
Chalmers Publication Library

Modeling sequential resource allocation systems using Extended Finite Automata

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2011 IEEE Conference on Automation Science and Engineering (CASE) (ISSN: 2161-8070)

Citation for the published paper:
Fei, Z. ; Miremadi, S. ; Åkesson, K. (2011) "Modeling sequential resource allocation systems
using Extended Finite Automata". 2011 IEEE Conference on Automation Science and
Engineering (CASE) pp. 444 - 449.

http://dx.doi.org/10.1109/CASE.2011.6042469

Downloaded from: http://publications.lib.chalmers.se/publication/147605

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/CASE.2011.6042469
http://publications.lib.chalmers.se/publication/147605


Modeling Sequential Resource Allocation Systems using Extended Finite Automata

Zhennan Fei, Sajed Miremadi and Knut Åkesson
Department of Signals and Systems, Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{zhennan, miremadi, knut}@chalmers.se

Abstract— Deadlock avoidance for resource allocation sys-
tems (RAS) is a well-established problem in the Discrete Event
System (DES) literature. This paper is mainly concerned with
modeling the class of Conjunctive / Disjunctive sequential
resource allocation systems (C/D RAS) as finite automata ex-
tended with variables. The proposed modeling approach allows
for modeling multiple instance execution, routing flexibility and
failure handling. With an appropriate model of the system,
a symbolic approach is then used to synthesize the optimal
supervisor, in the least restrictive sense. Furthermore, a set of
compact logical formulae can be extracted and attached to the
original model, which results in a modular and comprehensible
representation of the supervisor.

I. INTRODUCTION

Deadlock avoidance for (sequential) resource allocation sys-
tems (RAS) is a well-established problem in the Discrete
Event System (DES) literature. Over the years it has re-
ceived extensive attention and fruitful approaches have been
proposed to develop efficient deadlock avoidance policies.
Briefly speaking, this topic is concerned with the coordi-
nation of the resource allocation to a set of concurrently
executing processes, such that these processes can eventually
proceed to accomplishment without the need of external
intervention. In practice, this problem lies in many contem-
porary workflow management systems, such as Automated
Guided Vehicle systems, Urban Monorail Transport systems
and Internet-based Computing systems.

Conceptually, deadlock avoidance is one of three strategies
(prevention, detection and recovery, deadlock avoidance) for
dealing with the problem of the RAS deadlock [1]. Though
easily implemented, the prevention strategy might stifle the
operational flexibility of the system via constraining the
RAS structure. With respect to the detection and recovery
strategy, the deadlock can occur but the system is equipped
with a monitoring mechanism that can trigger an exception
handling procedure that resolves it. The deadlock avoidance
strategy, making use of the current allocation of the system
resources and the available knowledge about the structure
of process types, avoids the development of circular waiting
patterns from which deadlock is unavoidable. Meanwhile,
the strategy maintains the maximum operational flexibility
of the considered RAS.

In order to develop deadlock-free control policies for RAS,
one way is to utilize the standardized synthesis algorithm
provided by Supervisory Control Theory (SCT) [2], [3].
However, it is known that the establishment of such optimal
supervisor belongs to the class of NP-complete problems [4],
[5]. Hereby researches have been performed to alleviate this
problem. To our knowledge, the relevant researches can be
classified into two categories. The work in the first category

aims at the development of sub-optimal, but computationally
efficient deadlock avoidance policies, e.g., [6] and [7]. On
the other hand, the work in the other category takes a
more aggressive attitude and seeks to synthesize the optimal
supervisor directly by using compact and operation-efficient
data structures to represent the considered systems. In [8], the
authors propose an approach to synthesizing the minimally
restrictive non-blocking supervisor by developing a compact
representation of the information that is necessary for the
characterization of the optimal result. In [9], an approach
where the non-blocking, controllable and minimally restric-
tive supervisor is computed symbolically, is presented.

Nevertheless, from a modeling standpoint, to be able to
perform the automatic synthesis with less time and cost, it
is important to have an appropriate model of the system.
An appropriate model captures what is necessary for solv-
ing the particular problem while disregards the irrelevant
information. Typically, Deterministic Finite Automata (DFA)
or Petri nets are utilized as the modeling formalism. In
[10], an approach is presented to use DFA to model the
operation-based recipe as the plant. Besides, by specifying
alternative branches for a single operation and introducing
uncontrollable events, uncontrollable behavior can be mod-
eled. The disadvantage is that the DFA model does not
support multiple-instance execution. In [11], a method is
presented to avoid deadlocks in a manufacturing system.
Each product and resource is modeled by a labeled Petri net.
Each job is described by a sequence of operations where
each operation will be produced by an identified resource.
The advantage is that it is easy to implement and scales well
to large systems. The disadvantage is that it is not possible
to specify alternative resources or alternative operations.

In the context of the aforementioned research develop-
ments, motivated by the above remarks, particularly inspired
by [10], we present a new approach to modeling the resource
allocation systems. The proposed approach models the con-
sidered C/D RAS into a set of Extended Finite Automata,
introduced in [12], which are ordinary automata augmented
with variables, guard formulas and action functions.

II. PRELIMINARIES

In this section, some preliminaries used throughout the rest
of the paper are provided and briefly explained.

A. Conjunctive/Disjunctive Resource Allocation System

Definition II.1: A Conjunctive / Disjunctive resource alloca-
tion system is formally defined by a 4-tuple [1], [8]:

Φ = 〈R, C,P ,A〉



where
• R = {R1, . . . , Rm} is the set of the system resource

types;
• C : R → Z+− is the capacity function, characterizing

the number of identical units from each resource type
available in the system. Resources are assumed to be
reusable, i.e., each allocation cycle does not affect
their functional status or subsequent availability, and
therefore, C(Ri) ≡ Ci constitutes a system invariant
for each i;

• P = {Π1, . . . ,Πn} denotes the set of the system
process types supported by the considered system con-
figuration. Each process type Πj is a composite ele-
ment itself, in particular, Πj = 〈Sj ,Gj〉, where Sj =
{Ξj1, . . . ,Ξjlj} denotes a set of processing stages in-
volved in the definition of process type Πj ; Gj is an
acyclic diagraph with the node set equal to Sj . Every
path in Gj connecting a ”source” to a ”sink” node
corresponds to an execution sequence of Π j ;

• A :
⋃n

j=1 Sj → ∏m
i=1{0, . . . , Ci} is the resource

allocation function associating every processing stage
Ξjk with the resource allocation vector A(Ξjk) ≡ Ajk

required for its execution.
Furthermore, it is assumed that after a process instance

accomplishes a non-terminal stage Ξjk , it must allocate the
entire set of resources implied by the resource allocation
request, in order to advance to the next stage. As soon as
the requested resources are allocated, it releases all allocated
resources that are not needed any more. The considered re-
source allocation protocol further guarantees that no resource
type Ri ∈ R is over-allocated with respect to the capacity
Ci at any processing stage.

B. Extended Finite Automaton (EFA)

Definition II.2: An extended finite automaton E is a 4-tuple:

E = 〈Q,Σ,→, q0〉
where

• Q : L× V is the extended finite set of states, where L
is the set of locations and V = V 1 × . . . × V n is the
finite domain of the variables v = (v1, . . . , vn);

• Σ is a nonempty finite set of events (the alphabet);
• →⊆ L × Σ × G × A × L is the transition relation,

where G is a set of guard predicates on L × V and
A = {a | a: a function from V to V } is a collection of
action functions;

• q0 = (l0, v0) ∈ L × V is the initial state, where l0
is the initial location while v0 the initial values of the
variables.

For convenience, the symbol ξ is used to denote implicit
actions that do not update the value of variables. For instance,
if ai(vj) = ξ, it means that action ai does not update the
variable vj .

C. Supervisory Control Theory (SCT)

Supervisory Control Theory [2], [3] is a model-based
framework, given a system model to be controlled, the plant
P and the intended behavior, the specification Sp, a supervi-
sor S can be automatically synthesized, guaranteeing that the

behavior of P always fulfills Sp. Here the aforementioned
supervisor S is said to be minimally restrictive, meaning the
plant is given the greatest amount of freedom to generate
events without violating the specification. If the plant is
given as a number of sub-plants P1, . . . , Pn, the plant P can
be obtained by performing the full synchronous composition
[12] operation ‖ on P1, . . . , Pn. Similarly, Sp = Sp1 ‖ . . . ‖
Spm.

In SCT, events in the alphabet Σ can either be controllable
or uncontrollable. Thus the alphabet can be divided into
two disjoint subsets, the controllable event set Σc, and
the uncontrollable event set Σu. In addition, there are two
properties [2], [3] that the supervisor might or should have:

• Non-blocking: This is a progress property enforced by
the supervisor S, which guarantees that from any state,
there is a path to one of the marked states. Referring to
an EFA, the marked states are defined as Lm × V m ⊆
L×V , where Lm and V m denote the marked locations
and values respectively.

• Controllability: Let Σu be the set of uncontrollable
event set. The supervisor S is never allowed to disable
any uncontrollable event in Σu that might be generated
by the plant P.

Due to the NP-hardness of computing the optimal supervi-
sor for the considered RAS, most of the currently proposed
approaches aim at the development of suboptimal, but com-
putationally efficient supervisors. In our work, we aim at the
optimal solution. In [9], a framework is presented, where
the users model a system by EFAs and obtain the supervisor
modularly in form of EFAs. The only difference between the
original and final EFAs is that the guards are extended in the
latter model. The main advantage of this approach is that the
final supervisor becomes more comprehensible for the users.
In addition, the users will remain in the same model domain,
i.e., EFAs, both when they model the system and when they
obtain the supervisor. To be able to handle large systems,
all computations are performed symbolically using Binary
Decision Diagrams (BDDs) [13]. The procedure is carried
out in five main steps shown in Fig. 1.

Reduced
Guards

EFAs

BDDs

Guards
Supervisor

(BDD)

User

Fig. 1. Process overview of the symbolic supervisory synthesis on EFAs.

Initially, the EFAs are converted to BDDs. Based on the
BDDs, the supervisor is computed, which is used to extract
the guards. To make the guards more tractable for the users,
the guards will then be reduced by some heuristic techniques.
Finally, the reduced guards will be attached to the original
EFAs. This procedure can be repeated iteratively, making
it possible for the users to do further modifications on the
obtained supervisor and compute the new supervisor. The
detail of this approach is beyond the scope. In this paper, we



mainly focus on the modeling issue and discuss how to model
the dynamic behavior of the C/D RAS by using EFAs. For a
more detailed elaboration of the guard generation procedure
refer to [9].

III. THE PROPOSED MODELING APPROACH

To synthesize the non-blocking, controllable and minimally
restrictive supervisor for the considered C/D RAS, it is
necessary to have a well-defined model, which appropriately
captures the dynamic behavior of resource allocation. In
this section, the proposed modeling approach, which is the
main contribution to this paper, is presented. Taking input a
RAS configuration, the approach can automatically generate
a set of extended finite automata, each of which models the
resource allocation and deallocation of a process type.

For simplicity and understandability, we start with a simple
sequential RAS and first model it as a Petri net. For the
readers who might be unfamiliar with Petri net, [3] provides
a good introduction. From the Petri net model, the corre-
sponding extended finite automata are then derived. After
grasping the basic idea, extended finite automata are directly
used to model the remaining C/D RAS.

A. Model Single-Unit (SU) RAS

Example III.1: Consider a flexibly automated robotic cell
example, borrowed from [1]. As Fig. 2 shows, the RAS is
constituted by two process types Π1 and Π2, each of which
consists of three processing stages performing the linear
structure. The system resource set is R = {R1, R2, R3},
with the capacity Ci = 1, i = 1, 2, 3. Each processing stage
Ξij(i = 1, 2; j = 1, 2, 3) requests one single unit of one
resource type.

Π1: Ξ11

R1(1)

Ξ12

R2(1)

Ξ13

R3(1)

Π2: Ξ21

R3(1)

Ξ22

R2(1)

Ξ23

R1(1)

C1 = C2 = C3 = 1

Fig. 2. The considered SU RAS in Section III-A

As the intermediate stage, the considered RAS is first
modeled as a Petri net, shown in Fig. 3. For each resource
type Ri, i = 1, 2, 3, the corresponding resource place is
introduced. Initially the number of tokens of each resource
place is set equal to its capacity. Similarly, three processing
stage places for each process type are introduced to denote
the number of process instances executing at the processing
stages. For example, the stage places p11, p12, p13 map the
three processing stages Ξ11,Ξ12,Ξ13 of process type Π1.
Moreover, the transitions t11, t12, . . . , t23 depict the resource
allocation and deallocation process. The weight of arcs from
the resource places to transitions can be considered as the
number of requested resource units with respect to various
processing stages. From Fig. 3, it can be observed that
multiple process instances can be allowed to execute in the
Petri net model as long as the resource constraint is satisfied.

With the considered RAS having been modeled as the
Petri net, the extended finite automata can be correspondingly
derived in the following steps:

p11

p12

p13

p23

p22

p21

R1

R2

R3

t11

t12

t13

t14 t21

t22

t23

t24

Fig. 3. The Petri net model of the considered RAS in Section III-A

• For each process type Πi, i = 1, 2, create an extended
finite automaton. To support the multiple instance ex-
ecution as the Petri net does, each EFA is defined to
have only one location and all the transitions labeled
with events are added as self-loops. This location is
both initial and marked.

• For each resource type (place in the Petri net) R i, i =
1, 2, 3, declare one resource variable vRi denoting the
number of available units of Ri. The domain of vRi is
defined to be {0, . . . , Ci}, where both of the initial and
marked values of vRi are equal to Ci.

• For each processing stage except the last one of each
process type Πi, i = 1, 2, declare one instance variable
vjk, j = 1, 2 and k = 1, 2, denoting the number of
instances executing at the corresponding stage Ξjk . The
domain for each instance variable is defined to be from
0 to the maximal number of executing instances. In this
case, since each processing stage only acquires one unit
of one resource type, the maximal number of instances
at each processing stage is one. Therefore, the domain
of all instance variables is defined to be {0, 1} where 0
is the initial and marked value.

• Make use of the resource and instance variables defined
above to construct the guards and actions. Guards
are local formulae which determine whether a process
instance can advance to the next processing stage while
actions are used to update the available resource units
and instances for various processing stages. Finally, the
guards and actions are attached to the corresponding
transitions of the created EFAs.

P1 book R1

g: vR1 ≥ 1
a: vR1− = 1;

v11+ = 1

P1 book R2 release R1

g: vR2 ≥ 1&v11 ≥ 1
a: vR2− = 1;

vR1+ = 1;
v11− = 1;
v12+ = 1

P1 book R3 release R2

g: vR3 ≥ 1&v12 ≥ 1
a: vR2+ = 1;

v12− = 1

p1

Fig. 4. The EFA model of Π1 in Section III-A

Fig. 4 and Fig. 5 show the EFAs, which model the
process type Π1 and Π2 based on the above steps. Here two
points must be elaborated. From both the Petri net and the
EFA, it can be observed that every time a process instance
advances to the non-terminal processing stage, the requested
resource allocation and the unused resource deallocation
occur simultaneously, which confirms to the assumption
made in [1]. The purpose of the supervisor is to prevent the



P2 book R3

g: vR3 ≥ 1
a: vR3− = 1;

v21+ = 1

P2 book R2 release R3

g: vR2 ≥ 1&v21 ≥ 1
a: vR2− = 1;

vR3+ = 1;
v21− = 1;
v22+ = 1

P2 book R1 release R2

g: vR1 ≥ 1&v22 ≥ 1
a: vR2+ = 1;

v22− = 1

p2

Fig. 5. The EFA model of Π2 in Section III-A

system from running into blocking situations. Since there
is no restriction on these deallocation events as soon as
the next requested resources are allocated, we know that all
states that have resources waiting to be deallocated cannot be
blocking states. Besides, it is noticed that there is no instance
variable defined for the terminal processing stage. For the
process instance at the terminal processing stage where the
requested resources have been allocated, it is assumed that
these allocated resources are released immediately. Certainly,
this does not model the true behavior of the physical system,
but enough information is captured. Reasonably, a model
that can be used to find all blocking states need much less
information than a model that expresses all possible events
and variables, a important reduction of the system size is
made.

B. Model C/D RAS

In the previous section, the idea behind the modeling
approach is presented through modeling a simple example.
Generally speaking, the approach can be summarized by
three aspects: EFA creation, variable declaration and guard
/ action construction. Compared with the Single-Unit (SU)
RAS, e.g., the example shown above, modeling is more
complicated in the context of the C/D RAS. In this section,
after extending the previous example to the one that allows
for multiple resource acquisitions and alternative routings,
we model such C/D RAS as EFAs.

Example III.2: Fig. 6 shows a C/D RAS which is extended
from Example III-A. The considered C/D RAS contains two
process types Π1 and Π2. Same as before, the processing
stages of Π1 perform the linear structure, but the processing
stage Ξ12 now allows for alternative resource type acquisi-
tion, i.e., either R2 or R4. The process type Π2 is extended
to have two alternatives to support the routing flexibility.
The processing stage Ξ23 requires two types of resources
to perform the task. Besides, the capacities of the resource
types R1, R2, R3 are increased to 4 and a new resource type
R4 with the capacity 2 is added into the C/D RAS.

In order to model the process type Π1 by following the
previous instructions, the first issue we need to resolve is
how to handle the processing stage Ξ12. In particular, how
to define the instance variables for it. The processing stage
Ξ12 allows for the alternative resource type acquisition.
The decision that which resource type is allocated to an
instance can only be determined dynamically. Besides, when
an instance advances to the next stage Ξ13, we cannot know
which resource type should be deallocated. Therefore, two
instance variables v12R2 and v12R4 need to be declared,
which denote the number of instances having acquired R 2

Π1: Ξ11

R1(2)

Ξ12

R2(2) +R4(1)

Ξ13

R3(2)

Π2: Ξ21

R3(2)

Ξ22

R2(2)

Ξ23

R2(1) ∗R4(1)

Ξ24

R1(2)

C1 = C2 = C3 = 4, C4 = 2

Fig. 6. The considered C/D RAS in Section III-B

and R4 respectively. Based on the capacities of R2 and
R4 and the requested units of each type, the domains of
these two variables can be obtained, which are {0, . . . , 4}
and {0, . . . , 2}. With the instance variables defined, the
corresponding EFA can be constructed, as Fig. 7 shown.

P1 book R1

g: vR1 ≥ 2

a: v11+ = 1;
vR1− = 2

P1 book R2 release R1

g: vR2 ≥ 2&v11 ≥ 1
a: vR2− = 2;

vR1+ = 2;
v11− = 1; v11− = 1;

v12R2+ = 1

P1 book R3 release R2

g: vR3 ≥ 2&v12R2 ≥ 1
a: vR2+ = 2;

v12R2− = 1

P1 book R4 release R1

g: vR4 ≥ 1&v11 ≥ 1
a: vR4− = 1;

vR1+ = 2;

v12R4+ = 1

P1 book R3 release R4

g: vR3 ≥ 2&v12R4 ≥ 1
a: vR4+ = 1;

v12R4− = 1

p1

Fig. 7. The EFA model of Π1 in Section III-B

With the experience of modeling the behavior of the
alternative resource type acquisition, modeling the flexible
routings follows the same strategy. Actually, the resultant
EFA for Π2 is similar to the EFA for Π1, even though the
processing stages perform different structures. Note that for
the processing stage Ξ23, one variable is enough to model
the resource allocation and deallocation for this processing
stage. The upper bound of the variable is defined to be the
maximal number of instances executing at Ξ23 with both
resource type units.

C. Model the Abnormal Behavior

The aforementioned modeling methods presume that the
considered RAS is totally controllable. Specifically, (1) all
the resource allocation events taking place can be disabled by
the supervisor if necessary; (2) In a process type presenting
routing flexibility, process instances can be conducted by the
supervisor to choose different routing options to realize the
system flexibility. However, in many contemporary applica-
tions, it is necessary to have some form of error handling.
When an error occurs for an instance at some processing
stage, repair or rework must be performed. Our idea to
model such error handling is to introduce alternative branches
after the necessary processing stage. Being different from
modeling the routing flexibility, the events corresponding to
these uncontrollable branches are modeled as uncontrollable
events. The supervisor cannot influence which branch to



Π1: Ξ11

R1(1)

Ξ12

R2(1)

Ξ13

R4(1)

Ξ14

R3(1)

C1 = C2 = C3 = C4 = 1

Fig. 8. The process type Π1 with error handling

Π1: Ξ11

R1(1)

Ξ’12 Ξ12

R2(1)

Ξ’13 Ξ13

R4(1)

Ξ14

R3(1)

Fig. 9. The process type Π1 with imaginative stages

choose. Hereby, it must assure that there exists a non-
blocking path for all branches.

Example III.3: Consider the process type Π1 of the exam-
ple presented in Section III-A. At this time, we suppose that
an error may occur at the processing stage Ξ11 and needs
to be handled by one unit of R4. To distinguish from the
flexible routing options, these two uncontrollable branches
are described by dashed lines, as Fig. 8 shows.

As mentioned above, to model such alternatives, two
uncontrollable events are introduced. Note that these two
uncontrollable events have nothing to do with the resource
allocation and deallocation. They are merely used to indicate
the success and failure of an instance executing at Ξ11.
To assure that failed instances enter Ξ13 while successfully
executed ones enter Ξ12, two more EFA variables need
to be declared. These two variables can be thought of as
the variables of two imaginative stages, as Fig. 9 shows.
An instance at either of these two imaginative stages still
possesses the resources allocated to Ξ11. Once the resource
constraint is satisfied, it enters the next stage while the
unused resources in Ξ11 are deallocated.

Fig. 10 shows the resultant EFA which models the process
type Π1 with error handling. Two uncontrollable events
!normal and !abnormal indicate the success and failure
of the instances executing in Ξ11. Two variables iv12 and
iv13 denote the number of instances which need enter Ξ12

and Ξ13 respectively. Note that it is only when an instance
enters the next stage Ξ12 or Ξ13, the resource (1 unit of R1)
is deallocated.

IV. CASE STUDIES

In this section, the modeling approach discussed in the
previous section is applied to several examples. After the
considered systems are modeled, it is ready to synthesize
the optimal supervisor. To give an overview of how the
extracted guards look like, as a first example, we consider
the application of this symbolic approach to those two EFAs,
shown in Fig. 4 and 5 . As a result, two guards v22 ==

0&v23 == 0 for P1 book R1 and v11 == 0&v12 == 0 for P2 book R3

are extracted. The first guard puts an additional restriction
on the process type Π1 when the resource R1 is going to be

p1

P1 book R1

g: vR1 ≥ 1
a: vR1− = 1;

v11+ = 1
!abnormal

iv13+ = 1

!normal

g: v11 ≥ 1 g: v11 ≥ 1

a: v11− = 1; a: v11− = 1;
iv12+ = 1

P1 book R2 release R1

g: vR2 ≥ 2&iv12 ≥ 1
a: vR2− = 1;

v12+ = 1;
iv12− = 1

P1 book R3 release R2

g: vR3 ≥ 1&v12 ≥ 1
a: vR2+ = 1;

v12− = 1

P1 book R4 release R1

g: vR4 ≥ 1&iv13 ≥ 1
a: vR4− = 1;

vR1+ = 1;vR1+ = 1;
v13+ = 1
iv13− = 1

P1 book R3 release R4

g: vR3 ≥ 1&v13 ≥ 1
a: vR4+ = 1;

v13− = 1

Fig. 10. The EFA modeling error handling for Π1

allocated. Particularly, R1 can be allocated only if (1) There
is an available unit of R1 (the original guard); (2) There is
no instance of Π2 executing at processing stages Ξ22 and
Ξ23 (the generated guard). The second guard for Π 2 can be
interpreted similarly. These two guards are then attached to
the EFA model i.e., the transitions labeled with the events
(P1 book R1 and P2 book R3). At this moment, the EFA model
can be viewed as the supervisor, which prevents the system
from reaching the deadlock states.

A. Benchmark Examples

Consider a flexible manufacturing system configuration,
shown in Fig. 11, introduced in [14]. The D/C RAS is
constituted of three process types and seven resource types
R = {R1, . . . , R7} with the corresponding capacities and
resource request shown in Fig. 11.

The model of the RAS is constituted by three EFAs.
Since there is no processing stage which requests alternative
resource types, each non-terminal processing stage needs
one instance variable. Besides, seven resource variables are
declared, each of which corresponds to one resource type.
The construction of guards and actions is similar to the
examples discussed in Section III-A and III-B. Then we
feed the model into the symbolic approach [9]. As a result,
the optimal supervisor contains 8761 states after 3019 states
are detected as blocking states and excluded from 11880
reachable states and the computation time is less than 2
seconds1. Besides, 10 guards with the average term size 79,
are extracted. It should be mentioned that here the result
computed from the EFA model is different from that in [8].
Recall that in previous section, the assumption is made that
for the terminal processing stages, the resource allocation and
deallocation occur simultaneously. Hence, there is no need
to declare unnecessary variables for the terminal stages. We
consider it as a reduction of the system size. Actually, if we
define the instance variables for the terminal stages and add
the extra transitions into the model, the number of states for
the supervisor would be the same as [8].

Next, we extend the aforementioned flexible manufactur-
ing system configuration example to make it more compli-
cated, shown in Fig. 12. In particular, two more resource
types R8 and R9 are included and the capacities for other
resource types are increased. Among those processing stages,

1The experiment was carried out on a standard desktop (Core 2 Quad
CPU, 2.66 GHz, 4GB RAM) running Windows 7



Π1: Ξ11

R1

Ξ12

R6

Ξ13

R2

Ξ14

R7

Ξ15

R3

Ξ16

R4

Ξ17

R2

Ξ18

R5

Π2: Ξ21

R2

Ξ22

R5

Ξ23

R2

Π3: Ξ31

R3

Ξ32

R7

Ξ33

R2

Ξ34

R6

Ξ35

R1

C1 = C2 = C3 = 1 C4 = C5 = C6 = C7 = 2

Fig. 11. The flexible manufacturing system configuration in [14]

we suppose that errors might occur at Ξ22 or Ξ41 and thus
the repair needs to be performed.

This extended C/D RAS is managed to be modeled as
five EFAs where 31 variables are declared. As a result, the
number of reachable states is more than 2.5 million. The
supervisor containing 679734 states is obtained within 20
seconds. Around 1.9 million states are identified as either
uncontrollable or blocking states. By using the guard gen-
eration procedure of the symbolic approach, only 6 guards
with the average term size 542 are extracted to prevent the
system from reaching 1.9 million problematic states.

Π1: Ξ11

R1(1)

Ξ12

R4(2)

Ξ13

R7(1)

Ξ14

R2(1)

Ξ15

R7(1)

Ξ16

R3(1)

Π2: Ξ21

R1(1)

Ξ22

R4(2)

Ξ23

R5(2)

Ξ24

R6(2)

Ξ25

R3(1)

Π3: Ξ31

R1(1)

Ξ32

R5(1) +R7(2)

Ξ33

R2(1)

Π4: Ξ41

R2(2)

Ξ42

R1(1)

Ξ43 R3(1) ∗R7(1)

Ξ44

R6(2)

Ξ45

R2(1)

Π5: Ξ51

R8(1)

Ξ52

R9(1)

Ξ53

R2(1)

C1 = 1, C2 = 4, C3 = C5 = 2,
C4 = C6 = C7 = C8 = C9 = 2

Fig. 12. The extended D/C-RAS of Fig. 11

V. CONCLUSIONS

In this paper, we present an approach to modeling C/D RAS,
one of the RAS classes investigated in the literature. The
proposed approach models the C/D RAS as a set of extended
finite automata, which allows for multiple instance execution,
routing flexibility and error handling. With the model being
well-defined, a symbolic supervisory synthesis approach is
utilized to compute the optimal supervisor. Furthermore, a

set of compact guards is extracted and attached to the model,
which results in a modular and comprehensive supervisor.

As future work, the presented approach can be refined and
improved from the following two aspects:

• The algorithm needs to be implemented and integrated
in the supervisory control tool Supremica [15].

• Investigate alternative compact variable encodings for
resource types and processing stages. It is believed
that the size of generated guards from the symbolic
supervisory synthesis is more or less determined by the
number of declared EFA variables. If less number of
variables is declared, guards with the smaller size might
be obtained.

VI. ACKNOWLEDGEMENT

The authors gratefully acknowledge Spyros Reveliotis and
Ahmed Nazeem at Georgia Tech for their valuable comments
on earlier drafts of this paper. This work was carried out
within the Wingquist Laboratory VINN Excellence Centre,
Chalmers University of Technology, Göeborg, Sweden.

REFERENCES

[1] S. A. Reveliotis, Real-Time Management of Resource Allocation
Systems: A Discrete Event Systems Approach (International Series in
Operations Research & Management Science). Springer, December
2004.

[2] P. J. G. Ramadge and W. M. Wonham, “The Control of Discrete Event
Systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[4] E. M. Gold, “Deadlock prediction: Easy and difficult cases,” SIAM
Journal on Computing, vol. 7, no. 3, pp. 320–336, 1978.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness (Series of Books in the
Mathematical Sciences), 1979.

[6] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential
resource allocation systems with multiple resource acquisitions and
flexible routings,” IEEE Transactions on Automatic Control, vol. 46,
pp. 1572–1583, 2000.

[7] ——, “Liveness-enforcing supervision for resource allocation systems
with uncontrollable behavior and forbidden states,” IEEE Transactions
on Automatic Control, vol. 18, pp. 234–240, 2002.

[8] A. Nazeem and S. Reveliotis, “A practical approach to the design
of maximally permissive liveness-enforcing supervisors for complex
resource allocation systems,” in Automation Science and Engineering
(CASE), 2010, pp. 451 –458.

[9] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based Ap-
proach for Modeling Plant and Supervisor by Extended Finite Au-
tomata,” Accepted for IEEE Transactions on Control Systems Tech-
nology, 2011.

[10] K. Åkesson, M. Fabian, and A. Vahidi, “Coordination of batches in
flexible production,” in American Control Conference, vol. 4, 2000,
pp. 2735 –2739.

[11] Z. Banaszak and B. Krogh, “Deadlock avoidance in flexible manu-
facturing systems with concurrently competing process flows,” IEEE
Transactions on Robotics and Automation, vol. 6, no. 6, pp. 724 –734,
1990.

[12] M. Sköldstam, K. Åkesson, and M. Fabian, “Modelling of discrete
event systems using finite automata with variables,” in Proceedings of
the 46th IEEE Conference on Decision and Control. IEEE, 2007, pp.
3387–3392.

[13] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[14] J. Ezpeleta, J. Colom, and J. Martinez, “A petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans-
actions on Robotics and Automation, vol. 11, no. 2, pp. 173 –184,
1995.

[15] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—
an integrated environment for verification, synthesis and simulation
of discrete event systems,” in Proceedings of the 8th international
Workshop on Discrete Event Systems, 2006, pp. 384–385.


