W) AVANCES 4
SN 0z
TR
SXUER
¢f

Improving FSM reverse engineering for test
development in Erlang

Master of Science Thesis in Software Engineering

PABLO LAMELA SEIJAS

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, May 2011

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Improving FSM reverse engineering for test development in Erlang

PABLO LAMELA SEIJAS
© Pablo Lamela Saljas, May 2011.
Examiner: Thomas Arts

Chamers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden May 2011

Abstract

This thesis contributes with a new implementation of an algorithm that infers a finite
state machine from samples of a grammar, and with an automated system able to apply
this algorithm to aloud the visualization of EUnit test cases, without the need to execute
them.

This paper documents the experience derived from the process, as well as the tech-
nique used to test this new implementation against an existing one by using a blackbox
approach.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Thomas Arts, for
his shared knowledge, for the invaluable guiding along the whole project and for always
being available despite his tight schedule.

Special thanks to Hans Svensson and Simon Thompson for their contributions, sup-
port and ideas. Their experience helped greatly to keep this project on track.

I would also like to thank the professors Victor Gulias, Francesco Cesarini, Antonio
Blanco and José Maria Molinelli, whose teachings have proven so useful during all this
time.

And last but not least, I would like to thank my family and friends, for their support
and help.

Pablo Lamela Seijas, Géteborg, May 2011

Contents

Introduction

Erlang QSM

2.1 Imitialization
2.2 Statemerging
2.3 Additional considerations

Testing

3.1 QuickCheck testing
3.2 Interfacing StateChum
3.3 Differences with StateChum

EUnit parsing

4.1 Possible scenarios
4.2 Syntax analysis

Related Work
Conclusion and future research

Bibliography

A Source code for merge module

13
13
14

17

18

19

20

Introduction

RLANG programmers test their code by using, among other tools, EUnit tests. If
we follow test-driven development approach we are encouraged to write those
tests before starting the implementation, this way we try to avoid writing un-
necessary code[l]. We can see the completeness of that testing by generating a

finite state machine (FSM) from the traces produced by our tests [2]. If generated FSM
fully models our intuition, then we have written enough tests.

The generation of the FSM is based upon an algorithm to extract regular grammars
from samples of a language [3]. This algorithm, (QSM,) takes as input both words in
the language and words not in the language and infers a regular grammar from them.
The QSM algorithm is implemented in the program StateChum [4]. We can create a
model of our software by collecting positive and negative traces and supplying them to
StateChum as input words. [5] StateChum will show as output a graph of the FSM that
represents the inferred grammar.

The earlier mentioned approach [2] manually translates EUnit tests into positive and
negative traces:

For example, if we have the following code:

startstop_test() ->
7assertMatch(true,start([])),
7assertMatch(ok,stop()),
?assertMatch(true,start([]1)),
7assertMatch(ok,stop()).

We can extract the positive trace: [start, stop, start, stop]

If any of that sequences leads to an exception we generate a negative trace instead.
Negative traces are necessary to get a complete test-suite and consequently they are also
necessary for this method to give a positive result.

CHAPTER 1. INTRODUCTION

If we collect enough traces, we can feed them as input to the program StateChum[4]
and it will show us a diagram of an FSM that will represent the expected behaviour of
our system. StateChum is an implementation of an algorithm (QSM][3]) which explains
how to extract a general regular grammar from samples of a regular language.

Nevertheless, StateChum|[4] works with sets of traces, not with EUnit tests. Because
of that, we are forced to do the described translation manually. This would not be a
problem if we only have a few tests, but it can imply a big amount of work and related
errors when we apply the method to a normal sized project.

Our contribution is completing the automation of the whole process by implementing
QSM in Erlang, (as alternative to StateChum tool,) and by adding support for the EUnit
tests in it. This will also greatly simplify the task of generating FSM from existing
projects that already have EUnit tests implemented. We also contribute with a method
by which we use QuickCheck to test our tool against StateChum in order to ensure a
similar quality in the results.

Erlang QSM

HE already existent QSM implementation, StateChum, was available to us as a
binary. We could not access the source code but we could access two papers
written by its developers [6][5]. In these papers they describe how they used
an implementation of the QSM algorithm [3] to reverse engineer software. We

used the description in those three papers to re-implement this algorithm in Erlang and
the binaries to test our implementation, as we explain in the next section.

The algorithm works in terms of regular languages, when using it to reverse-engineer
a program, we will consider traces (execution sequences) as words in the language. The
QSM algorithm takes two sets of words, one set with words from the language, (valid
sequences of events,) and one with words that do not belong to the language, (invalid
sequences). With one peculiarity, invalid sequences are invalid strictly because of its last
symbol, thus, if we remove the last event from an invalid word, we should get a valid one.
We assume this because an invalid sequence is a sequence that produces an exception.
There is no point in considering what happens after the exception is thrown, because
of this we consider that the event that produces the exception is the last one. From
this input consisting in two sets of words, QSM will try to produce the most general
automaton that complies with the traces, and this will hopefully give us an idea of the
completeness of our tests.

In our implementation we take as event any Erlang term. For explaining the algo-
rithm we used atoms as events. Thus, a trace corresponds to a list of atoms, and the
input to the algorithm is a tuple of two lists of lists of atoms, (the positive ones first).

In this paper we will use this set as example:

Positive | [a,b,a]

[b’b’a’b]

Negative | [a,b,c,c]

2.1. INITIALIZATION CHAPTER 2. ERLANG QSM

Which is represented in Erlang by:
{[lla,b,al, [b,b,a,bl], [[a,b,c,c]]}

So, we have two possitive traces and one negative trace where the first two events of
the negative trace also occur as part of a positive trace.

The QSM algorithm roughly consists of two phases[3]. In the first one, called ini-
tialization, we create a finite state machine with a tree structure (called APTA) that
will accept all positive traces and reject all negative ones. In the second phase, state
merging, we merge nodes of the tree in order to get a smaller finite state machine which
is still deterministic and accepts and rejects the same input set, but possibly more.

2.1 Initialization

The Augmented Prefix Tree Acceptor (APTA) is the tree that we will use as our initial
FSM. It must necessarily have a tree shape, it must accept all positive traces and reject
all negative traces and it must also be deterministic (this is, there cannot be two branches
with the same symbol departing from the same node).

For example, from the previous traces we would get the following APTA:

Figure 2.1: Example APTA tree

Where 0 is the initial state and 8 a failing one.

In order to generate this in Erlang we create an initial state with all the traces in it
and extract the first event from each trace. Then we create as many states as different
events we extracted and divide the rests of the traces between the new states.

In the first iteration of our example we would get:

State Kind of trace | New trace

1 (from a) | Positive [b, al
Negative [b, c, c]

2 (from b) | Positive [b, a, bl

2.1. INITIALIZATION CHAPTER 2. ERLANG QSM

We repeat the process with every new generated state until the states we generate
do not contain traces. When we arrive to the end of a positive trace we just remove the
trace, but when we fetch the last event of a failing trace we generate a new failing state
and check that there are no traces left to expand from that state.

The target is to obtain the automaton as a record with the fields: initial state,
alphabet, states, transitions and failing states. The transitions are stored using the
labelled transition system (LTS), as a list of tuples in the form: origin, event, destination.
In our example the transitions would look like:

({0, a, 1}, {0, b, 2}, {1, b, 3}, {2, b, 4}, ... , {7, b, 9}]

We also decided to keep some order in the numbers of the states to simplify the
implementation of the state merging later, this way the number of a state in a given
level would always be smaller than the number of a state in a deeper level. This implied
a breadth-first processing which made the functions more complex and added the need
to keep a lot of information in the parameters.

This can be seen in one of the lowest level functions of the bluefringe_apta module:
expandTrace/2. The only purpose of this function is to remove the first symbol from a
trace and to add to the automaton structure the related information.

But it must remember the kind of the trace, (positive or negative, in case there
are no more symbols in it), the last state number granted, the alphabet used (to add
new symbols to it), the defined rejection states, and a separate buffer with the already
expanded transitions from the current node, (in case our symbol already has a transition).

To do this we use the function extractTrace/1 that joins the information about the
next trace to expand in one tuple.

extractTrace({StateNum, [FailingTracel|Rest], [1}) ->
{{neg, fun addToFail/2, FailingTrace, StateNum},
{StateNum, Rest, []1}};
extractTrace({StateNum, FailingTraces,
[AcceptanceTrace|Rest]}) ->
{{pos, fun addToAccept/2, AcceptanceTrace, StateNum},
{StateNum, FailingTraces, Restl}}.

Then we pass this tuple as the first parameter of the function expandTrace/2, together
with the buffer of already expanded transitions from the current state and the record
Agd, which contains all the information described above.

%% lastState, foundAlphabet, foundTransitions, rejectionStates
-record(agd, {lastSt = 0, alph = [1, tr = [1, rSt = [1}).

And the function will update both the Agd and the buffer.

2.2. STATE MERGING CHAPTER 2. ERLANG QSM

% @spec (TraceInfo, {Agd, Buffer})
% TraceInfo (returned by extractTrace)
expandTrace({pos, _, [1, _}, {Agd, Buffer}) -> {Agd, Buffer};
expandTrace({neg, _, [], StateNum}, {Agd, Buffer}) ->
{addFailingState(StateNum, Agd), Buffer};
expandTrace({_, Add, [H|_] = Trace, StateNum}, {Agd, Buffer}) ->
case searchMatchInBuffer (H, Buffer) of
no_match ->
NewState = Agd#agd.lastSt + 1,
NewAgd = addSymbol (H,
addTransition({StateNum, H, NewStatel,
Agd#agd{lastSt = NewStatel})),
NewBufferEntry = {H, NewState, [1, [1},
{NewAgd, [Add(Trace, NewBufferEntry) |Buffer]};
{Match, RestOfBuffer} -> {Agd,
[Add(Trace, Match) |RestOfBuffer]}
end.

2.2 State merging

Now we generalize the FSM by merging states. To merge two states we just move the
transitions from one state to the other. For example, if we merge in the APTA from
Fig. 2.1 the states 1 and 2, by calling the Erlang function merge (APTA, 1, 2) (see
Appendix A), first we get the intermediate tree shown in Fig. 2.2 and after removing
non-determinism we get the final result shown in Fig. 2.3.

Figure 2.2: First state of merging nodes 1 and 2

We can see that, in this first step, non-determinism appears in node 1 with the
symbol b. To solve that determinism we continue merging now 3 with 4 and finally 5
with 7. After that we would get:

2.2. STATE MERGING CHAPTER 2. ERLANG QSM

Figure 2.3: Result of merging nodes 1 and 2

After merging, we check that the original traces are still valid. If any trace is lost
we undo the merge. In our implementation this is done by throwing an exception which
interrupts the merging when this happens.

To decide which nodes should be merged first we use the strategy blue-fringe. This
strategy consists in considering two zones of the FSM. The red zone has the nodes that
cannot be reduced and the blue zone has the immediate neighbours, which will be used
as candidates to merge with the red zone.

We start setting the initial state as red and its neighbours as blue.

Figure 2.4: Apta before merging with red and blue zones

In each step we compute the score for every possible pair of candidates to merge,
(pairs consisting on one node from the red zone and one node from the blue zone). The
score for a pair of candidates is given by the number of extra merges that we would
be forced to carry out in order to restore determinism after hypothetically merging the
nodes of that pair.

Pair | (0, 1) | (0, 2)
Score 1 3

2.3. ADDITIONAL CONSIDERATIONS CHAPTER 2. ERLANG QSM

Two states are incompatible if one of them is a failing state, and the other is not. If
a pair of candidates is incompatible or if it forces us to make an incompatible merge (in
order to restore determinism) its score will be —1.

We must also check that all the positive traces are accepted and all the negative
traces are rejected before actually committing any merge.

If a blue node cannot be merged with any of the red nodes, it becomes red and the
blue zone is updated accordingly to match all the immediate neighbours of the new red
zone.

The process ends when the whole FSM is red and we wrap up by merging all the
failing states in one. This last merging should not produce indeterminism since there
should not be transitions starting in any failing state.

2.3 Additional considerations

QSM was also initially designed to be interactive, here we only focus in the non-
interactive version. The main difference is that the interactive version is intended to
generate sample traces during the merging process and to ask the user if those are valid,
in order to avoid over-generalization. Nevertheless, the same results can be achieved
with the passive implementation. The user only has to add new tests to the input and
to run the algorithm again.

Having the QSM algorithm implemented in Erlang gives us a better integration with
the test code than the one we could get with other languages, (as java, in the case of
StateChum,) since for example it allows us to use arbitrary Erlang terms as traces, which
can be useful for some purposes as we explain in a later section.

After finishing the implementation, we have also found that it executes faster most
of the time, since it does not need to start an extra virtual machine for this sole purpose.

Testing

N order to improve the reliability of such a new implementation we have used
QuickCheck to test it against StateChum [4] because we wanted it to behave the
same as this already well tested implementation.

We test that for a given set of positive and negative traces, our implementation and

StateChum give similar state machines. In other words, we use StateChum as an oracle
for our model based testing.

3.1 QuickCheck testing

To test our implementation of QSM we first used a property that should hold after the
execution of the algorithm. The positive traces that where provided as input must be
accepted by the output automaton. And the negative traces must be rejected exactly in
its last symbol, this is, they must drive us precisely from the initial state to the failing
one.

Implementing just this property in QuickCheck would be simple if we only generated
completely random sets of traces. But, if we do it this way, most of the generated sets of
traces that we would get, would lead to meaningless automatons that would have nothing
to do with the ones we would find in a real scenario. To solve this issue we decided to
generate random automatons instead, and then walk through them randomly. This
implementation could result in unreachable states, but this is not a problem since the
input to the algorithms is just the traces and they will not contain such states.

automata() ->
?LET ({States,Events}, {set(elements([a,b,c,d,e,f,gl)),
non_empty (set(elements([x,w,y,z])))},
?LET(Trs, transitions(Events,States),
{[init,bad] ++ States,init,bad,Events,Trs})).

3.2. INTERFACING STATECHUM CHAPTER 3. TESTING

An automaton in the testing module is represented by a tuple in the form: {list of
states, initial state (init), failing state (bad), list of events, list of transitions}. And
each transition is as usual another tuple: {origin, event, destination}.

transitions (Events, States) —>
?LET(Trs, [{init,elements(Events),oneof([bad | States])} |
normal _transitions([init|States], Events,
[bad,init|States])],
determinize(Trs)).

In the transitions function we make sure that we get at least one transition so that
later we can generate at least one trace.

In order to make valid and useful automatons we just have to treat the initial state
(init) and the failing state (bad) independently and to make sure that we do not generate
transitions that start in the failing state.

In the first place we though that forcing the resulting automaton to be deterministic
would not be required because the resulting traces could always be translated into a
deterministic APTA tree. But the experience of testing the algorithm showed us an
exception to this idea: the non-determinism can lead us to have one symbol that would
drive us to both a normal and a failing state, (e. g. we could get the trace [x, y] as
both positive and negative).

We decided not to use this kind of input as negative tests because this validation
would be almost equal to the validation the algorithm itself does, so it would be just like
repeating code.

After generating a random automaton, we just do a series of random walks through
the automaton (starting at the initial state), give them as input to the algorithm, and
check that the output automaton complies with the input traces.

This helped us to find some misunderstandings in the implementation. For example:
we thought in the first place that just by taking care of not merging a normal state
and a failing one, the collapsed automaton would properly accept or reject all the input
traces, but this was proved to be false when we run this test. We fixed it by checking the
traces with each merge. But even though this test is useful, it would still pass if we had
only implemented the APTA generation, and consequently we are not actually testing
that the merging system and the blue-fringe implementation work properly. In the next
section we solve this by testing our implementation against an existing one.

3.2 Interfacing StateChum

Specifically, we wanted to know if our implementation generated minimal automatons.
We could not find an alternative way to check if the resulting automaton was in fact
minimal, since that is the actual purpose of the QSM algorithm. But we did know
StateChum, an already tested implementation, that does give a minimal automaton. So
we checked instead that our implementation gave similar results as it. In order to do

10

3.3. DIFFERENCES WITH STATECHUM CHAPTER 3. TESTING

this, we first wrote an interface to StateChum that would allow us to provide lists of
atoms as input, and then parse the resulting automaton to an Erlang entity. This could
be done thanks to the text mode of StateChum.

StateChum’s text mode provides a parsable description of the transitions of the out-
put automaton. Nevertheless, this output does not specify the initial state or transitions
that end in a failing state, or the failing state at all. Because of this, we could not check
that the automatons were equivalent, so we just compared the number of non-failing
states.

This simple check allowed us to realize about some misunderstanding about the
semantics of the algorithm. For example: blue states need to be transformed to red
immediately after they become impossible to merge with the red ones, instead of trying
to merge all possible blue states first.

Another example is that in the original pseudo-code there are instructions of the kind
for all X where the list X grows while execution is inside the loop. After testing we
discovered that this changes should be taken into account by performing extra iterations
in the end.

3.3 Differences with StateChum

We needed to fix a few errors in our QSM implementation, but even after that, we found
out that in some cases the results were still different despite being both correct according
to the QSM specification. For example, from the traces: {[ly,z,y,z], [z,y,z,y]],
[[z,y,y]1}. We would get the following APTA tree:

Then we apply the bluefringe strategy and compute the scores for all possible com-
binations:

Pair | (0,1) | (0, 2)
Score H 3 ‘ 3

One obvious question arises: If several pairs of nodes have the same score, which pair
shall we merge first?

3.3. DIFFERENCES WITH STATECHUM CHAPTER 3. TESTING

If we choose the pair (0, 1), (as StateChum apparently does in this case,) we will
form a loop with the y symbol in the state 0 and continuing with the algorithm we will
end up with an irreducible automaton like this, (the state numeration may differ):

O—Cr0-38%

On the other hand, if we chose the pair (0, 2), (as our implementation does in this
case,) we will form a loop with the z symbol in the state 0 and we will get this slightly
smaller, also irreducible automaton:

V4

()

O=C

Given this choice in implementation, one question now arises, is any of the choices
better than the other? In order to find out, we generated a large number of inputs
and tested the two algorithms on these inputs and compared the size of the resulting
automatons. This is done in the QuickCheck property prop_statistic/0. It uses
the function collect() to see how many times our implementation produces a smaller
automaton than StateChum, how many times they match, and how many times occurs
the opposite. The result for 1000 iterations was:

0K, passed 1000 tests
89% draw

5% sc

5% qsm

true

Being sc that the output from StateChum was smaller, gsm that the output from our
tool was smaller and draw that both outputs had the same size.

From this we can conclude that, despite the decision does affect the size of the
resulting automaton, our decision of choosing a random one, (not actually random but
whichever was more efficient to extract in that situation) outputs approximately the
same number of automatons bigger and smaller than StateChum. And approximately
nine out of ten times, they have the same size with both implementations. So, after this
results, we accepted this implementation choice as valid.

12

EUnit parsing

UNIT [7] is the Erlang unit test framework in the style of JUnit[8], HUnit[9], etc.

In this framework one can specify unit tests and check that their results are

correct by using some preprocessor macros provided by the EUnit library. By

using this tool we can later run all the unit tests at once and get a summary of

those results. EUnit modules contain a series of functions that can in principle contain

any Erlang expression, this expressions are evaluated when the tests are run. Because of

this, the tests can have arbitrarily complex structures, which makes it difficult, (and in

some cases impossible,) to analyse them statically. That occurs because this functions

usually make calls to the code, so we could in principle get the traces by collecting those

calls while running the tests. But this is not always possible since we may not have the
implementation, and thus, the tests may not be possible to execute.

Depending on the use case for our tool, we would like to have both static analysis
as well as dynamic analysis and combinations thereof. Nevertheless, we may need static
analysis if we use the tool in a test driven development approach, where the tests are
developed before the code is written. In that case, we cannot run the tests to obtain
the traces. Even if some tests can be run, new tests may be added that require static
analysis.

4.1 Possible scenarios

From the syntactic point of view, the tests in EUnit are given by normal Erlang functions
with a name that end with the sufix test or test_ and they must contain some of the
EUnit macros like 7assertMatch() or 7assertException() which are defined in the
header file eunit/include/eunit.hrl from the EUnit distribution.

Execution flow may vary in terms of the returned values from other functions. This
other functions may be in the target code (the code we want to test) itself and, thus,
they may not even be defined yet.

13

4.2. SYNTAX ANALYSIS CHAPTER 4. EUNIT PARSING

On the other hand, in some cases we may find that all the external functions are
surrounded by macros like 7assertMatch() or 7assertException(), and in those cases
we would know the expected return value.

This gives us three possible solutions:

1. Dynamically running the whole tests and collecting the traces. (This is similar to
the reverse engineer approach StateChum was designed for)

2. Dynamically running the part of the tests that is in the same module and inferring
the returning values from the EUnit macros when possible.

3. Statically parsing the EUnit code and trying to infer the execution flow when
possible.

None of the three would work for all the desirable cases. Here, we chose to implement
the last one, which achieves the maximum independence from the tested code.

4.2 Syntax analysis

EUnit can be considered a domain specfic language for testing. By a large set of macros,
the test notion is expanded in Erlang code for running the tests and comapring their
results. We do not need to expand the macros in the same way. In fact, this expansion
makes the analysis harder, since we use the semantics of the macros (the domain specific
language) to be ale to determine the possible traces.

We want to parse the EUnit file without the expansion of the macros. Erlang offers
a parser, but that requires pre-processing, which expands the macros.

Therefore, we replace the EUnit macro expansion by our own macro expansion, and
then analyze the resulting code. In fact, we use EUNIT_HRL macro. In the original
EUnit macro definition, this EUNIT_HRL macro is used to disable the other EUnit
macros when defined. So, if defined, we can use our own macro expansions, if not
defined, we use EUnit’s macro expansion.

Our macro definitions are very simple, and consist basically in a tuple with an atom
and the code inside the macro.

-define(’ _assertMatch’ (P1, Trace), Trace).
-define(assertMatch(P1, Trace), Trace).

-define(’ _assertError’ (P1, Trace),
{fsm_eunit_parser_negative, Tracel}).

-define(assertError(P1, Trace),
{fsm_eunit_parser_negative, Tracel}).

-define(’ _assertExit’ (P1, Trace),

14

4.2. SYNTAX ANALYSIS CHAPTER 4. EUNIT PARSING

{fsm_eunit_parser_negative, Tracel}).

-define(assertExit(P1, Trace),
{fsm_eunit_parser_negative, Tracel}).

-define(’ _assertException’ (P1, P2, Trace),
{fsm_eunit_parser_negative, Tracel).

-define(assertException(P1, P2, Trace),
{fsm_eunit_parser_negative, Tracel).

-define(’_assertThrow’ (P1, Trace),
{fsm_eunit_parser_negative, Tracel}).

-define(assertThrow(P1, Trace),
{fsm_eunit_parser_negative, Tracel).

-define (EUNIT_HRL, true).

After removing the EUnit macros we look at the syntax tree and parse the result. We
analyse the syntax tree recursively using pattern matching and carrying two lists (one
for positive traces and one for negative traces). The tuples that represent EUnit macros
are recognized by the pattern matching and the name of the function inside them is
added to one list or the other depending on the tuple.

Not all the EUnit tests are supposed to be executed as is but they can also contain
“generators”, mainly, this is, code that when executed, it will result in the actual functions
that do the tests. For example:

startstop_test_() ->
fun OO ->
7assertMatch(Pid when is_pid(Pid),start([1)),
7assertMatch(ok,stop()),
7assertMatch(Pid when is_pid(Pid),start([1])),
7assertMatch(ok,stop()) end.

We can recognize this tests because their names end with and underscore (more specifi-
cally they end with test_, in comparison to the normal tests that end with test)

For simplicity we assume that the functions only contain a list of calls surrounded
by EUnit macros or either calls to other functions like them. In this static analysis we
do not consider variable assignments either.

Nevertheless, we do consider the special tuples foreach and setup as well as the
equivalent foreach_ and setup_, (that take generators as content,) as long as their
contents follow the principles explained before. In the case of foreach, each of the

15

4.2. SYNTAX ANALYSIS CHAPTER 4. EUNIT PARSING

elements of the list will be considered as a different test and, thus, it will produce a
different trace.

If the EUnit module complies with this format, our tool will extract a tuple with the
two lists of traces (positive and negative) in the format {module, function, [argl,
arg?2, ...]}, this can be easily mapped if we do not need all that information.

Thus, for the example above, after compiling and analysis, we obtain the sequence:

{[[{frequency,start, [[1]},
{frequency,stop, [1},
{frequency,start, [[1]]},
{frequency,stop, [1}1],

03

It is added to the first list of the tuple since this trace is positive. The module name
in this case is extracted from a import macro in the header of the file:

-import (frequency, [start/1, stop/0, allocate/0, deallocate/1,init/0]).

16

Related Work

HIS whole paper is based on a previous investigation by Thomas Arts and Simon
Thompson which is documented in their paper [2], where an important part
of the processes used here are described and future possible uses for them are
mentioned.

We have already mentioned Statechum[4], this application by Neil Walkinshaw and
Kirill Bogdanov, implements the whole QSM algorithm including the interactive version.
They have also documented their investigation in the papers [6] and [5]

Also, Hans Svensson, in his paper [10], tested an implementation of biichi-automata
by comparing it to existing implementations in a similar way, i.e., generating random
input with QuickCheck and comparing the output of both implementations.

17

Conclusion and future research

N this paper we have presented: one new implementation of the QSM algorithm in
Erlang, one technique to test such an implementation using an oracle as a black
box, and one approach to the extraction of traces from EUnit tests by means of
static analysis.

This contributions, together, provide a unified way to visualize EUnit test cases
and to generate templates that can in the future be used to generate QuickCheck state
machines as proposed by Thomas Arts and Simon Thompson [2], and that will eventually
allow migration of EUnit tests to QuickCheck properties in an automatic way.

The QSM algorithm is sufficiently fast for the small sets of test cases in an EUnit test
suite. However, for very large test suites, one may see performance problems. Therefore,
it could be interesting to create a concurrent implementation of the QSM algorithm.
It should be much easier to parallalize our Erlang implementation than it would be
to parallelize the corresponding Java implementation, due to the superior support of
concurrency in Erlang.

18

1]
[2]

Bibliography

K. Beck, Test-driven development: by example, Addison-Wesley Professional, 2003.

T. Arts, S. Thompson, From test cases to FSMs: augmented test-driven develop-
ment and property inference, in: Proceedings of the 9th ACM SIGPLAN workshop
on Erlang, ACM, 2010, pp. 1-12.

P. Dupont, B. Lambeau, C. Damas, A. van Lamsweerde, The QSM algorithm and
its application to software behavior model induction, Applied Artificial Intelligence
22 (1) (2008) 77-115.

Statechum.
URL http://statechum.sourceforge.net/

N. Walkinshaw, K. Bogdanov, M. Holcombe, S. Salahuddin, Reverse engineering
state machines by interactive grammar inference, in: wcre, IEEE Computer Society,
2007, pp. 209-218.

N. Walkinshaw, K. Bogdanov, Inferring finite-state models with temporal con-
straints.

Funit user’s guide.
URL http://www.erlang.org/doc/apps/eunit/chapter.html

Junit.
URL http://junit.sourceforge.net/

Hunit.
URL http://hunit.sourceforge.net/

H. Svensson, Implementing an 1tl-to-biichi translator in erlang: a protest experience
report, in: Proceedings of the 8th ACM SIGPLAN workshop on ERLANG, ACM,
2009, pp. 63-70.

19

http://statechum.sourceforge.net/
http://www.erlang.org/doc/apps/eunit/chapter.html
http://junit.sourceforge.net/
http://hunit.sourceforge.net/

Source code for merge module

=== === o
hht File : merge.erl

%kt Author : Pablo Lamela Seijas <lamela@student.chalmers.se>

%kt Description : Implements functions to merge states.

Folote

%h% Created : 7 Nov 2010

D Y A
-module (bluefringe_merge) .

-include("../include/automata.hrl").

%k API
-export ([merge/3, number_of_merges/3]).

hfy==
%% API

hoto
T
%% Function: merge(Automata, OptimizedExtraInfo, Statel, State2)

%% Description: Merges states in both automata and optimized extra

%% info. Doesn’t remove the eliminated states from the lists.

=

merge (Automata, Stl, St2) ->
{Result, _} = merge_list(Automata, [{St1, St2}], 1),
Result.

20

APPENDIX A. SOURCE CODE FOR MERGE MODULE

number_of _merges (Automata, Stl, St2) ->
case (catch merge_list(Automata, [{Stl, St2}], 1)) of
{_, Number} -> Number;
incompatible -> -1
end.

Dot
%% Internal functions

Yoo =

% Merges the list of pairs and the new pairs needed to make it
% deterministic. Updates OptimizedExtralnfo.
merge_list(Automata, [{Stl, St2}|Taill, Number) ->
{NewAutomata, NewMerges} = merge_one(Automata, Stl, St2),
merge_list(NewAutomata, NewMerges++Tail, Number + 1);
merge_list(Automata, [], Number) -> {Automata, Number}.

del_from_list(List, Element) ->
lists:filter(fun (X) -> X =/= Element end, List).

is_in_list(List, Element) ->
lists:any(fun (X) -> X =:= Element end, List).

% Merges one pair updating EI. Returns the list of new pairs needed
% to make it deterministic (return is not a valid, will be valid after
% the list of new pairs to merge is merged...)
merge_one (Automata, Stil, St2) ->
case {is_in_list(Automata#fa.st, St1),
is_in_list(Automata#fa.st, St2)} of
{true, true} ->
checkIfIncompatible (Automata#fa.fSt, Stl, St2),
{NewTr, NewMerges} = merge_on_trList(Automata#fa.tr,
St1, St2),
{Automata##tfa{tr = NewTr,
st = del_from_list(Automata#fa.st, St2),
fSt = del_from_list(Automata#fa.fSt, St2)},
NewMerges};
_ —> {Automata, []}
end.

checkIfIncompatible(List, Stl, St2) ->

case lists:subtract([St1, St2], List) of
[_] -> throw(incompatible);

21

APPENDIX A. SOURCE CODE FOR MERGE MODULE

_ => ok
end.

% Merges one pair not updating EI. Returns the list of new pairs
% needed to make it deterministic
merge_on_trList(Tr, St1, St2) ->
merge_on_trList([], Tr, St1, St2, [1, [1).
merge_on_trList(DonelL, [], _Stl, _St2, Final, NewMerges) ->
{Final++Donel, NewMerges};
merge_on_trList(DonelL, [{0ri, Tra, Dest}|Taill,
St1l, St2, Final, NewMerges)
when ((Ori == St1) or (Ori == St2) or
(Dest == St1) or (Dest == St2)) ->
{NewFinal, NewNewMergel} =
merge_one_tr(Stl, St2, {0ri, Tra, Dest}, Final),
merge_on_trList(DoneL, Tail, Stl, St2, NewFinal,
lists:merge (NewNewMerge, NewMerges)) ;
merge_on_trList(DoneL, [{_, _, _} = Head|Taill,
St1, St2, Final, NewMerges) ->
merge_on_trList ([Head|Donel], Tail,
St1, St2, Final, NewMerges).

replace(0Or, De, A) ->

case A of
Or -> De;
Other -> Other
end.

replace_3t(0r, De, {A, B, C}) —->

A2 = replace(Or, De, A),
C2 = replace(Or, De, C),
{A2, B, C2}.

merge_one_tr(Stl, St2, {_, _, _} = Tupla, Final) ->
merge_one_tr(replace_3t(St2, Stl, Tupla), Final, []).
merge_one_tr({_, _, _} = Tupla, [], DoneF) ->
{[Tupla | DoneF]l, [1};
merge_one_tr ({0ri, Tra, Dest} = Tupla,

[{Ori, Tra, Dest}|Taill, DoneF) -> {[Tupla|Taill++DoneF, []};
merge_one_tr({Ori, Tra, Destl} = T1, [{Ori, Tra, Dest2}|Taill, DoneF)
when Destl < Dest2 -> {[T1|(Tail++DoneF)], [{Destil,Dest2}]1};
merge_one_tr({Ori, Tra, Destll}, [{0Ori, Tra, Dest2} = T2|Taill, DoneF)

22

APPENDIX A. SOURCE CODE FOR MERGE MODULE

when Dest2 < Destl -> {[T2]|(Tail++DoneF)], [{Dest2,Dest1}]};
merge_one_tr({_, _, _} = Tuplal, [Tupla2|Taill], DoneF) ->
merge_one_tr(Tuplal, Tail, [Tupla2|DoneF]).

23

	Introduction
	Erlang QSM
	Initialization
	State merging
	Additional considerations

	Testing
	QuickCheck testing
	Interfacing StateChum
	Differences with StateChum

	EUnit parsing
	Possible scenarios
	Syntax analysis

	Related Work
	Conclusion and future research
	 Bibliography
	Source code for merge module

