

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, September 2011

Embedded Camera Remote Control

Master of Science Thesis in Integrated Electronic System Design

JOHAN RYDH

The Author grants to Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible on

the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology store the Work electronically and make it

accessible on the Internet.

Embedded Camera Remote Control

JOHAN RYDH

© JOHAN RYDH, September 2011.

Supervisor: MAGNUS SJÄLANDER

Examiner: PER LARSSON EDEFORS

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden, September 2011

i

Abstract

Modern digital single-lens reflex cameras allow remote control access via a

bidirectional digital interface, as well as a unidirectional remote shutter control

interface. Available products use the unidirectional interface that only allows control of

autofocus and shutter, while a PC is required to access any of the camera’s settings

remotely.

This report describes a prototype implementation of an advanced remote control that

uses bidirectional digital communication over USB to access and change common

settings. The prototype is developed to support Canon DSLRs, and is tested with an

EOS 5D mark II camera.

Hardware and software have been developed; the hardware is based on a template

design. The prototype is implemented on an FPGA development board. A custom input

device has been developed as primary input to the remote control prototype.

ii

Table of Contents

1. Introduction ... 1

2. Hardware ... 2

2.1. Hardware Overview .. 2

2.2. Development Board .. 3
2.2.1. FPGA .. 3

2.2.2. USB Controller ... 3
2.2.3. DVI Transmitter ... 4

2.3. GRLIB Template Design .. 4

2.3.1. Customization ... 4

2.4. Custom VHDL Cores ... 5
2.4.1. Host Port Interface Bus Master .. 5
2.4.2. User Input Device Buffer and Decoder .. 7

2.5. User Input Device ... 8

3. Software ... 10

3.1. HPI Bus Master Driver ... 10

3.2. Low-level USB Driver ... 10

3.2.1. USB Controller Driver ... 11
3.2.2. USB Support ... 11

3.3. MTP Framework .. 12

3.4. High-level Protocol .. 13

3.5. Text-based Graphics Driver ... 14

3.6. Application ... 14
3.6.1. User Interface ... 15

3.6.2. Usage Examples ... 18

4. Conclusion ... 20

References ... 22

iii

List of Figures

Figure 2.1: Simplified hardware overview ... 2
Figure 2.2: Photo of the user input device .. 9
Figure 2.3: Schematic of the user input device .. 9
Figure 3.1: Simplified descriptor data structure format ... 12
Figure 3.2: User interface in default mode ... 16

Figure 3.3: Settings area in set property mode ... 17
Figure 3.4: Settings area in timer mode (value selection) .. 17
Figure 3.5: Settings area in timer mode (set value) .. 18
Figure 3.6: Time-lapse exposure of sunset ... 18

Figure 3.7: Long exposure of a late evening sky .. 19

iv

List of Tables

Table 2.1: HPI bus signals .. 5
Table 2.2: HPI port register addresses .. 5
Table 2.3: HPI bus master registers .. 6
Table 2.4: HPI Status register, read operation .. 6
Table 2.5: HPI Control register, write operation .. 6

Table 2.6: HPI Reset register, write-only ... 7
Table 2.7: User input device buffer and decoder registers ... 7
Table 2.8: Key status register, read-only .. 7
Table 2.9: Dial counter register .. 8

Table 3.1: TD list element format .. 11
Table 3.2: MTP Container format .. 13

v

List of Abbreviations

ACE Advanced Configuration Environment

AF Autofocus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

BIOS Basic Input/Output System

DDR Double Data Rate

DMA Direct Memory Access

DSLR Digital Single-Lens Reflex

DVI Digital Visual Interface

EEPROM Electrically Erasable Programmable ROM

FPGA Field-Programmable Gate Array

GPL General Public License

GUI Graphical User Interface

HDL Hardware Description Language

HDR High Dynamic Range

HPI Host Port Interface

I2C Inter-Integrated Circuit

IP Intellectual Property

IR Infrared

JTAG Joint Test Action Group

MAC Media Access Control

MTP Media Transfer Protocol

PC Personal Computer

PROM Programmable ROM

PTP Picture Transfer Protocol

RAM Random Access Memory

ROM Read-Only Memory

SDRAM Synchronous Dynamic RAM

SRAM Static RAM

TD Transfer Descriptor

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VGA Video Graphics Array

VHDL Very high speed integrated circuit HDL

1

1. Introduction

Modern digital single-lens reflex cameras, DSLRs, can to a large extent be controlled

from a PC using USB. While a PC can be suitable in a studio environment, a custom

product may be more practical in the field. User interface, size and battery life are

parameters that can be tuned to provide an easy to bring and use advanced remote

control, providing access to most features available in the DSLR without risking camera

shake or movement. The in-camera features are extended by a timer module to allow

time-lapse and preconfigured long exposures, adjusted to the current camera settings.

Mainly exposure related settings are expected to be useful to control remotely. These

include the shutter speed which controls the exposure time, the ISO speed which

determines the light sensitivity of the sensor and the aperture value. The aperture value

controls the light opening of the lens; a large opening allows a greater light transfer and

will also narrow the depth of field, while a smaller light opening will extend the in-

focus distance range. Another key setting is the white balance, which compensates for

differences in color content of the light source, like the sun or a light bulb.

Compared to a classical remote shutter control, the developed remote control does also

allow access to the settings described above, and will display information about other

settings like the selected image quality. The timer feature is shared with a Canon remote

shutter control with timer support; however, it cannot access any camera settings and its

user interface is limited by a display showing only one value at a time. The

manufacturer’s PC software allows access to most camera settings, which has been used

as a reference during the project in terms of possible features and protocol details.

Recently, other USB connected remote controls have been announced. One targets

videographers by primarily allowing control of the lens’ autofocus motor, which allows

smoother focusing than manual adjustment of the lens. It does also allow control of a

few settings, but with a limited user interface. A beta version of a coming application

for Android mobile devices provides a similar set of features as the developed remote

control, but may not be suitable for all scenarios or users, as discussed in Chapter 4.

A prototype has been developed, rather than an end-user product that especially would

require integration of all hardware components into a user-friendly product. Also, the

feature set and range of tested and supported devices can be made wider to make a more

competitive product. Such requirements are beyond the scope of this project, which

focus on a basic application with drivers running on an embedded processor platform.

The project includes both hardware and software development, with an emphasis of

low-level software and some application features.

The prototype is developed for and tested with a Canon EOS 5D mark II digital single-

lens reflex camera. Analysis of the high-level protocol has mainly been done prior to the

project, while some additional analysis and testing have been done using the embedded

platform. Basic comparison of the protocol of a few other Canon DSLR camera models

has shown minor differences compared to the tested DSLR, implying a likelihood of the

prototype supporting those; however, none of them has been tested and minor

adjustments may be required for full support.

This report will describe the hardware used and implemented, in Chapter 2. The

software running on top, including hardware drivers, will be described in Chapter 3. A

conclusion of the project will be given in Chapter 4.

2

2. Hardware

This chapter will describe the hardware of the Embedded Camera Remote Control, and

to some extent driver considerations. The remote control prototype is implemented on

an FPGA development board, based on a HDL template design. It uses external user

input and output devices, and can be connected to a PC for programming and debug

support.

2.1. Hardware Overview

The hardware is based on a template design of Aeroflex Gaisler’s GRLIB with a

LEON3 processor. The design is implemented on an FPGA development board. It has

been customized to include two communication VHDL cores developed during the

project, described in Chapter 2.4. A simplified overview of the remote control prototype

is shown in Figure 2.1, where the custom cores are marked with dotted boxes.

Figure 2.1: Simplified hardware overview

The DSLR camera is a Hi-Speed USB 2.0 device, which is connected to a USB host

port. The port is controlled by a full speed USB 2.0 controller available on the

development board. This will reduce the maximum bandwidth to 12 Mb/s, including

protocol overheads. The transferred data consists of commands and responses that do

not require high bandwidth, implying only a limited performance loss with the setup

compared to if a Hi-Speed USB host controller would have been used. The main

processor communicates with the USB controller over a HPI bus, via a bus master

VHDL core developed during the project.

The user interface of the prototype is, due to simplicity, split into an input system and

an output system; an external monitor can then be used. User input from a custom built

prototype input device, described in Chapter 2.5, is read using a developed VHDL core

that buffers and decodes the signals. The graphical output is generated by a text-only IP

core, transmitted to a monitor using an onboard DVI transmitter. The prototype can also

Xilinx ML509 Development Board

Xilinx Virtex-5 FPGA GRLIB

LEON3

HPI Master Text-only VGA

I2C Master

Input Buffer
and Decoder

USB Controller

Memory Controller,
Timer, … Debug Support

DVI Transmitter

User Input
Device

PC,
GRMON

Monitor

HPI I2C

UART/
JTAG

USB Device (Camera)

3

be controlled and programmed using the debug link, either with a UART or a JTAG

connection to a PC with Aeroflex Gaisler’s GRMON software.

2.2. Development Board

The development board used is Xilinx ML509, featuring a Xilinx Virtex-5 series FPGA,

while sharing other features with the Xilinx ML505 board [1]. The board includes

additional components required for an embedded processor platform, such as clock

generator, reset and FPGA configuration support using a Xilinx System ACE device;

SRAM, DDR2 SDRAM and flash memories for storing FPGA configurations and other

data as software programs. Both FPGA configuration and software are stored on two

flash memories and loaded when the board is powered up.

The board does also have several devices and connectors for external I/O, which can

be controlled by the FPGA. Of the board’s features, the USB controller and a DVI

graphics transmitter are especially important for the remote control prototype, which

will be described in the following chapters.

2.2.1. FPGA

The FPGA available on the development board is a Virtex-5 XC5VLX110T. The FPGA

is designed for high-performance logic and includes serial communication hardware

blocks, such as a PCI Express endpoint and Ethernet MACs [2], which are unused by

the remote control. The FPGA contains enough logic slices and user I/O pins to support

the HDL design.

2.2.2. USB Controller

The onboard USB controller is a Cypress CY7C67300 device, supporting USB 2.0 at

low or full speed [3]. The controller supports up to four peripheral USB ports or two

host ports, using two serial interface engines. Only one host port, which is used to

communicate with the camera, and one peripheral port are connected to the

development board’s external connectors.

 The USB controller has an embedded 16-bit processor, with approximately 15 kB of

user available RAM. External RAM or ROM memory can be mapped into to the

memory space; however, none is available on the development board. The controller

boots into one of four different modes, depending on the logic level of two pins after a

reset. The mode is hardwired on the development board and is set to standalone

operation, in which the controller is further configured by reading an onboard

EEPROM. The other three modes are all coprocessor operation mode, but with different

interfaces to the main processor. The development board ships with a preprogrammed

EEPROM configuration that will enable coprocessor operation via the Host Port

Interface bus, while the standalone mode remains as a possibility.

In standalone mode the controller executes a program with data that has been copied

from the EEPROM during booting. Cypress provides both development tools and a

software framework containing USB support routines. The limiting factor is the

available RAM. Example applications using the framework tend to require close to the

amount available, leaving an uncertainty whether the required functionality will be

implementable [4].

4

In coprocessor mode, commands are sent to the controller from the main processor.

The commands are handled by the controller’s BIOS software, which both reduces the

memory usage of the controller and the complexity of the main processor application

software by handling most of the low-level details of the USB host port. Only

commands and command related data needs to be transferred and stored on the

controller. This is the default configuration of the development board, and the one

selected for this project. The HPI bus, over which commands and data are transferred, is

described in Chapter 2.4.1. Commands and data structures are described in Chapter 3.2.

2.2.3. DVI Transmitter

To output the graphical user interface to an external monitor the Chrontel CH7301C

DVI Transmitter on the development board is used. The input is provided by a text-only

video controller IP core included in GRLIB implemented in the FPGA. The output is

connected to the DVI connector of the board, providing both digital and analog output.

Output resolutions up to 1920 × 1200 are possible [5], while the video controller IP core

only outputs a 640 × 480 signal with a 60 Hz refresh rate [6].

The DVI transmitter is configured using an I2C bus, which on the development board

also is shared with the DVI connector, as seen in Figure 2.1, enabling communication

with a connected monitor. The bus is controlled by the main processor using an I2C

master IP core; it is used to set up the input clock and data format, power up and enable

the transmitter. The monitor is not accessed through the I2C bus, support of the fixed

resolution is assumed.

2.3. GRLIB Template Design

The HDL design is based on Aeroflex Gaisler’s template design of GRLIB, version

1.1.0-b4104, for the development board used. The IP library is available under GNU

GPL. The design contains a LEON3 processor connected to an AMBA bus, and

supporting IP cores required for an embedded processor platform, such as clock

configuration, memory controller and debug link support [7]. GRLIB does also contain

a text-only VGA controller used as primary output for the prototype. The VGA

controller displays an array of 80 × 37 characters, and supports hardware assisted

scrolling by having a larger character buffer; when a non-displayed line is written to, the

hardware will scroll one line [6].

The LEON3 processor is expected to be able to run at up to 90 MHz on the FPGA [8].

The design is synthetized with a target speed of 80 MHz for processor and APB bus.

The GRLIB template configuration is mainly changed to use the text-only VGA IP core,

and to disable the Xilinx System ACE bus controller IP. The template design has also

been customized by adding HDL cores, described in the following chapter.

2.3.1. Customization

Two HDL cores have been added to the design, connected to the AMBA APB bus. The

two cores have been assigned to two free bus indexes and the additional FPGA pins

used have been added to the user constraint file. On the development board, most of the

FPGA pins connected to the HPI bus controlling the USB controller are shared with the

bus connecting the Xilinx System ACE controller device. The prototype application

does not need to access the System ACE device, and there is no need to implement a

5

bus arbiter when only one bus core is implemented. The top VHDL module of the

design has been modified to enable the HPI master only when the System ACE

controller has been disabled by the GRLIB design configuration tool.

2.4. Custom VHDL Cores

The custom cores are connected to the AMBA APB with 32-bit registers mapped into

the memory space of the LEON3 processor. The two cores are based on a basic bus

peripheral core that handles both bus reads and writes, and are extended with the

necessary logic to perform the intended functionality.

The design intention is to keep a balance between hardware complexity and

performance, where overall simplicity of both hardware and software is preferred. This

implies that an available general purpose I/O core is not optimal, since all processing is

done in software, causing unnecessary performance losses. Handling of one HPI bus

operation has been selected as a good balance in the case of the Host Port Interface bus

master. To handle more than one operation would require queuing of operations and

their results, which can be handled in software without a significant performance loss,

while the timing of individual data and control signals is hardware based for a single

bus operation.

2.4.1. Host Port Interface Bus Master

The Host Port Interface bus allows communication with a HPI slave device. The timing

and the interface are adjusted to those of the USB controller described in Chapter 2.2.2,

which is available on the development board. The HPI bus can run at up to 8 MHz,

providing a data rate of up to 16 MB/s due to the 16-bit wide data bus [3]. Table 2.1

summarizes the signals that the HPI bus consists of.

Table 2.1: HPI bus signals

Name Width Description

Data 16 Bi-directional 16-bit data bus

Address 2 HPI port register address, see Table 2.2

 1 Active-low chip select signal

 1 Active-low read enable signal

 1 Active-low write enable signal

Interrupt 1 Active-high interrupt signal from the slave

The HPI bus allows direct memory access of the slave-device’s memory. A DMA

operation is initiated by writing the 16-bit address to access to the HPI address register.

An arbitrary long sequence of only reads or only writes can then follow, using the HPI

data register. The address register is automatically incremented to the next 16-bit word

after each memory access. The HPI port register addresses are given in Table 2.2.

Table 2.2: HPI port register addresses

Address HPI port register

00b HPI data register

01b HPI mailbox register

10b HPI address register, write-only

11b HPI status register, read-only

6

Commands to the device’s BIOS are sent to the mailbox register, preceded by a DMA

transfer of any additional arguments. An available response is signaled by the interrupt

signal, and can be read from the mailbox register. The mailbox read operation will

automatically clear the interrupt signal. The interrupt status can also be checked by

reading the HPI status register.

The HPI bus master handles one data transfer at a time and ensures correct timing, as

long as it is connected to an APB bus running at 100 MHz at most. Lower bus

frequencies are supported, but the transfer rate is then lowered since it is related to the

APB bus clock frequency, due to implementation simplicity.

Table 2.3: HPI bus master registers

APB address offset Register

00h Status register (read)
Control register (write)

04h Reset register (write-only)

The HDL core is controlled by a control register and checked using a status register.

The registers are listed in Table 2.3. The reset register given in Table 2.6 is used to

perform a full device reset of the USB controller. Care needs to be taken to ensure

correct timing since the reset signal is forwarded to the slave device without any

additional logic. The HDL core can be tested by ensuring that the reset and busy flags in

the status register, defined in Table 2.4, are set properly during and after the reset.

Table 2.4: HPI Status register, read operation

31 30 29 28 24 23 22 16 15 0

Busy New data Interrupt Reserved Reset Reserved Data

Reserved Reads as zeros
Busy Set while the HPI master is busy or the reset flag is set,

cleared when a new command can be written to the control register
New data Set when the data from a HPI read operation is valid,

cleared on any write to the control register
Interrupt Forwards the U B controller’s interrupt output signal

Reset Set while the HPI reset signal is active
Data Last read 16-bit word from the HPI slave, valid when the new data flag is set

Table 2.5: HPI Control register, write operation

31 19 18 17 16 15 0

Reserved Data direction HPI address Data

Reserved Ignored, should be set to zeros
Data direction ‘0’: tart HPI write operation

‘1’: tart HPI read operation
HPI address HPI port register address, see Table 2.2

Data 16-bit word to write (ignored for HPI read operations)

The busy flag should be ensured to be low before any transfer is initiated by the

software, otherwise the transfer will be ignored. Table 2.5 lists the fields that should be

set in a single write operation to initiate a HPI transfer. Data direction and HPI port

address are always required, while the 16-bit data word only is necessary for HPI bus

7

writes. A HPI bus write does not require any more attention, other than verification that

the busy flag has been reset by the hardware before the next HPI transfer.

A HPI bus read will cause the new data flag of the status register to be set when the

read word is available in the status register. Care should be taken to also check the busy

flag before initiation of a new HPI transfer, since the read word is available slightly

before the HPI bus transaction is complete. The new data flag is cleared when the

control register is written.

Table 2.6: HPI Reset register, write-only

31 1 0

Reserved Reset

Reserved Ignored, should be set to zeros
Reset Active-high slave device reset signal control bit

2.4.2. User Input Device Buffer and Decoder

The VHDL implementation of the core to buffer and decode the signals from user input

device is designed to be simple. Input from keys and buttons are buffered one clock

cycle to synchronize the signals with the clock, and can then be read via the AMBA

bus. The user input device is described in Chapter 2.5. The two Gray coded inputs from

the dial are also synchronized, but are not directly accessible via the bus; instead a

toggling of one of them will cause a counter to increment or decrement, depending of

the corresponding Gray code state transition.

Table 2.7: User input device buffer and decoder registers

APB address offset Register

00h Key status register (read-only)

04h Dial counter register

To access the user input status from the processor, two registers can be read, with

address offsets given in Table 2.7. The key status register is a read-only bitmap

consisting of five active-high bits corresponding to keys. The layout of the key status

register is defined in Table 2.8.

Table 2.8: Key status register, read-only

31 7 6 5 4 3 2 1 0

Reserved Shutter AF Shift Reserved Return Enter

Reserved Reads as zeros
Shutter Reads as one while the shutter key is pressed

AF Reads as one while the autofocus key is pressed
Shift Reads as one while the shift key is pressed

Return Reads as one while the Return key is pressed
Enter Reads as one while the Enter key is pressed

The dial counter register keeps a signed value; the register can both be read and

written, as stated in Table 2.9. A bus read returns the current value of the counter, while

a bus write will subtract the written value from the counter. This implementation

ensures that any dial rotation will be included in the final value even if it occurs just

8

before or at the same time as a bus write operation, while keeping the software handling

the dial state simple.

Table 2.9: Dial counter register

31 0

Dial counter (sign extended)

Dial counter Reads the current value, sign extended to 32 bits
A written value is subtracted from the counter

The dial counter is implemented as an 8-bit wide signed counter, which is sign

extended to the bus width of 32 bits, during a bus read. In software, the counter register

should be handled as any 32-bit value, but with the understanding that it cannot handle

large values. During normal operation, the register should be checked at a regular basis

to ensure a smooth user experience, which also should be frequent enough to avoid any

overflowing of the internal counter.

The intended software handling of the dial counter register is to check for an absolute

value greater than or equal to a limit, a preconfigured resolution. While the test is false,

the dial has not been rotated enough; no further action should be taken by the software.

A rotation event is noticed by the software when the test becomes true; the sign of the

read value determines a clockwise or counter clockwise rotation. Finally, the counter

should be subtracted with the configured limit, but with the same sign as the read value,

in order to reset the counter. This method of reading the dial will introduce hysteresis, if

the division factor is at least two, avoiding repeated events with minimal movement of

the dial when just in between two positions.

2.5. User Input Device

The user input device is a custom design for the prototype, designed to be similar to the

user interface of the camera, which uses two dials to adjust settings. The input device

has a single dial that together with a shift key enables adjustment of a secondary setting.

There is also a combined autofocus and shutter button, of which the autofocus is

activated when pressed halfway. Finally, two keys are used to navigate between a few

operational modes of the remote control. The function of these keys, Enter and Return,

is displayed in the user interface. A photo of the input device is shown in Figure 2.2.

The dial is optically read using IR light and has no endpoints. The dial is encoded

using a 2-bit Gray code, which allows for detection of relative rotation, while only one

bit can change between any two positions. The current encoder disc used has 32

positions, thus repeating the 2-bit code pattern eight times, providing a resolution of

approximately 11°. Some variations of the effective width of the positions exist since

the encoder disc used is handcrafted. The noticeable differences can however be

reduced by reducing the effective resolution in software, to a more reasonable level; a

factor of three is currently used. At the same time, a potential problem of repeated

toggling between two positions can be avoided by introducing hysteresis in the software

implementation; see also Chapter 2.4.2, describing the software interface.

9

Figure 2.2: Photo of the user input device

The input device is connected to one of the expansion headers of the FPGA

development board by a 9-pin parallel connector, carrying power and digital signals. All

signals are connected to an open-drain type driver or equivalent on the device, to avoid

voltage level problems when connected to the FPGA. The FPGA is configured to enable

pull-up resistors for these pins. The schematic of the input device is shown in Figure

2.3. The three buttons is connected between signal line and ground without any

transistors, while both the dial and AF/shutter button is connected by a comparator chip

to output digital signals. The AF/shutter button is mechanical and custom built for the

prototype, it could however be replaced by an optical, while keeping the electronics.

Figure 2.3: Schematic of the user input device

Enter,
Return

Shift
Dial

AF/Shutter

+
–

+
–

+
–

+
–

1KΩ 1KΩ 1KΩ

1KΩ

68KΩ

10KΩ

10KΩ

10KΩ

10KΩ

330Ω

100KΩ
LM324

+5V

AF

Shutter

Dial, A

Dial, B

Shift

Enter

Return

–

NPN

10

3. Software

This chapter will describe the software running on the main processor. The software is

implemented in C as a standalone application, using standard libraries for memory

management and string processing and outputting for debug purposes. The software is

the limiting factor of the feature set of the Embedded Camera Remote Control, and

could be extended to support additional features or a wider range of devices.

3.1. HPI Bus Master Driver

The set of functions the HPI bus master driver consists of is adjusted to the targeted

USB Controller that is described in Chapter 2.2.2. The set contains simple functions to

read or write one of the HPI port registers, listed in Table 2.2, such as status and DMA

support registers. The functions ensure that the bus master core is ready for a new bus

transfer and returns any requested word when available.

The driver does also contain functions to read or write a block of consecutive bytes

using the DMA feature of the HPI bus, which is more suitable for a device driver

communicating with the slave device over the HPI bus. Only even addresses are

allowed as the targeted device only allows accesses aligned to its internal 16-bit word

memory layout. A block of an odd number of bytes is however allowed; the driver will

then perform a read-modify-write operation for the last byte in a block write operation,

or ignore writing the additional byte to the local memory for a block read operation.

Control registers of the USB controller that are mapped into the memory space cannot

be accessed directly using DMA. Instead, they can be accessed by BIOS commands sent

using the mailbox register and arguments via DMA. The driver hides the details and

provides functions with the same interface as single word read or write operations, with

the exception that a control register write operation takes an extra argument to specify

an ordinary write operation, a bitwise AND or bitwise OR operation.

3.2. Low-level USB Driver

The low-level USB driver handles data transfers using the USB protocol. The driver is

divided in two major layers. The first layer transfers commands to the USB controller

device that describes what USB request blocks it should send; this layer has to split

USB communication requests into commands and data blocks that are sent and received

over the HPI bus. The second layer uses the first one to setup and handle a connected

USB device. It handles both the setup phase of a device and supports data transfers over

USB requested by a high-level USB driver, like the MTP framework described in

Chapter 3.3.

The driver support is limited to full speed capable devices and only control and bulk

transfers for simplicity. Neither interrupt nor isochronous transfers are needed to

communicate with the camera. Support of interrupt transfers could be added to the

driver set by handling interrupt related errors and by requesting any interrupt data at the

regular interval defined by the device’s endpoint descriptor. An interrupt endpoint is

defined in the MTP standard as stated in Chapter 3.3, but is unused by the targeted

device.

11

3.2.1. USB Controller Driver

The lower layer of the low-level USB driver is developed with respect to the specific

USB controller used. It includes functions to reset and initiate the controller to operate

as a USB host, and to power on the USB port connecting the camera. It does also

contain a memory allocation function used internally, which ensures that temporary

commands and data sent to and stored on the controller will not overlap, using a circular

buffer strategy. The allocation function will also ensure that a data block only will be

allocated to begin with an even address, to meet the requirements of the bus master of

the 16-bit wide HPI bus.

Commands and USB data to send or receive are sent to the USB controller as a linked

list of transfer descriptors, with a pointer to the data [9]. A TD list element contains all

information the BIOS of the controller needs in order to perform a USB transaction. A

transaction contains three packets in general; it begins with a token packet such as

SETUP, IN or OUT, which is followed by a data packet and finally a handshake packet

[10] (also simplified in [11]). The BIOS will handle handshaking and some errors, while

some errors remain for the driver to handle, such as a retransmission or when an

unexpected amount of bytes have been received. The driver checks the result by reading

status fields of the TD elements that is updated by the BIOS after transmission.

The TD element format is given in Table 3.1; the internal data structure format is

similar, but has additional pointers to main memory objects. Before sending a TD list to

the controller, it is built when the upper layer driver is queuing communication requests.

When the list is ready it is transferred together with related data to the USB controller,

the address of the first list element is then written to an address checked by the BIOS.

The BIOS will execute the operations given in the list and will finally signal completion

by raising an interrupt signal. The driver will read status fields in the TD elements,

transfers with retryable errors are rescheduled and any received data is finally copied

from the controller to specified buffers in main memory.

Table 3.1: TD list element format

Offset Width (bits) Field Description

00h 16 Base address Pointer to data buffer

02h 16 Port/Length USB port number and data length

04h 8 PID/EP PID of initial packet and target endpoint

05h 8 Device address Target device address

06h 8 Control Control bitmap

07h 8 Status Transaction status, set by BIOS

08h 8 Retry cnt, etc. Retry counter, USB transfer type and active flag,
updated by BIOS

09h 8 Residue Residue after transfer, set by BIOS

0Ah 16 Next TD ptr. Pointer to next TD list element

3.2.2. USB Support

The upper layer of the driver handles the setup phase of a USB device and allows

transfers of blocks of arbitrary data to or from a specified endpoint. The setup phase

includes functions to request the device descriptor that describes basic device properties

like the device class and manufacturer, and the configuration descriptor describing

available interfaces and especially their endpoints. The setup functions will store read

12

descriptor fields in a few linked data structures with a similar format as the descriptors;

a simplified view is given in Figure 3.1. Most data substructures have a pointer to the

main data structure, the device descriptor; this allows the driver to access necessary

fields when a data substructure, such as an endpoint descriptor, is given as an argument

to a function.

Figure 3.1: Simplified descriptor data structure format

The driver does also have a function to automatically setup a device, which will return

a device descriptor data structure that can be used by a high-level communication

driver. To simplify the high-level implementation, the driver provides search functions

that given a data structure will return the class or protocol of the device, or an endpoint

of the current interface according to specified endpoint type and data direction. The

class and protocol can be used to select a proper high-level driver, while matching

endpoints are used to specify the source or target in data communication controlled by

the high-level driver.

3.3. MTP Framework

Media Transfer Protocol is a standard protocol for media devices; it is based on and

extends the Picture Transfer Protocol, PTP, designed for communication with imaging

devices such as cameras. MTP extends the defined set of commands, events and

properties to allow access to features of modern media devices.

Communication using MTP is based on transactions that are initiated by the host. Each

transaction consists of a request container sent by the host, an optional data container

Device Descriptor
- Device address
- Device descriptor fields (class, protocol, IDs, etc.)
- Pointer to control endpoint array (IN and OUT)
- Pointer to current endpoint array (if configured)
- Pointer to configuration descriptor

Configuration Descriptor
- Pointer to device descriptor (main data structure)
- Configuration descriptor fields (number of interfaces, max power, etc.)
- Pointer to interface descriptor list
- Pointer to active interface (if configured)

Interface Descriptor
- Interface descriptor fields (interface number, class, protocol, etc.)
- Pointer to endpoint array
- Pointer to next interface descriptor (linked list pointer)

Endpoint Descriptor
- Pointer to device descriptor (main data structure)
- Endpoint descriptor fields

(Endpoint address and type, max packet size, etc.)
- Pointer to endpoint array

13

sent or received by the host depending on the request, and a response container received

from the device. Both the request and response containers may contain up to five 32-bit

arguments, while the length of the data container only is limited by the current request

and its data format. The containers share a common structure that is shown in Table 3.2;

fields are transferred least significant byte first. [12]

Table 3.2: MTP Container format

Offset Width (bits) Field Description

00h 32 Container size Total size of container including the head

04h 16 Container type Type of container (request, data or response)

06h 16 Code Operation or response code

08h 32 Transaction ID ID starting from zero, incremented each transaction

0Ch N/A Payload Data payload or up to five 32-bit parameters

The device can send events using a mandatory USB interrupt endpoint defined in the

standard. However, analysis of the DSLR communication has indicated that the camera

never signals any event using the USB interrupt endpoint; instead a special request

command is used to query the camera for events and corresponding data. Thus, support

for checking the interrupt endpoint for data is not required for the targeted camera and

has not been implemented.

The Media Transfer Protocol framework implemented consists of an initiation

function that sets up internal variables and prepares a MTP session, based on a USB

device description structure provided by the low-level USB driver. It does also contain

functions to format and transfer a transaction by its containers; functions are available to

send a request container, send or receive a data container and receive a response

container. It is assumed that the function are called in a valid order and the caller is

responsible of the informative payload data, while the framework will add and handle

required MTP fields such as length and transaction number. The operation code given in

the call to the request function will be reused during that transaction.

3.4. High-level Protocol

The high-level protocol used by recent Canon DSLRs is MTP, which is described in

Chapter 3.3. Most necessary commands and properties are defined in the standard;

however, the camera is mainly using vendor specific commands and properties. Also,

events are received using an active polling command that will return a list of any

changed properties or other events.

The vendor specific commands and properties are partly documented by third party

sources. The documentation, together with further analysis of recorded USB

communication between the camera and a PC, have yielded enough information to

control most of the basic features of the camera; enough for a prototype implementation.

The analysis has mainly been performed prior to the project, and a C# program has been

developed to convert recorded log-files into a text file of MTP transactions with parsed

commands, properties and values. Some further analysis has been performed with the

help of the developed prototype platform.

The high-level protocol is centered on properties and uses a few commands to get

updated properties, set a property and control AF and shutter. A main focus of the driver

is to parse and store current and available property settings. Properties do generally

14

belong to a type that defines the data format. The most common type is the one for

value properties, which are used for properties such as aperture value, shutter speed and

white balance. A value is 32-bit wide, holds a signed, unsigned or enumeration value. A

value property does also contain a list of currently available values, such as aperture

values that depend on the lens attached, mode dial setting and camera configuration. An

empty list signals that no setting can be set, which could apply when, for an example,

the aperture value is set automatically by the camera when in shutter priority mode.

Other property types are string data that could hold user and lens name, and an AF

information dataset describing where in the frame AF points are located and which ones

are enabled or have achieved focus. There is also a type for image quality, which like

the value type includes a list of available settings. The current camera date and time is

given as a value type property, in seconds since a common offset date. When the time

property is received it needs to be handled specially, since the local time value at

reception also needs to be stored to be able to compute the current time later.

The camera sends the current value and a list of available properties separately using

two different preceding event codes; they may be included in the same list of events.

The split and use of different codes implies that all properties could have a list of

available settings; however it is not applicable for some properties such as a name.

There are also other event codes, some signaling that the camera will enter sleep mode

in a specified amount of seconds, or has cancelled it, when the host for example sets a

property. Currently, the remote control will abort the sleep mode by sending a property

updating command.

3.5. Text-based Graphics Driver

The text-only VGA IP core has a text buffer that stores the current screen and also

offers hardware assisted scrolling. The implemented driver does not explicitly support

scrolling and assumes that all characters are written within the visible area. The

hardware supported scrolling feature can however be used and be explicitly controlled

by the application.

The driver has a limited set of features. The main features are to set a write position

and to write a string of characters, optionally terminated by an added line break. The

driver will place text that is split over several lines, so it starts from the column

specified by the last write position setting. The driver does also support clearing of

specified lines, or a specified rectangular area. It is also possible to draw a rectangle

border.

The driver will immediately write characters to the hardware core without any double

buffering, which could result in some flickering if an area is repeatedly cleared and

written to. To avoid flicker, the text can be overwritten without clearing in between.

3.6. Application

The main application consists of two major parts, the user interface and the control logic

behind it. The graphical user interface is text-based and displays common settings in a

main area, while a settings area below shows the current mode of user interactivity. The

user interface is described in Chapter 3.6.1. The application has a separate C-module

that handles text formatting related to the high-level protocol, which is a key component

when outputting text to the GUI.

15

The control logic relates to the user interface since a major task is to support the

current settings mode and handle operations and changes requested by the user. The

control logic relies on the drivers developed, especially the high-level protocol that

handles all communication with the camera.

The application is implemented without any interrupt service routine; instead, an

active polling approach has been chosen. Tasks that need to be performed regularly

include USB communication that mainly involves querying the camera about any recent

events, checking for and handle user input, handle a started timer operation and finally

update the graphical user interface when required. These tasks do not have any critical

time limit for response times and does generally not take very long to complete. The

sequential approach will also ensure that a high-level communication operation is

completed before any further operation is started.

The USB communication will typically be the limiting factor in terms of response

time, since it is implemented as a blocking I/O operation in the drivers. A high-level

MTP transaction contains up to three USB I/O operations, which each takes time to

generate and send low-level data to the USB controller, time for the USB transfer, and

time to check status including possible retransmissions. The update rate is still high

enough to not be noticeable in the general case; the event querying rate may even be

reduced in order to lower the idle load at the camera to possibly extend battery life. One

USB operation that may cause a short lockup is the AF activation command, which the

camera will not respond to until focus is achieved or has failed. However, no

communication can be performed meanwhile, leaving few possibilities independent of

implementation.

The application contains some code to support debugging, testing and analysis of the

high-level protocol. It includes a possibility to enable printing of triggered events

received from the camera and printing of their data if wanted. All debug support need a

debug connection to receive character coded commands to enable or disable features

and to print the debug output. By default most features are disabled and won’t be

noticed without a PC connection.

The application is stored in an onboard flash memory. The application is loaded and

decompressed using a boot loader program. The boot loader has been generated by

Aeroflex Gaisler’s MKPROM2 boot PROM builder, which also can compress the

application executive.

3.6.1. User Interface

The graphical user interface consists of two main areas; one area displays current values

of common properties, with the most common at its top line. The layout is unchanged

independent of the current mode or camera settings, but some fields may not apply and

are then blanked out. The second area is a settings area displaying what settings

currently can be set. The settings area reflects the current mode of operation. There is

also a navigation legend located right of the main areas, displaying current functions of

the Enter and Return keys, as well as the shutter button in timer mode. The GUI in

default operation mode is shown in Figure 3.2, with each field and area named.

Due to limitations in the character set available, some of the camera’s symbols might

not be as comprehensive as desired; after some time getting used to the character

combinations used, most is expected to be understandable, especially when considering

16

the limited number of symbols in total. For a description of the symbols, the camera’s

user manual should be referred to.

In the default mode, which is entered when a supported device is connected, up to two

properties can be adjusted. The input dial is rotated to increase or decrease the primary

value or the secondary value while the shift key is pressed. The properties available

depend on the mode dial setting on the camera, and correspond to the camera’s main

and secondary dials. The current, previous and next values are shown, the step size is

the one configured on camera, typically in increments of one third or one half of a stop.

The settings area in default mode is shown in the bottom half of Figure 3.2.

Figure 3.2: User interface in default mode

From the default mode, both timer mode and property setting mode can be selected

using the Return and Enter navigation keys, correspondingly. From either of the two

modes it is only possible to return to the default mode. The property setting mode is

similar to the default mode; a property can be changed as the primary setting in the

default mode, while the secondary property is replaced by selection of a property. An

example of the settings area is shown in Figure 3.3. The set of properties available is

configurable in the application by adding their codes to a list. The properties available

for adjustment are ISO speed, white balance with an additional color temperature

property available just when manual color temperature has been selected, drive mode

and metering mode. AF mode is also available, but the camera will generally not accept

its property change command; changing is still possible on camera. Some properties and

also the property list is circular, while a property like ISO speed has a minimum and

maximum value, as illustrated in the bottom line of Figure 3.2 for the aperture value.

| M | 25 | F2.8 | ISO 400 | { ///] | ----------------------------

|---------------------------------------| | Enter: Set property mode |

| +0 1/3 | Auto WB | - | | Return: Enter timer mode |

|---------------------------| - - | | |

| [(+)] | [] | - O - | ----------------------------

|---------------------------| - - |

| RAW + L Fine (861) | - |

|---------------------------| |

| 2011-05-30 16:43:05 | One Shot |

| < Shutter speed > |

| 20 25 30 |

| |

| (Aperture) > |

| F2.8 F3.2 |

Mode dial

Shutter speed

Aperture value

ISO speed

Battery power

AF points

AF mode

Navigation legend

Settings Area: Default mode

Primary setting with previous,
current and next value

Secondary setting

Date & time

Image quality & remaining shots

White balance Drive mode

M
et

er
in

g
m

o
d

e
Ex

p
o

su
re

 c
o

m
p

en
sa

ti
o

n

17

Figure 3.3: Settings area in set property mode

The timer mode has up to five settings depending on the camera settings. All possible

settings are shown in Figure 3.4. A cursor that selects a value is controlled by the dial; a

selected value can also be incremented or decremented by turning the dial while

pressing the shift key. To change a value one can also press the Enter key; the selected

value will then be changeable in three parts, typically in hours, minutes and seconds.

This is shown in Figure 3.5. The selected part is underlined and the value changed by

rotating the dial, while the selected part is selected while the shift key is pressed. To

return to the selection of a value, press Return.

Figure 3.4: Settings area in timer mode (value selection)

Initial AF can be enabled or disabled, if AF is possible with camera and lens

configuration. If disabled, no focus movement will be performed, allowing a preset

focus which also will avoid any additional delay due to a long focusing time. The initial

delay is counted down before the first exposure is started; if initial AF is enabled it will

be started a few seconds before the first exposure. The bulb exposure time controls the

exposure time in seconds when the camera is set to Bulb mode. The delay between

exposures has to be long enough so the camera is ready for a new exposure. The value is

especially important when the camera is set to automatically take a second dark

exposure, with the shutter closed, to reduce sensor noise in the main exposure. The

exposure count can be set to a huge value; however, the user should ensure that battery

life and free memory card space are enough for the exposure session to complete.

| | |

| < ISO speed > |

| ISO 200 ISO 400 ISO 800 |

| |

| < (shift) > |

| AF mode White balance |

Current setting

Previous & next settings

| | |

| Timer: |

| Initial AF on |

| > Initial delay 00:00:30 |

| Bulb exposure time 00:01:30 |

| Delay between exp. 00:00:30 |

| Exposure count 00005 |

| |

| Shift: inc/dec value |

| |

Selected value

18

Figure 3.5: Settings area in timer mode (set value)

To start a timer operation the shutter button should be pressed completely. The values

will begin to count down one at a time during the timed shooting, until all exposures are

completed. It is possible to break a timer operation by pressing the Return key. The

navigation legend is updated with relevant information at all times.

3.6.2. Usage Examples

A time-lapse exposure example is shown in Figure 3.6; a frame is taken every ten

seconds, but only one in fifty is included in the figure. Manual exposure has been set

and all frames have been exposed the same, leading to a time-lapse that fades to black

over time. To capture a similar time-lapse exposure, the aperture value, exposure time

and ISO speed together with any other settings should be set using the remote control in

default and property setting mode, or be set on the camera, which should be in Manual

or Bulb mode. The remote control should then be set to timer mode, and especially the

delay between exposures and the exposure count need be configured; a delay of ten

seconds have been used in the example, which consist of approximately 350 frames.

The exposure count can be set with a margin since it is possible to abort a timer

operation.

Figure 3.6: Time-lapse exposure of sunset

| | |

| Timer: |

| Initial AF on |

| > Initial delay 00:00:30 |

| Bulb exposure time 00:01:30 |

| Delay between exp. 00:00:30 |

| Exposure count 00005 |

| |

| Set value: 00:00:30 |

| Shift: < == > |

Selected value

Selected subpart

19

To take a preconfigured long exposure, the camera needs to be set to Bulb mode. The

exposure level is set manually by setting the aperture value and ISO speed, and by

setting the exposure time in the timer mode of the remote control. If only one exposure

should be taken, the exposure count should be set to one, while the time between

exposures can be ignored. An example photo is shown in Figure 3.7; an exposure time

of four minutes has been chosen for some motion blur of the clouds and the sea. A

smaller aperture value has been chosen to increase the depth of field, and the base ISO

speed of 100 has been selected for minimum noise; both these settings require a long

exposure time for correct exposure in a low light condition.

No guidance about correct exposure level is available in Bulb mode; the user should

rely on light metering available in other camera modes or use an external light meter.

Experimenting by taking test shots is another possibility, but will introduce some setup

time to find a good exposure value.

Figure 3.7: Long exposure of a late evening sky

20

4. Conclusion

An embedded camera remote control prototype has been developed and is described in

this report. A template hardware platform has been customized during the project and

developed communication cores have been added to the design. To more resemble a

remote control, and to give a better view of how a remote control product might be

controlled, a custom input device has been built.

The hardware platform provides the features and performance needed for the remote

control. The platform will support additional features as long as the computational and

USB bandwidth demands are limited, such as for features related to properties. The

prototype platform is however not suitable for field usage since it is relatively large and

sensitive, and especially since an external monitor is required.

In order to make a user friendly product, the development platform needs to be

replaced by a much smaller custom one. Also, the external monitor has to be replaced

by a display integrated into the remote control. The text-based GUI would be necessary

to replace with a pixel-based one, which could display camera symbols correctly.

The software includes both drivers customized to the hardware used, and more general

software, such as the main application, and some high-level drivers. The feature set of

the remote control is limited by the software, but includes most settings that can be

expected to be practical to access remotely. The timer module extends the in-camera

features, enabling preconfigured long exposure times and time-lapse exposures, for

example.

Depending on the user, the available timer settings may not be enough; no settings can

be changed during a started timer operation. Settings that would be good to be

configurable to automatically change during a timer operation are the exposure settings:

aperture value, shutter speed and ISO speed. If the camera is set to a mode in which it

automatically will set the exposure level, it will adjust to changing light conditions; but

it will result in some noticeable flicker in a final time-lapse exposure during playback,

due to some noise in the light and light metering, unless compensated for in post-

processing.

A more advanced feature that would be practical during long time-lapse exposures

would be to low-pass filter the exposure value to support varying light conditions, like a

sunset. However, the camera limits this feature since it does not send any exposure level

value in manual mode, but displays it on the camera. The feature could possibly be

implemented if camera support would be added in a future firmware update.

Another solution could be to configure both initial and final exposure values, which

can be useful when the light changes evenly over time. This solution could also be used

when taking high dynamic range, HDR, photos, where several differently exposed shots

are merged together to allow high contrast scenes to be captured without any under- or

overexposed areas in the final image.

The prototype does not support more advanced settings, like the camera’s custom

functions that for example can enable or disable mirror lockup, which reduces camera

shaking when mounted on a tripod, by releasing the mirror a few seconds before the

exposure is started. This implies that the remote control prototype does not handle the

case when mirror lockup is enabled in any special way, during a timer operation; the

combination has not been tested. The manufacturer’s PC software does not allow timer

21

configuration when mirror lockup is enabled, in comparison. The software could be

updated with an option for mirror lockup, possibly with an option for the time before

the exposure, similar to the initial AF option.

The prototype remote control does only support shooting when the image could be

seen through the viewfinder. The camera can also be controlled by a PC in live view

mode, where the image is forwarded from the sensor to the PC. The high-level protocol

related to live view mode has not been analyzed; thus, the video stream compression

algorithm is unknown. Handling live view mode has been outside the scope of this

project; still, common settings can be accessed and exposures be taken when the camera

is manually set to live view mode. The live view image is then displayed on the camera

monitor, or on an externally connected monitor.

If more advanced features should be implementable in software, like image and video

stream displaying, the hardware design will have to be extended and changed. More

computational power could be provided by, for example, a video decompression

hardware core to accelerate the software implementation and to balance the power

consumption, by reducing requirements of the main processor. A Hi-Speed USB

connection would likely be required to provide enough bandwidth to transfer the live

view video stream. Also, color graphics with a reasonable high resolution and quality

would be required.

An advanced camera remote control with timer support in a portable format is

currently missing on the market, while products making use of the USB connectivity

begin to enter. Similar products will probably be available within the next few years.

The portion of photographers that will benefit from an advanced remote control is

probably dependent on the size and feature set, which may contradict each other in

some circumstances. A classical remote shutter control will probably still be handy in

many cases, while a wider feature set is better in other.

 For some potential users, such as hobby photographers, the price may be an important

factor. The end-user cost could be reduced by using existing hardware, such as portable

devices with USB host support, on which an application could enable most features.

However, a custom product may still be preferable when an uninterrupted shooting

session is desired or when in worse weather conditions.

22

References

[1] Xilinx, Inc., "ML505/ML506/ML507 Evaluation Platform: User Guide, ver. 3.1.2,"

16 June 2011. [Online]. Available: http://www.xilinx.com/support/documentation/

boards_and_kits/ug347.pdf. [Accessed July 2011].

[2] Xilinx, Inc., "Virtex-5 Family Overview, ver. 5.0," 6 February 2009. [Online].

Available: http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf.

[Accessed July 2011].

[3] Cypress Semiconductor Corporation, "CY7C67300 EZ-Host™ Programmable

Embedded USB Host and Peripheral Controller with Automotive AEC Grade

Support, rev. K," 5 July 2011. [Online]. Available: http://www.cypress.com/

?docID=30079. [Accessed July 2011].

[4] J. Hyde, "USB Multi-Role Device Design By Example," 2003. [Online]. Available:

http://www.usb-by-example.com/Multi-Role.pdf. [Accessed July 2011].

[5] Chrontel, Inc., "CH7301C DVI Transmitter Device, rev. 1.5," 17 March 2010.

[Online]. Available: http://www.chrontel.com/pdf/7301ds.pdf. [Accessed July

2011].

[6] Aeroflex Gaisler, "GRLIB IP Core User’s Manual, ver. 1.1.0 B4108," 28 June

2011. [Online]. Available: http://www.gaisler.com/products/grlib/grip.pdf.

[Accessed July 2011].

[7] Aeroflex Gaisler, "GRLIB IP Library User’s Manual, ver. 1.1.0 B4108," 28 June

2011. [Online]. Available: http://www.gaisler.com/products/grlib/grlib.pdf.

[Accessed July 2011].

[8] Aeroflex Gaisler, "GRLIB/LEON3 Readme for Xilinx ML509, ver. 1.1.0 B4108,"

28 June 2011. [Online]. Available: http://www.gaisler.com/products/grlib/

grlib-gpl-1.1.0-b4108.zip (grlib-gpl-1.1.0-b4108\designs\leon3-xilinx-ml509\

README.txt). [Accessed July 2011].

[9] Cypress, Inc., "BIOS User’s Manual, ver. 1.1," 2003. [Online]. Available:

http://www.cypress.com/?docID=14346. [Accessed July 2011].

[10] Compaq Computer Corporation, et al., "Universal Serial Bus Specification, rev.

2.0," 27 April 2000. [Online]. Available: http://www.usb.org/developers/docs/

usb_20_071411.zip (usb_20_071411\usb_20.pdf). [Accessed July 2011].

[11] MQP Electronics Ltd., "USB Made Simple," [Online]. Available:

http://www.usbmadesimple.co.uk/index.html. [Accessed July 2011].

[12] Microsoft Corporation, "Media Transfer Protocol Enhanced, rev. 0.96," 31 August

2006. [Online]. Available: http://www.microsoft.com/download/en/

details.aspx?id=19678. [Accessed July 2011].

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1. Introduction
	2. Hardware
	2.1. Hardware Overview
	2.2. Development Board
	2.2.1. FPGA
	2.2.2. USB Controller
	2.2.3. DVI Transmitter

	2.3. GRLIB Template Design
	2.3.1. Customization

	2.4. Custom VHDL Cores
	2.4.1. Host Port Interface Bus Master
	2.4.2. User Input Device Buffer and Decoder

	2.5. User Input Device

	3. Software
	3.1. HPI Bus Master Driver
	3.2. Low-level USB Driver
	3.2.1. USB Controller Driver
	3.2.2. USB Support

	3.3. MTP Framework
	3.4. High-level Protocol
	3.5. Text-based Graphics Driver
	3.6. Application
	3.6.1. User Interface
	3.6.2. Usage Examples

	4. Conclusion
	References

