom to generate events without violating the
specification.

A typical issue in SCT is how to efficiently synthesize
such minimally restrictive supervisor from a given modular
description of the plant and the specification. Since the
synthesis task involves a series of reachability computations,
traditional explicit state-space traversal algorithms are often
intractable due to the space-state explosion problem. To
alleviate this problem, a well-know approach is to utilize bi-
nary decision diagrams (BDDs) [4], [5], to represent system
models symbolically and compute supervisors monolithically
[6], [7]. However, the monolithic state-space which is the
prerequisite for the supervisor computation, might be too
large to be constructed due to the intermediate explosion
of BDD nodes, even though the final size is manageable. In
[8], a state-space traversal algorithm which depends on the
disjunctive partitioning technique is presented. An advantage
of this approach is that the searchable state-space can be
significantly increased, and thus industrially more interesting
applications can be handled. However, when the state-space
exploration involves a set of forbidden states, this traversal
approach does not always search the state-space exhaustively,
thus resulting in a supervisor which is not minimally restric-
tive.

The main contribution of this paper consists of three parts.
First, we extend the prior state-space traversal approach in
[8], to make it always perform the exhaustive exploration

when a set of forbidden states is involved in. Secondly, the
correctness of the modified traversal algorithm is formally
proved. Additionally, the approach is demonstrated on a set
of benchmark examples to compare the efficiency with the
other approach.

II. PRELIMINARIES

In this section, some preliminaries used throughout the rest
of the paper are provided and briefly explained.

A. Deterministic Finite Automata

Generally, a DES can be modeled either by textual languages
such as regular expressions or graphically by for instance
Petri nets or automata. Since we are only concerned about
the deterministic systems in this paper, deterministic finite
automata will be utilized as a framework to model discrete
event systems.

Definition II.1 (Deterministic Finite Automaton): A deter-
ministic finite automaton (DFA), is a five-tuple

(Q,Σ,δ ,qinit ,Qm)

where:

• Q is a finite set of states;
• Σ is a non-empty finite set of events;
• δ : Q × Σ → Q is a partial transition function which

expresses the state transitions;
• qinit ∈ Q is the initial state;
• Qm ⊆ Q is a set of marked or accepting states.

The state transitions of an automaton are defined by the
partial function δ : Q×Σ → Q, which takes a source-state
q ∈ Q and an event σ ∈ Σ and outputs a target-state q́ ∈ Q.
However, for computational purposes, it might be preferable
to reformulate the transitions of an automaton as relations.
The element 〈q,σ , q́〉 is said to be related if and only if
there is a transition from q to q́ by the event σ . Therefore,
the transition relation T of an automaton can be defined as
follows:

T = {〈q,σ , q́〉 if δ (q,σ) = q́}.
In addition, for the symbolic reachability computation, it is
not always necessary to include the event in the transition
relation T . Leaving σ out will reduce the number of variables
needed for the symbolic representation. In the rest of the
paper, σ will be written out when needed.

The composition of two or more automata is realized
by the full synchronous composition [9]. More specifically,



the full synchronous composition of two automata A 1 =
(Q1,Σ1,T 1,q1

init ,Q
1
m) and A2 = (Q2,Σ2,T 2,q2

init ,Q
2
m) results

in A1 ‖ A2 = (Q,Σ1 ∪ Σ2,T 1‖2,qinit ,Q1
m × Q2

m), where Q ⊆
Q1 × Q2 and qinit = (q1

init ,q
2
init). The composite transition

relation T 1‖2 is defined as:




〈(q1,q2),σ ,(q́1, q́2)〉 if 〈q1,σ , q́1〉 ∈ T 1 ∧〈q2,σ , q́2〉 ∈ T 2

〈(q1,q2),σ ,(q́1,q2)〉 if 〈q1,σ , q́1〉 ∈ T 1 ∧σ /∈ Σ2

〈(q1,q2),σ ,(q1, q́2)〉 if 〈q2,σ , q́2〉 ∈ T 2 ∧σ /∈ Σ1

undefined otherwise

B. Supervisory Control theory

As described in Section I, the goal of SCT is to automati-
cally synthesize a minimally restrictive supervisor S, which
guarantees the behavior of the plant P always fulfills the
given specification Sp. If the plant is given as a number
of sub-plants P1, . . . ,Pn, the plant P= P1 ‖ . . . ‖ Pn. Similarly,
Sp= Sp1 ‖ . . . ‖ Spn. Note that for each sub-specification Spi,
ΣSpi ⊆ ΣP and for the composed specification Sp, ΣSp ⊆ ΣP,
which means the specification (sub-specifications) can not
specify more than what the plant can achieve.

In SCT, events in the alphabet Σ can either be controllable
or uncontrollable. Thus the alphabet can be divided into
two disjoint subsets, the controllable event set Σc, and the
uncontrollable event set Σu. Furthermore, δu denotes the
transition function which is only associated with the uncon-
trollable events. The reason that an event is modeled as being
uncontrollable is that either it is inherently unpreventable
(”spontaneous”) or it has the high priority (”imperative”).

In addition, there are two properties [1], [2] that the
supervisor ought to have:

• Controllability: The supervisor S is never allowed to
disable any uncontrollable event that might be generated
by the plant P.

• Non-blocking: The supervisor S guarantees that at least
one marked state can be reached from every state in the
closed-loop system S ‖ P.

It can be shown that a minimally restrictive supervisor that
is both nonblocking and controllable can be constructed as
an automaton S such that QS = QP‖Sp, with some transitions
being removed [1], [2]. In [8], a slightly different approach to
the supervisory synthesis, where invalid states are excluded,
is proposed. As long as the considered system is in one of the
remaining states, controllability and nonblocking is guaran-
teed. A safe-state supervisor can be acquired by first building
the candidate S0 =P ‖ Sp. Then states are iteratively excluded
from QS0 until the remaining states are both controllable
and nonblocking. The remaining states are hereby called safe
states, denoted by QS. Algorithm 1 shows the algorithm for
computing these nonblocking and controllable safe states.
Taking a set of explicit forbidden states Qx as the input,
the algorithm first computes a set of co-reachable states Q ′,
without passing the forbidden states (restrictedBackward).
Then a set of uncontrollable states Q ′′ is computed from the
blocking state set QS0\Q′ (uncontrollableBackward). Those
uncontrollable states in Q′′ would reach the blocking states

in QS0\Q′ on the occurrence of the uncontrollable events
in Σu. The algorithm iteratively extends the forbidden state
set by adding those blocking and uncontrollable states until
there is no new forbidden state found. In practice, only Q S

of the supervisor needs representing. The transition function
δ S (T S) can be constructed online. More detailed explanation
can be found in [8].

Algorithm 1 Safe-state Supervisory Synthesis

1: input : Qx ⊆ QS0

2: let k := 0,X0 := Qx

3: repeat
4: k := k+ 1
5: Q′ := restrictedBackward(Qm,Xk−1)
6: Q′′ := uncontrollableBackward(QS0\Q′)
7: Xk := Xk−1 ∪Q′′
8: until Xk = Xk−1
9: let QS := QS0\Xk

10: return QS

C. Binary Decision Diagrams

Binary decision diagrams (BDDs), used for representing
Boolean functions, can be extended to symbolically represent
states, events and transitions of automata. In contrast to
explicit representations, which might be computationally
expensive in terms of time and memory, BDDs often generate
compact and operation-efficient representations.

A binary decision diagram is a directed acyclic graph
(DAG) consisting of two kinds of nodes: decision nodes and
terminal nodes. Given a set of Boolean variables V , a BDD is
a Boolean function f : 2V →{0,1} which can be recursively
expressed using Shannon’s decomposition [10]. Besides, a
variable v1 has a lower (higher) order than variable v2 if v1

is closer (further) to the root and is denoted by v 1 ≺ v2. The
variable ordering will impact the number of BDD nodes.
However, finding an optimal variable ordering of a BDD
is a NP-complete problem [11]. In this paper, a simple but
powerful heuristic based on Aloul’s Force algorithm [12] is
used to compute a suitable static variable ordering.

1) Symbolic Representation of Automata: The BDD data
structure can be extended to also represent models such as
automata. The key point is to make use of characteristic
functions.

Given a finite state set U as universe, for every S⊆U , the
characteristic function can be defined as follows:

χS(α) =
{1 α∈S

0 α /∈S
.

Set operations can be equivalently carried on correspond-
ing characteristic functions. For example, S1 ∪ S2, (S1,S2 ⊆
U) can be mapped equivalently to χS1 ∨χS2 , since S1∪S2 =
{α ∈U | α ∈ S1 ∨α ∈ S2}.

The elements of a finite set can be expressed as a Boolean
vector. So a set with n elements, requires a Boolean vector
of length �log2 n
. Just like the case of coding the states in
a set, binary encoding of the transition function (relation) δ



(T ) follows the same rule but with the difference that the
transition function (relation) distinguishes between source-
states and target states. Hence, we need two Boolean vectors
with different sets of Boolean variables to express the domain
of source-states and target-states respectively.

III. EFFICIENT REACHABILITY COMPUTATION

Not surprisingly, reachability (co-reachability) searches turn
out to be the bottle-neck of the SCT synthesis algorithm.
Adopting the symbolic representation using Binary Decision
Diagrams, we can partially solve this problem. However,
with more complicated DESs, the BDD representation of the
monolithic transition relation T Sp‖P might be extremely large
to be constructed due to the immense intermediate size of
BDD nodes. In this section, an efficient approach is proposed
to further alleviate the state-space explosion problem. The
approach is based on the partitioning technique and some
heuristics to perform the reachability search intelligently.

A. Partitioning of the Full Synchronous Composition

To tackle the complexity of the transition relation T Sp‖P, it
is natural to split it into a set of less complex relations with
a connection between them. Such methods are based on the
conjunctive or disjunctive partitioning techniques.

1) Conjunctive representation: Conjunctive partitioning,
introduced in [13], is an approach to efficiently represent
synchronous digital circuits where all transitions happen
simultaneously. In the context of DES, the conjunctive parti-
tioning of the full synchronous composition can be achieved
by adding self-loops to the automata for events outside their
alphabets. This leads to a situation where all automata have
equal alphabets. With this conjunctive partitioning defined
for each automaton, one can search the state-space without
constructing the full monolithic transition relation. To see
more detailed explanation, refer to [13].

2) Disjunctive representation: The conjunctive partition-
ing of the transition relation works well for formal verifica-
tion of synchronous digital circuits. However, because of the
asynchronous feature of the full synchronous composition
in SCT, sometimes the existential quantification operation
results in the size of BDD nodes even larger than the
monolithic transition relation. The disjunctive partitioning
technique, explained subsequently, on the other hand, is then
shown to be an appropriate partitioning technique for SCT.

Given a set of automata {A1, . . . ,An}, an automaton-based
disjunctive transition relation Ť i of an automaton Ai is the
set of source state-event-target state triplets:

Ť i = {〈(q1, . . . ,qn),σ ,(q́1, . . . , q́n)〉 :

σ ∈ Σi ∧〈(q1, . . . ,qn),σ ,(q́1, . . . , q́n)〉 ∈ T̃}
where T̃ denotes the composite transition relation of a
complete system A = A1 ‖ . . . ‖ An, where n is the number of
automata. From the above definition, we clearly have

T̃ =
∨

1≤i≤n

Ť i.

However, the problem is that we might have no access to the
global transition relation T̃ . In [14], an approach, based on
Definition III.1 and Claim III.1, is presented. The approach
constructs the disjunctive transition relation Ť i of Ai directly
without generating T̃ . The proof of Claim III.1 can be found
in [14].

Definition III.1 (Dependency Set): The dependency set of an
automaton Ai is defined as:

D(Ai) = {Aj | 1 ≤ j ≤ n∧ j �= i∧Σi ∩Σ j �= /0}

Claim III.1: The disjunctive transition relation Ť i is equal
to the set of all transitions 〈(q1, . . . ,qn),σ(q́1, . . . , q́n)〉 ∈ Q×
Σ×Q obeying the following three conditions:

• σ ∈ Σi

• ∀Aj ∈ D(Ai):
[σ ∈ Σ j ∧〈q j,σ , q́ j〉 ∈ T j]∨ [σ /∈ Σ j ∧ (q́ j = q j)]

• ∀Aj /∈ D(Ai) : q́ j = q j

Example III.1: Consider a simple manufacturing process
[2] that involves two machines, M1 and M2, and a buffer B
in between. When a part has been processed by M1, it is
placed in B, which has a capacity of one part only. The part
is subsequently processed by M2. Fig. 1 shows the models
of two machines as plants and the buffer as the specification.

The construction of the dependency set for each automaton
can be obtained through calculating which automaton shares
any event with it. For simplicity, the transition relations
and the states are all explicitly enumerated. Taking B as
an example, B shares the event u1 with the automaton M1

and l2 with M2. Therefore, D(B) = {M2,M1}. Besides, the
disjunctive transition relation Ť B can be constructed as:

{〈(W1,E, I2),(I1,F, I2)〉;〈(W1,E,W2),(I1,F,W2)〉;
{〈(I1,F, I2),(I1,E,W2)〉;〈(W1,F, I2),(W1,E,W2)〉}.

The dependency sets and the partial transition relations of
the other automata can be constructed similarly.

I1M1

W1

l1 u1

EB

F

u1 l2

I2M2

W2

l2 u2

Fig. 1. The automata corresponding to example III.1. Two events u1 and
u2 are modeled as the uncontrollable events.

B. Workset Strategy

Similar to the conjunctive partitioning technique, partitioning
the state-space disjunctively also suffers from the inter-
mediate BDD explosion problem. In order to substantially
reduce the intermediate size of BDD nodes, in [8], an
algorithm, referred to as the workset algorithm is presented to
explore the state-space structurally. The algorithm maintains
a set of active disjunctive transition relations Wk. These



active transition relations are selected one at a time for the
reachability search. If there is any new state found for the
currently selected transition relation, then all of its dependent
transition relations, D(Ť i) = {Ť j | Aj ∈ D(Ai)}, will be
added in Wk. However, this algorithm does not realize the
exhaustive search when a set of forbidden states is involved.
In this section, we start with a counter example, analyze
the problem and propose a way to modify the algorithm.
Besides, the correctness of the modified workset algorithm
is formally proved. Finally, a set of heuristic decisions is
presented. Those heuristics are used to keep the intermediate
size of BDD nodes as small as possible during the state-space
exploration.

Algorithm 2 Workset Restricted Forward Reachability

1: input qinit := (q1
init × . . .× qn

init),Qx ⊆ Q1 × . . .×Qn,
W0 :=the set of all disjunctive transition relations;

2: Q0 := {qinit},k := 0
3: repeat
4: H : Pick and remove Ť i ∈Wk

5: k := k+ 1
6: Qk := Qk−1 ∪{q́ | ∃q ∈ Qk−1, q́ /∈ Qx,〈q, q́〉 ∈ Ť i}
7: if Qk �= Qk−1 then
8: Wk :=Wk−1 ∪D(Ť i)
9: end if

10: until W = /0
11: return Qk

1) Restricted Reachability: The problem of the workset
algorithm in [8] lies in the restricted reachability algo-
rithm which is part of the synthesis procedure (restrict-
edBackward). For the normal reachability algorithm, such
as searching all reachable states from the initial state or
all coreachable states from the marked states, the workset
algorithm, which exhaustively explores the state-space works
fine. The formal proof can be found in [14]. The restricted
reachability algorithm which involves a set of forbidden
states, on the other hand, can not realize the exhaustive
exploration. In Example III.2, the counter example shows
that when performing the restricted forward reachability on
the disjunctive transition relations with forbidden states, the
workset algorithm does not produce the desired result. The
incorrectness of the restricted backward reachability search
can be proved symmetrically.

Example III.2: Consider Example III.1, a controllable
supervisor is required to be synthesized after verifying that
the closed-loop system is uncontrollable and having found
two uncontrollable states, (W1,F,W2) and (W1,F, I2). To
guarantee that all of the states in the controllable supervisor
are reachable from the initial state, the restricted forward
reachability search is required to exclude the unreachable
states. Suppose that the sequence of disjunctive transition
relations selected by the workset algorithm is {ŤM1 , ŤM2 ,
Ť B}, the original workset algorithm (as Algorithm 2 shows)
performs the reachability search as follows.

Step 1: From the initial state (I1,E, I2), three new states

(W1,E, I2), (I1,F, I2), (W1,F, I2) are found through Ť M1 .
Among these states, (W1,F, I2) is the forbidden state and
should be excluded. Due to the newly found states, the
dependent transition relations of M1 ought to be added into
the workset. In this case, the workset is unchanged since
the only dependent transition relation of M1 is Ť B, and it is
already in the workset.

Step 2: Next, the transition relation of M2, ŤM2 is used for
searching more states. One more state is found, (I1,E,W2).
Now the workset only has one transition relation Ť B left.

Step 3: The transition relation Ť B is selected and removed
from the workset for performing the reachability search. No
more new state is found and the workset is empty. Hence
the algorithm terminates and the number of reachable states
is 4. However the correct number of reachable states should
be 6, which can be acquired by removing forbidden states
and associated transitions from the composed automaton.

From the above steps, it can be observed that after finding
the new state (I1,E,W2), it is possible to find two more
new states on Ť M1 . Unfortunately, Ť M1 does not belong to
the dependent transition relations of M2 (no shared events).
Consequently, the algorithm does not add ŤM1 in the workset
for searching again.

Algorithm 3 Modified Restricted Forward Reachability

1: input qinit := (q1
init × . . .× qn

init),Qx ⊆ Q1 × . . .×Qn,
W0 :=the set of all disjunctive transition relations;

2: let Su :=Set of disjunctive transition relations containing
states in Qx as target states;

3: Q0 := {qinit},k := 0
4: repeat
5: H : Pick and remove Ť i ∈Wk

6: k := k+ 1
7: Qk := Qk−1 ∪{q́ | ∃q ∈ Qk−1, q́ /∈ Qx,〈q, q́〉 ∈ Ť i}
8: if Qk �= Qk−1 then
9: Wk :=Wk−1 ∪D(Ť i)

10: end if
11: until W = /0
12: repeat
13: k := k+ 1
14: for all j such that Ť j ∈ Su do
15: Qk := Qk−1 ∪{q́ | ∃q ∈ Qk−1, q́ /∈ Qx,〈q, q́〉 ∈ Ť j}
16: end for
17: until Qk = Qk−1
18: return Qk

2) Modified Workset Algorithm: The workset algorithm
needs to be modified to take into account the disjunctive tran-
sition relations which have not been searched exhaustively.
One way to fix the problem is to repeatedly use the current
reachable states to perform the reachability computation
on all of the disjunctive transition relations, until there is
no new state found. Although the algorithm modified in
this way is correct, the main problem is the performance
penalty. Here we present a different but simple modification
to the workset algorithm. As Algorithm 3 shows, instead of
repeatedly performing the reachability computation for all



the disjunctive transition relations, the modified algorithm
only considers and performs the reachability search on the
relations which contain the forbidden states as target states.
The proof of correctness of the presented algorithm is shown
as follows.

Theorem III.1: Given a set of deterministic finite automata
A1,A2, . . . ,An and a set of forbidden states Qx ⊆ Q1 × . . .×
Qn. Let QR be the set of states reachable from the initial
state qinit without passing any state in Qx. Let QAlg be the
result of Algorithm 3. Then QR = QAlg holds.

Proof: In order to prove QR = QAlg, we prove two set
inclusions QAlg ⊆ QR and QR ⊆ QAlg respectively.

QAlg ⊆ QR : The first set inclusion is straightforward.
Algorithm 3 takes the given initial state qinit as the argument
to perform the reachability searches on the set of transition
relations. During the execution, some target states will be
found by the initial state. Then those found states including
the initial state become the source states and continue to
search more target states. The algorithm terminates when
there is no target state found. Therefore, all the states found
by Algorithm 3 are reachable.

QR ⊆ QAlg : This set inclusion means that there exists no
state q́ ∈ QR\QAlg. In other words, there doesn’t exist such
a state q́ which is reachable but not found by Algorithm 3.
We prove it by contradiction. Here we separate Algorithm
3 into two parts: loop 1 (line number 4− 11) and loop 2
(line number 12− 18). Note that loop 2 is an exhaustive
reachability search of Su ⊆W0.

Case 1: If there exists qc ∈ QAlg, for some j, 〈qc, q́〉 ∈
Ť A j

and Ť A j ∈ Su. Since the reachability search of loop 2 is
exhaustive, q́ must be found, which leads to a contradiction.

Case 2: If there does not exist such qc ∈ QAlg that
〈qc, q́〉 ∈ Ť A j

and Ť A j ∈ Su, by assumption, q́ must not be
found in loop 1. Since q́ ∈ QR, there exists a string s ∈ Σ∗,
such that qinit → . . .qe → q́, where qe ∈ QAlg. Hereby, 〈qe, q́〉
should not be executed in loop 1. Here we claim that q e must
not be found in loop 1 but found in loop 2. That is because
for all partial transition relations which contain 〈qe, q́〉, they
are not in Su. If qe can be found in loop 1, q́ must be found
in loop 1 as well. Since now, qe can only be found in loop 2,
there exists qr ∈QAlg such that 〈qr,qe〉 ∈ Ť A j

where Ť A j ∈ Su

for some j. Similarly, we could prove that qr must be found
in loop 2 but not in loop 1. Recursively, it can be deduced
that qinit must be found in loop 2 but not in loop 1, which
leads to a contradiction, since qinit is in Q0.

Since we have QAlg ⊆ QR and QR ⊆ QAlg, then QR = QAlg

holds.
Correspondingly, the workset restricted backward reach-

ability algorithm can be modified in the same way1. The
correctness of the modified backward reachability algorithm
is proved as follows.

Theorem III.2: Given a set of deterministic finite automata
A1,A2, . . . ,An and a set forbidden states Qx ⊆ Q1 × . . .×Qn.
Let QCo be the set of states coreachable from the marked
states Qm without passing any state in Qx. Let QAlg be

1We forego the relevant details due to space limitations.

the resultant set of states found by the modified restricted
backward reachability algorithm. QCo = QAlg.

Proof: The proof of this theorem follows the same
strategy as the previous one. Actually, the only difference is
that when proving QCo ⊆ QAlg, we show that at least one of
the marked states has not been found in loop 1 but found in
loop 2, which leads to a contradiction.

3) Heuristic Decisions: In Algorithm 3, H denotes the
heuristics of choosing the next disjunctive transition relation
for the reachability search such that the intermediate size of
BDDs is computed as small as possible. How a transition Ť i

is chosen among those in the work set has a great influence
on the performance of the algorithm. Here we suggest a
series of simple heuristics that have been implemented and
seem to work well for real-world problems.

To find a good heuristic, a two-stage reference heuristic
was implemented, see Fig. 2. Using this method, a complex
selection procedure can be described as a combination of two
selection rules. In the current implementation, the first stage
H1 selects a subset W ′ ⊂W to be sent to H2 using one of
the following rules:

• MaxFollowers: Choose the automata with the largest
dependency set cardinality.

• MinFollowers: The opposite of above.
In case W ′ is not a singleton, the second stage H2 is used

to choose a single transition relation Ť i among W ′. In the
experiment, the following shown heuristics can significantly
reduce the intermediate size of BDD nodes:

• Reinforcement learning[15]: Choose the best transition
relation based on the previous activity record.

• Reinforcement learning + Tabu[16]: Utilize tabu search
for the selection policy in the reinforcement learning.

H1 H2
W W’

Fig. 2. The two stage selection heuristics for the Workset algorithm

IV. ALGORITHM EFFICIENCY

What we have discussed in the previous sections has been
implemented and integrated in the supervisory control tool
Supremica [17], [18] which uses JavaBDD [19] as the
BDD package. In this section, the implemented program is
applied to a set of relatively complicated examples including
The Transfer Line [2], The Extended Cat and Mouse [20],
Automated Guided Vehicles(AGV) [21], Parallel Manufac-
turing Example [22]. The comparison is made between the
time-efficiency and space-efficiency of the conjunctive and
disjunctive partitioning techniques.

Table I2 shows the result of applying two partitioning tech-
niques for the benchmark examples above. In the disjunctive
partitioning based synthesis, the modified reachability algo-
rithm together with a combination of two heuristics (H1:
MaxFollowers, H2: Reinforcement learning + Tabu) is used
to explore the state-space. The supervisors synthesized for

2The experiment was carried out on a standard Laptop (Core 2 Duo
processor, 2.4 GHz, 2GB RAM) running Ubuntu 10.04.



TABLE I

COMPARISON BETWEEN TWO PARTITIONING TECHNIQUES

Conjunctive Synthesis Disjunctive Synthesis

Model Reachable States Supervisor states BDD Peak Computation Time (s) BDD Peak Computation Time (s)

AGV 22929408 1148928 9890 6.50 2850 0.87
Parallel Man 5702550 5702550 12363 2.47 2334 1.57
Transfer line (1,3) 64 28 17 0.05 13 0.10
Transfer line (5,3) 1.07×109 8.49×104 2352 1.69 299 0.59
Transfer line (10,3) 1.15×1018 6.13×1013 31022 48.36 1257 3.89
Transfer line (15,3) 1.23×1027 4.42×1020 − − 3032 12.80
cat and mouse (1,1) 20 6 43 0.02 31 0.05
cat and mouse (1,5) 605 579 2343 0.08 273 0.09
cat and mouse (5,1) 1056 76 848 0.30 305 0.30
cat and mouse (5,5) 6.91×109 3.15×109 − − 15964 20.86

these examples are both nonblocking and controllable. It is
observed that both of the partitioning based algorithms can
handle AGV and Parallel Manufacturing Example, for which
the number of reachable states is up to 107.

However, with DESs getting larger (The Transfer Line)
and more complicated (The Extended Cat and Mouse), the
conjunctive partitioning based synthesis is not capable of
synthesizing nonblocking and controllable supervisors due
to the intermediate BDD node explosion (the ”BDD Peak”
column). The disjunctive partitioning based synthesis, on
the other hand, could successfully explore the state-space
and synthesize the supervisors within an acceptable time.
The comparison that how different heuristics are chosen
influences the reachability algorithm performance can be
found in [23].

V. CONCLUSIONS

In this paper, we have given a theoretical analysis of a
set of algorithms designed to perform efficient reachability
computation on composite discrete event systems. After
identifying the problem in the original restricted reachability
algorithm, a modified version is proposed and shown to be
correct. Furthermore, a set of heuristic decisions is presented
to guarantee the state space is explored in a structured way
and keep the intermediate size of BDD nodes as small as
possible.

Finally, we demonstrated the performance of the reachabil-
ity algorithms on a set of benchmark examples. We conclude
that compared with the conjunctive way of partitioning the
composite transition relation, the disjunctive partitioning is
more efficient for solving large supervisory problems.
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