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Abstract 

Modern digital single-lens reflex cameras allow remote control access via a 

bidirectional digital interface, as well as a unidirectional remote shutter control 

interface. Available products use the unidirectional interface that only allows control of 

autofocus and shutter, while a PC is required to access any of the camera’s settings 

remotely. 

This report describes a prototype implementation of an advanced remote control that 

uses bidirectional digital communication over USB to access and change common 

settings. The prototype is developed to support Canon DSLRs, and is tested with an 

EOS 5D mark II camera. 

Hardware and software have been developed; the hardware is based on a template 

design. The prototype is implemented on an FPGA development board. A custom input 

device has been developed as primary input to the remote control prototype. 
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1. Introduction 

Modern digital single-lens reflex cameras, DSLRs, can to a large extent be controlled 

from a PC using USB. While a PC can be suitable in a studio environment, a custom 

product may be more practical in the field. User interface, size and battery life are 

parameters that can be tuned to provide an easy to bring and use advanced remote 

control, providing access to most features available in the DSLR without risking camera 

shake or movement. The in-camera features are extended by a timer module to allow 

time-lapse and preconfigured long exposures, adjusted to the current camera settings. 

Mainly exposure related settings are expected to be useful to control remotely. These 

include the shutter speed which controls the exposure time, the ISO speed which 

determines the light sensitivity of the sensor and the aperture value. The aperture value 

controls the light opening of the lens; a large opening allows a greater light transfer and 

will also narrow the depth of field, while a smaller light opening will extend the in-

focus distance range. Another key setting is the white balance, which compensates for 

differences in color content of the light source, like the sun or a light bulb. 

Compared to a classical remote shutter control, the developed remote control does also 

allow access to the settings described above, and will display information about other 

settings like the selected image quality. The timer feature is shared with a Canon remote 

shutter control with timer support; however, it cannot access any camera settings and its 

user interface is limited by a display showing only one value at a time. The 

manufacturer’s PC software allows access to most camera settings, which has been used 

as a reference during the project in terms of possible features and protocol details. 

Recently, other USB connected remote controls have been announced. One targets 

videographers by primarily allowing control of the lens’ autofocus motor, which allows 

smoother focusing than manual adjustment of the lens. It does also allow control of a 

few settings, but with a limited user interface. A beta version of a coming application 

for Android mobile devices provides a similar set of features as the developed remote 

control, but may not be suitable for all scenarios or users, as discussed in Chapter 4. 

A prototype has been developed, rather than an end-user product that especially would 

require integration of all hardware components into a user-friendly product. Also, the 

feature set and range of tested and supported devices can be made wider to make a more 

competitive product. Such requirements are beyond the scope of this project, which 

focus on a basic application with drivers running on an embedded processor platform. 

The project includes both hardware and software development, with an emphasis of 

low-level software and some application features. 

The prototype is developed for and tested with a Canon EOS 5D mark II digital single-

lens reflex camera. Analysis of the high-level protocol has mainly been done prior to the 

project, while some additional analysis and testing have been done using the embedded 

platform. Basic comparison of the protocol of a few other Canon DSLR camera models 

has shown minor differences compared to the tested DSLR, implying a likelihood of the 

prototype supporting those; however, none of them has been tested and minor 

adjustments may be required for full support. 

This report will describe the hardware used and implemented, in Chapter 2. The 

software running on top, including hardware drivers, will be described in Chapter 3. A 

conclusion of the project will be given in Chapter 4. 
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2. Hardware 

This chapter will describe the hardware of the Embedded Camera Remote Control, and 

to some extent driver considerations. The remote control prototype is implemented on 

an FPGA development board, based on a HDL template design. It uses external user 

input and output devices, and can be connected to a PC for programming and debug 

support. 

2.1. Hardware Overview 

The hardware is based on a template design of Aeroflex Gaisler’s GRLIB with a 

LEON3 processor. The design is implemented on an FPGA development board. It has 

been customized to include two communication VHDL cores developed during the 

project, described in Chapter 2.4. A simplified overview of the remote control prototype 

is shown in Figure 2.1, where the custom cores are marked with dotted boxes. 

 

Figure 2.1: Simplified hardware overview 

The DSLR camera is a Hi-Speed USB 2.0 device, which is connected to a USB host 

port. The port is controlled by a full speed USB 2.0 controller available on the 

development board. This will reduce the maximum bandwidth to 12 Mb/s, including 

protocol overheads. The transferred data consists of commands and responses that do 

not require high bandwidth, implying only a limited performance loss with the setup 

compared to if a Hi-Speed USB host controller would have been used. The main 

processor communicates with the USB controller over a HPI bus, via a bus master 

VHDL core developed during the project. 

The user interface of the prototype is, due to simplicity, split into an input system and 

an output system; an external monitor can then be used. User input from a custom built 

prototype input device, described in Chapter 2.5, is read using a developed VHDL core 

that buffers and decodes the signals. The graphical output is generated by a text-only IP 

core, transmitted to a monitor using an onboard DVI transmitter. The prototype can also 
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be controlled and programmed using the debug link, either with a UART or a JTAG 

connection to a PC with Aeroflex Gaisler’s GRMON software. 

2.2. Development Board 

The development board used is Xilinx ML509, featuring a Xilinx Virtex-5 series FPGA, 

while sharing other features with the Xilinx ML505 board [1]. The board includes 

additional components required for an embedded processor platform, such as clock 

generator, reset and FPGA configuration support using a Xilinx System ACE device; 

SRAM, DDR2 SDRAM and flash memories for storing FPGA configurations and other 

data as software programs. Both FPGA configuration and software are stored on two 

flash memories and loaded when the board is powered up. 

The board does also have several devices and connectors for external I/O, which can 

be controlled by the FPGA. Of the board’s features, the USB controller and a DVI 

graphics transmitter are especially important for the remote control prototype, which 

will be described in the following chapters. 

2.2.1. FPGA 

The FPGA available on the development board is a Virtex-5 XC5VLX110T. The FPGA 

is designed for high-performance logic and includes serial communication hardware 

blocks, such as a PCI Express endpoint and Ethernet MACs [2], which are unused by 

the remote control. The FPGA contains enough logic slices and user I/O pins to support 

the HDL design.  

2.2.2. USB Controller 

The onboard USB controller is a Cypress CY7C67300 device, supporting USB 2.0 at 

low or full speed [3]. The controller supports up to four peripheral USB ports or two 

host ports, using two serial interface engines. Only one host port, which is used to 

communicate with the camera, and one peripheral port are connected to the 

development board’s external connectors. 

 The USB controller has an embedded 16-bit processor, with approximately 15 kB of 

user available RAM. External RAM or ROM memory can be mapped into to the 

memory space; however, none is available on the development board. The controller 

boots into one of four different modes, depending on the logic level of two pins after a 

reset. The mode is hardwired on the development board and is set to standalone 

operation, in which the controller is further configured by reading an onboard 

EEPROM. The other three modes are all coprocessor operation mode, but with different 

interfaces to the main processor. The development board ships with a preprogrammed 

EEPROM configuration that will enable coprocessor operation via the Host Port 

Interface bus, while the standalone mode remains as a possibility. 

In standalone mode the controller executes a program with data that has been copied 

from the EEPROM during booting. Cypress provides both development tools and a 

software framework containing USB support routines. The limiting factor is the 

available RAM. Example applications using the framework tend to require close to the 

amount available, leaving an uncertainty whether the required functionality will be 

implementable [4]. 
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In coprocessor mode, commands are sent to the controller from the main processor. 

The commands are handled by the controller’s BIOS software, which both reduces the 

memory usage of the controller and the complexity of the main processor application 

software by handling most of the low-level details of the USB host port. Only 

commands and command related data needs to be transferred and stored on the 

controller. This is the default configuration of the development board, and the one 

selected for this project. The HPI bus, over which commands and data are transferred, is 

described in Chapter 2.4.1. Commands and data structures are described in Chapter 3.2. 

2.2.3. DVI Transmitter 

To output the graphical user interface to an external monitor the Chrontel CH7301C 

DVI Transmitter on the development board is used. The input is provided by a text-only 

video controller IP core included in GRLIB implemented in the FPGA. The output is 

connected to the DVI connector of the board, providing both digital and analog output. 

Output resolutions up to 1920 × 1200 are possible [5], while the video controller IP core 

only outputs a 640 × 480 signal with a 60 Hz refresh rate [6]. 

The DVI transmitter is configured using an I2C bus, which on the development board 

also is shared with the DVI connector, as seen in Figure 2.1, enabling communication 

with a connected monitor. The bus is controlled by the main processor using an I2C 

master IP core; it is used to set up the input clock and data format, power up and enable 

the transmitter. The monitor is not accessed through the I2C bus, support of the fixed 

resolution is assumed. 

2.3. GRLIB Template Design 

The HDL design is based on Aeroflex Gaisler’s template design of GRLIB, version 

1.1.0-b4104, for the development board used. The IP library is available under GNU 

GPL. The design contains a LEON3 processor connected to an AMBA bus, and 

supporting IP cores required for an embedded processor platform, such as clock 

configuration, memory controller and debug link support [7]. GRLIB does also contain 

a text-only VGA controller used as primary output for the prototype. The VGA 

controller displays an array of 80 × 37 characters, and supports hardware assisted 

scrolling by having a larger character buffer; when a non-displayed line is written to, the 

hardware will scroll one line [6]. 

The LEON3 processor is expected to be able to run at up to 90 MHz on the FPGA [8]. 

The design is synthetized with a target speed of 80 MHz for processor and APB bus. 

The GRLIB template configuration is mainly changed to use the text-only VGA IP core, 

and to disable the Xilinx System ACE bus controller IP. The template design has also 

been customized by adding HDL cores, described in the following chapter. 

2.3.1. Customization 

Two HDL cores have been added to the design, connected to the AMBA APB bus. The 

two cores have been assigned to two free bus indexes and the additional FPGA pins 

used have been added to the user constraint file. On the development board, most of the 

FPGA pins connected to the HPI bus controlling the USB controller are shared with the 

bus connecting the Xilinx System ACE controller device. The prototype application 

does not need to access the System ACE device, and there is no need to implement a 
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bus arbiter when only one bus core is implemented. The top VHDL module of the 

design has been modified to enable the HPI master only when the System ACE 

controller has been disabled by the GRLIB design configuration tool. 

2.4. Custom VHDL Cores 

The custom cores are connected to the AMBA APB with 32-bit registers mapped into 

the memory space of the LEON3 processor. The two cores are based on a basic bus 

peripheral core that handles both bus reads and writes, and are extended with the 

necessary logic to perform the intended functionality. 

The design intention is to keep a balance between hardware complexity and 

performance, where overall simplicity of both hardware and software is preferred. This 

implies that an available general purpose I/O core is not optimal, since all processing is 

done in software, causing unnecessary performance losses. Handling of one HPI bus 

operation has been selected as a good balance in the case of the Host Port Interface bus 

master. To handle more than one operation would require queuing of operations and 

their results, which can be handled in software without a significant performance loss, 

while the timing of individual data and control signals is hardware based for a single 

bus operation. 

2.4.1. Host Port Interface Bus Master 

The Host Port Interface bus allows communication with a HPI slave device. The timing 

and the interface are adjusted to those of the USB controller described in Chapter 2.2.2, 

which is available on the development board. The HPI bus can run at up to 8 MHz, 

providing a data rate of up to 16 MB/s due to the 16-bit wide data bus [3]. Table 2.1 

summarizes the signals that the HPI bus consists of. 

Table 2.1: HPI bus signals 

Name Width Description 

Data 16 Bi-directional 16-bit data bus 

Address 2 HPI port register address, see Table 2.2 

   1 Active-low chip select signal 

   1 Active-low read enable signal 

   1 Active-low write enable signal 

Interrupt 1 Active-high interrupt signal from the slave 

The HPI bus allows direct memory access of the slave-device’s memory. A DMA 

operation is initiated by writing the 16-bit address to access to the HPI address register. 

An arbitrary long sequence of only reads or only writes can then follow, using the HPI 

data register. The address register is automatically incremented to the next 16-bit word 

after each memory access. The HPI port register addresses are given in Table 2.2. 

Table 2.2: HPI port register addresses 

Address HPI port register 

00b HPI data register 

01b HPI mailbox register 

10b HPI address register, write-only 

11b HPI status register, read-only 
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Commands to the device’s BIOS are sent to the mailbox register, preceded by a DMA 

transfer of any additional arguments. An available response is signaled by the interrupt 

signal, and can be read from the mailbox register. The mailbox read operation will 

automatically clear the interrupt signal. The interrupt status can also be checked by 

reading the HPI status register. 

The HPI bus master handles one data transfer at a time and ensures correct timing, as 

long as it is connected to an APB bus running at 100 MHz at most. Lower bus 

frequencies are supported, but the transfer rate is then lowered since it is related to the 

APB bus clock frequency, due to implementation simplicity. 

Table 2.3: HPI bus master registers 

APB address offset Register 

00h Status register (read) 
Control register (write) 

04h Reset register (write-only) 

The HDL core is controlled by a control register and checked using a status register. 

The registers are listed in Table 2.3. The reset register given in Table 2.6 is used to 

perform a full device reset of the USB controller. Care needs to be taken to ensure 

correct timing since the reset signal is forwarded to the slave device without any 

additional logic. The HDL core can be tested by ensuring that the reset and busy flags in 

the status register, defined in Table 2.4, are set properly during and after the reset. 

Table 2.4: HPI Status register, read operation 

31 30 29 28 24 23 22 16 15 0 

Busy New data Interrupt Reserved Reset Reserved Data 
 

Reserved Reads as zeros 
Busy Set while the HPI master is busy or the reset flag is set, 

cleared when a new command can be written to the control register 
New data Set when the data from a HPI read operation is valid, 

cleared on any write to the control register 
Interrupt Forwards the U B controller’s interrupt output signal 

Reset Set while the HPI reset signal is active 
Data Last read 16-bit word from the HPI slave, valid when the new data flag is set 

Table 2.5: HPI Control register, write operation 

31 19 18 17 16 15 0 

Reserved Data direction HPI address Data 
 

Reserved Ignored, should be set to zeros 
Data direction ‘0’:  tart HPI write operation 

‘1’:  tart HPI read operation 
HPI address HPI port register address, see Table 2.2 

Data 16-bit word to write (ignored for HPI read operations) 

The busy flag should be ensured to be low before any transfer is initiated by the 

software, otherwise the transfer will be ignored. Table 2.5 lists the fields that should be 

set in a single write operation to initiate a HPI transfer. Data direction and HPI port 

address are always required, while the 16-bit data word only is necessary for HPI bus 
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writes. A HPI bus write does not require any more attention, other than verification that 

the busy flag has been reset by the hardware before the next HPI transfer. 

A HPI bus read will cause the new data flag of the status register to be set when the 

read word is available in the status register. Care should be taken to also check the busy 

flag before initiation of a new HPI transfer, since the read word is available slightly 

before the HPI bus transaction is complete. The new data flag is cleared when the 

control register is written. 

Table 2.6: HPI Reset register, write-only 

31 1 0 

Reserved Reset 
 

Reserved Ignored, should be set to zeros 
Reset Active-high slave device reset signal control bit 

2.4.2. User Input Device Buffer and Decoder 

The VHDL implementation of the core to buffer and decode the signals from user input 

device is designed to be simple. Input from keys and buttons are buffered one clock 

cycle to synchronize the signals with the clock, and can then be read via the AMBA 

bus. The user input device is described in Chapter 2.5. The two Gray coded inputs from 

the dial are also synchronized, but are not directly accessible via the bus; instead a 

toggling of one of them will cause a counter to increment or decrement, depending of 

the corresponding Gray code state transition. 

Table 2.7: User input device buffer and decoder registers 

APB address offset Register 

00h Key status register (read-only) 

04h Dial counter register 

To access the user input status from the processor, two registers can be read, with 

address offsets given in Table 2.7. The key status register is a read-only bitmap 

consisting of five active-high bits corresponding to keys. The layout of the key status 

register is defined in Table 2.8. 

Table 2.8: Key status register, read-only 

31 7 6 5 4 3 2 1 0 

Reserved Shutter AF Shift Reserved Return Enter 
 

Reserved Reads as zeros 
Shutter Reads as one while the shutter key is pressed 

AF Reads as one while the autofocus key is pressed 
Shift Reads as one while the shift key is pressed 

Return Reads as one while the Return key is pressed 
Enter Reads as one while the Enter key is pressed 

The dial counter register keeps a signed value; the register can both be read and 

written, as stated in Table 2.9. A bus read returns the current value of the counter, while 

a bus write will subtract the written value from the counter. This implementation 

ensures that any dial rotation will be included in the final value even if it occurs just 
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before or at the same time as a bus write operation, while keeping the software handling 

the dial state simple. 

Table 2.9: Dial counter register 

31 0 

Dial counter (sign extended) 
 

Dial counter Reads the current value, sign extended to 32 bits 
A written value is subtracted from the counter 

The dial counter is implemented as an 8-bit wide signed counter, which is sign 

extended to the bus width of 32 bits, during a bus read. In software, the counter register 

should be handled as any 32-bit value, but with the understanding that it cannot handle 

large values. During normal operation, the register should be checked at a regular basis 

to ensure a smooth user experience, which also should be frequent enough to avoid any 

overflowing of the internal counter.  

The intended software handling of the dial counter register is to check for an absolute 

value greater than or equal to a limit, a preconfigured resolution. While the test is false, 

the dial has not been rotated enough; no further action should be taken by the software. 

A rotation event is noticed by the software when the test becomes true; the sign of the 

read value determines a clockwise or counter clockwise rotation. Finally, the counter 

should be subtracted with the configured limit, but with the same sign as the read value, 

in order to reset the counter. This method of reading the dial will introduce hysteresis, if 

the division factor is at least two, avoiding repeated events with minimal movement of 

the dial when just in between two positions. 

2.5. User Input Device 

The user input device is a custom design for the prototype, designed to be similar to the 

user interface of the camera, which uses two dials to adjust settings. The input device 

has a single dial that together with a shift key enables adjustment of a secondary setting. 

There is also a combined autofocus and shutter button, of which the autofocus is 

activated when pressed halfway. Finally, two keys are used to navigate between a few 

operational modes of the remote control. The function of these keys, Enter and Return, 

is displayed in the user interface. A photo of the input device is shown in Figure 2.2. 

The dial is optically read using IR light and has no endpoints. The dial is encoded 

using a 2-bit Gray code, which allows for detection of relative rotation, while only one 

bit can change between any two positions. The current encoder disc used has 32 

positions, thus repeating the 2-bit code pattern eight times, providing a resolution of 

approximately 11°. Some variations of the effective width of the positions exist since 

the encoder disc used is handcrafted. The noticeable differences can however be 

reduced by reducing the effective resolution in software, to a more reasonable level; a 

factor of three is currently used. At the same time, a potential problem of repeated 

toggling between two positions can be avoided by introducing hysteresis in the software 

implementation; see also Chapter 2.4.2, describing the software interface. 
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Figure 2.2: Photo of the user input device 

The input device is connected to one of the expansion headers of the FPGA 

development board by a 9-pin parallel connector, carrying power and digital signals. All 

signals are connected to an open-drain type driver or equivalent on the device, to avoid 

voltage level problems when connected to the FPGA. The FPGA is configured to enable 

pull-up resistors for these pins. The schematic of the input device is shown in Figure 

2.3. The three buttons is connected between signal line and ground without any 

transistors, while both the dial and AF/shutter button is connected by a comparator chip 

to output digital signals. The AF/shutter button is mechanical and custom built for the 

prototype, it could however be replaced by an optical, while keeping the electronics. 

 

Figure 2.3: Schematic of the user input device 
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3. Software 

This chapter will describe the software running on the main processor. The software is 

implemented in C as a standalone application, using standard libraries for memory 

management and string processing and outputting for debug purposes. The software is 

the limiting factor of the feature set of the Embedded Camera Remote Control, and 

could be extended to support additional features or a wider range of devices. 

3.1. HPI Bus Master Driver 

The set of functions the HPI bus master driver consists of is adjusted to the targeted 

USB Controller that is described in Chapter 2.2.2. The set contains simple functions to 

read or write one of the HPI port registers, listed in Table 2.2, such as status and DMA 

support registers. The functions ensure that the bus master core is ready for a new bus 

transfer and returns any requested word when available. 

The driver does also contain functions to read or write a block of consecutive bytes 

using the DMA feature of the HPI bus, which is more suitable for a device driver 

communicating with the slave device over the HPI bus. Only even addresses are 

allowed as the targeted device only allows accesses aligned to its internal 16-bit word 

memory layout. A block of an odd number of bytes is however allowed; the driver will 

then perform a read-modify-write operation for the last byte in a block write operation, 

or ignore writing the additional byte to the local memory for a block read operation. 

Control registers of the USB controller that are mapped into the memory space cannot 

be accessed directly using DMA. Instead, they can be accessed by BIOS commands sent 

using the mailbox register and arguments via DMA. The driver hides the details and 

provides functions with the same interface as single word read or write operations, with 

the exception that a control register write operation takes an extra argument to specify 

an ordinary write operation, a bitwise AND or bitwise OR operation. 

3.2. Low-level USB Driver 

The low-level USB driver handles data transfers using the USB protocol. The driver is 

divided in two major layers. The first layer transfers commands to the USB controller 

device that describes what USB request blocks it should send; this layer has to split 

USB communication requests into commands and data blocks that are sent and received 

over the HPI bus. The second layer uses the first one to setup and handle a connected 

USB device. It handles both the setup phase of a device and supports data transfers over 

USB requested by a high-level USB driver, like the MTP framework described in 

Chapter 3.3. 

The driver support is limited to full speed capable devices and only control and bulk 

transfers for simplicity. Neither interrupt nor isochronous transfers are needed to 

communicate with the camera. Support of interrupt transfers could be added to the 

driver set by handling interrupt related errors and by requesting any interrupt data at the 

regular interval defined by the device’s endpoint descriptor. An interrupt endpoint is 

defined in the MTP standard as stated in Chapter 3.3, but is unused by the targeted 

device. 
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3.2.1. USB Controller Driver 

The lower layer of the low-level USB driver is developed with respect to the specific 

USB controller used. It includes functions to reset and initiate the controller to operate 

as a USB host, and to power on the USB port connecting the camera. It does also 

contain a memory allocation function used internally, which ensures that temporary 

commands and data sent to and stored on the controller will not overlap, using a circular 

buffer strategy. The allocation function will also ensure that a data block only will be 

allocated to begin with an even address, to meet the requirements of the bus master of 

the 16-bit wide HPI bus. 

Commands and USB data to send or receive are sent to the USB controller as a linked 

list of transfer descriptors, with a pointer to the data [9]. A TD list element contains all 

information the BIOS of the controller needs in order to perform a USB transaction. A 

transaction contains three packets in general; it begins with a token packet such as 

SETUP, IN or OUT, which is followed by a data packet and finally a handshake packet 

[10] (also simplified in [11]). The BIOS will handle handshaking and some errors, while 

some errors remain for the driver to handle, such as a retransmission or when an 

unexpected amount of bytes have been received. The driver checks the result by reading 

status fields of the TD elements that is updated by the BIOS after transmission. 

The TD element format is given in Table 3.1; the internal data structure format is 

similar, but has additional pointers to main memory objects. Before sending a TD list to 

the controller, it is built when the upper layer driver is queuing communication requests. 

When the list is ready it is transferred together with related data to the USB controller, 

the address of the first list element is then written to an address checked by the BIOS. 

The BIOS will execute the operations given in the list and will finally signal completion 

by raising an interrupt signal. The driver will read status fields in the TD elements, 

transfers with retryable errors are rescheduled and any received data is finally copied 

from the controller to specified buffers in main memory. 

Table 3.1: TD list element format 

Offset Width (bits) Field Description 

00h 16 Base address Pointer to data buffer 

02h 16 Port/Length USB port number and data length 

04h 8 PID/EP PID of initial packet and target endpoint 

05h 8 Device address Target device address 

06h 8 Control Control bitmap  

07h 8 Status Transaction status, set by BIOS 

08h 8 Retry cnt, etc. Retry counter, USB transfer type and active flag, 
updated by BIOS 

09h 8 Residue Residue after transfer, set by BIOS 

0Ah 16 Next TD ptr. Pointer to next TD list element 

3.2.2. USB Support 

The upper layer of the driver handles the setup phase of a USB device and allows 

transfers of blocks of arbitrary data to or from a specified endpoint. The setup phase 

includes functions to request the device descriptor that describes basic device properties 

like the device class and manufacturer, and the configuration descriptor describing 

available interfaces and especially their endpoints. The setup functions will store read 
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descriptor fields in a few linked data structures with a similar format as the descriptors; 

a simplified view is given in Figure 3.1. Most data substructures have a pointer to the 

main data structure, the device descriptor; this allows the driver to access necessary 

fields when a data substructure, such as an endpoint descriptor, is given as an argument 

to a function. 

 

Figure 3.1: Simplified descriptor data structure format 

The driver does also have a function to automatically setup a device, which will return 

a device descriptor data structure that can be used by a high-level communication 

driver. To simplify the high-level implementation, the driver provides search functions 

that given a data structure will return the class or protocol of the device, or an endpoint 

of the current interface according to specified endpoint type and data direction. The 

class and protocol can be used to select a proper high-level driver, while matching 

endpoints are used to specify the source or target in data communication controlled by 

the high-level driver. 

3.3. MTP Framework 

Media Transfer Protocol is a standard protocol for media devices; it is based on and 

extends the Picture Transfer Protocol, PTP, designed for communication with imaging 

devices such as cameras. MTP extends the defined set of commands, events and 

properties to allow access to features of modern media devices. 

Communication using MTP is based on transactions that are initiated by the host. Each 

transaction consists of a request container sent by the host, an optional data container 

Device Descriptor 
- Device address 
- Device descriptor fields (class, protocol, IDs, etc.) 
- Pointer to control endpoint array (IN and OUT) 
- Pointer to current endpoint array (if configured) 
- Pointer to configuration descriptor 

Configuration Descriptor 
- Pointer to device descriptor (main data structure) 
- Configuration descriptor fields (number of interfaces, max power, etc.) 
- Pointer to interface descriptor list 
- Pointer to active interface (if configured) 

Interface Descriptor 
- Interface descriptor fields (interface number, class, protocol, etc.) 
- Pointer to endpoint array 
- Pointer to next interface descriptor (linked list pointer) 

Endpoint Descriptor 
- Pointer to device descriptor (main data structure) 
- Endpoint descriptor fields  

(Endpoint address and type, max packet size, etc.) 
- Pointer to endpoint array 
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sent or received by the host depending on the request, and a response container received 

from the device. Both the request and response containers may contain up to five 32-bit 

arguments, while the length of the data container only is limited by the current request 

and its data format. The containers share a common structure that is shown in Table 3.2; 

fields are transferred least significant byte first. [12] 

Table 3.2: MTP Container format 

Offset Width (bits) Field Description 

00h 32 Container size Total size of container including the head 

04h 16 Container type Type of container (request, data or response) 

06h 16 Code Operation or response code 

08h 32 Transaction ID ID starting from zero, incremented each transaction 

0Ch N/A Payload Data payload or up to five 32-bit parameters 

The device can send events using a mandatory USB interrupt endpoint defined in the 

standard. However, analysis of the DSLR communication has indicated that the camera 

never signals any event using the USB interrupt endpoint; instead a special request 

command is used to query the camera for events and corresponding data. Thus, support 

for checking the interrupt endpoint for data is not required for the targeted camera and 

has not been implemented. 

The Media Transfer Protocol framework implemented consists of an initiation 

function that sets up internal variables and prepares a MTP session, based on a USB 

device description structure provided by the low-level USB driver. It does also contain 

functions to format and transfer a transaction by its containers; functions are available to 

send a request container, send or receive a data container and receive a response 

container. It is assumed that the function are called in a valid order and the caller is 

responsible of the informative payload data, while the framework will add and handle 

required MTP fields such as length and transaction number. The operation code given in 

the call to the request function will be reused during that transaction. 

3.4. High-level Protocol 

The high-level protocol used by recent Canon DSLRs is MTP, which is described in 

Chapter 3.3. Most necessary commands and properties are defined in the standard; 

however, the camera is mainly using vendor specific commands and properties. Also, 

events are received using an active polling command that will return a list of any 

changed properties or other events. 

The vendor specific commands and properties are partly documented by third party 

sources. The documentation, together with further analysis of recorded USB 

communication between the camera and a PC, have yielded enough information to 

control most of the basic features of the camera; enough for a prototype implementation. 

The analysis has mainly been performed prior to the project, and a C# program has been 

developed to convert recorded log-files into a text file of MTP transactions with parsed 

commands, properties and values. Some further analysis has been performed with the 

help of the developed prototype platform. 

The high-level protocol is centered on properties and uses a few commands to get 

updated properties, set a property and control AF and shutter. A main focus of the driver 

is to parse and store current and available property settings. Properties do generally 
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belong to a type that defines the data format. The most common type is the one for 

value properties, which are used for properties such as aperture value, shutter speed and 

white balance. A value is 32-bit wide, holds a signed, unsigned or enumeration value. A 

value property does also contain a list of currently available values, such as aperture 

values that depend on the lens attached, mode dial setting and camera configuration. An 

empty list signals that no setting can be set, which could apply when, for an example, 

the aperture value is set automatically by the camera when in shutter priority mode. 

Other property types are string data that could hold user and lens name, and an AF 

information dataset describing where in the frame AF points are located and which ones 

are enabled or have achieved focus. There is also a type for image quality, which like 

the value type includes a list of available settings. The current camera date and time is 

given as a value type property, in seconds since a common offset date. When the time 

property is received it needs to be handled specially, since the local time value at 

reception also needs to be stored to be able to compute the current time later. 

The camera sends the current value and a list of available properties separately using 

two different preceding event codes; they may be included in the same list of events. 

The split and use of different codes implies that all properties could have a list of 

available settings; however it is not applicable for some properties such as a name. 

There are also other event codes, some signaling that the camera will enter sleep mode 

in a specified amount of seconds, or has cancelled it, when the host for example sets a 

property. Currently, the remote control will abort the sleep mode by sending a property 

updating command. 

3.5.  Text-based Graphics Driver 

The text-only VGA IP core has a text buffer that stores the current screen and also 

offers hardware assisted scrolling. The implemented driver does not explicitly support 

scrolling and assumes that all characters are written within the visible area. The 

hardware supported scrolling feature can however be used and be explicitly controlled 

by the application. 

The driver has a limited set of features. The main features are to set a write position 

and to write a string of characters, optionally terminated by an added line break. The 

driver will place text that is split over several lines, so it starts from the column 

specified by the last write position setting. The driver does also support clearing of 

specified lines, or a specified rectangular area. It is also possible to draw a rectangle 

border. 

The driver will immediately write characters to the hardware core without any double 

buffering, which could result in some flickering if an area is repeatedly cleared and 

written to. To avoid flicker, the text can be overwritten without clearing in between. 

3.6. Application 

The main application consists of two major parts, the user interface and the control logic 

behind it. The graphical user interface is text-based and displays common settings in a 

main area, while a settings area below shows the current mode of user interactivity. The 

user interface is described in Chapter 3.6.1. The application has a separate C-module 

that handles text formatting related to the high-level protocol, which is a key component 

when outputting text to the GUI. 
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The control logic relates to the user interface since a major task is to support the 

current settings mode and handle operations and changes requested by the user. The 

control logic relies on the drivers developed, especially the high-level protocol that 

handles all communication with the camera. 

The application is implemented without any interrupt service routine; instead, an 

active polling approach has been chosen. Tasks that need to be performed regularly 

include USB communication that mainly involves querying the camera about any recent 

events, checking for and handle user input, handle a started timer operation and finally 

update the graphical user interface when required. These tasks do not have any critical 

time limit for response times and does generally not take very long to complete. The 

sequential approach will also ensure that a high-level communication operation is 

completed before any further operation is started. 

The USB communication will typically be the limiting factor in terms of response 

time, since it is implemented as a blocking I/O operation in the drivers. A high-level 

MTP transaction contains up to three USB I/O operations, which each takes time to 

generate and send low-level data to the USB controller, time for the USB transfer, and 

time to check status including possible retransmissions. The update rate is still high 

enough to not be noticeable in the general case; the event querying rate may even be 

reduced in order to lower the idle load at the camera to possibly extend battery life. One 

USB operation that may cause a short lockup is the AF activation command, which the 

camera will not respond to until focus is achieved or has failed. However, no 

communication can be performed meanwhile, leaving few possibilities independent of 

implementation. 

The application contains some code to support debugging, testing and analysis of the 

high-level protocol. It includes a possibility to enable printing of triggered events 

received from the camera and printing of their data if wanted. All debug support need a 

debug connection to receive character coded commands to enable or disable features 

and to print the debug output. By default most features are disabled and won’t be 

noticed without a PC connection. 

The application is stored in an onboard flash memory. The application is loaded and 

decompressed using a boot loader program. The boot loader has been generated by 

Aeroflex Gaisler’s MKPROM2 boot PROM builder, which also can compress the 

application executive. 

3.6.1. User Interface 

The graphical user interface consists of two main areas; one area displays current values 

of common properties, with the most common at its top line. The layout is unchanged 

independent of the current mode or camera settings, but some fields may not apply and 

are then blanked out. The second area is a settings area displaying what settings 

currently can be set. The settings area reflects the current mode of operation. There is 

also a navigation legend located right of the main areas, displaying current functions of 

the Enter and Return keys, as well as the shutter button in timer mode. The GUI in 

default operation mode is shown in Figure 3.2, with each field and area named. 

Due to limitations in the character set available, some of the camera’s symbols might 

not be as comprehensive as desired; after some time getting used to the character 

combinations used, most is expected to be understandable, especially when considering 
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the limited number of symbols in total. For a description of the symbols, the camera’s 

user manual should be referred to. 

In the default mode, which is entered when a supported device is connected, up to two 

properties can be adjusted. The input dial is rotated to increase or decrease the primary 

value or the secondary value while the shift key is pressed. The properties available 

depend on the mode dial setting on the camera, and correspond to the camera’s main 

and secondary dials. The current, previous and next values are shown, the step size is 

the one configured on camera, typically in increments of one third or one half of a stop. 

The settings area in default mode is shown in the bottom half of Figure 3.2. 

 

Figure 3.2: User interface in default mode 

From the default mode, both timer mode and property setting mode can be selected 

using the Return and Enter navigation keys, correspondingly. From either of the two 

modes it is only possible to return to the default mode. The property setting mode is 

similar to the default mode; a property can be changed as the primary setting in the 

default mode, while the secondary property is replaced by selection of a property. An 

example of the settings area is shown in Figure 3.3. The set of properties available is 

configurable in the application by adding their codes to a list. The properties available 

for adjustment are ISO speed, white balance with an additional color temperature 

property available just when manual color temperature has been selected, drive mode 

and metering mode. AF mode is also available, but the camera will generally not accept 

its property change command; changing is still possible on camera. Some properties and 

also the property list is circular, while a property like ISO speed has a minimum and 

maximum value, as illustrated in the bottom line of Figure 3.2 for the aperture value. 

 ---------------------------------------  

| M  |  25  | F2.8 | ISO   400 | { ///] |     ---------------------------- 

|---------------------------------------|    | Enter:   Set property mode | 

|  +0 1/3   |    Auto WB    |     -     |    | Return:  Enter timer mode  | 

|---------------------------|   -   -   |    |                            | 

|   [(+)]   |      []       | -   O   - |     ---------------------------- 

|---------------------------|   -   -   | 

|   RAW  + L Fine   ( 861)  |     -     | 

|---------------------------|           | 

|    2011-05-30 16:43:05    | One Shot  | 

 ---------------------------------------  

|     <       Shutter speed       >     | 

|    20            25            30     | 

|                                       | 

|              (Aperture)         >     | 

|                 F2.8          F3.2    | 

 --------------------------------------- 
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Figure 3.3: Settings area in set property mode 

The timer mode has up to five settings depending on the camera settings. All possible 

settings are shown in Figure 3.4. A cursor that selects a value is controlled by the dial; a 

selected value can also be incremented or decremented by turning the dial while 

pressing the shift key. To change a value one can also press the Enter key; the selected 

value will then be changeable in three parts, typically in hours, minutes and seconds. 

This is shown in Figure 3.5. The selected part is underlined and the value changed by 

rotating the dial, while the selected part is selected while the shift key is pressed. To 

return to the selection of a value, press Return. 

 

Figure 3.4: Settings area in timer mode (value selection) 

Initial AF can be enabled or disabled, if AF is possible with camera and lens 

configuration. If disabled, no focus movement will be performed, allowing a preset 

focus which also will avoid any additional delay due to a long focusing time. The initial 

delay is counted down before the first exposure is started; if initial AF is enabled it will 

be started a few seconds before the first exposure. The bulb exposure time controls the 

exposure time in seconds when the camera is set to Bulb mode. The delay between 

exposures has to be long enough so the camera is ready for a new exposure. The value is 

especially important when the camera is set to automatically take a second dark 

exposure, with the shutter closed, to reduce sensor noise in the main exposure. The 

exposure count can be set to a huge value; however, the user should ensure that battery 

life and free memory card space are enough for the exposure session to complete. 

|                           |           | 

 ---------------------------------------  

|     <         ISO speed         >     | 

| ISO   200     ISO   400     ISO   800 | 

|                                       | 

|     <          (shift)          >     | 

|     AF mode            White balance  | 

 --------------------------------------- 

Current setting 

Previous & next settings 

|                           |           | 

 ---------------------------------------  

| Timer:                                | 

|   Initial AF                on        | 

| > Initial delay       00:00:30        | 

|   Bulb exposure time  00:01:30        | 

|   Delay between exp.  00:00:30        | 

|   Exposure count         00005        | 

|                                       | 

|           Shift: inc/dec value        | 

|                                       | 

 --------------------------------------- 

Selected value 
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Figure 3.5: Settings area in timer mode (set value) 

To start a timer operation the shutter button should be pressed completely. The values 

will begin to count down one at a time during the timed shooting, until all exposures are 

completed. It is possible to break a timer operation by pressing the Return key. The 

navigation legend is updated with relevant information at all times. 

3.6.2. Usage Examples 

A time-lapse exposure example is shown in Figure 3.6; a frame is taken every ten 

seconds, but only one in fifty is included in the figure. Manual exposure has been set 

and all frames have been exposed the same, leading to a time-lapse that fades to black 

over time. To capture a similar time-lapse exposure, the aperture value, exposure time 

and ISO speed together with any other settings should be set using the remote control in 

default and property setting mode, or be set on the camera, which should be in Manual 

or Bulb mode. The remote control should then be set to timer mode, and especially the 

delay between exposures and the exposure count need be configured; a delay of ten 

seconds have been used in the example, which consist of approximately 350 frames. 

The exposure count can be set with a margin since it is possible to abort a timer 

operation. 

 

Figure 3.6: Time-lapse exposure of sunset 

|                           |           | 

 ---------------------------------------  

| Timer:                                | 

|   Initial AF                on        | 

| > Initial delay       00:00:30        | 

|   Bulb exposure time  00:01:30        | 

|   Delay between exp.  00:00:30        | 

|   Exposure count         00005        | 

|                                       | 

| Set value:            00:00:30        | 

|             Shift:  <       == >      | 

 --------------------------------------- 

Selected value 

Selected subpart 
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To take a preconfigured long exposure, the camera needs to be set to Bulb mode. The 

exposure level is set manually by setting the aperture value and ISO speed, and by 

setting the exposure time in the timer mode of the remote control. If only one exposure 

should be taken, the exposure count should be set to one, while the time between 

exposures can be ignored. An example photo is shown in Figure 3.7; an exposure time 

of four minutes has been chosen for some motion blur of the clouds and the sea. A 

smaller aperture value has been chosen to increase the depth of field, and the base ISO 

speed of 100 has been selected for minimum noise; both these settings require a long 

exposure time for correct exposure in a low light condition. 

No guidance about correct exposure level is available in Bulb mode; the user should 

rely on light metering available in other camera modes or use an external light meter. 

Experimenting by taking test shots is another possibility, but will introduce some setup 

time to find a good exposure value. 

 

Figure 3.7: Long exposure of a late evening sky 
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4. Conclusion 

An embedded camera remote control prototype has been developed and is described in 

this report. A template hardware platform has been customized during the project and 

developed communication cores have been added to the design. To more resemble a 

remote control, and to give a better view of how a remote control product might be 

controlled, a custom input device has been built. 

The hardware platform provides the features and performance needed for the remote 

control. The platform will support additional features as long as the computational and 

USB bandwidth demands are limited, such as for features related to properties. The 

prototype platform is however not suitable for field usage since it is relatively large and 

sensitive, and especially since an external monitor is required. 

In order to make a user friendly product, the development platform needs to be 

replaced by a much smaller custom one. Also, the external monitor has to be replaced 

by a display integrated into the remote control. The text-based GUI would be necessary 

to replace with a pixel-based one, which could display camera symbols correctly. 

The software includes both drivers customized to the hardware used, and more general 

software, such as the main application, and some high-level drivers. The feature set of 

the remote control is limited by the software, but includes most settings that can be 

expected to be practical to access remotely. The timer module extends the in-camera 

features, enabling preconfigured long exposure times and time-lapse exposures, for 

example. 

Depending on the user, the available timer settings may not be enough; no settings can 

be changed during a started timer operation. Settings that would be good to be 

configurable to automatically change during a timer operation are the exposure settings: 

aperture value, shutter speed and ISO speed. If the camera is set to a mode in which it 

automatically will set the exposure level, it will adjust to changing light conditions; but 

it will result in some noticeable flicker in a final time-lapse exposure during playback, 

due to some noise in the light and light metering, unless compensated for in post-

processing. 

A more advanced feature that would be practical during long time-lapse exposures 

would be to low-pass filter the exposure value to support varying light conditions, like a 

sunset. However, the camera limits this feature since it does not send any exposure level 

value in manual mode, but displays it on the camera. The feature could possibly be 

implemented if camera support would be added in a future firmware update. 

Another solution could be to configure both initial and final exposure values, which 

can be useful when the light changes evenly over time. This solution could also be used 

when taking high dynamic range, HDR, photos, where several differently exposed shots 

are merged together to allow high contrast scenes to be captured without any under- or 

overexposed areas in the final image. 

The prototype does not support more advanced settings, like the camera’s custom 

functions that for example can enable or disable mirror lockup, which reduces camera 

shaking when mounted on a tripod, by releasing the mirror a few seconds before the 

exposure is started. This implies that the remote control prototype does not handle the 

case when mirror lockup is enabled in any special way, during a timer operation; the 

combination has not been tested. The manufacturer’s PC software does not allow timer 
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configuration when mirror lockup is enabled, in comparison. The software could be 

updated with an option for mirror lockup, possibly with an option for the time before 

the exposure, similar to the initial AF option. 

The prototype remote control does only support shooting when the image could be 

seen through the viewfinder. The camera can also be controlled by a PC in live view 

mode, where the image is forwarded from the sensor to the PC. The high-level protocol 

related to live view mode has not been analyzed; thus, the video stream compression 

algorithm is unknown. Handling live view mode has been outside the scope of this 

project; still, common settings can be accessed and exposures be taken when the camera 

is manually set to live view mode. The live view image is then displayed on the camera 

monitor, or on an externally connected monitor. 

If more advanced features should be implementable in software, like image and video 

stream displaying, the hardware design will have to be extended and changed. More 

computational power could be provided by, for example, a video decompression 

hardware core to accelerate the software implementation and to balance the power 

consumption, by reducing requirements of the main processor. A Hi-Speed USB 

connection would likely be required to provide enough bandwidth to transfer the live 

view video stream. Also, color graphics with a reasonable high resolution and quality 

would be required. 

An advanced camera remote control with timer support in a portable format is 

currently missing on the market, while products making use of the USB connectivity 

begin to enter. Similar products will probably be available within the next few years. 

The portion of photographers that will benefit from an advanced remote control is 

probably dependent on the size and feature set, which may contradict each other in 

some circumstances. A classical remote shutter control will probably still be handy in 

many cases, while a wider feature set is better in other. 

 For some potential users, such as hobby photographers, the price may be an important 

factor. The end-user cost could be reduced by using existing hardware, such as portable 

devices with USB host support, on which an application could enable most features. 

However, a custom product may still be preferable when an uninterrupted shooting 

session is desired or when in worse weather conditions. 
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