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This paper gives an assessment of vertically aligned carbon based varactors and validates their

potential for future applications. The varactors discussed here are nanoelectromechanical devices

which are based on either vertically aligned carbon nanofibers or vertically aligned carbon

nanotube arrays. A generic analytical model for parallel plate nanoelectromechanical varactors

based on previous works is developed and is used to formulate a universal expression for their

voltage-capacitance relation. Specific expressions for the nanofiber based and the nanotube based

varactors are then derived separately from the generic model. This paper also provides a detailed

review on the fabrication of carbon based varactors and pays special attention to the challenges in

realizing such devices. Finally, the performance of the carbon based varactor is assessed in

accordance with four criteria: the static capacitance, the tuning ratio, the quality factor, and the

operating voltage. Although the reported performance is still far inferior to other varactor

technologies, our prognosis which stems from the analytical model shows a promise of a high

quality factor as well as a potential for high power handling for carbon based varactors. VC 2011
American Institute of Physics. [doi:10.1063/1.3583536]
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I. INTRODUCTION

The synthesis of one-dimensional carbon nanostructures

have been under constant development since their discovery.

This development has resulted in a variety of different tech-

niques such as laser ablation,1,2 arc discharge,3,4 thermal

chemical-vapor deposition (TCVD),5–7 and plasma-enhanced

chemical-vapor deposition (PECVD).8–10 The laser ablation

and the arc discharge techniques are efficient methods for

producing large quantities of high-quality carbon nanotubes

(CNTs) but they do not provide any control over the spatial

arrangement of the resulting material11 and therefore exhaus-

tive post-growth processing is required to disentangle, rede-

posit, and align the nanotubes in order to fabricate a

device.12,13 On the other hand, catalytic TCVD and PECVD

techniques allow for a more deterministic synthesis pro-

cess.11 In the case of the TCVD process, it is possible to

grow a dense forest of CNTs known as vertically aligned car-

bon nanotube array (VANTA). Although individual CNTs

cannot be aligned vertically, they can support each other to

collectively grow perpendicular to the substrate; a phenom-

enon known as the crowding effect.14 It should be noted that,

while it is not possible to precisely control the shape of indi-

vidual CNTs in a VANTA, the size, the height, and the align-

ment of the VANTA itself can be controlled accurately. In

contrast to the TCVD process, the PECVD process offers

determinism at the level of individual nanostructures, which

are often referred to as vertically aligned carbon nanofibers

(VACNFs). Nanofibers are distinguished from nanotubes by

their internal structure which consists of stacked nano-cones

or nano-cups made up of graphene. The stacked nano-cone

structure is often referred to as “herringbone,” while the

stacked nano-cup structure is known as the “bamboo” type.11

Since carbon nanostructures have started to stand on

their feet in the form of VACNFs and VANTAs, they have

provided an unprecedented opportunity to realize a new bot-

tom-up-engineered material with excellent mechanical and

electrical properties which could exploit the third dimensiona)Electronic mail: farzan@chalmers.se.
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at a reasonable cost. It came as no surprise to see the new

material being employed in a large spectrum of applications,

from thermal interfaces15 and flip-chip bumps16 to electron

emitters17–19 and gene delivery arrays.20,21 The achieve-

ments during the last few years in reproducible synthesis of

high quality VACNFs and VANTAs have extended the

boundaries of their application to the realm of nanoelectro-

mechanical systems (NEMS). Although carbon nanotubes

and nanofibers had already been used in horizontal configu-

ration as nanoelectromechanical devices,22–30 this time their

as-grown vertical alignment was exploited. Good examples

of such devices include nanoelectromechanical switches31

and the nanoscale memory cell32 based on VACNFs.

In this report, we focus on a novel application of

VACNFs and VANTAs: a NEMS varactor. A varactor is a

two-terminal device the capacitance of which depends on the

voltage applied to its terminals. Varactors are mainly used in

radio frequency systems such as voltage controlled oscillators

(VCOs),33 and frequency multipliers.34 The varactor technol-

ogy is dominated by solid-state devices realized in silicon or

GaAs. The advancement in micromachining technologies in

the last twenty years has introduced the new class of micro-

electromechanical (MEMS) varactors.35,36 However, the de-

velopment of MEMS varactors has not progressed at the pace

of other MEMS devices, which can be explained by the abun-

dance of discrete high quality factor silicon and GaAs varac-

tors up to 30 GHz.37 But there is still a pressing need for

electromechanical varactors including the novel NEMS var-

actors: they have the potential of very high quality factors,

they can be designed to withstand large radio frequency (rf)

voltage swings, they exhibit a symmetric capacitance-voltage

(C-V) response, and they can be inexpensively produced on

top of high-resistivity silicon substrates.37

The aim of this work is to give a general assessment of

carbon based NEMS varactors and to validate their potential

using an analytical model developed here, as well as pub-

lished experimental data.38–43 Since carbon based varactors

are still in emergence, this review focuses on their potential

advantages and remaining challenges. First, a short review of

existing varactor technologies is given. Then a detailed

description of carbon based varactor fabrication is presented.

At the end, we evaluate their performance using the key pa-

rameters: tuning ratio, quality factor, static capacitance, and

operating voltage.

II. PRINCIPLE OF OPERATION

A. Continuous tunable capacitors

The capacitance of a parallel plate capacitor which con-

sists of two conductors separated by a nonconductive region

is given by the following equation (neglecting the fringing

field):44

C ¼ e0er
A

d
(1)

where e0 is the permittivity of free space, er is the relative

permittivity of the nonconductive region, A is the overlap-

ping area of the conductors, and d is the gap between them.

Except for the permittivity of space which is a universal con-

stant, e0¼ 8.85� 10�12 F/m, any of the three other parame-

ters can be used to tune the capacitance value.

The most widely used type of tunable capacitors are the

varactor diodes45 in which the depletion region acts as the

gap between the conducting electrodes. In the case of

Schottky diodes, the depletion layer is created at the semi-

conductor side of a metal-semiconductor junction46 while in

a p-n junction diode the depletion layer is distributed over

the junction as a function of the doping profile.47 To tune the

resulting capacitance, the width of the depletion region is

modified by applying a proper reverse bias. The heterostruc-

ture barrier varactor (HBV) is another type of varactor taking

advantage of the bias dependency of the depletion region

which, in this case, is created between two different semi-

conducting materials.48

Another way of making a varactor is to sandwich a fer-

roelectric material between a pair of electrodes. Since the

relative permittivity of ferroelectric materials strongly

depends on the applied electric field, a bias voltage can alter

the capacitance of the resulting device.49 This device is

referred to as a ferroelectric varactor.

A radically different approach, utilized in microelectro-

mechanical systems, is to change the geometrical configura-

tion of a capacitor by mechanically moving the electrodes or

the dielectric between them. In a parallel plate MEMS varac-

tor, one50,51 or two35 suspended electrodes are moved toward

a static electrode resulting in a reduced gap, thus increasing

the capacitance. Alternatively, a dielectric slab suspended

between two conductive electrodes can be displaced to alter

the relative dielectric constant between the capacitor

plates.52 In an interdigital MEMS varactor, the overlapping

length of the fingerlike structures is varied which alters the

overlapped area of the capacitor.53,54

B. Switched capacitors

A switched capacitor is basically an on-off switch in se-

ries with a capacitor with a discrete C-V characteristic.

Semiconductor devices with high performance at radio fre-

quencies such as PiN diodes, CMOS switches, and pHEMT

switches are typically used with low loss nontunable capaci-

tors to fulfill high performance demands of those applica-

tions where continuous capacitance change is not required.45

MEMS switched capacitors suitable for rf applications have

also been developed.37

C. The carbon based varactor

Although the notion of a carbon based varactor was first

published in 2007,39 its prerequisites had already been avail-

able for a couple of years. In 1999, Kim et al. used carbon

nanotubes to create a pair of robust nano-tweezers that could

be utilized for nanoscale manipulation and measurement.55

Their device was made of a pair of CNTs which were grown

ex situ and then transferred and attached on the tip of a

tapered glass micropipette. The principle of operation was

based on electrostatic attraction created by a bias voltage

applied to the CNTs. Similar works were reported by other

groups who employed ex situ grown carbon nanofibers56 and
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carbon nanotubes57,58 to realize standing nano-tweezers or

switches. In 2008, when the PECVD synthesis of carbon

nanostructures had matured, Jang et al. presented the first

NEMS switch using in situ grown VACNFs.31 This work

was a major breakthrough since it clearly demonstrated the

potential of VACNFs for a new generation of nano-scale

devices. Another implication of this work was the fact that

the deterministic nature of the PECVD process could be

exploited to grow a large number of VACNFs at predefined

positions to compose a two terminal device with measurable

capacitance; the carbon based varactor was prepared for

conception.

As explained in the Introduction, the synthesis determin-

ism is achieved in form of VACNFs and VANTAs and

therefore, both structures can be used to realize varactors.

Figure 1 shows the generic form of a VACNF-based and a

VANTA-based varactor. Using their resemblance to daily

objects, one could name the former “comblike” and the latter

“brushlike” varactor. Both of these varactors share the same

principle of operation; a bias voltage applied on their termi-

nals creates an electrostatic field which exerts a bending

moment on the charged VACNFs or VANTAs. Conse-

quently, the gap between the two parallel walls is reduced

and the capacitance is increased. Since the reduction in the

gap depends on the strength of the electrostatic field and

therefore the applied bias voltage, a voltage-dependent ca-

pacitance is obtained.

III. MODELING

Physics and mechanics of one-dimensional carbon nano-

structures are not new fields. Many years of research have

led to improved understanding of the nanoelectromechanical

systems based on CNTs and CNFs in terms of the interac-

tions involved as well as the validity of the application of

macroscopic models.31,32,58–61 In this paper, we apply this

knowledge to identify the active forces in the carbon based

varactor and to model their influence. First, we develop such

a model for a generic one-dimensional system. Then, the

generic model is expanded separately for the brushlike and

the comblike varactors.

VACNFs and VANTAs grown in a CVD process are

weakly attached to the substrate rendering the substrate inter-

face the weakest point in the whole structure.62 This explains

why they typically break at their bases by horizontal shear

along graphite planes when lateral force is exerted on

them.63 Nevertheless, in applications such as the varactor

where the lateral force is not directly applied to the interface

one could assume that they behave as vertical cantilever

beams clamped at their base.31,32 Continuum beam theory

has been used widely to model singly- and doubly-clamped

carbon nanostructures.31,32,58,59,61,64–68 Dequesnes et al.
have used molecular dynamics (MD) to establish the accu-

racy of continuum beam theory.59 Their results showed a

very good agreement with the beam theory when the length

to diameter ratio of the nanotubes was larger than ten, which

indeed is the case for practical applications.

Another important factor in modeling the varactor is the

electrical properties of the incorporated material. Zhang

et al.69 as well as other groups70–72 have investigated the cur-

rent-voltage (I-V) characteristic of individual VACNFs using

accurate four-point probe measurements and showed that

they exhibit linear behavior. They observed an average

VACNF resistivity of 4.23� 10�3 X�cm which is consistent

with a simple model of charge transport where electrons

travel mainly from one graphitic plane to another along the

length of the nanofiber. Therefore, VACNFs can be approxi-

mated as cylindrical conductors.59 This is not as straightfor-

ward in the case of VANTAs; a VANTA composed of

SWNT is less electrically conductive than one made of

MWNT.73 This trend stems from the fact that a SWNT forest

includes a large population of semiconducting single-wall

carbon nanotubes while MWNT forests are mainly composed

of metallic few-walled carbon nanotubes. Hence, MWNT

based VANTAs are the preferred choice for applications with

a demand for high electrical conductivity (as for the case of a

varactor). When modeling the constituents as conductors, the

electronic charges distribute themselves on the surface of a

VACNF or a VANTA so as to produce an equipotential sur-

face. Therefore, the electrostatic forces can be computed by

using conventional capacitance expressions.44

Before continuing to the next section one comment is in

place regarding the van der Waals interaction between two

oppositely charged VACNFs or VANTAs. Dequesnes et al.
have used the continuum model to compute the deflection of

cantilever beams with and without van der Waals forces.59

For instance, they have shown that for a singly clamped
FIG. 1. The schematic presentation of (a) the brushlike (VANTA-based)

and (b) the comblike (VACNF-based) varactor.
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SWNT with a length of 50 nm and a diameter of 2 nm, the

effect of van der Waals forces disappears when the initial

gap is more than a few nanometers. Although the degree of

influence of van der Waals forces depends on the geometri-

cal configuration of the nanostructures and the strength of

other forces involved, they can generally be ignored in prac-

tical applications where the initial gap is more than 30 nm.66

In the following modeling, we do not consider the van der

Waals forces between the VACNFs and VANTAs since we

assume that the initial gap is large enough to render the elec-

trostatic interaction dominant. Within a single VANTA

structure however, the van der Waals interaction between the

individual CNTs contributes to achieving its vertical

alignment.74

A. Generic NEMS varactor model

Figure 2(a) shows the generic NEMS varactor model

composed of two conductive plates, clamped at their bases

with height h, width w, and thickness t. The assumption that

the plates are identical creates a symmetry permitting us to

reduce the system to a single plate placed in front of an

imaginary ground plane as shown in Fig. 2(b). The applica-

tion of a bias voltage will exert an electrostatic force which

can be represented by an arbitrary function F per unit area of

the plate. The deflection at point (x, y) is denoted u(x, y).

Assuming that the thickness of the plate is much smaller

than its lateral dimensions, the shape of the bent plate can be

estimated using a classical plate equation:

r2Dr2u x; yð Þ ¼ F u; x; yð Þ (2)

where D is the flexural rigidity of the plate. The electrostatic

force F in Eq. (2) is a nonlinear function of both position

and deflection, making it difficult, in general, to come up

with a closed-form solution.59 However, a closed-form solu-

tion can be found if appropriate approximations are made.

In order to derive an analytical approximation the sys-

tem in Fig. 2(b) is simplified to a one-dimensional lumped

model as shown in Fig. 3. In the lumped model the curvature

of the bent plate is ignored and the tip deflection is replaced

by a uniform change in the gap between a rigid plate and

an imaginary ground plane. In this setup, the restoring

elastic force, Felas, is expressed using an effective spring

constant, k:

Felas ¼ �ku (3)

The effective spring constant is system dependent and should

be calculated separately for the brushlike and the comblike

varactor.

The electrostatic force, Felec, for the parallel plate con-

figuration of Fig. 3 is given by (note that the voltage between

the plate and the ground plane is half the plate-to-plate

voltage):

Felec ¼
e0wh V

2

� �2

2 g
2
� u

� �2
(4)

in which e0 is the permittivity of free space, V is the bias

voltage applied between the plates, g is the original gap, and

u is the uniform deflection. Finally, the deflection u for the

applied voltage V is found from the equilibrium condition:

Felas þ Felec ¼ 0 (5)

Replacing Felas and Felec with their expressions and using,

C � e0wh

g� 2uð Þ ; C0 �
e0wh

g
(6)

gives,

C2V2

C0g
� k � g 1� C0

C

� �
¼ 0 (7)

FIG. 2. The generic two-dimensional

NEMS varactor model. The electrostatic

force is represented by an arbitrary func-

tion F.

FIG. 3. The one-dimensional lumped model of the NEMS varactor.
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Ideally, one would try to solve Eq. (7) to find C(V). Although

it is possible to find such a solution, the outcome is not more

intuitive than the readily available V(C):

V ¼ g
C0

C

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

C0

1� C0

C

� �s
(8)

One important phenomenon that can already be observed

from Eq. (8) is the mechanical instability that occurs at a cer-

tain applied voltage referred to as the pull-in voltage, Vpi.

The pull-in voltage can be found from the condition

@V/@C¼ 0 which gives,

Vpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

27

k � g2

C0

s
(9)

Combining Eq. (8) and (9) gives a universal, dimensionless

expression for NEMS varactors,

V

Vpi
¼ C0

C

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

4
1� C0

C

� �s
(10)

Figure 4 illustrates the universal voltage-capacitance curve

of a NEMS varactor. It clearly shows that the capacitance

cannot be tuned to more than 50% of the initial value regard-

less of the design parameters; an inherent limitation imposed

by the mechanical instability at the pull-in voltage.

B. Comblike varactor

Figure 5(a) shows the equipotential lines for a single

pair of oppositely charged VACNFs at a cross-section level.

In the case of two opposing rows of sparsely populated

VACNFs, as depicted in Fig. 5(b), the electrostatic interac-

tion between adjacent nanofibers alters the equipotential

lines. As the distance between the adjacent VACNFs shrinks

and eventually becomes much smaller than the gap between

the opposing rows, the resulting electric potential field

approaches that of a parallel plate capacitor. This can be

seen in Fig. 5(c). As a result, one can replace a sufficiently

dense row of individual VACNFs with an equivalent conduc-

tive plate with a negligible error for field calculations. In a

setup where the rows are separated by g and each row is

composed of N nanofibers with diameter D, spacing S, and

height h the capacitance is given by:

C0 ¼
e0N Sþ Dð Þh

g
(11)

The spring constant of a single VACNF under a uniform

load is kf¼ 8EI/h3 where E, I, and h are the Young’s modu-

lus, the area moment of inertia, and the height of the nano-

fiber respectively. The effective spring constant of the

equivalent plate, kp, can be found by considering the spring

constants of all the VACNFs in one row, in parallel:

kp ¼ Nkf ¼
8NEI

h3
(12)

By replacing the area moment of inertia, I, with pD4/64 for a

VACNF with diameter D, we arrive at:

kp ¼
pNED4

8h3
(13)

Finally, replacing Eqs. (11) and (13) into Eq. (9), gives the

pull-in voltage of a comblike varactor with sufficiently dense

rows of individual VACNFs,

Vpi ¼
D2

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

27e0

Eg3

Sþ Dð Þ

s
(14)

FIG. 4. The characteristic voltage-capacitance curve of NEMS varactor.

The system becomes mechanically instable at the pull-in voltage and the

electrodes snap into each other. This limits the maximum capacitance tuna-

bility in a standard NEMS varactor to 50%.

FIG. 5. The equipotential lines at a cross-section level between (a) a single

pair of oppositely charged VACNFs, (b) two sparsely populated rows of

VACNFs, and (c) two rows of densely populated VACNFs as simulated by

COMSOL Multiphysics.
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Another important issue that has to be considered in design-

ing a comblike varactor is the mechanical resonances that

occur at certain frequencies determined by the device config-

uration and mechanical properties of the nanofibers. Isacsson

et al. have studied a system where a row of VACNFs is

placed in front of an infinite conducting plane.75 They showed

that the mechanical resonances take place both in transverse

modes where nanofibers oscillate toward the conducting

plane and in longitudinal modes where nanofibers oscillate in

the direction along the array. Although these oscillations can

be exploited to design a frequency modulator or a tunable fil-

ter, they must be avoided when a plain capacitance tuning is

expected from the varactor. The analytical model reported by

Isacsson et al. provides the necessary basis for calculating

these frequencies. The simple model given above can explain

the varactor behavior as long as the driving frequency does

not coincide with any of the resonance points.

C. Brushlike varactor

A brushlike varactor, as shown in Fig. 1(a), is composed

of two parallel VANTAs. Despite the large number of studies

regarding the mechanical properties of individual CNTs76

very little is known about that of a VANTA structure. A

recent study has shown that the nanotubes in a VANTA col-

lectively form zigzag buckles that can fully unfold to their

original length upon load release.77 This indicates that a

VANTA can be considered as a single mechanical structure

with an effective elastic modulus. Therefore, assuming the

lumped model, the spring constant of a VANTA with a rectan-

gular cross-section under a uniform load can be given by:78

kp ¼
2

3

Ewt3

h3
(15)

where E is the effective Young’s modulus of the VANTA,

and w, t, and h are the VANTA’s width, thickness, and

height, respectively [see Fig. 2(a)]. Finally the pull-in volt-

age of a brushlike varactor is expressed by substituting Eq.

(15) into the universal pull-in equation given in Eq. (9):

Vpi ¼
1

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

81e0

Eg3t3

r
(16)

IV. REALIZATION

A. Comblike varactor

VACNFs are most commonly grown in a direct-current

glow discharge plasma enhanced CVD (dc PECVD) process.

The vertical alignment of the fibers is a result of the electric

field in the plasma.11 Although other plasma sources such as

hot-filament dc (HF-dc PECVD),79 magnetron-type radio

frequency (rf-PECVD),80,81 inductively coupled plasma (ICP

PECVD),82 and microwave (M-PECVD)83 have also been

used to grow carbon nanotubes and aligned nanofibers, dc

PECVD has produced the best results.11 The VACNF growth

recipe depends on the properties of the reactor being used

and the choice of catalyst and underlayer materials.

Melechko et al.11,84 and Meyyappan et al.85 give compre-

hensive reviews on the synthesis of VACNFs by PECVD

process.

One of the main limitations of the dc PECVD growth

reactors is the requirement that the substrate be electrically

conductive. This limitation stems from the unidirectional na-

ture of the plasma which leads to charge accumulation on

nonconductive substrates. The charge accumulations result

in plasma instabilities that prohibit the growth. This does not

pose a problem as long as the growth is carried out on top of

a metal film. However, when device fabrication is the goal,

this metal film must be patterned. Hence, a large nonconduc-

tive surface of the substrate is exposed. One way around this

problem is to do the metal patterning after the growth.86

Although it may be an attractive solution for many cases, it

is very challenging if post-growth nano-scale lithography is

required as the VACNFs may interfere with the exposure

process. Moreover, rf devices such as varactors must be fab-

ricated using thick metal layers to minimize the losses.37 The

latter exposes the VACNFs to a long etching time needed to

pattern the thick metal layer which would induce nonreversi-

ble damages to the carbon nanostructures. Ghavanini et al.,
proposed another solution in which a very thin layer of Cr is

first deposited on the substrate and then the thick metal pat-

tern is transferred on top of the Cr layer in a lift-off pro-

cess.87 In this way, the thin Cr layer is removed after the

growth in a short dry etching process with minimum damage

to the VACNFs.

The tuning action of a comblike varactor is the result of

uniform bending of a large number of VACNFs. This uni-

form deformation is not achieved unless the VACNFs them-

selves are uniform in terms of diameter and height. It has

been shown that the diameter of a VACNF is directly corre-

lated to the original size of the catalyst seed.88,89 Moreover,

the height of a VACNF has been shown to be a function of,

among other things, the growth time as well as the catalyst

size.87 Therefore, in order to achieve the required uniformity,

the catalyst material should be patterned to form seeds of

roughly the same size as the desired VACNF diameter and

therefore making the use of methods such as electron beam

(e-beam) lithography inevitable.

The authors are currently pursuing the realization of the

comblike varactor. Our process, as summarized in Fig. 6,

includes two e-beam lithography steps, one for patterning

the electrodes and one for patterning the catalyst seeds. We

have adopted Ni as the catalyst material not only because it

is known as an efficient catalyst for VACNF synthesis but

also due to its compatibility with standard CMOS proc-

esses90 – a crucial requirement for future integration with

electronic circuitry. We have chosen TiN as the underlayer

on which the growth catalyst seeds are deposited. Successful

growth of carbon nanofibers and nanotubes on the TiN

underlayer has already been reported.6,91–93 More impor-

tantly, TiN is known as a conductive diffusion barrier and

has been widely used in microelectronic industry for this

purpose.94 Therefore, it allows for using different metals

beneath it without being worried of poisoning the catalyst

seeds. This is especially important in fabrication of a varac-

tor where the electrical properties of the electrodes are cru-

cial for the device performance. For example, excellent rf
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materials such as copper and gold, which are not known to

yield successful growth, could be incorporated in the device

fabrication while buried beneath the diffusion barrier layer.

To enhance the adhesion of the TiN layer to the silicon diox-

ide substrate, Ti was used beneath the TiN layer. We have

used a dc PECVD equipment developed in-house to grow

the VACNFs. Technical details of the growth equipment can

be found elsewhere.89,95,96

There exists a large variety of conditions at which

VACNFs can be grown by the dc PECVD method. The

choice of the growth recipe depends, to a large extent, on the

properties of the growth apparatus, the catalyst material, and

the metal underlayer. Even in a single growth apparatus for

the same catalyst/underlayer combination, there may exist dif-

ferent sets of conditions which all lead to successful growth.

The recipe that we found to be most suitable for the synthesis

can be divided into three main steps: controlled warm-up,

plasma treatment, and growth. In the controlled warm-up, the

temperature of the sample was increased from room tempera-

ture to 500 �C by 100 �C per minute in NH3 ambience. The

conditions of the warm-up step determine how the catalyst

seeds are converted to catalyst nanoparticles.97,98 After the

warm-up step and while the NH3 ambiance was maintained,

the plasma was ignited and the plasma current was set to

20 mA. The ammonia-plasma treatment continued for two

minutes during which the temperature of the sample was set

to increase from 500 �C to 700 �C (the same temperature

slope as before). The purpose of this step was to chemically

reduce the native oxide on the catalyst seeds and therefore

enhance the subsequent carbon diffusion during the growth

step.99 Finally, the growth of VACNFs was initiated by intro-

ducing acetylene (C2H2) as the carbon containing precursor

and the growth step continued for twenty minutes.

The fabricated comblike varactor is shown in Fig. 7.

Although the nanofibers are grown from predefined Ni seeds

all with the same size and thickness, they show a large varia-

tion in length and diameter. This poor uniformity leads to an

uneven actuation; while the shorter and the thicker nanofib-

ers require a large actuation voltage to bend the thinner and

the longer ones snap into contact already at low voltages.

The poor growth uniformity has been addressed previ-

ously100 but remains as the major challenge in realizing

VACNF-based devices. The fabricated comblike varactor is

still far from a functional device.

B. Brushlike varactor

Two types of brushlike varactors with different geome-

tries have been reported in the literature.38,40 Olofsson et al.
presented a brushlike varactor with two opposing U-shaped

VANTA walls (see Fig. 8).40 The VANTAs in their varactor

were grown on 200 nm thick Mo electrodes with a 10 nm

thick Ti adhesion layer. The catalyst layer was composed of

5 nm Al2O3 and 1 nm Fe deposited on top of the Mo layer.

They grew the nanotubes in a TCVD process at 700 �C and

atmospheric pressure using a gas mixture of 5 sccm acety-

lene, 500 sccm hydrogen, and 500 sccm argon. The resulting

nanotubes were multi-walled (typically five walls) with

diameters in the range of 5–10 nm and with a length of

135 6 5 lm. They determined the density of the nanotube

arrays from weight measurements, before and after the

growth together with geometric information from SEM

observations. The VANTAs were found to have a very low

density of 1010 nanotubes cm�2. Consequently, the U-shape

design was chosen to give mechanical stability to thin

VANTA walls which otherwise would bend under their own

FIG. 6. Schematic illustration of the process flow for the comblike varactor.

(a) The silicon substrate with 400 nm thermally grown silicon dioxide. (b)

5 nm of Cr is deposited first, and then Ti/TiN contact pads are defined on

top of it in a photo-lithography step. (c) Dual-layer e-beam resist is spun and

patterned. (d) The electrode pattern is transferred to the wafer in a lift-off

process. (e) The second dual-layer e-beam resist is spun and patterned. (f)

The catalyst seeds pattern is transferred on top of the electrodes in a second

lift-off process. (g) The VACNFs are synthesized. (h) The exposed area of

the Cr layer is etched in a Cl2/O2 reactive ion etching process.

FIG. 7. A SEM micrograph of a comblike varactor taken at sample tilt of

30�. Although the size of the catalyst seeds were precisely controlled using

e-beam lithography, the nanofibers uniformity is still very poor both in terms

of diameter and height. The electrodes are 10 lm long. The VACNFs are

about 80 nm wide and a micrometer long.
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weight. In this way, they expected to achieve an enhanced

vertical alignment. However, the VANTA walls still show a

non-negligible deformation before actuation takes place.

Arun et al. presented an interdigital brushlike varactor

with rectangular VANTA structures as shown in Fig. 9.38

The rectangular shape of the VANTAs was required to pro-

vide mechanical stability. In their device, the electrodes

were made of 100 nm thick reactively sputtered TiN. The

catalyst layer consisted of 1 nm Fe deposited on top of 6 nm

Al2O3. Their growth process started with a plasma-assisted

catalyst pretreatment performed at room temperature and

was followed by TCVD synthesis at 580 �C with acetylene

as carbon source in H2/He ambience at 0.4 mbar. The result-

ing VANTAs were composed of multi-walled nanotubes

(typically three walls) with an average diameter of 4 nm and

with a length of 50 lm. They determined the density of their

VANTA structures to be roughly 1012 nanotubes cm�2.

Although denser than what was reported by Olofsson et al.,
the VANTAs still had to be designed in a rectangular shape

to provide the required mechanical stability.

V. ASSESSMENT

A. Static capacitance and capacitance density

The equations for static capacitance of the brushlike and

the comblike varactors are given in Eq. (1) and Eq. (11),

respectively. It is clear that one can always build a larger

structure to obtain a larger capacitance. However, in a race

for more functionality per unit area, devices with larger ca-

pacitance density are preferred. Incompatibility in fabrication

requires that MEMS/NEMS varactors are realized on separate

dies which gives a drastic increase in total area consumed in a

system. Recently, it has been shown that radio frequency

MEMS components including varactors can be fabricated in a

CMOS compatible process.101–104 This is more challenging

in the case of VANTA- or VACNF-based varactors since the

growth on top of a CMOS circuit as a back-end process

exposes the electronics to the harsh growth environment with

process temperatures exceeding 600 �C. A local heating

method has been proposed as a possible solution to grow

VANTAs at low ambient temperature with an average tem-

perature of less than 100 �C.105,106 This method is capable of

producing high quality carbon nanotubes, but the lack of con-

trol of the growth rate has limited its application so far. The

CMOS compatibility of dc PECVD process to synthesize

VACNFs has also been assessed7 and it has been found that if

the growth temperature is lowered to 500 �C the level of dete-

rioration in the basic functionality of the electronics becomes

negligible. Yet, in both cases, the quality of the resulting

materials needs to be improved before they can be incorpo-

rated in devices. Thus, the capacitance density of the carbon

based varactor remains greatly inferior to its rival technolo-

gies as long as the integration issues remain unsolved.

At the time of writing this paper the reported capaci-

tance values of carbon based varactors are still very small.

FIG. 9. SEM images of the brushlike varactor by Arun et al. The VANTA

walls are 7.5 lm thick and are designed in a rectangular shape to enhance

their vertical alignment. Adopted with permission from A. Arun et al., Solid
State Device Research Conference ESSDERC ’09, 335 (2009). VC 2009,

IEEE.

FIG. 10. (a) Equivalent circuit used to fit the experimental results. (b) S21

parameter measured for the frequency range 200 MHz – 1.5 GHz for 0 V

and 27.5 V actuation voltages (black line). The equivalent circuit model fits

are also shown (red dashed lines). Adopted with permission from N. Olofs-

son, J. Ek-Weis, A. Eriksson, T. Idda, and E. E. B. Campbell, Nanotechnol-

ogy 20, 385710 (2009). VC 2009, Institute of Physics.

FIG. 8. A SEM micrograph of a brushlike varactor. The VANTA walls

have a width of 4 lm, a height of 135 lm, and are separated by 10 lm.

Adopted with permission from N. Olofsson, J. Ek-Weis, A. Eriksson,

T. Idda, and E. E. B. Campbell, Nanotechnology 20, 385710 (2009).
VC 2009, Institute of Physics.
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Olofsson et al., determined the capacitance of their brushlike

varactor by measuring the S-parameters in the frequency

range from 200 MHz to 1.5 GHz. They extracted the values

from experimental measurements by considering the equiva-

lent electrical circuit model shown in Fig. 10(a). The results

of their measurement are shown in Fig. 10(b) for an actua-

tion voltage of 0 V and 27.5 V. The static capacitance

between the nanotube walls was found to be 22.0 fF. The

parallel plate capacitance equation, Eq. (1), gives a value of

23.9 fF which is very close to the measured value. The

brushlike varactor of Arun et al., presented a higher capaci-

tance value of 200 fF as measured at 4 GHz thanks to its

interdigital design.

B. Tunability and parasitic capacitances

The theoretical maximum tunability for an electrome-

chanical parallel plate variable capacitor, as shown in Fig. 4

and discussed earlier, is 50%. The main obstacle to achieve

this theoretical maximum is the parasitic capacitances which

are added in parallel to the tunable capacitor leading to a

reduced tunability. The reduced tunability, Cr, can be

expressed by:

Cr ¼
Cmax

Cmin

¼ Ctune�max þ Cf

Ctune�min þ Cf
(17)

where Cmax and Cmin are the total maximum and minimum

capacitances, Ctune-max and Ctune-min correspond only to the

maximum and minimum values of the tunable capacitor, and

Cf denotes the collective contribution of the parasitic capaci-

tances. By applying the parallel plate assumption, Eq. (17) is

reduced to:

Cr ¼
Ctune�max þ Cf

Ctune�min þ Cf
¼ 1:5Ctune�min þ cCtune�min

Ctune�min þ cCtune�min

¼ 1:5þ c
1þ c

(18)

Most parallel plate MEMS varactors have 0.15<c< 0.6,

which yields a capacitance ratio of 27% to 42%.37 In a car-

bon based varactor, one can distinguish between two different

groups of parasitic capacitances. One group includes capaci-

tances which do not scale with the size of the tunable capaci-

tor such as those originating from contact pads and lines

connecting the pads to the main device. A functional varactor

must have a minimum tunable capacitance well above the

collective value of these parasitic capacitances. In a brush

like varactor, the VANTA structures can be grown as tall as

100 lm and more resulting in a relatively large tunable

capacitance. However, a comblike varactor consists of

VACNFs, which are only a few micrometers tall and there-

fore the minimum required tunable capacitance must be

achieved by designing long rows of nanofibers. In contrast to

the first group, the value of the parasitic capacitance between

the electrodes on top of which VACNFs or VANTAs are

grown increases as the lateral device size increases. This

reduces the maximum tunability that can be achieved by car-

bon based varactors regardless of the size of the tunable ca-

pacitor. Again, this reduction is less significant in brushlike

varactors due to the relatively large size of the VANTAs

compared to that of the electrodes. Consequently, one would

expect maximum tunabilities similar to those of parallel plate

MEMS varactors. In order to estimate the maximum tunabil-

ity in a comblike varactor, one should know the constraints

imposed by the fabrication technology as well as the proper-

ties of the insulating substrate on top of which the device is

fabricated. In the following discussion, we assume device

geometries that can be fabricated reproducibly though they

may not be the most optimized ones. Moreover, we assume

that the device is fabricated on top of silicon dioxide with a

relative permittivity of 4.2 (Ref. 107). We have used the finite

element method (COMSOL Multiphysics) to compute the

parasitic capacitance arising from two parallel metallic elec-

trodes, 300 nm wide and 150 nm thick, deposited on top of

silicon dioxide [see Fig. 11(a)]. Then, 3 lm tall and 100 nm

wide VACNFs were added on top of the electrodes with 100

nm margin from the edge of the electrodes and the capaci-

tance contribution from the nanofibers was extracted [see Fig.

11(b)]. The reduced tunability was calculated using Eq. (17)

from the two computed capacitances as a function of the gap

between the electrodes. The result is plotted in Fig. 12. It can

be seen that the maximum tunability is reduced from the the-

oretical 50% to less than 30%. The presence of a maximum

at the electrode gap of 150 nm is due to the fact that the

VACNFs have been placed at a margin from the edge of the

electrodes (the gap between the fibers is 200 nm more than

that of the electrodes). We have also taken into account the

influence of a conductive substrate beneath the oxide on the

tunability. This is a common condition as the oxide layer is

usually deposited or grown on top of a conductive substrate

such as doped silicon. We calculated the maximum tunability

as a function of the oxide thickness both for a grounded and

for a floating potential substrate. The result is plotted in Fig.

13. The tunability diminishes to zero as the oxide thickness is

reduced. We also observe that the grounded substrate deterio-

rates the tunability more severely. However, for oxide layers

FIG. 11. COMSOL Multiphysics was used to simulate the parasitic capaci-

tance from the electrodes (150 nm thick and 300 nm wide) and the tunable

capacitance from the VACNFs (3 lm tall and 100 nm wide). The figure

shows the equipotential lines created by (a) only the electrodes and (b) the

combination of the electrodes and the VACNFs.
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thicker than a few micrometers the effect of the substrate

becomes negligible.

Olofsson et al., reported a capacitance increase from

22 fF to 27 fF in their brushlike varactor by applying a bias

voltage of 27.5 V, shortly before the pull-in voltage was

reached.40 These values correspond only to the tunable ca-

pacitor and were measured by de-embedding the parasitic ca-

pacitance (Cparasitic¼ 5.8 fF). Taking into account the

parasitic capacitance, the tunability is calculated using Eq.

(17) to be 18%. They also reported that the capacitance could

be reproducibly varied up to the value of the pull-in voltage,

but when the actuation voltage was increased beyond the

pull-in voltage, the VANTA walls collapsed resulting in a

sharp decrease in the value of the capacitance after which re-

producible behavior could again be observed only with a

downward shift in the absolute capacitance of the device.

Arun et al., reported a very small tunability of 4% which cor-

responds to a capacitance increase from 200 fF to 207 fF.38

Although no experimental data has been reported yet

regarding the tunability of comblike varactors, one should

expect lower values based on the previous discussion. This is

mainly due to the fact that VANTAs are much larger than

VACNFs compared to the electrodes they are grown on. In

general, the tunability of carbon based varactors, similar to

MEMS parallel plate varactors, is inherently limited com-

pared to capacitance ratio of 4–6 of standard solid-state var-

actors.37 However, voltage-controlled oscillators108,109 and

tunable filters110 have already been demonstrated using the

limited tunability of MEMS varactors which show a promise

for possible application of the carbon based varactor.

Another important characteristic of the carbon based

varactor is its symmetric C-V response. This is due to the

fact that the electrostatic force between the opposite electro-

des is attractive regardless of the polarity of the applied volt-

age (see Eq. 4). Consequently, carbon based varactors are

never forward biased and hence do not pass current under

high-power operation. Moreover, the symmetric C-V

response of the carbon based varactor could be exploited to

realize frequency multipliers with odd harmonics output as it

has been demonstrated using heterostructure barrier varac-

tors with similar C-V response.34

C. Quality factor

The quality factor, which indicates the loss in the device,

is an important parameter for varactors used in oscillators. In

order to investigate the quality factor of a device, one needs to

determine the sources of the loss. In a carbon based varactor

the losses come from three main sources: the loss in the elec-

trode lines on which the nanostructures are grown, the loss at

the interface between the CNTs or the CNFs and the electrode

lines, and finally the loss in the CNTs and the CNFs them-

selves. As was mentioned previously, excellent rf materials

such as gold and copper are not known as effective growth

underlayers. In order to incorporate these materials in carbon

based devices one could deposit a buffer layer between the

electrode layer and the catalyst seeds and therefore keep the

electrode loss at a minimum. The second source of loss can be

assessed using the studies on carbon-metal interfaces. Unlike

the near-ohmic characteristic of metal-metal junctions, the con-

tact resistance at the carbon-metal interface dominates the elec-

trical performance of CNT and CNF wires.111 The possible

application of VANTAs and VACNFs as microelectronic

interconnects has driven many studies to characterize their

end-contact quality.71,111–115 The reported end-contact resistan-

ces vary significantly from one measurement to another sug-

gesting a wide spectrum of influencing parameters. Important

parameters are the surface roughness of the metal underlayer

as well as its surface oxidation,115 the wettability of the metal

underlayer and its work function,112 and the growth condi-

tions.111 In general, the magnitude of the reported contact

resistances for an individual interface is in the order of a few

to tens of kilo ohms.111,115 Finally, the intrinsic resistance of

individual VACNFs has been measured using the four-point

probe measurement method to exclude the effect of contact

FIG. 12. (Color online) The parasitic capacitance from the electrodes and

the tunable capacitance from the VACNFs were computed as a function of

the gap between the electrodes. The tuning ratio of a comblike varactor was

then calculated using Eq. (17).

FIG. 13. (Color online) The maximum tunability of a comblike varactor is

affected by the presence of a conductive substrate beneath the oxide on top

of which the varactor is fabricated. The plot shows the deterioration in the

tunability for a grounded and a floating potential substrate as a function of

the oxide thickness.
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resistance.116 The VACNFs exhibited linear I-V characteristics

with an approximate resistivity of 4.2� 10�3 X�cm which is

much smaller than their reported contact resistance. The intrin-

sic resistance of individual CNTs is many orders of magnitude

larger than that of VACNFs since only one (single-walled

CNT) or a few (multi-walled CNT) conduction channels or

shells are available for electron transport.117 However, in

arrays of VACNFs or in VANTAs a large number of conduct-

ing individuals are placed in parallel which dramatically

reduces the overall resistance consisting of the intrinsic and the

contact resistances. For example Olofsson et al., have meas-

ured a series resistance as low as 190 X in their brushlike var-

actor.40 They extracted the Q-factor of their varactor from

measurements. Their results are plotted in Fig. 14 for both non-

actuated (0 V) and actuated (27.5 V) cases in the frequency

range of 0.2–1.5 GHz. The Q-factor of their device decreases

from 100 to 10 as the frequency increases. They believe that

the loss in their varactor is dominated by the relatively poor

conductance of the sputtered Mo electrodes. The quality factor

reported by Arun et al., was as low as 1.7 as measured at

4 GHz. They did not give explanations for the low measured

quality factors.38

Electromechanical varactors, in general, have the poten-

tial of delivering very high Q-factors as no resistive power

dissipation occurs in between the oppositely charged electro-

des. In solid-state varactors, for example, the tunability is

achieved by changing the width of the depletion layer. Real-

ization of the depletion layer with acceptable width depends

on a low doped region which creates a high resistance in the

signal path leading to a reduced Q-factor. Yet, the demon-

stration of very high Q-factor carbon based devices has to

wait for successful synthesis of VANTAs and VACNFs on

top of rf materials with very low contact resistances. More-

over, efforts must be paid to achieve less defective CNTs

and CNFs in order to reduce their intrinsic resistances.

D. Operating voltage

The pull-in voltage of the comblike and the brushlike

varactors are given by Eq. (14) and Eq. (16), respectively.

The pull-in voltage can be used as a good measure for the

operating voltage because most of the capacitance change, as

seen in Fig. 4, occurs close to this voltage. According to Eq.

(14), the pull-in voltage of a comblike varactor depends

strongly on the gap between oppositely charged VACNF

rows. But this gap is determined by the capacitance require-

ment and cannot be used freely to tune the operating voltage.

This is similar for the height of VACNFs, which is limited

by the growth process. The only parameter that can be tuned

without considerable effect on other device properties is the

diameter of the VACNFs. Therefore, both the device geome-

try and the growth process conditions are important in deter-

mining the operating voltage of a comblike varactor. Based

on the device geometries and growth conditions discussed

earlier in this paper and taking into account a previous esti-

mation of VACNFs Young’s modulus (400 GPa),118 it

should be possible to fabricate comblike varactors with oper-

ating voltages in the range of 10 to 30 V. In the case of

brushlike varactors, the thickness of the VANTAs can effec-

tively be used to tune the operating voltage. However, the

lower limit of the thickness is dictated by the mechanical sta-

bility requirements. Jeong et al., have studied the effect of

growth geometry on the vertical alignment of VANTAs and

showed that for a certain geometry a minimum thickness is

required to achieve the necessary mechanical stability and

therefore the vertical alignment.119 Olofsson et al., reported

a Young’s modulus as low as 3.8 MPa for the VANTAs

incorporated in their varactor. This extremely low Young’s

modulus (lower than that of a rubber) explains why the

VANTAs were already bent before applying any bias volt-

age.40 Consequently, they added buttresses at the expense of

a higher actuation voltage. It is also possible to improve the

vertical alignment by growing VANTAs with higher nano-

tube density but again this will lead to a greater stiffness and

hence a larger operating voltage. Similarly, in order to over-

come the mechanical stability problem, Arun et al., grew

their VANTAs in hollow rectangular structures (see

Fig. 9).39 This limitation increased the operating voltage of

the brushlike varactor to 30� 40 V in both cases.

Inserting the geometrical data and the estimated Young’s

modulus from the brushlike varactor fabricated by Olofsson

et al. into Eq. (16) gives a pull-in voltage as low as 3 V com-

pared to the measured 27.5 V. There are a few reasons behind

this underestimation. Generally, the parallel-plate assumption

underestimates the pull-in voltage of a base-clamped cantile-

ver system. But the deviation from the parallel plate assump-

tion is much larger here because of the presence of buttresses,

which hinder the movements of the plate at the sides. More-

over, the VANTA plates are under an initial stress (slightly

bent before the actuation) toward the opposite direction of the

actuation, which is not taken into account in the model. It is

clear that although the analytical model provides a reliable

and cost-effective tool for predicting the behavior of the sys-

tem, numerical simulations are necessary for accurate model-

ing of more complicated geometries.

VI. CONCLUSIONS

Recent development in the synthesis of VANTAs and

VACNFs has offered an unprecedented opportunity to build

FIG. 14. (Color online) Q-factor extracted from the measured resistance and

capacitance as a function of frequency. Upper (blue) line: nonactuated de-

vice (0 V), Lower (red) line: actuated device with an applied voltage of 27.5

V between the nanotube walls. Adopted with permission from N. Olofsson,

J. Ek-Weis, A. Eriksson, T. Idda, and E. E. B. Campbell, Nanotechnology

20, 385710 (2009). VC 2009, Institute of Physics.
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a new class of nano-scale systems; standing nanoelectrome-

chanical devices. Carbon based varactors are among the first

emerging systems of this type. Although still in its infancy,

the carbon based varactor clearly shows the potential of

VANTAs and VACNFs for future applications. In this work,

we have presented a simple generic model to describe the

behavior of such systems applicable for both comblike and

brushlike varactors. The fabrication processes of both devi-

ces were also reviewed. Based on the limited published

work, it seems that the comblike varactor requires a more

demanding fabrication process as the quality of individual

VACNFs play an important role in the final device perform-

ance. This requires the use of e-beam lithography process

and demands a synthesis process capable of producing very

uniform VACNFs at a large scale; a functional comblike var-

actor remains to be demonstrated. On the other hand, func-

tional brushlikes varactors have already been reported.

However, the high porosity of VANTAs has resulted in an

unexpectedly low mechanical stiffness which has forced the

addition of supporting structures such as buttresses.

The performance of the carbon based varactor is still far

inferior to its rivals and its journey to maturity is an uneasy

ride with a few main obstacles. The first and the foremost is

the integration with mainstream CMOS technology. A few

attempts have been carried out to achieve this goal, but such

an immense objective requires the focus of a large research

community. Competitive capacitance densities for carbon

based varactors are unreachable unless a successful integra-

tion scheme is presented. Another obstacle is the synthesis of

VANTAs and VACNFs with low contact resistance on top

of rf materials such as copper, most likely by the incorpora-

tion of a conductive buffer film such as TiN. Synthesis proc-

esses to yield dense VANTAs with large mechanical

stiffness and highly uniform VACNFs must also be devised.

Yet, the promise of a very high Q-factor, the potential

of high power handling due to the capacity of carrying

very large currents, the symmetric C-V curve, and the possi-

bility of inexpensive production renders the carbon

based NEMS varactor a target worthy of the remaining ex-

perimental effort.
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