
Chalmers Publication Library

Nonblocking and Safe Control of Discrete-Event Systems Modeled as Extended
Finite Automata

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Automation Science and Engineering (ISSN: 1545-5955)

Citation for the published paper:
Ouedraogo, L. ; Kumar, R. ; Malik, R. (2011) "Nonblocking and Safe Control of Discrete-
Event Systems Modeled as Extended Finite Automata". IEEE Transactions on Automation
Science and Engineering, vol. 8(3),  pp. 1545-5955.

Downloaded from: http://publications.lib.chalmers.se/publication/147603

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/147603


1

Nonblocking and Safe Control of Discrete Event
Systems modeled as Extended Finite Automata

Lucien Ouedraogo, Member, IEEE Ratnesh Kumar, Fellow, IEEE Robi Malik and Knut Åkesson

Abstract—Extended Finite Automata (EFA), i.e., finite au-
tomata extended with variables, are a suitable modeling frame-
work for discrete event systems owing to their compactness,
resulting from the use of variables. In this paper, we propose
a symbolic algorithm that efficiently synthesizes a supervisor for
a plant modeled by an EFA and a specification defined by another
EFA. The principle of the algorithm is to iteratively strengthen
the guards of the plant EFA so that forbidden or blocking states
become unreachable in the controlled plant. As a consequence
of the algorithm, the controlled behavior is modeled by an EFA
having the same structure as the plant EFA, having stronger
guards and is shown to be maximally permissive. We illustrate
our algorithm via a simple manufacturing example.

Note to Practitioners: A compact way of modeling event-
driven systems is to use state-variables, instead of an explicit
enumeration of the states. This paper uses such a model for
representing the system to be controlled as well as its desired
behaviors, and develops a symbolic approach, that avoids
explicit enumeration of the state-space, for control synthesis.
The contribution is the symbolic computation of a safe (avoids
reaching forbidden states) and nonblocking (avoids getting
blocked at non final states) controller that is also maximal
(permits all safe and nonblocking behaviors). The results are
illustrated via a simple manufacturing system.

Index Terms—Discrete event systems, Extended finite au-
tomata, Supervisory control.

I. INTRODUCTION

IT is well known that automata-based approaches to
discrete-event control suffer from state-space explosion.

Prior works addressing this issue of complexity includes [1],
where a controller is synthesized based on progressively finer
abstractions of the plant. Another approach is to employ binary
decision diagram (BDD) representation [2], [3].

The extended finite automata (EFA) framework, obtained
by augmenting a standard finite state automaton (FSA) with
variables and predicates over them [4]–[8], provides a compact
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representation of a DES. In this paper, we propose a symbolic
approach for synthesizing the most permissive nonblocking
and safe supervisor for DES modeled by EFA with data
variables of finite domains. Our approach resolves some limi-
tations of the existing approaches and is efficient in exploiting
the model structure due to the symbolic representation and
symbolic computations (ie., over sets of states, rather states).
Moreover, our algorithm leads to more efficient representa-
tion of controllers (symbolic representation instead of state-
transitions representation) and the symbolic computation of
guards and predicates, that are boolean operations, can be
efficiently implemented by BDDs [9].

Supervisory control methods that use the EFA framework
are proposed in [7], [8], [10]–[15]. The method of [7] does not
preserve the structure of the plant EFA in control computation,
and does not consider blocking issues or nondeterminism. [8],
[10], [15] propose methods for representing a supervisor syn-
thesized in the FSA modeling framework by EFA. In [11], the
supervisory control problem for EFA is solved by transforming
the EFA into ordinary FSA, and [12] proposes a method
for converting EFA into the model of the Symbolic Model
Verification tool NuSMV, from which supervisory control
properties can be verified. The contributions of [8], [10]–
[12], [15] are therefore different from ours, as instead of
using a FSA-based synthesis algorithm, we propose an EFA-
based supervisor synthesis algorithm that exploits the EFA
model compactness and leads to a reduced complexity as
the synthesis is carried out over guards, ie., over sets of
states, rather than over states. The control method of [13],
[14] is also based on abstraction and hence not necessarily
maximally permissive, and also doesn’t consider blocking
issues, while it requires the exploration of the entire state space
of the plant EFA to determine states co-reachability; which our
method avoids. [16] uses a similar approach for computing a
supervisor for infinite state systems.

Our algorithm synthesizes a supervisor by associating new
stronger guard conditions to the transitions of the plant EFA.
The work reported here is based on the conference version
[17], extended to include the complete proofs and more
detailed examples and discussions.

The rest of the paper is organized as follows. In Section II,
we give formal definitions related to the EFA model. In
Section III, we state formally the supervisory control problem
for EFA, and in Section IV, we present our synthesis algorithm
and demonstrate its correctness and maximal permissiveness.
In Section V, we give an example of our synthesis method,
and Section VI contains our concluding remarks.
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II. PRELIMINARIES

A. Predicates and notations

FSAs are extended with data variables to obtain EFAs.
Let D = D1 × . . . × Di × . . . × Dp be the domain of
definition of p one-dimensional data variables. We use d to
denote a p-dimensional variable (vector) of domain D, i.e. d =
[d(1), . . . , d(i), . . . , d(p)], where d(i) is the ith data variable
of domain Di. We use predicates for describing various sets
of elements of D. Let G(d) denote the collection of predicates
defined using the data variable vector d, i.e., if g ∈ G(d), then
it is a boolean valued map g : D → {false, true}. g ∈ G(d)
can also be seen as a subset of D, i.e. g ⊆ D is the set of
values d ∈ D for which g(d) = true. We use the notations
T for true and F for false. Given a predicate g ∈ G(d), its
negation is denoted by ¬g. Given an indexing set I such that
gi ∈ G(d) for each i ∈ I, the conjunction and disjunction over
I are denoted by

∧
i∈I gi and

∨
i∈I gi respectively (see [18] for

more detailed discussions and results on predicates).

B. Extended Finite Automaton

Extended Finite Automata (EFA) constitute a modeling
framework which allows symbolic description of discrete event
systems in the form of automata. An EFA can be seen as
a finite state automaton (FSA) incorporating data variables
defined over finite or infinite domains. The transitions of an
EFA are augmented by guard formulas, which are predicates
defined over the data variables, and data update functions,
which are actions on the data variables. An EFA is formally
defined as follows.

Definition 1 (Extended Finite Automaton)
An Extended Finite Automaton is a 7-tuple
A = (L,D,Σ, E, L0, D0, Lm) where: L is a finite set
of locations; D = D1 × · · · × Dp is a domain of p one-
dimensional data variables; Σ is a finite set of events; L0 ⊆ L
is a set of initial locations; D0 = D1

0 × ... × Dp
0 is a set

of initial data values; Lm ⊆ L is a set of marked (final)
locations; and E is a finite set of edges (or transitions), each
edge e ∈ E being a 5-tuple e = (oe, te, σe, ge, fe) where:

• oe ∈ L is the origin location of e;
• te ∈ L is the terminal location of e;
• σe ∈ Σ is the transition label;
• ge ⊆ D is the enabling guard of e;
• fe : D → D is the data update function. 2

A transition e = (oe, te, σe, ge, fe) is enabled if the current
location is oe and guard condition ge is evaluated to true.
An enabled transition can be executed to update the current
location as well as current data values. When the transition e is
executed, location te is reached and the variables are updated
by applying fe to them.

Given two guards g and h, we say that g is a subguard of
h, denoted g ≼ h, if g is stronger than h, namely, g ∧ h = g.
Given two EFAs A and A′, we say that A′ is a subautomaton
of A, denoted A′ ≼ A, if A′ is obtained from A by removing
some locations of A as well as the transitions linked to
these locations and/or removing some transitions of A and/or
replacing the guards of some edges of A by subguards. When

L1,2 L0,3 L1,5 L0,6 L1,8 L0,9(b)
e1 e2 e1 e2 e1 e2

L0,0

L1D  ={0}0
e2 ; x<9 ; x:=x+1

L0
e1 ; x<8 ; x:=x+2

(a)

Figure 1. An EFA (top) and its equivalent FSA (bottom)

a transition e is executed resulting in “post-condition” h(d) for
the data, then the following “pre-condition” must be satisfied
by the data prior to the execution of e: ge(d) ∧ h(fe(d)).

Figure 1(a) illustrates an example of an EFA with two
locations L0 and L1 and two edges, where the labels of edges
are in the form σe; ge; fe. For this example, the data variable
vector d consists of a single variable x and we consider that
D = D1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} (domain of x). L0 is the
only initial (indicated on figure by an arrow) and marked
(indicated on figure by double circles) location, and the initial
value of the variable x is 0, i.e., D0 = {0}. The transition
from location L0 to location L1 can be executed only if the
guard x < 8 is evaluated to true, and after this transition
is executed, the value of x is updated so that its new value
is equal to its current value plus two: x := x + 2. Note
that if h(x) = [x > 6] holds after the execution of e1,
then it must be the case that prior to the execution of e1,
[x < 8] ∧ [(x + 2) > 6] holds, where [x < 8] = ge1(x) and
[(x+ 2) > 6] = h(fe1(x)) = fe1(x) > 6.

The state of an EFA consists of its current location (as
in an FSA) and its current value of data-variables, and so
the set of states of A is given by L × D. Given an EFA
A with data variables of finite domains, we can construct
an equivalent FSA by representing all its reachable states in
L×D. Figure 1(b) represents the equivalent FSA of the EFA
of Figure 1(a). The location and the value of x are indicated
in every states.

In the sequel, Σ∗ denotes the set of all finite strings of
the form σ1σ2...σn of events from Σ, including the empty
string ϵ. Let q0 denote an initial state (l0, d0) ∈ L0 × D0,
QA the set of reachable states of A and QA

m ⊆ QA the set of
reachable marked states of A (states in Lm ×D). For a state
q = (l, d) ∈ QA, q σ→ q′ denotes that there exists an edge
e = (l, l′, σ, ge, fe) ∈ E such that ge(d) = T , fe(d) = d′ and
q′ = (l′, d′); and q

σ→ denotes that there exists at least one
state q′ = (l′, d′) such that q σ→ q′. This notation is extended to
every s ∈ Σ∗ as follows: q ϵ→ q for every q ∈ QA and q

sσ→ q′

if q s→ q̄ and q̄
σ→ q′ for some q̄ ∈ QA. A run of A is a finite

sequence r = (l0, d0)
σ1→ (l1, d1)

σ2→ . . .
σn→ (ln, dn) where l0 ∈

L0, d0 ∈ D0, li ∈ L, di ∈ D and σi ∈ Σ, for i = 1, 2, ..., n.
r is accepted by A if in every state (li, di), gei(di) = T and
di+1 = fei(di), where ei = (li−1, li, σi, gei , fei) ∈ E. A state
q = (l, d) of A is said to be reachable if there exists a sequence
s and an initial state q0 such that q0

s→ q. Given a location
l ∈ L, ΣA(l) denotes the set of events of the outgoing edges
of location l of A. On the other hand, ΣA(q) denotes the set of
events enabled at state q ∈ QA, i.e. ΣA(q) = {σ ∈ Σ|q σ→}. In
the same way, QA(q) denotes the set of states reached from
q through events in ΣA(q), i.e. QA(q) = {q′ ∈ QA,∃σ ∈
ΣA(q)|q σ→ q′}. In particular, for a σ ∈ ΣA(q), QA(q, σ)
denotes the set of states reached after the execution of σ from
q, i.e. QA(q, σ) = {q′ ∈ QA|q σ→ q′}.
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C. Parallel composition of EFA

In general a system can consist of multiple subsystems, each
modeled as an EFA. Then their parallel composition, as de-
fined below, can be used to obtain the EFA model of the entire
system. For the parallel composition of two EFA to exist, they
must have the same initial data values for all shared variables.
For an update function f and two domains D1 = D′

1 × Ds

and D2 = Ds ×D′
2, where D′

1, Ds and D′
2 are subdomains

(Ds is shared by D1 and D2), let D1⊗D2 = D′
1×Ds×D′

2.
For an update function fi : Di → Di (i = 1, 2), let fi|Ds

denote the projection of fi on Ds. In the following we define
the parallel composition of two EFA, in which the function
composition f1 ⊕ f2 : D1 ⊗ D2 → D1 ⊗ D2 is defined for
the functions f1 : D1 → D1 and f2 : D2 → D2 that map
the shared data variables in Ds identically as either of the
functions map, whereas it maps the non-shared data variables
according to the functions whose domain they belong. I.e.,
f1 ⊕ f2 = f1 × f2|D′

2
= f1|D′

1
× f2.

Definition 2 (Parallel composition of EFA)
Let Ak = (Lk, Dk,Σk, Ek, L

k
0 , D

k
0 , L

k
m), k = 1, 2 be two

EFA. The parallel composition of A1 and A2 is A1 ∥ A2 =
(L1×L2, D1⊗D2,Σ1∪Σ2, E, L1

0×L2
0, D

1
0⊗D2

0, L
1
m×L2

m)
where the set of edges E is defined as follows:

• ∀σ ∈ Σ1 ∩ Σ2, ∀(l1, l′1, σ, g1, f1) ∈ E1,
∀(l2, l′2, σ, g2, f2) ∈ E2, we have ((l1, l2), (l

′
1, l

′
2), σ, g1 ∧

g2 ∧ [f1|Ds = f2|Ds ], f1 ⊕ f2) ∈ E.
• ∀σ ∈ Σ1 \Σ2, ∀(l1, l′1, σ, g1, f1) ∈ E1 we have ∀l2 ∈ L2,

((l1, l2), (l
′
1, l2), σ, g1, f1) ∈ E.

• ∀σ ∈ Σ2 \Σ1, ∀(l2, l′2, σ, g2, f2) ∈ E2 we have ∀l1 ∈ L1,
((l1, l2), (l1, l

′
2, σ, g2, f2)) ∈ E. 2

Following Definition 2, an event can occur in the synchro-
nized EFA if and only if it can occur in all EFA that share
the event and all occurrences of the event involved in this
synchronization update the data variables consistently.

III. SUPERVISORY CONTROL OF EFA

In general, the plant is given by an EFA P =
(LP , D,Σ, EP , LP

0 , D0, L
P
m) and the specification by another

EFA R = (LR, D,Σ, ER, LR
0 , D0, L

R
m). By refining P with

respect to R we can obtain a refined plant model G with the
same behaviors as P such that the executions not allowed in
R end up in certain forbidden locations in G. The refined
EFA G = (L,D,Σ, E, L0, D0, Lm) is constructed as follows:
L0 = LP

0 ×LR
0 ; L = LP×(LR∪{ϕ}) (ϕ = forbidden location);

Lm = LP
m × LR

m; and E constructed as follows:
• ∀e ∈ EP ,∀l ∈ LR∪{ϕ},∀e′ ∈ ER s.t. (oe′ = l)∧(σe′ =

σe) : ((oe, l), (te, te′), σe, ge ∧ ge′ ∧ [fe = fe′ ], fe) ∈ E,
((oe, l), (te, ϕ), σe, ge∧¬[

∨
ē∈ER:oē=oe′ ,σē=σe′

gē∧ [fē =
fe]], fe) ∈ E; and

• ∀e ∈ EP ,∀l ∈ LR∪{ϕ},@e′ ∈ ER s.t. (oe′ = l)∧(σe′ =
σe) : ((oe, l), (te, ϕ), σe, ge, fe) ∈ E.

Figure 2 illustrates an example of refinement, where only
locations reachable from an initial location are represented,
and forbidden locations are shaded.

From now on we assume without loss of generality that the
plant model is given as EFA G and the specification is given as

L1L0
e2 ; x<9 ; x:=x+1

D  ={0}0

e1 ; x<8 ; x:=x+2
P R1R0

D  ={0}0
e1 ; x<8 ; x:=x+2

e2 ; x<7 ; x:=x+1R

D  ={0}0

L1,R1
e2 ; 7<x<9 ; x:=x+1

e2 ; x<9 ; x:=x+1
L0, φ L1, φL0,R0G

e1 ; x<8 ; x:=x+2

e2 ; x<7 ; x:=x+1

e1 ; x<8 ; x:=x+2

Figure 2. Refinement of P w.r.t. R (top) yields G (bottom)

a set of forbidden locations Lf ⊆ L, and Ls = L−Lf is the
set of safe locations of G. Recall that QG denotes the set of
reachable states of G. A state q = (l, d) ∈ QG is a forbidden
state iff l ∈ Lf , otherwise q is a safe state. G is such that it
is impossible to reach a safe state from a forbidden state, and
no forbidden location is marked. In the sequel, Gs denotes the
EFA obtained from G by assigning F to the guard of every
edge e for which te ∈ Lf , i.e. the terminal location of e is
a forbidden location. Following the way Gs is constructed, it
holds that Gs ≼ G. We call Gs the safe subautomaton of G.

Let Σc ⊆ Σ and Σu = Σ − Σc be the set of controllable
and uncontrollable events of G respectively. The objective
of control is to satisfy nonblockingness and safety while
satisfying controllability requirement.

Definition 3 (Nonblocking, Safety, Controllability)
Let G be an EFA, Lf its set of forbidden locations, and Gs

its safe subautomaton. A state q ∈ QG is: (a) nonblocking
if there exists a sequence s and a state q′ ∈ QG

m such that
q

s→ q′; (b) safe if q ∈ QGs ; and (c) (G,Lf ,Σu)-controllable
(or simply controllable when clear from context) if q is safe
and ∀σ ∈ ΣG(q) ∩ Σu, we have QG(q, σ) ⊆ QGs . The EFA
Gs is respectively nonblocking, safe and controllable if every
reachable state of Gs is respectively nonblocking, safe and
controllable. 2

A supervisor is a function that assigns a stronger guard to
each controllable edge.

Definition 4 (Supervisor)
Given a plant modeled by an EFA
G = (L,D,Σ, E, L0, D0, Lm), a supervisor S for G is
a function S : E → G(d) which maps each plant-edge
e = (oe, te, σe, ge, fe) to a guard such that S(e) ≼ ge if
σe ∈ Σc, and S(e) = ge if σe ∈ Σu. 2

Let GS denote the subautomaton obtained from G by
replacing its guards by those provided by S. S is said to
be nonblocking if GS is nonblocking and safe if GS is safe.
Theorem 1 gives the existence condition of a nonblocking and
safe supervisor S for G.

Theorem 1 (Supervisor existence)
Given a plant modeled by an EFA G and a specification
defined by Gs ≼ G, there exists a nonblocking and safe
supervisor S such that QGS

= QGs iff Gs is nonblocking
and controllable. 2

PROOF (If) Let E be the set of edges of G and S be a
supervisor defined as follows: ∀e = (oe, te, σe, ge, fe) ∈ E:
S(e) = ge if te ∈ Ls or σe ∈ Σu, and S(e) = F otherwise.
From the fact that it is impossible to reach a safe location from
a forbidden location in G, it follows that every safe state of G
remains reachable in GS and thus, we have QGs ⊆ QGS

as
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every reachable safe state of G is in QGs . For the converse,
let q ∈ QGS

. Gs is controllable implies that every edge e of G
linking a safe location to a forbidden location is controllable
and ge = F in Gs. Then, S(e) = F from the above definition
of S . Added to the fact that it is impossible to reach a
safe location from a forbidden location in G, it follows that
only safe state are reachable in GS and thus QGS ⊆ QGs

meaning that S is safe. The above two inclusions imply that
QGS

= QGs . For the nonblockingness: Gs is nonblocking
implies every state in QGs is nonblocking, and so is every state
in QGS

(from the above equality) and then S is nonblocking.
(Only if) Let S be a nonblocking and safe supervisor such

that QGS
= QGs . Let q ∈ QGS

and q′ ∈ QG such that q σ→ q′

in G and σ ∈ Σu. From the definition of S (no change of
guards of uncontrollable edges), it follows that q′ ∈ QGS

.
Then for every state q ∈ QGS

and ∀σ ∈ ΣG(q) ∩ Σu, we
have QG(q, σ) ⊆ QGS

and q is safe. Then Gs is controllable
as QGS

= QGs . For the nonblockingness: S is nonblocking
implies every state in QGS

is nonblocking, and so is every
state in QGs as QGS

= QGs and thus Gs is nonblocking. �

In case Theorem 1 conditions are not satisfied, we try to
find a safe and nonblocking supervisor S such that GS ≼ Gs.
Given two supervisors S1 and S2 for G, we say that S2 is
more permissive than S1, denoted S1 ≼ S2, if for every edge
e of G, S1(e) ≼ S2(e). It follows that if S1 ≼ S2, then
GS1 ≼ GS2

. If S(G,Lf ) denotes the set of nonblocking and
safe supervisors of G, then the most permissive nonblocking
and safe supervisor of G, denoted S↑ := supS(G,Lf ), is the
supervisor which is more permissive than any other supervisor
in S(G,Lf ) when the latter is nonempty. We call GS↑

the
supremal controllable and nonblocking subautomaton of Gs.

IV. SUPERVISORY SYNTHESIS FOR EFA

A. Computation of maximally permissive supervisor for EFA

Algorithm 1, denoted SSEFA (for Supervisory Synthesis
for EFA), computes stronger, maximally permissive, guards
for the edges of G such that the obtained EFA is nonblocking,
safe and controllable. To compute the stronger guards for the
controllable transitions we use two predicates associated to
every location l: a nonblocking predicate, denoted Nl, and a
bad location predicate, denoted Bl.

Let us explain the intuition of Algorithm 1. The outer
iteration over the variable j successively strengthens the guard
condition for each edge e ∈ E to gje , where g0e := ge. In the
jth iteration, the nonblocking predicate specifies for location
l the set of data that are nonblocking with respect to the
current guards gje . That is, for a state (l, d), if N j

l (d) = T ,
then the state (l, d) is flagged nonblocking at iteration j,
otherwise it is blocking. This predicate is computed iteratively
with its initial valued N j,0

l assigned to T (resp. F ) for
marked (resp. unmarked) locations (line 3). It is then updated
(line 4) such that if from a state (l, d), an enabled edge e
leads to a state already flagged as nonblocking (gje(d) = T
and N j,k

te (fe(d)) = T ), then (l, d) is flagged nonblocking
(N j,k+1

l (d) = T ). Note that during the computation, N j,k
l (d)

is expressed by considering d as a variable, i.e. a predicate that

Algorithm 1 : Supervisory Synthesis for EFA (SSEFA)
Input: EFA G = (L,D,Σ, E, L0, D0, Lm) with set of forbidden locations

Lf ⊂L
1. Initialize iterators: i := 0, j := 0, k := 0
2. Transitions guards are initially those of G: ∀e ∈ E : g0e(d) = ge(d) for

every d ∈ D
3. Initialize the nonblocking predicate of every location l ∈ L as follows:

∀d ∈ D, Nj,0
l (d) =

{
T, if l ∈ Lm;

F, if l ̸∈ Lm.
(1)

4. Update the nonblocking predicate of every location l ∈ L as follows:

∀d ∈ D, Nj,k+1
l (d) = Nj,k

l (d) ∨
∨

{e|oe=l}

[
gje(d) ∧Nj,k

te
(fe(d))

]
(2)

5. if there exists l ∈ L and d ∈ D such that Nj,k
l (d) ̸= Nj,k+1

l (d)
then

6. k := k + 1
7. Go to 4
8. else
9. for all l ∈ L and d ∈ D : Nj

l (d) = Nj,k
l (d)

10. k := 0
11. end if
12. Initialize the bad location predicate of every location l ∈ L as follows:

∀d ∈ D, Bj,0
l (d) =


T, if l ∈ Lf ;

¬Nj
l (d), if l ̸∈ Lf and j = 0;

¬Nj
l (d) ∨Bj−1

l (d), if l ̸∈ Lf and j > 0.
(3)

13. Update the bad location predicate of every location l ∈ L as follows:

∀d ∈ D, Bj,i+1
l (d) = Bj,i

l (d)∨
∨

{e|oe=l,σe∈Σu}

[
gje(d)∧B

j,i
te

(fe(d))
]

(4)
14. if there exists l ∈ L and d ∈ D such that Bj,i+1

l (d) ̸= Bj,i
l (d) then

15. i := i+ 1
16. Go to 13
17. else
18. for all l ∈ L and d ∈ D : Bj

l (d) = Bj,i
l (d)

19. i := 0
20. end if
21. Update the guard of every edge e ∈ E as follows:

∀d ∈ D, gj+1
e (d) =

{
gje(d) ∧ ¬Bj

te
(fe(d)), if σ ∈ Σc;

gje(d), if σ ∈ Σu.
(5)

22. if there exists l ∈ L and d ∈ D such that gj+1
e (d) ̸= gje(d) then

23. j := j + 1
24. Go to 3
25. else
26. Stop
27. end if

defines a subset of data that characterize nonblocking states
of location l. If for example D = D1 and given the variable
d = [d(1)] (of domain D1), if gje(d) = [d > 2], fe(d) = d+1,
N j,k

te (d) = [d ≤ 5] and N j,k
l (d) = F , then we obtain

N j,k+1
l (d) = F ∨ [[d > 2] ∧ [d+ 1 ≤ 5]] = [d > 2] ∧ [d ≤ 4].
On the other hand, in the jth iteration, the bad location

predicate Bj
l (d) specifies for location l the set of data that are

undesirable (blocking, forbidden or uncontrollable). That is,
if for a state (l, d), Bj

l (d) = T , then (l, d) is flagged as an
undesirable state. This predicate is also computed iteratively
with its initial valued Bj,0

l assigned to T for forbidden
locations and to ¬N j

l (d)∨B
j−1
l (d) for safe locations (¬N j

l (d)
when j = 0) (line 12). Bj

l (d) is then updated (line 13) such
that if from a state (l, d), an enabled uncontrollable edge e
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D  ={0}0
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Figure 3. EFA SSEFA(G) for G of Figure 2

leads to an undesirable state (gje(d)=T and Bj,i
te (fe(d))=T ),

then (l, d) becomes undesirable (Bj,i+1
l (d) = T ). At line 21,

the guard of every controllable edge is updated so that con-
trollable transitions leading to undesirable states are disabled:
if Bj

l (d) = T for a state (l, d), then every controllable edge
that has (l, d) as destination state has F as its guard following
Line 21, making (l, d) unreachable through this edge.

Remark 1 In the above computation, only safe and “border
forbidden” locations and the edges linking them need to be
considered, where l ∈ Lf is a border forbidden location if
there exists an edge e ∈ E such that te = l and oe ∈ Ls. The
forbidden locations that are not border forbidden locations are
irrelevant in the process of verifying the controllability and
nonblockingness of Gs or subautomata. 2

Let us illustrate Algorithm 1 by applying it to the simple
example of Figure 2 (without location (L1, ϕ) as it is not a
border forbidden location). We consider that e1 is controllable
and e2 is uncontrollable. For simplification we rename the
locations as follows: (L0, R0) = L0, (L1, R1) = L1 and
(L0, ϕ) = L0′. Here are the results of the algorithm (note
that the variable d is equal to x here, given that D is 1-
dimensional). For j = 0, we have for k = 0: N0,0

L0 (x) = T
and N0,0

L1 (x) = N0,0
L0′(x) = F ; and for k = 1: N0,1

L0 (x) = T ,
N0,1

L1 (x) = F ∨
[
[[x < 7]∧T ]∨ [[7 ≤ x ≤ 9]∧F ]

]
= [x < 7],

and N0,1
L0′(x) = F ∨

[
[x < 8]∧F

]
= F . For k = 2, we obtain

the same result as for k = 1, so we stop the iteration on k
and reset k to 0. For i = 0, we have: B0,0

L0 (x) = ¬T = F ,
B0,0

L1 (x) = ¬[x < 7] = [7 ≤ x ≤ 9] (following the domain of
x), and B0,0

L0′(x) = T . For i = 1, we obtain the same result
as for i = 0, so the iterations stops. The new guard of the
edge from L0 to L1 labeled by the controllable event e1 is:
g1L0→L1(x) = [x < 8] ∧ ¬[7 ≤ x + 2 ≤ 9] = [x < 5]. For
j = 1, no guard is modified, so the iteration on j stops.

The new EFA obtained after the application of Algorithm 1
is illustrated in Figure 3. The new guard of the edge from
L0 to L1 ensures nonblocking and safety of the controlled
system. Indeed, in L1, if the guard [7 ≤ x ≤ 9] of the edge
leading to L0’ is satisfied, then the edge can be executed (e2
is uncontrollable) and this leads to a forbidden and blocking
state. The new guard [x < 5] of the edge from L0 to L1
ensures that the guard [7 ≤ x ≤ 9] is never satisfied in L1,
whereas the guard [x < 7] of the edge from L1 to L0 is
always satisfied when L1 is reached, ensuring nonblocking
and safety. The supervisor ensures that e1 is executed only
if the new guard is satisfied and equivalently, e1 is disabled
when the original guard [x < 8] is satisfied but the new guard
[x < 5] is unsatisfied, i.e. when [5 ≤ x < 8].

B. Correctness of the supervisory synthesis algorithm

Given G, let SSEFA(G) denote the EFA obtained from G
by applying Algorithm 1. SSEFA(G) has the same structure

as G but has stronger guard conditions. The correctness is
established through Proposition 1 and Theorems 2-3. We
need to introduce the following notations. A state (l, d) of
SSEFA(G) is said to be a bad state if BN

l (d) = T , where N
is the last iteration of j when the execution of Algorithm 1
stops. Given a set X , let |X| denote the cardinality of X .

Proposition 1 (Termination of execution)
Given an EFA G = (L,D,Σ, E, L0, D0, Lm) with data vari-
ables of finite domains and a set Lf ⊂ L of forbidden lo-
cations, the following statements hold in the computation
of SSEFA(G): in each iteration of j, the iterations over k
and i both terminate in O(|L||D|) steps, and the iteration
over j itself terminates in O(|L||D|) steps. The complexity of
Algorithm 1 is O(|L|2|D|2). 2

PROOF : Let us consider that each data variable d(i), for i =
1, ..., p has |d(i)| (finite) possible values. Then, the maximum
number of possible values in D is |D| =

∏p
i=1 |d(i)|, and the

number of reachable states of G is bounded by |L||D|. Let us
show that every loop of Algorithm 1 terminates necessarily.

Inside every iteration over j, the iteration over k loops until
no change of the nonblocking predicate for a state occurs
(lines 4-11). Following Eq. 2, the nonblocking predicate of
a state can only switch from F to T inside the same iteration
of j due to the disjunction, and consequently, within each
iteration over k, the set of nonblocking states increases by at
least one state (except for the last iteration). Then, we can
have at most |L||D| possible changes of this predicate as the
set of nonblocking states is bounded by |L||D|. Therefore, the
iteration over k terminates in O(|L||D|) steps.

Inside every iteration over j, the iteration over i loops until
no change of the bad location predicate for a state occurs
(lines 13-20). Following Eq. 4, the bad location predicate of a
state can only switch from F to T due to the disjunction, and
consequently, within each iteration over i, the set of bad states
increases by at least one state (except for the last iteration).
Therefore, the iteration over i terminates in O(|L||D|) steps,
as the set of bad states is bounded by |L||D|.

The iteration over j loops until no change of the guard of
a controllable edge occurs (lines 21-25). Following Eq. (5),
the guard of a controllable edge changes if and only if the
bad location predicate of its terminal state changes. Therefore,
the iteration over j loops until no change of the bad location
predicate of a state occurs, i.e. until the set of bad states
does not increase following the above Item (b). Therefore,
the iteration over j terminates in O(|L||D|) steps, as the set
of bad states is bounded by |L||D|.

The above results demonstrate that the two inner loops over
k and i as well as the outer loop over j of Algorithm 1
terminate in O(|L||D|) steps and thus, the computational
complexity of Algorithm 1 is O(|L|2|D|2). �

Remark 2 SSEFA often converges faster than worst-case
complexity obtained in Proposition 1. For the example of
Section V, the worst-case complexity is 5992704 iterations
(16 locations, and cardinality of D of 9x17), but our algorithm
terminates in a total of 9 iterations (for j = 0 there are 5 and
2 iterations over k and i respectively, and for j = 1 there
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Figure 4. Illustration for proof of Lemma 1

is 1 iteration over both k and i). For the same reason, our
algorithm is also efficient in space complexity, i.e. memory
usage. Indeed, the entire state space of the system need not
to be stored in memory but only the EFA model (compressed
state space) and the computation is carried out directly on
the compressed state space. Moreover, our algorithm can be
implemented efficiently as the symbolic computation of pred-
icates (nonblocking and bad location predicates and guards)
can be realized efficiently using OBDDs. 2

Lemma 1 : Given an EFA G = (L,D,Σ, E, L0, D0, Lm)
and a set Lf ⊂ L of forbidden locations such that SSEFA(G)
is computed in N iterations of iterator j, every state (l, d) ∈
QG for which BN

l (d) = T is either unreachable in SSEFA(G)
or there exists an initial state (l0, d0) ∈ (L0 ×D0) for which
BN

l0
(d0)=T . Formally: ∀(l, d) ∈ QG : BN

l (d)=T ⇒ [(l, d) ̸∈
QSSEFA(G)] ∨ [∃(l0, d0) ∈ L0 ×D0 s.t BN

l0
(d0)=T ]. 2

PROOF : We use figure 4 to illustrate our proof. q = (l, d) is
the state satisfying the condition BN

l (d) = T . Without loss
of generality, let us suppose that q is reached in G through
a sequence s starting in (l0, d0). Generalization can be done
by applying the same procedure below to every sequence in
this general form, that is to every sequence (l0, d0)

s→ (l, d).
Suppose that Bj,i

l (d) switches from F to T at iteration j =
U, i = V , with U < N (this predicate remains T until the
last iteration N of j following (3)-(4). Following (4), Bj,i

l (d)
remains T for every subsequent iteration j = U, i. Then, other
subsequent iterations on i will be done in the execution of
Algorithm 1 because the test at line 14 will fail at iteration
j = U, i = V (the subsequent iteration will be executed even
if U = V = 0 because line 13 is executed at least once). In
the subsequent iterations j = U, i > V , the following holds.

(a) If there exists at least one controllable edge in the
sequence s (represented by ec in Fig 4 where ec is the last
controllable edge in the sequence s) and if there is no uncon-
trollable edge between (l′, d′) and (l, d) (i.e. (l′, d′) = (l, d) on
Figure 4), we obtain at line 21 (4) the following result in the
execution: gU+1

ec (d′) = gUec(d
′)∧¬BU

l (d) = gUec(d
′)∧F = F .

Following (5), we have gNec(d
′) = F . Thus, the state (l, d) is

unreachable in SSEFA(G).
(b) If there exists at least one controllable edge in the

sequence s (represented by ec in Fig 4 where ec is the last
controllable edge in the sequence s) and if there are n > 0
uncontrollable edges between (l′, d′) and (l, d), let γ be the
part of run γ = (l′′, d′′)

σc→ (l′, d′)
σu1→ · · · σun→ (l, d). Let qp =

(lp, dp), p = 1, ..., n+1 be the state reached in γ after σup−1

with q1 = (l′, d′) and qn+1 = (l, d), i.e. qp = (q1, µσup−1)
where µ = σu1 · · ·σup−2 , and ep = (qp, qp+1, gep , fep) be the
edge from state qp to qp+1. By definition and following the fact
that every ep is an uncontrollable edge, we have ge1(d

′) = T ,
fe1(d

′) = d2, gep(dp) = T and fep(dp) = dp+1. At line 13
of Algorithm 1, we obtain: following (4), the bad location
predicate of every state (lp, dp), p = 1, ..., n which is not

evaluated to T at iteration j = U, i = V will switch from F
to T at an iteration j = U, i > V . For example, if at iteration
j = U, i = V , BU,V

ln
(dn) = F (predecessor state of (l, d)),

then at iteration j = U, i = V +1, we will have following (4):
BU,V+1

ln
(dn) = F ∨ [T ∧ T ] = T . every pair of states (lp, dp)

and (lp+1, dp+1), for p = 1, ..., n is in the same configuration
as (l′, d′) and (l, d) and thus, after a number V ′ ≤ n
subsequent iterations of i from iteration j = U, i = V , we
will have: BU,V+V ′

lp
(dp) = T for p = 1, ..., n and in particular,

BU,V+V ′

l′ (d′) = T . We obtain at line 21 the following result:
gU+1
ec (d′) = gUec(d

′)∧¬BU
l′ (d

′) = gUec(d
′)∧F = F . Following

(5), we have gNec(d
′) = F . Thus, every state (lp, dp), for

p = 1, ..., n+ 1, is unreachable in SSEFA(G).
(c) If there exists no controllable edge in the sequence s (ec

on Figure 4 does not exist), then the states (l0, d0) and (l, d)
are in the same configuration as (l′, d′) and (l, d) considered
in Item (b) above. Thus, we will have after a given number V ′

subsequent iterations of i: BU,V+V ′

l0
(d0) = T and following

(3)-(4), it holds that BN
l0
(d0) = T .

(d) Items (a)-(c) imply that if BN
l (d) = T , then either

(l, d) is unreachable in SSEFA(G) (when the conditions of
Items (a)-(b) hold) or there exists an initial state (l0, d0) such
that BN

l0
(d0) = T (when the conditions of Item (c) hold). �

Theorem 2 (Nonblockingness and Controllability)
Given an EFA G = (L,D,Σ, E, L0, D0, Lm) and a set
Lf ⊂ L of forbidden locations, SSEFA(G), as computed by
Algorithm 1, is nonblocking and controllable if none of its
initial states is a bad state. 2

PROOF : Proof of controllability: To prove that SSEFA(G)
is controllable, we have to prove that every reachable state q of
SSEFA(G) is controllable, i.e. q is safe and ∀σ ∈ ΣG(q)∩Σu,
it holds that QG(q, σ) ⊆ QSSEFA(G). Let q = (l, d) be a reach-
able state of SSEFA(G). Then ∀σ ∈ ΣG(q) ∩ Σu, QG(q, σ)
are reachable in SSEFA(G) because following (5), the guards
of uncontrollable edges are never modified by Algorithm 1.
On the other hand, q reachable in SSEFA(G) implies by
Lemma 1 that either q is not a bad state or there exists an
initial state of SSEFA(G) that is bad, i.e. either BN

l (d) = F or
∃(l0, d0) ∈ L0×D0 s.t B

N
l0
(d0) = T . If q is not a bad state (no

bad initial state exists), then q is safe because following (3)-
(4), if l ∈ Lf , then necessarily BN

l (d) = T . In conclusion,
every reachable state of SSEFA(G) is safe and controllable
(SSEFA(G) is safe and controllable) if none of the initial
states of SSEFA(G) are bad states.

Proof of nonblocking: Let a path p
SSEFA(G)
q→q′ of SSEFA(G)

be a sequence of consecutive edges linking the states q
and q′ of SSEFA(G). For a state q ∈ QSSEFA(G), let
PSSEFA(G)(q) = {pSSEFA(G)

q→q′ |q′ ∈ QSSEFA(G)}. For a
path p

SSEFA(G)
q→q′ , let L(pSSEFA(G)

q→q′ ) denote the set of states
linked by p

SSEFA(G)
q→q′ , including q and q′. By extension,

L(PSSEFA(G)(q)) denotes the set of states linked by all the
paths in PSSEFA(G)(q). Suppose that there exists a reachable
state q = (l, d) of SSEFA(G) that is blocking, i.e. no state in
L(PSSEFA(G)(q)) is marked. Algorithm 1 stops after iteration
j = N when there is no change of a guard of a transition
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between iterations j = N − 1 and j = N and this means also
that there is no change of the bad location predicate of a state
between iterations j = N−1 and j = N (following (5)). This
implies that there will be no change in SSEFA(G) if we run
Algorithm 1 one more iteration of j, i.e. for j = N +1 (every
state reachable in SSEFA(G) will remain reachable after the
(N+1)th iteration of j). If we run Algorithm 1 on SSEFA(G)
for j = N + 1, we obtain the following results.

(a) Equation 1 of SSEFA (for j=N+1, k=0) and the fact that
no state in L(PSSEFA(G)(q)) is marked imply that ∀(l′, d′) ∈
L(PSSEFA(G)(q)), NN+1,0

l′ (d′) = F .
(b) Item (a) and (2) imply that ∀(l′, d′) ∈ L(PSSEFA(G)(q)),

NN+1,k
l′ (d′) = F at every subsequent iteration j = N + 1, k.

Indeed, NN+1,k+1
l′ (d′) = F

∨
{e|oe=l′}

[
gje(d

′) ∧ F
]
= F . This

is justified by the fact that even if the guards are satisfied, it
takes that the nonblocking predicate of a reachable successor
state of an unmarked state be true initially so it can impact
recursively the nonblocking predicate of its predecessor states
(switch from F to T ).

(c) Item (b) and Line 9 of SSEFA imply that ∀(l′, d′) ∈
L(PSSEFA(G)(q)), NN+1

l′ (d′) = F .
(d) Item (c) and Equation 3 of SSEFA imply that ∀(l′, d′) ∈

L(PSSEFA(G)(q)), BN+1,0
l′ (d′) = ¬F = T .

(e) Items (d) and Equation 4 of SSEFA imply that
∀(l′, d′) ∈ L(PSSEFA(G)(q)), BN+1,i

l′ (d′) = T at
every subsequent iteration j = N + 1, i. Indeed,
∀(l′, d′) ∈ L(PSSEFA(G)(q)), we have B0,i+1

l′ (d′) =
T

∨
{e|oe=l′,σe∈Σu}

[
gje(d

′) ∧ T
]
= T .

(f) Item (e) and Line 18 of SSEFA imply that ∀(l′, d′) ∈
L(PSSEFA(G)(q)), BN+1

l′ (d′) = T . In particular, we have
BN+1

l (d) = T (recall that q = (l, d)).
(g) Lemma 1 and the result of Item (f) imply that either q

is made unreachable in SSEFA(G) or there exists an initial
state (l0, d0) such that BN+1

l0
(d0) = T . This means that if

∀(l0, d0) ∈ (L0 × D0) : BN+1
l0

(d0) = F , there will be a
change in SSEFA(G) ((l, d) is reachable in SSEFA(G) after
j = N and unreachable after j = N + 1). This contradicts
the fact that there must be no change in G between iterations
j = N and j = N + 1. Therefore, our initial assumption that
there exists a state q of SSEFA(G) that is blocking holds only
if there exists an initial state (l0, d0) such that BN

l0
(d0) = T ,

otherwise SSEFA(G) is nonblocking. �

Theorem 3 (supremal controllable and nonblocking EFA)
Given an EFA G = (L,D,Σ, E, L0, D0, Lm) and a set
Lf ⊂ L of forbidden locations, if SSEFA(G) is nonblocking
and controllable, then it is the supremal controllable and
nonblocking subautomaton of G. 2

PROOF : We suppose that ∀(l0, d0) ∈ (L0 ×D0) : B
N
l0
(d0) =

F . Let G′′ be a controllable and nonblocking subautomaton
of G. Then, QSSEFA(G) ⊆ QG and QG′′ ⊆ QG and if
QG′′ ⊆ QSSEFA(G), then G′′ ≼ SSEFA(G). Our aim is thus
to prove that QG′′ ⊆ QSSEFA(G). Let q = (l, d) ∈ QG′′

. G′′

is controllable implies ∀σ ∈ ΣG(q) ∩ Σu, QG(q, σ) ⊆ QG′′
.

Note that (l, d) ∈ QG′′
and G′′ controllable imply l ̸∈ Lf .

G′′ is nonblocking implies L(PG′′
(q)) ∩ QG′′

m ̸= ∅. Let

qm = (lm, dm) ∈ L(PG′′
(q))∩QG′′

m . We suppose without loss
of generality that among all the marked states reachable from
q, qm is one among those reached from q after the smallest
number of edges. Let n be this number of edges and γ =
(l, d)

σ1→ (l1, d1) · · · (ln−1, dn−1)
σn→ (lm, dm), where each

state (lp, dp), for p = 1, ..., n denotes the pth state in γ (ex-
cluding (l, d)) and ep = ((lp−1, dp−1), (lp, dp), σp, gep , fep)
denotes the edge linking states (lp−1, dp−1) and (lp, dp). By
definition and following the fact that all the states in γ are
reachable, we have that gep(dp−1) = T and fep(dp−1) = dp.
SSEFA(G) is obtained from G by making unreachable some
(blocking, forbidden and uncontrollable) states of G. To prove
that q ∈ QSSEFA(G), we have to prove that q is not made
unreachable in the computation of SSEFA(G). In the compu-
tation of SSEFA(G), we obtain the following results.

(a) For j = k = 0, (1) gives: N0,0
l (d) = F (if (l, d) ̸=

(lm, dm)), N0,0
lm

(dm) = T and ∀(lp, dp) in γ (for p = 1, ..., n−
1), N0,0

lp
(dp) = F .

(b) For j = 0, k = 1, (2) gives: N0,1
lm

(dm) = T ,
N0,1

ln−1
(dn−1) = F ∨ [T ∧ T ] = T and ∀(lp, dp) in γ (for

p = 1, ..., n− 2), N0,1
lp

(dp) = F ∨ [T ∧ F ] = F .
(c) At iteration j = 0, k for k = 2, ..., n + 1

(n=number of edges between q and qm), (ln+2−k, dn+2−k)
and (ln+3−k, dn+3−k) are in the same configuration as
(ln−1, dn−1) and (lm, dm) at iteration j = 0, k = 1, and
thus the nonblocking predicate of (ln+2−k, dn+2−k) will be
changed from F to T , i.e. N0,k

ln+2−k
(dn+2−k) = T and remains

unchanged in every subsequent iteration j, k. We obtain at
iteration j = 0, k = n + 1 that N0,n+1

l (d) = T and remains
unchanged in every subsequent iteration j = 0, k. That is, at
Line 11 of SSEFA(G), we obtain N0

l (d) = T . Every state of
G′′ is in the same configuration as (l, d) (G′′ is nonblocking),
so we have that in general, ∀(l′, d′) ∈ QG′′

: N0
l′(d

′) = T .
(d) For j = i = 0, (3) gives: B0,0

l (d) = ¬T = F and in
general, following Item (c), ∀(l′, d′) ∈ QG′′

: B0,0
l′ (d′) = F .

(e) The fact that G′′ is controllable implies that in every state
(l′, d′) ∈ QG′′

, every uncontrollable event enabled at (l′, d′)
in G is also enabled in G′′ and leads to a state that belongs to
QG′′

. Following this and (4) and given that ∀(l′, d′) ∈ QG′′
:

B0,0
l′ (d′) = F (see Item (d) above), it results that the bad

location predicate of a state (l′, d′) ∈ QG′′
cannot be changed

from F to T at any iteration j, i at Lines 13-17 of SSEFA.
That is, ∀(l′, d′) ∈ QG′′

: B0
l′(d

′) = F and this result remains
unchanged in every subsequent iteration of iterator j, as all
the same conditions described in Items (a)-(d) hold at j ̸= 0
as at j = 0.

(f) For j = 0, (5) and the above Item (e) imply that for
every edge e = ((r, x), (r′, x′), σe, ge, fe) of G′′, we have
g1e(x) = T . Furthermore, following the above Item (e), we
deduce that for every edge e = ((r, x), (r′, x′), σe, ge, fe) of
G′′, we have gje(x) = T after every iteration of j. That is, no
state of QG′′

is made unreachable due to a guard that should
become unsatisfied after the application of SSEFA(G). In par-
ticular, the state q = (l, d) (considered for the proof) remains
reachable in SSEFA(G), i.e. q ∈ QSSEFA(G) and therefore,
we have QG′′ ⊆ QSSEFA(G) and thus G′′ ≼ SSEFA(G).
This proves that SSEFA(G) is the supremal controllable and
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nonblocking subautomaton of G. �

Following Theorem 3, if SSEFA(G) is nonblocking and
controllable, i.e. if none of its initial states is a bad state
(following Theorem 2), then GS↑

= SSEFA(G). Algorithm 1
solves thus our supervisory control problem stated in Sec-
tion III by computing the EFA of the supremal controllable
and nonblocking subautomaton of G if the latter exists.

V. EXAMPLE

We consider a system consisting of three machines M1, M2
and M3, working on parts stored in two buffers B1 and B2 of
size 16 and 8 respectively. Parts are supplied through an input
buffer IN (of infinite size) and stored after being processed in
two output buffers OUT1 and OUT2 (of infinite size). Figure 5
illustrates the system which operates as follows: M1 supplies
B1 with parts taken from the input buffer IN; M2 takes a part
from B2 and after processing puts it either in OUT1 or in B1;
and M3 takes a part from B1 and after processing puts it either
in OUT2 or in B2.

Figures 6 represents the EFA of M1, M2 and M3, where:
• event tb22 (resp. tb13) means that machine M2 (resp.

M3) takes a part from B2 (resp. B1);
• event pb11 (resp. pb12 and pb23) means that machine M1

(resp. M2 and M3) puts a part in B1 (resp. B1 and B2);
• event in means M1 takes a part from IN; and
• event o1 (resp. o2) means that machine M2 (resp. M3)

puts a part in OUT1 (resp. OUT2).
The events pb11, o1, o2 are the only uncontrollable events.

The variables space is D = D1 × D2, which record the
number of parts in the two buffers, and following the size
of the buffers, we have that D1 = {0, 1, ..., 16} and D2 =
{0, 1, ..., 8}. We suppose that B1 and B2 initially contain no
part, and so D0 = {(0, 0)}. In figures and for simplification,
if no guard is present, then true is treated as the guard, and
if the update function is not explicitly defined for a given
data variable, it is assumed that the variable is updated to its
current value. Moreover, when it holds that fe(d(i)) ̸∈ Di,
then fe(d(i)) is implicitly replaced by the identity function.
For example, if fe(d1) = d1+1, then for d1 = 16, we obtain
fe(d1) = 16 instead of fe(d1) = 17.

We consider the following two specifications:
SPEC1: buffers B1 and B2 must not overflow, i.e. a machine

must not try to put a part in a buffer when it is full, i.e. when
d1=16 or d2=8.

pb11; d1<16; d1:=d1+1

pb12; d1<16; d1:=d1+1

pb23; d2<8; d2:=d2+1

\{pb11,pb12,pb23}; − ; fσΣ

(a) EFA R1 of SPEC1

Σ\{tb13,tb22}; − ; fσ

tb13; d1>0; d1:=d1−1

tb22; d2>0; d2:=d2−1

(b) EFA R2 of SPEC2

Figure 7. EFAs R1 and R2 of the specifications SPEC1 SPEC2

111
pb23 d2:=d2+1; d2<8 ;

112

d2:=d2−1d2>0 ;tb22 ; 

d1:=d1+1; d1<16 ;pb12
121

122

d2>0 ;tb22 ; d2:=d2−1

pb12 d1:=d1+1; d1<16 ;

d1>0 ;tb13 ; d1:=d1−1

d2:=d2+1pb23 ; d2<8 ;

d1:=d1−1d1>0 ;tb13 ; 

pb11
d1<16
d1:=d1+1

pb11
d1<16

d1:=d1+1

pb11
d1<16

d1:=d1+1

211
pb23 ; d2<8 ; d2:=d2+1

212

d1>0 ;tb13 ; d1:=d1−1

pb12 d1:=d1+1; d1<16 ;

d2>0 ;tb22 ; d2:=d2−1
221

o2 o1

d2>0 ; d2:=d2−1tb22 ; 

pb12 d1:=d1+1; d1<16 ;
222

tb13 ; d1>0 ; d1:=d1−1

pb23 d2:=d2+1; d2<8 ;
o1 o2

d1:=d1+1; d1<16 ;pb11

o2

in

o1

in

o1 o2

in

in

Figure 8. Safe part of the EFA G of the plant refined with the specification

SPEC2: buffers B1 and B2 must not underflow, i.e. a
machine must not try to take a part from a buffer when
it is empty, i.e. when d1=0 or d2=0. The EFAs R1 and
R2 of SPEC1 and SPEC2 are represented in Figures 7(a)
and 7(b) respectively, where for a transition on an event σ
in Σ \ {pb11, pb12, pb23} (for R1) or in Σ \ {tb13, tb22} (for
R2), fσ is the same update function associated to the transition
on σ in the models of Figure 6. Note the effect of SPEC1 is
to add the guard [d1 < 16] (resp., [d2 < 8]) to edges labeled
pb11 and pb12 (resp., pb23), whereas the effect of SPEC2 is
to add the guard [d1 > 0] (resp., [d2 > 0]) to edges labeled
tb13 (resp., tb22).

We compute the EFA G (plant P = M1∥M2∥M3 refined
with the specification R = R1∥R2) as described in Section III.
G is essentially the union of the two EFAs shown in Figures 8
and 9, where Figure 8 shows only the safe part of G and
Figure 9 shows only the border forbidden locations of G along
with the edges leading to them. It is clear from Figure 9 that
the only uncontrollable transitions that cause the violation of
safety are the transitions on pb11 under the condition that M2
is in its second location and the buffer B1 is full (d1 = 16). As
computed below, our maximally permissive controller avoids
this situation by ensuring that whenever M2 is in its second
location, the buffer B1 is not full (d1 < 16).

Let us now apply the controller synthesis algorithm to the
problem. We have that Σu = {pb11, o1, o2}. We use d in
place of [d1, d2], i.e. d = [d1, d2] (two dimensional vector).
It holds that for every forbidden location l, N j

l (d) = F and
Bj

l (d) = T at every iteration of j. Here are the results of
applying the algorithm SSEFA to the model G.

j=0,k=0: N0,0
111(d) = T and N0,0

Li
(d) = F ∀Li ̸= 111.

j=0,k=1: N0,1
111(d) = T .
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122
φ

112
φ

121
φ

111

tb13 ; d1=0 ; d1:=d1−1

tb22 ; d2=0 ; d2:=d2−1

122
φ

221
φ

212
φ

222
pb23 ; d2=8 ; d2:=d2+1

pb12 ; d1=16 ; d1:=d1+1

pb11 ; d1=16 ; d1:=d1+1

121

112
φ122

pb23 ; d2=8 ; d2:=d2+1

pb12 ; d1=16 ; d1:=d1+1

111
φ112

tb22 ; d2=0 ; d2:=d2−1

pb23 ; d2=8 ; d2:=d2+1

211
φ

121
φ

222
φ

221

pb12 ; d1=16 ; d1:=d1+1

pb11 ; d1=16 ; d1:=d1+1

tb13 ; d1=0 ; d1:=d1−1

111

122
φ

121

pb12 ; d1=16 ; d1:=d1+1

tb13 ; d1=0 ; d1:=d1−1

211

212
φ

111
φ

221
φ

tb13 ; d1=0 ; d1:=d1−1

pb11 ; d1=16 ; d1:=d1+1

tb22 ; d2=0 ; d2:=d2−1

211
φ

112
φ

212

pb23 ; d2=8 ; d2:=d2+1

pb11 ; d1=16 ; d1:=d1+1

tb22 ; d2=0 ; d2:=d2−1 222
φ

φ

φ

Figure 9. Forbidden locations of G reached from safe locations

N0,1
112(d) = F ∨

[
(d2 < 8) ∧ T

]
∨
[
(d2 > 0) ∧ F

]
∨
[
T ∧ T

]
= T .

N0,1
121(d) = F ∨

[
(d1 < 16) ∧ T

]
∨
[
(d1 > 0) ∧ F

]
∨
[
T ∧ T ] = T .

N0,1
211(d) = F ∨

[
(d1 < 16)∧T

]
∨
[
(d1 > 0)∧F

]
∨[

(d2 > 0) ∧ F
]
= [d1 < 16].

N0,1
212(d) = F ∨

[
(d2 < 8) ∧ F

]
∨
[
T ∧ F

]
∨
[
(d1 < 16) ∧ F

]
= F .

N0,1
221(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
T ∧ F

]
∨
[
(d1 < 16) ∧ F

]
= F .

N0,1
122(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d2 < 8) ∧ F

]
∨
[
T ∧ F

]
∨
[
T ∧ F

]
∨
[
T ∧ F

]
= F .

N0,1
222(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d1 < 16) ∧ F

]
∨
[
(d2 < 8) ∧ F

]
∨
[
T ∧ F

]
= F .

j=0,k=2: N0,2
111(d) = T ; N0,2

112(d) = T ; and N0,2
121(d) = T .

N0,2
211(d) = [d1 < 16]∨

[
(d1 < 16)∧T

]
∨
[
(d1 > 0)

∧ F
]
∨
[
(d2 > 1) ∧ F

]
= [d1 < 16].

N0,2
212(d) = F ∨

[
(d1 < 16) ∧ T

]
∨
[
(d2 < 8) ∧

(d1 < 16)
]
∨
[
(d2 > 0)∧F

]
= [d1 < 16].

N0,2
221(d) = F ∨

[
(d1 < 16) ∧ T

]
∨
[
(d1 < 16)

∧ (d1 + 1 < 16)
]
∨
[
(d1 > 0) ∧ F

]
= [d1 < 16].

N0,2
122(d) =

[
T ∧ T ] = T and N0,2

222(d) = F .
j=0,k=3: N0,3

111(d) = T ; N0,3
112(d) = T ; and N0,3

121(d) = T .
N0,3

211(d) = [d1 < 16] ∨
[
(d1 < 16) ∧ T

]
∨
[
(d1 > 0) ∧ (d1− 1 < 16)

]
∨
[
(d2 > 0) ∧ (d1 < 16)

]
= [d1 < 16] ∨ [d1 > 0] = T .

N0,3
212(d) = [d < 16] ∨

[
(d1 < 16) ∧ T

]
∨
[
(d2 < 8) ∧ (d1 < 16)

]
∨
[
(d2 > 0) ∧ F

]
= [d1 < 16].

N0,3
221(d) = [d1 < 16] ∨

[
(d1 < 16) ∧ T

]
∨
[
(d1 < 16) ∧ (d1 + 1 < 16)

]
∨
[
(d1 > 0) ∧ F

]
= [d1 < 16].

N0,3
122(d) = T .

N0,3
222(d) = F ∨

[
(d1 < 16) ∧ T

]
∨
[
(d1 < 16)

∧ (d1 + 1 < 16)
]
∨
[
(d2 < 8)

∧ (d1 < 16)
]
= [d1 < 16].

j=0,k=4: N0,4
111(d) = N0,4

112(d) = N0,4
121(d) = N0,4

211(d) = T .
N0,4

212(d) = [d1 < 16] ∨
[
T ∧ T

]
= T .

N0,4
221(d) = [d1 < 16] ∨

[
T ∧ T

]
= T .

N0,4
122(d) = T .

N0,4
222(d) = [d1 < 16] ∨

[
T ∧ T

]
= T .

j=0,k=5: no change compared to k = 4, then: N0
l (d) = T

for every safe location and we reset k to 0.
j=0,i=0: B0,0

l (d) = ¬T = F for every l ̸∈ Lf and
B0,0

l′ (d) = T for every l′ ∈ Lf

j=0,i=1: B0,1
111(d) = F .

B0,1
112(d) = F ∨

[
T ∧ F

]
= B0,1

121(d) = F .

B0,1
211(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d1 = 16) ∧ T

]
= [d1 = 16].

B0,1
212(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d1 = 16) ∧ T

]
= [d1 = 16].

B0,1
221(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d1 = 16) ∧ T

]
= [d1 = 16].

B0,1
122(d) = F ∨

[
T ∧ F

]
= F .

B0,1
222(d) = F ∨

[
(d1 < 16) ∧ F

]
∨
[
(d1 = 16) ∧ T

]
= [d1 = 16].

j=0,i=2: no change compared to i = 1, then:
B0

111(d) = B0
112(d) = B0

211(d) = B0
122(d) = F ; and

B0
211(d) = B0

212(d) = B0
221(d) = B0

222(d) = [d1 =
16]; and we reset i to 0.

New guards (only those that change), in the form goe,σ,te :
g111,in,211(d) = T ∧ ¬[d1 = 16] = [d1 < 16].
g112,in,212(d) = T ∧ ¬[d1 = 16] = [d1 < 16].
g121,in,221(d) = T ∧ ¬[d1 = 16] = [d1 < 16].
g212,pb23,211(d)=[d2 < 8]∧¬[d1 = 16]=[d2 < 8]∧[d1 < 16].
g212,tb22,222(d)=[d2 > 0]∧¬[d1 = 16]=[d2 > 0]∧ [d1 < 16]
g221,pb12,211(d) = [d1 < 16] ∧ ¬[d1 + 1 = 16] = [d1 < 15].
g221,tb13,222(d) = [d1 > 0] ∧ ¬[d1− 1 = 16] = [d1 > 0].
g211,tb13,212(d) = [d1 > 0] ∧ ¬[d1− 1 = 16] = [d1 > 0]
g211,tb22,221(d)=[d2 > 0]∧¬[d1 = 16]=[d2 > 0]∧ [d1 < 16]
g122,in,222(d)=T ∧ ¬[d1 = 16]=[d1 ̸= 16] = [d1 < 16].
g222,pb12,212(d) = [d1 < 16] ∧ ¬[d1 + 1 = 16] = [d1 < 15].
g222,pb23,221(d)=[d2 < 8]∧¬[d1 = 16]=[d2 < 8]∧[d1 < 16].

The guard of every edge labeled by a controllable event and
leading to a forbidden location is equal to F . For j = 1, there
is no change of the guards, so the algorithm stop.

111
d1:=d1−1d1>0 ;tb13 ; 

pb23 d2:=d2+1; d2<8 ;
112

d2:=d2−1d2>0 ;tb22 ; 

d1:=d1+1; d1<16 ;pb12
121

pb11
d1<16

d1:=d1+1

222

tb13 ; d1>0 ; d1:=d1−1

122

d2>0 ;tb22 ; d2:=d2−1

pb12 d1:=d1+1; d1<16 ;

d1>0 ;tb13 ; d1:=d1−1

d2:=d2+1pb23 ; d2<8 ;

d1:=d1+1; d1<16 ;pb11in ; d1<16

211212

d1>0 ;tb13 ; d1:=d1−1
221

; d2<8,d1<16pb23 ; d2:=d2+1

pb11
d1<16
d1:=d1+1

pb11
d1<16

d1:=d1+1

pb12 d1:=d1+1; d1<15 ; 

d2>0 ;d1<16,tb22 ; d2:=d2−1

pb12 ; d1<15; d1:=d1+1

tb22 ; d1<16,d2>0; d2:=d2−1

pb23 ; d1<16,d2<8; d2:=d2+1

in

o2 o1

in

o1 o2

o1 o2

o2

d1<16 d1<16
o1

in
d1<16

Figure 10. Reachable part of SSEFA(G)
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Figure 10 shows the reachable part of SSEFA(G). In
particular the forbidden locations of Figure 9 are no longer
reachable since those guards of controllable transitions become
false where those guards of uncontrollable transitions can
never be satisfied.

VI. CONCLUSION

We presented in this paper a new algorithm for synthesis
of supervisors for discrete event systems (DES) modeled by
Extended Finite Automata (EFA). The algorithm operates by
strengthening the guards of controllable edges of the plant EFA
so that undesirable states, i.e. blocking, forbidden or uncon-
trollable states, become unreachable. The obtained EFA is the
supremal controllable, safe and nonblocking subautomaton of
the plant EFA. Our algorithm benefits from the efficiency of
the EFA modeling framework and the solution of the control
problem can be interpreted intuitively.
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de Sherbrooke (Québec, Canada) in 2003 and 2008
respectively. He is currently a Postdoctoral Fel-
low in the Department of Electrical and Computer
Engineering at Iowa State University (USA). His
current research interests include the synthesis and
performance analysis of communication protocols
for real-time applications, and the modeling, su-
pervisory control and failures diagnosis of discrete
event dynamic systems.

Ratnesh Kumar (S87-M90-SM00-F07) received the
B.Tech. degree in Electrical Engineering from the
Indian Institute of Technology at Kanpur, India, in
1987, and the M.S. and the Ph.D. degree in Electrical
and Computer Engineering from the University of
Texas at Austin, Texas, in 1989 and 1991, respec-
tively. From 1991-2002 he was on the faculty of
University of Kentucky, and since 2002 he is on
the faculty of the Iowa State University. He has
held visiting position at the Institute of Systems
Research at the University of Maryland at College

Park, the Applied Research Laboratory at the Pennsylvania State University,
the NASA Ames Research Center, the Idaho National Laboratory, and the
United Technology Research Center. He is a coauthor of the book Modeling
and Control of Logical Discrete Event Systems, Kluwer Academic Publishers,
1995. He serves on the program committee for the IEEE Control Systems
Society, the International Workshop on Discrete Event Systems, and the IEEE
Workshop on Software Cybernetics. He is or has been an associate editor of
SIAM Journal on Control and Optimization, IEEE Transactions on Robotics
and Automation, Journal of Discrete Event Dynamical Systems, and IEEE
Control Systems Society. He is a Fellow of the IEEE.

Robi Malik received the M.S. and Ph.D. degree
in computer science from the University of Kaiser-
slautern, Germany, in 1993 and 1997, respectively.
From 1998 to 2002, he worked in a research and
development group at Siemens Corporate Research
in Munich, Germany, where he was involved in the
development and application of modelling and anal-
ysis software for discrete event systems. Since 2003,
he is lecturing at the Department of Computer Sci-
ence at the University of Waikato in Hamilton, New
Zealand. He is participating in the development of

the Supremica software for modelling and analysis of discrete event systems.
His current research interests are in the area of model checking and synthesis
of large discrete event systems and other finite-state machine models.
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