
Simulations of multipactor breakdown between two

cylinders

J. Rasch1, V. E. Semenov2, E. Rakova2, D. Anderson1,

J. F. Johansson3, M. Lisak1 and J. Puech4

1 Chalmers University of Technology, Göteborg, Sweden
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Abstract

Simulations have been performed to determine the multipactor breakdown threshold in a microwave

structure comprised of two parallel cylinders, chosen to be an approximate model of an open helix

microwave antenna system. The electromagnetic field between the cylinders is available in closed

analytical form and a Monte Carlo software has been developed to calculate the 2D electron

trajectories and to simulate the multipactor avalanche in this inhomogeneous electric field for

different ratios of cylinder radius and distance of separation between the cylinders. The results

are compared with those of a recently published analytical theory and show a qualitatively good

agreement. In particular, it is confirmed that for given distance between cylinders, there exists a

smallest cylinder radius below which no two-sided multipactor breakdown can occur. The basic

physical explanation is a loss mechanism for secondary emitted electrons that is caused by the

curvature of the cylinder surfaces together with the strong electric field at the surfaces. The results

imply that the breakdown threshold in realistic open helix antennas is significantly higher than

those predicted using extrapolations based on resonance theory and the classical two parallel plate

model.
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I. INTRODUCTION

A significant effort has been made during the last ten years to make possible reliable pre-

dictions for multipactor breakdown thresholds in microwave devices with geometries more

complex than the classical one involving two parallel infinite plates1–15. The analyzed sit-

uations typically involve three new complications as compared to the plane parallel plate

situation: finite extension in the parallel direction, inhomogeneous electric fields, and curved

field lines. This leads to new physical effects that affect the electron motion and the corre-

sponding breakdown condition and which makes extrapolations of the multipactor threshold

based on the two parallel plate model unreliable. Examples of such more complicated ge-

ometries that have been analyzed are e.g. irises7, rectangular3,5, coaxial1,4,12,13, circular1,11,

and wedge-shaped wave guides14,15.

Very little attention has so far been given to multipactor breakdown in open antenna

structures, an important example in space applications being helix antennas, which consist

of helically wound cylindrical metallic wires. In technically relevant cases, the pitch angle

of the helix is small and the geometry can locally be approximated as that of parallel

wires. When the distance between the wires becomes large compared to the wire radii,

the corresponding electric field becomes strongly inhomogeneous and significant deviations

from the plane parallel plate predictions can be expected. A first qualitative analysis of this

problem was recently made16 where the electron motion in the electromagnetic field between

two wires was analyzed by separating the motion into a slowly varying drift velocity (driven

by the ponderomotive force due to the electric field inhomogeneity) and a rapidly oscillating

part (driven by the oscillating electric field). The curvature of the cylindrical surfaces of

emission was shown to give rise to a spreading out of the emitted secondary electrons, which

implied a dilution of the electron density equivalent to a loss of electrons. This resulted in

a higher multipactor breakdown threshold for the two wire structure than for the classical

situation corresponding to the case of two plane parallel infinite plates. The importance of

this effect was found to be determined by the ratio of the cylinder radii and the distance

between the cylinders and it was shown that when this ratio is small, electron losses become

large, and multipactor can only occur for surfaces having very large secondary emission

coefficients.

The analysis in Ref.[16] was based on a strong simplification of the electron dynamics
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by considering only motion close to the symmetry axis between the cylinders (where the

strongest electric field occurs) and by dividing the electron motion into two components

with well separated time scales. The main result was a prediction for the lower threshold

for multipactor breakdown that turned out to be significantly higher than that given by

extrapolations based on the plane parallel plate theory. In particular, it was found that

under a certain cylinder radius, which depended on the distance between the cylinders and

the maximum value of the secondary emission yield, double sided multipactor becomes im-

possible, due to the strong losses caused by the geometrical dispersion of electrons during

successive passages between the cylinder surfaces. The accuracy of these predictions was

difficult to assess and therefore it is important to carry out a comparison with full numerical

simulations. This is the purpose of the present analysis where an extensive numerical effort

has been done in order to simulate the multipactor avalanche in the two wire system taking

into account the exact analytical form of the electromagnetic field. The aim is to under-

stand the influence of the wire dimensions on the multipactor threshold and to compare

the corresponding results with those of the previous approximate theory. A special software

was developed to study the electron trajectories and to simulate the multipactor avalanche

in a two wire system where the fundamental TEM mode is excited. The software takes

into account a spread of electron emission velocity and is based on a Monte-Carlo algorithm

and Vaughan’s approximation17 for the secondary emission yield. The results are compared

with those of the previous theory and also with those of classical resonance theory. Good

qualitative agreement between theory and simulations is found. In particular, the prediction

of a lower radius under which double sided multipactor becomes impossible is confirmed.

However, neither the non-resonant theory nor the resonant theory agree completely with the

simulation results and the physical reasons for this discrepancy are identified and discussed.

II. FIELD CONFIGURATION

As previously mentioned, for low pitch angles, a helix antenna can be approximated as

consisting of two parallel infinite metal cylinders. In this geometry, multipactor analysis is

simplified by the fact that the electric and magnetic fields can be determined analytically

using logarithmic potential theory18. The electromagnetic field travels along the two wire

system in the form of a purely transverse electromagnetic (TEM) wave containing both
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electric and magnetic components. The total microwave electric field can be written as

~E(x, y, z, t) = ∇Φ(x, y) sin(ωt − kz) where (x, y) denote transverse coordinates, z the co-

ordinate along the wires, t is time, k = ω/c is the wave number (related to the angular

field frequency ω by the vacuum dispersion relation), c is the light velocity, and the scalar

function Φ(x, y) determines the spatial distribution of the electrostatic potential between

the two cylinders. The magnetic field is given by ~B(x, y, z, t) = ẑ×∇Φ(x, y) sin(ωt− kz)/c.

As shown in Ref.[16], the electric field is given by the explicit expression

~E =
E0

4

(v2 − u2 + 1/4)x̂− 2uvŷ

(v2 + u2 − 1/4)2 + v2
(1)

where u = x/∆, v = y/∆, and

∆ =
1

D

√

(D2 −R2
1 −R2

2)
2 − (2R1R2)2 (2)

is the distance between the filamentary charges of the logarithmic potential theory, R1 and

R2 are the cylinder radii, and D is the distance between cylinder centers. The geometry of

the system can be seen in Fig. 1.
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FIG. 1. The geometry of the two wire model, where ρl and −ρl denotes the filamentary line charge

densities used in the logarithmic potential theory.

The quantity E0 denotes the minimum electric field along the line connecting the cylinder

centers and is given by

E0 =
4V

∆

1

arcosh(
D2

−R2

1
−R2

2

2R1R2

)
(3)
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where V is the voltage between the cylinders.

The formulas of the logarithmic potential theory are simplified considerably in the case

of equal radii of the cylinders (R1 = R2 = R), and the most relevant quantities can be

summarized as follows:

E0 =
4V

∆

1

arcosh( D2

2R2 − 1)
(4)

Emax =
E0

2
(1 +

D

2R
) (5)

where Emax denotes the maximum electric field between the cylinders, which is attained at

the cylinder surfaces. Clearly the maximum electric field, Emax, is related to the voltage, V ,

according to

Emax =
V

R

√

D + 2R

D − 2R

1

arcosh( D2

2R2 − 1)
(6)

III. OVERVIEW OF THE THEORY

The theoretical model developed in Ref.[16] included two important effects; the geomet-

rical dilution of electron density between gap passages due to the curved surfaces of the

cylinders, and the spread of impact velocity caused by small deviations in the emission ve-

locity coupled with the large number of field cycles required for an electron to cross the

gap. Below we will briefly recapitulate these effects, and constrict them to the case of equal

cylinder radii.

A. Geometrical dispersion

As discussed in Ref.[16], the two wire application involves an interesting and important

loss mechanism caused simply by the geometry of the configuration in combination with the

fact that the electric field is strongest at the cylinder surfaces and directed perpendicularly

to these surfaces. This implies that secondary emitted electrons experience a strong accel-

eration close to the (curved) surfaces of emission and then drift radially outwards. Some of

these electrons will impact the other cylinder surface where they in turn will cause emission

of new secondary emitted electrons at impact. This process is then repeated on the return

trip. Due to the geometrical spreading of the emitted electrons, caused by the curvature of
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the emitting surfaces and the radial acceleration, the electron density decreases after each

passage between the cylinders, an effect that is equivalent to a loss of electrons. In a parallel

plates geometry, there is no dispersion of electrons, and multipactor becomes possible when

the secondary emission yield for impacting electrons is higher than unity, i.e.

σ(vi) > 1 (7)

where vi is the impact speed, and σ is the secondary emission yield (SEY). The velocity where

the SEY equals unity is typically called the first cross over velocity, v1. In the two cylinder

geometry this criterion becomes different. Since the electron density is diluted upon every

passage, the net result can be characterized by an effective secondary emission coefficient,

σeff, given by (assuming cylinders of the same material and equal radii, R1 = R2 = R)

σeff =
σ(vi)

1 + d/R
(8)

where d is the distance between the cylinder surfaces (d = D − 2R). The necessary

condition for multipactor to occur becomes σeff > 1, which implies σ(vi) > 1+d/R i.e. a more

restrictive condition than the classical multipactor condition σ(vi) > 1. The dispersive effect

should be well pronounced in systems where the cylinder radii are small compared to the gap

between the cylinder surfaces, d/R ≫ 1, whereas in the large radii limit where d/R ≪ 1 the

parallel plates case, with minimal dispersion, is regained. The importance of the dispersive

effect is easily assessed by noting that for the case of two cylinders with radii R=0.6 mm and

a distance between the cylinder surfaces of d=3.8 mm (these dimensions are characteristic of

an 8 GHz helix antenna used for satellite communications), the requirement for multipactor

breakdown becomes σ(vi) > 1 + d/R ≈ 7.3. This implies that multipactor breakdown in

antennas with parameters of the same order as in the example should be unlikely, since

most materials used in space applications have maximum values of the secondary emission

coefficient of the order of 2 or 3.

B. Resonant and non-resonant dynamics

Electrons emitted from a surface will receive an initial acceleration due to the electric

field. In a homogeneous electric field on the form

E(t) = Em sinωt (9)
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the electrons will move according to

v(t) = vω cosωt+ ve − vω cosωte (10)

where Em is the field amplitude, v(t) the electron velocity, vω = eEm/mω is the oscillatory

velocity amplitude, e the electron charge, m the electron mass, and we have used the initial

condition v(te) = ve, where ve is the electron emission velocity, and te is the emission time.

This motion is explicitly separated into an oscillatory part (described by the first term

on the RHS of Eq.(10)) and a drift one (given by the two last terms on the RHS of Eq.(10)).

The drift velocity vd = ve−vω cos(ωte) is constant in this case and its value is determined by

the emission velocity and the emission phase, wte, at fixed value of vω. The impact electron

velocity, vi = vω cos(ωti) + vd, depends also on the impact phase, ωti, and its maximum

value, vi,max = 2vω + ve, is realized in the case of multipactor resonance when the emission

phase, ωte = π , and the electron flight time, ti − te, equals an odd number of half RF

cycles. A substitution of the maximum value of electron impact velocity into inequality (7)

determines the lower threshold envelope for the multipactor resonance zones20 which can

be estimated using (7), with the approximation vi ≈ 2vω in case of small emission velocity,

ve ≪ vω. However, even a small spread of emission velocity can result in a considerable

spread of electron impact time when the gap width is large and the resonant flight time of

electron considerably exceeds the rf period. This effect will blur the multipactor resonances

and the inequality (7) with the approximation vi ≈ 2vω is non-appropriate to estimate the

multipactor threshold. Instead, in a non-resonant discharge, it is more realistic to use an

average value for the impact speed. As was discussed in Ref.[16], the probability for an

electron to impact during a time interval, P (dt), is equal to the distance traveled during

that interval divided by the total distance covered by the electron in an entire period, that

is

P (dt) =
v(t)dt

∫ T

0
v(t)dt

(11)

where T is the RF period. This approach is valid also in case of a non uniform RF field

taking into account the modification which is caused by variations both in amplitude of the

electron oscillatory velocity, vω, related to the local electric field amplitude, and the electron

drift velocity governed by ponderomotive (Miller) force3,4,14. Specifically, as was shown in

Ref.[16], equation (10) can be used (in case of R1 = R2) to describe the temporal dependence
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of the electron velocity close to the impact point when the latter is not far from the straight

line between the cylinder axis. It was also assumed in Ref.[16] that the main contribution

to the multipactor discharge comes from the most energetic electrons (ωte = π), and that

the emission velocity is small and can be neglected (ve ≪ vω), in equation (10). With these

approximations (the corresponding applicability will be discussed in more details in Section

V), the impacting electrons have a velocity

vi(t) = vω cosωt+ vω (12)

where the probability of impact at a time t depends on the velocity at that time. The

probability for impact in an interval, P (dt) = p(t)dt, now becomes

p(t)dt =
(vω cosωt+ vω)dt

∫ T

0
(vω cosωt+ vω)dt

(13)

and the average impact velocity is

〈vi〉 =

∫ T

0

v(t)p(t)dt =

∫ T

0
(vω cosωt+ vω)

2dt
∫ T

0
(vω cosωt+ vω)dt

=
3

2
vω (14)

In the language of classical multipactor theory, the necessary criterion for non-resonant

multipactor is a high fd-product, where f is the field frequency and d the gap width between

multipacting surfaces. More generally we can state that the discharge will be non-resonant

when the spread in emission velocity is large enough to cause a spread in arrival time at the

opposing surface equal to the field period, or equivalently when the distance traveled due

to the emission velocity equals the electron oscillation amplitude. To express this criterion

mathematically we note that in a resonant discharge with small emission velocity, the gap

is traversed in an odd number, N , of RF cycles, i.e. d ≈ Nπvω/ω. The influence of the

emission velocity on the resonance remains small as long as veNT ≪ vωT or ve ≪ v2ωπ/ωd.

In the same way the discharge will be non-resonant when ve ≫ v2ωπ/dω or d ≫ v2ωπ/veω.

For a more detailed discussion see Ref.[20].
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C. Application to the two cylinder system

The discussion above implies that it is possible to use four different approximate models to

estimate the breakdown threshold in the two cylinder system. When the gap width is small,

and the cylinder radii is large, the situation is equivalent to that of resonant multipactor

between two parallel plates, and we can use vi ≈ 2vω and σeff ≈ σ(vi), and determine the

threshold at σ(2vω) = 1. This approach is henceforth called the resonant non-dispersive

approximation. Keeping the gap width small but decreasing the cylinder radii will increase

the electron losses due to dispersion, and it is necessary to include this in the estimation of

the effective SEY, i.e. σeff = σ(vi)/(1+d/R), but we keep the resonant approximation for the

impact velocity, vi ≈ 2vω. This method will be called the resonant dispersive approximation.

When both the gap width and the cylinder radii is large the discharge will be non-resonant

and non-dispersive, and we should use vi ≈ 〈vi〉 ≈ 3vω/2 together with σeff ≈ σ(vi). This will

be called the non-resonant non-dispersive approximation. Finally, when the gap is wide, and

the radii are small, we should use the non-resonant impact speed, vi ≈ 3vω/2 along with the

dispersive effective secondary emission coefficient σeff = σ(vi)/(1+ d/R). This will be called

the non-resonant dispersive approximation. The nomenclature, together with the proper

criterias for when to use different combination of parameters, is summed up in Table 1.

σ(vi) = 1, (R ≫ d) σ(vi) = 1 + d/R, (R arbitrary)

vi ≈ 3vω/2 Non-resonant, non-dispersive Non-resonant, dispersive

(d ≫ πv2ω/ωve)

vi ≈ 2vω Resonant, non-dispersive Resonant, dispersive

(ve ≪ πv2ω/ωd ≈ vω/N)

Table 1. The four different combinations of approximations for the multipactor threshold

SEY and impact velocity of multipacting electrons, along with the criterias for when to use

the different models in (parentheses).

Looking at Table 1 it is obvious that the non-dispersive approximation is just the limiting

case of the dispersive aproximation when is R very large. This can also be seen quite clearly

in Figs. 2 and 4.
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To show the importance of the dispersive effect and the inhomogeneity of the electric

field, a comparison between the predictions of the non-dispersive, and the dispersive ap-

proximation with a simplified field structure is shown in Fig.2. The breakdown voltages

are calculated for silver, where σmax = 2.22 (from Ref.[21]), using the Vaughan model for

the SEY17, and the y-axis shows the dispersive voltage, Vd, divided by the non-dispersive

voltage, Vnd, as a function of normalized radii, r = R/D (the ratio Vd/Vnd is independant

of the choice of impact velocity, thus both the non-resonant and resonant models are rep-

resented in Fig.2, see Ref. [16]). For Vd the electric field used to calculate the oscillatory

velocity is Emax, the maximum field found on the two points on the cylinder surfaces which

intersect the line connecting the cylinder centers, and the voltage between the cylinders is

related to this field through Eq.(6). For the non-dispersive threshold, the voltage between

the cylinders is divided by the gap width to estimate the electric field, V/d = E, and this

estimate is used for calculating the oscillatory velocity. This way of estimating the threshold

is quite close to the procedure recommended by the ESA standard for space applications21,

which consists of relating the voltage to the electric field through the gap width, and then

draw a Hatch-Williamson chart which shows all the combinations of voltage and frequency

times gap width that are susceptible to multipactor breakdown. The lower envelope of such

a chart will not be far from the estimate Vnd. It is clear that as the radii decreases, the

breakdown voltage increases, to reach a maximum at rmin = 1/(σmax + 1) = 1/3.22 ≈ 0.31.

Below this radius, double sided multipactor becomes impossible, according to this model.

The dilution of the electron density induced by the finite curvature of the emitting surface

is similar to the effect of an angular velocity spread of the emission velocity5,19. This gives

rise to a random walk of the electron trajectories between two parallel plates, and if the plates

have finite extension, this effect ultimately makes the electrons go outside the plates and be

lost. Furthermore, the angular spread of emission velocity also gives rise to an angular spread

of impact velocity. In a more rigorous analysis of the two wire configuration, the effects

of velocity spread should also be included and would clearly tend to further enhance the

degradation of the secondary emission yield. In addition to this, the use of the average impact

speed in the expression for the SEY is not quite correct. For the equality σ(〈vi〉) = 〈σ(vi)〉

to hold, the dependance of the SEY-function on impact velocity should be linear, which is

not generally true. A more detailed analysis should take this into account. Finally, another

mechanism that has been neglected in the present analysis is the ”transverse” component
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FIG. 2. The variation of the ratio Vd/Vnd with normalized radius, r = R/D, using Vaughan’s ap-

proximation for the secondary emission yield17, and using σmax = 2.22, which is the ESA standard

for silver21.

of the ponderomotive force that also should lead to an enhanced spread of the transverse

width of the electron bunches during transits and to concomitant electron losses.

IV. FULL NUMERICAL SIMULATIONS

An extensive numerical effort was done in order to simulate the multipactor avalanche in

the complete two wire system. A software based on a Monte Carlo algorithm was developed.

The exact form of the electric field was used, and the magnetic force on the electrons

was neglected under the assumption that the electron velocity is small in comparison with

the speed of light, and that the distance between cylinders is small compared to the RF

wavelength. In addition to this simplification, only the two dimensional motion (in the

plane which is perpendicular to the axis of the cylinders) of the electrons was considered.

Space charge effects were not included, since only the first stage of the multipactor discharge

is considered. A large number (up to 105) of electron trajectories was calculated during a

fixed interval of time, long enough to provide many gap crossings between the cylinders.

The Euler method with a time step of 0.005T , where T is the field period, was used for the
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integration of the electron trajectories. At the start of the simulation, all trajectories start

at the same point - the intersection between the cylinder surface and the line connecting

the cylinder centers, corresponding to the maximum field. The emission electron energy was

fixed to 3 eV, with a direction of the velocity distributed randomly and evenly over 180o,

above the cylinder surface. Upon impact with a cylinder surface, the number of electrons

in each trajectory was multiplied with the secondary emission yield corresponding to the

impact velocity given by Vaughan’s model17

σ = σm[ǫ exp(1− ǫ)]α

ǫ =
Wimp

Wm

(15)

where α = 0.62 for ǫ ≤ 1 and α = 0.25 for ǫ > 1 and σm and Wm are material dependent

parameters that characterize the maximum value of the secondary emission coefficient and

the impact energy at which the maximum secondary emission is attained respectively. After

impact the trajectory starts from the point of impact with an emission energy corresponding

to 3 eV with a direction away from the surface randomly distributed in two dimensions. The

voltage threshold for the existence of multipactor was determined by observing the number

of electrons in a rectangular box around the cylinders and looking for decay or growth of

the total electron population.

The aim of the simulations is to understand the influence of the wire dimensions on the

multipactor breakdown condition and to compare the corresponding results with those of

the previous approximate theory. The simplest approach would be to keep the wire radii

(assumed equal) constant and then to vary the distance between the wires to see the effect on

the multipactor threshold. However, this approach is not quite appropriate since the simple

theory is based on a number of approximations. In particular, one of these (the one based

on a significant spread in electron impact time and velocity) is violated when the distance

between the cylinders becomes small enough and the multipactor is not suppressed by the

spread in electron initial velocity. In order to have a more easily assessed comparison it was

decided to keep the gap between the wires constant and instead vary the wire radii. Three

simulation series were completed using two different distances; d = 3.8 mm (a realistic value)

and d = 0.15 mm (a very narrow gap, where a resonant multipactor is probable). In two

series the ESA standard for silver was used with σmax = 2.22 and a first cross over energy

W1 = 30 eV21. Furthermore, in order to investigate the effect of the nonlinear dependence
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of σ on the impact electron energy, i.e. the quality of the approximation 〈σ(vi)〉 ≈ σ(〈vi〉),

one more simulation series was done using the unrealistically high value σmax = 10, but

keeping the same value of the first cross over energy (W1 = 30 eV). This has the advantage

of making the secondary emission curve almost linear around the first cross over energy.

A first illustration of the calculated electron trajectories, demonstrating the dispersion

of the trajectories and the resulting electron losses for different radii, is shown in Fig.3. It

is clear that the dispersion of the trajectories actually becomes stronger than predicted by

the geometric spreading mechanism of the simple theory when the cylinder radii decreases.

This is evident from the bent electron trajectories seen in the upper figure. The acceleration

outwards is due to the ponderomotive force working in the perpendicular direction with

respect to the line between cylinder centers. This effect is not included in the simple theory.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

R
1,2

=0.25 D=0.65  2 Trajectories  U=680[V]

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

R
1,2

=0.5 D=1.15   2 Trajectories  U=680[V]

FIG. 3. Figure illustrating cases of weak, but noticeable dispersion (lower figure: R = 5 mm) and

strong dispersion (upper figure: R = 2.5 mm) of electron trajectories. Distance between wires

d = 1.5 mm. Applied voltage V = 680 volts.

The multipactor simulations were made for the frequency f = 8 GHz and for two signifi-

cantly different gap widths: d = 0.15 mm, a small width that corresponds approximately to

the first resonance zone and the larger (and more realistic) width d = 3.8 mm that corre-

sponds to non-resonant multipactor. The results for the observed multipactor voltages are
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summarized in Tables 2, 3 and 4.

Wire radii (R1 = R2) mm V Volt

30 70

10 70

3 70

1 80

0.5 90

0.3 100

Table 2. The multipactor threshold (in terms of the RF voltage amplitude, V ) in a two

wire system with small gap width d = 0.15 mm, which corresponds approximately to the

first resonance zone, and σmax = 2.22. In this case multipactor breakdown was found to be

impossible for wire radii less than 0.3 mm. On the other hand, the multipactor breakdown

voltage was found to be independent of the wire radii when the latter exceeded about 3 mm.

Wire radii (R1 = R2) mm V Volt

30 3800

20 3800

15 4000

10 5800

8.5 7900

Table 3. The multipactor threshold (in terms of the RF voltage amplitude, V ) in a two

wire system with gap width d = 3.8 mm, a more realistic width for an 8 GHz antenna, and

σmax = 2.22. In this case multipactor breakdown was found to be impossible for wire radii

less than 8.5 mm. On the other hand, the multipactor breakdown voltage was found to be

independent of the wire radii when the latter exceeded about 20 mm.
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Wire radii (R1 = R2) mm V Volt

30 2800

20 3100

15 3300

10 3800

7.5 4400

5 5400

Table 4. The multipactor threshold (in terms of the RF voltage amplitude, V ) in a two

wire system with gap width d = 3.8 mm and σmax = 10. In this case multipactor breakdown

was found to be impossible for wire radii less than 5 mm. On the other hand, the multipactor

breakdown voltage was found to be independent of the wire radii when the latter exceeded

about 30 mm.

V. COMPARISON BETWEEN SIMULATIONS AND THEORY

The simulated results make it possible to assess the accuracy of the theoretical framework

developed in Ref.[13], as well as that of the classical resonance theory. For a small gap width,

we expect resonance theory to give a good estimate, whereas for wider gaps, the non-resonant

approach should give a better agreement with the simulated data.

A. Small gap

The first simulation used a small gap width of 0.15 mm. Given the value for the fre-

quency, width, emission velocity and first cross over velocity already mentioned, we expect

a multipactor discharge belonging to the first resonance zone. This is indeed confirmed in

Fig.4, which presents the breakdown threshold predictions according to all four approximate

methods presented in Table 1, as well as the simulated data. The simulations spanned the

range of radii R ∈ [0.3, 30] mm. The smallest radius allowing multipactor according to the

dispersive approximation is given by σmax/(1 + d/Rmin) = 1 or Rmin = d/(σmax − 1) ≈ 0.12

mm.

The figure shows that the resonant approximation gives a good estimate for the voltage
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FIG. 4. Multipactor breakdown thresholds for d = 0.15 mm and σmax = 2.22. The straight

solid line corresponds to the lower breakdown threshold according to the resonant non-dispersive

approximation, whereas the dashed straight line corresponds to non-resonant non-dispersive ap-

proximation. The circles represent the simulated data. The curved solid line corresponds to the

predictions of the resonant dispersive approximation, and the dashed curved line to those of the

non-resonant dispersive approximation

threshold, and that as the radii decreases, the dispersive losses become more and more

important, as can be seen by the widening gap between the curved and straight solid lines.

The non-resonant approximation produces a too high threshold, simply due to the resonant

behavior of the electrons, where impact will occur only during the most energetic phase and

electrons will tend to bunch up around this phase due to phase focusing mechanisms. In

the non-resonant approximation the electrons are assumed to impact during the entire field

period and to yield an average impact velocity of 3vω/2, which in this case is lower than

the actual impact velocity. The most interesting part of the curve is the left side. Both the

simulated data and the prediction of the dispersive approximation start to rise rapidly with

decreasing radius. This indicates that there is a geometrical limit radius below which double

sided multipactor becomes impossible, a feature that the non-dispersive approximation does

not include, and which at the same time is a very important result for RF system design

considerations.
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B. Large gap

The second simulation used a large gap width of d = 3.8 mm, the same as for the 8

GHz antenna mentioned above. The multipacting electrons will perform many oscillations

while traversing the gap, and even a small spread in electron emission phase will cause

the electron impact phase to be randomized. Thus, resonant behavior will be strongly

suppressed. The non-resonant approximation assumes a random impact phase, whereas

the resonant approximation assumes electrons to impact only during the most energetic

phase. We should therefore expect the resonant approximation to produce a threshold

which is too low, whereas the non-resonant approximation should give a better agreement

with simulations. Fig.5 summarizes all relevant data relating to this simulation.
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FIG. 5. Multipactor breakdown threshold for d = 3.8 mm and σmax = 2.22. The circles represent

the simulated data. The solid curved line corresponds to the predictions of the non-resonant disper-

sive approximation, and the dashed curved line to those of the resonant dispersive approximation.

It is clear that both the resonant and non-resonant approximations tend to predict a too

low breakdown threshold, although the non-resonant less so. In the limit of large radii (right

side of the figure), the losses due to the curvature of the cylinder surfaces should be small

and the reason for the discrepancy between the non-resonant dispersive approximation and

simulations must be found elsewhere. In the process of estimating the impact velocity it

was assumed that the emission velocity was small and could be neglected. However, the
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simulations use a rather high value of emission velocity, and in a more accurate analysis

this velocity should be included. It is quite clear though that introducing an extra velocity

component into the approximate formulas for the impact velocity will only serve to lower the

necessary oscillatory velocity for multipactor avalanche to occur. This in turn decreases the

threhold voltage, and increases the discrepancy between the approximate models and the

simulations. Another source of errors lies in the fact that the non-resonant approximation

treats the dependance of the secondary emission yield on the impact velocity as linear.

To investigate the effect of the nonlinearity of the secondary emission curve, a third

simulation used an unrealistically high secondary emission yield, σmax = 10, while keeping

the same first cross over velocity as before, W1 = 30 eV. This makes the secondary emission

curve more linear around the first cross over point, and should decrease the error introduced

by the direct use of the average impact velocity. Since the position of the first cross over point

was not changed, the predicted voltage threshold in the large radii limit remains the same as

that for σmax = 2.22, for both the non-resonant and resonant approximation, therefore only

the non-resonant curve is shown in Fig.6. The minimum radii where the curve terminate to

the left is shifted to a lower value as compared to Fig.5.
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FIG. 6. Multipactor breakdown threshold for d = 3.8 mm and σmax = 10. The circles represent

the simulated data. The curved line corresponds to the predictions of the non-resonant dispersive

approximation.

Fig.6, implies that increasing the secondary emission yield to very high values does lower
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the simulated multipactor breakdown threshold and makes it come closer to the predictions

by the non-resonant dispersive approximation (as compared to those for σmax = 2.22). This

could be due to the suppression of the nonlinearity of the secondary emission function.

However, there is still a notable difference between the simple theory and the simulations.

This is most likely due to the combined effect of ponderomotive spreading in the tangential

direction, the spread in electron emission angle, and the fact that not only the most energetic

electrons will be involved in the multipactor discharge, but there will rather be a range of

electron energies impacting the surface, thus lowering the average impact energy further.

VI. CONCLUSION

In a previous analysis of ours16, we considered multipactor breakdown between two par-

allel infinite cylinders, being a very simplified, but still relevant, model of a helix antenna.

This model geometry has the advantage that the electric field configuration is available

in closed analytical form, which simplifies analytical as well as numerical analysis of the

multipactor dynamics. The electron trajectories in this field were analyzed using a simple,

but useful, model where the electron motion is divided into a slowly varying drift velocity

(driven by the ponderomotive force due to the electric field inhomogeneity) and a rapidly

oscillating part (driven by the oscillating electric field). This made it possible to draw several

important conclusions: electrons emitted at one cylinder surface are strongly accelerated in

the field closest to the surface and then drift towards the other cylinder surface. During

this drift, the electrons tend to spread out due to the curvature of the surface of emission,

a process that is again repeated on the way back to the original surface after the electrons

have struck the other cylinder and been re-emitted. This phenomenon is equivalent to a loss

of electrons and leads to a more stringent multipactor condition than that of the classical

case of two plane parallel infinite plates. The importance of this effect is determined by the

ratio between the distance between the cylinders and the cylinder radii, and a preliminary

estimate showed that when this ratio is large, multipactor can only occur for surfaces having

very large secondary emission coefficients. A more detailed analysis was also made in order

to assess the lowest voltage between the cylinders at which multipactor becomes possible

(although it may not necessarily occur) i.e. the critical voltage between the wires below

which multipactor breakdown is impossible. This critical voltage was found to be a function
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of all geometrical dimensions of the system as well as of the frequency of the electric field.

In the present work, full simulations of the multipactor breakdown problem have been

made in order to evaluate the accuracy of the previously presented simple model. It is found

that the predictions of the model are in good qualitative agreement with the results of the

simulations. In the limit of small gap between cylinder surfaces and large cylinder radii, the

non-resonant approximation overestimates the breakdown threshold, because of the averag-

ing over impact phases of the electrons, when really the resonant approximation should be

used. However, when the radii decrease, the simulated threshold, as well as the theoreti-

cally predicted threshold according to the dispersive approximation, starts to increase, and

eventually terminates at a certain radius determined by the maximum secondary emission

yield, indicating that no double sided multipactor breakdown is possible, regardless of the

voltage. This feature is not predicted by the classical non-dispersive approximation and is

an important fact to consider when designing this type of transmission systems. In the other

limit, when the gap width is quite large, the non-resonant approximation tends to underesti-

mate the breakdown threshold. However, the error is much smaller than that corresponding

to resonant approximation, and the qualitative agreement in the limits of both small and

large gap widths indicates that the model incorporates the most important electron loss

mechanisms.
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