
Optimized Routing within an Ericsson Node
Routing procedures in an Ericsson SGSN

Master of Science Thesis

ELISABET SVENSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2011

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Optimized Routing within an Ericsson Node
Routing procedures in an Ericsson SGSN

ELISABET M SVENSSON

© ELISABET M SVENSSON. June 2011

Examiner: K.V.S. PRASAD

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2011

Abstract

In a specific Ericsson telecom equipment (SGSN) there are application boards
and router boards. When the routers can not communicate directly with each
other, a handover process between them can cause packet loss and unneces-
sary use of the internal network. This thesis presents a solution to this prob-
lem, using routing tables and feedback from routers to applications. The
proposed solution is implemented into the node’s source code. Performed
tests show that the packet loss decrease dramatically and with that, the
backplane is used more effectively.

Acknowledgements

The author could not have done this thesis with such good results with-
out the support from my supervisors KVS Prasad at Chalmers and Daniel
Nilsson at Ericsson. They have both, in different ways, helped pushed the
project forward.
The author would also like to thank family and friends for support and en-
couragement during this time. Especially big thanks to Iris Duranovic for
her love and support as well as proofreading and tips throughout the project.
The author would like to thank Therese Nordqvist and Jonas Hadin for proof-
reading.

Elisabet Svensson, Göteborg 11/06/09

Contents

Nomenclature . iii

1 Introduction 1

2 Purpose 3

3 Limitations 5

4 Background 7

4.1 The problem at hand . 7

4.1.1 Architecture with IBAS routers 8

4.1.2 Architecture with PEB routers 8

4.2 Route Distribution . 9

4.2.1 Application boards with routing tables 9

4.2.2 Updating application boards’ forwarding table 9

4.2.3 Problems with the current implementation of route dis-
tribution . 10

4.3 Project: propose new solution 11

5 Scope 13

6 Method 15

6.1 Proposed Solution . 15

6.2 Implementation . 16

6.2.1 Operating system . 16

6.2.2 Levels of code . 16

6.2.3 Proposed solution - implementation 17

6.3 Testing . 18

6.3.1 Test environment . 19

6.3.2 Test implementation 19

6.4 Analysis . 20

6.4.1 Minimize Packet Loss 20

6.4.2 Avoid heavy traffic load on the backplane 20

6.4.3 Minimize memory requirements 22

i

CONTENTS

7 Results 23
7.1 Packet loss analysis . 23

7.1.1 Tests of original solution 24
7.1.2 Tests of proposed solution 25
7.1.3 Expected results . 26

7.2 Backplane Traffic . 29
7.2.1 Test results . 29

8 Conclusion 33
8.1 Packet loss . 33
8.2 Backplane Traffic . 33

8.2.1 Theoretical analysis . 34
8.3 Further work . 35

Bibliography 37

A Test Results 39
A.1 Original Solution . 39
A.2 Proposed Solution . 44

B Source Code 49
B.1 ConnD Changes . 49
B.2 FE changes . 50

C Test implementation 56

ii

Nomenclature

Computer Communication

ABR Area Border Router
In the OSPF protocol, the AS is divided into areas. The ABR
is the router that connects one area with the others.

AS Autonomous System
A small network with its own routing protocol

IGP Interior Gateway Protocols
Routing protocols to be used internally in an AS

IS-IS Intermediate System To Intermediate System
A routing protocol similar to OSPF

OSPF Open Shortest Path First
A routing protocol commonly used in ASs. Based on link state
information.

PDU Protocol Data Unit
A message format used in IS-IS

RIP Routing Information Protocol
One of the first routing protocols used on a more general basis.
Based on distance vector information.

SGSN Specifics

AP Application Processor
The board in the SGSN that takes care of signaling, such as
where the mobile device is and which cell tower it is connected
to, what subscriptions it has etc.

DP Device Processor
The board in the SGSN that takes care of user payload. It also
charges the user for packets sent as well as security issues.

iii

CONTENTS

GGSN Gateway GPRS Support Node
A node in the GPRS system

GTT GSN Testing Tool
A test tool that simulates the environment surrounding SGSN,
optionally also the node itself

IBAS Interface Board ATM Single-Mode Fiber
A router PIU for both ATM and ETH

PEBv5 Power and Ethernet Board version 5
The latest version of PEB, that is able to be used as a router

PEB Power and Ethernet Board
A PIU that provides power to all boards as well as a internal
network in the node

PIU Plug-In Unit
A board in the node that is plugged in

SGSN Serving GPRS Support Node
The node in the GPRS system this project will focus on

Mobile Communication

BSC Base Station Controller
A controller for BTS

BTS Base Transceiver Station
Cell tower used for GSM

GPRS General Packet Radio Service
The service that makes it possible for a cell phone to connect to
internet

GSM Global System for Mobile Communications
The second generation(2G) of digital and wireless connections

kpps Kilo Packets Per Second
Measurement for packet speed

LTE Long Term Evolution
Fourth generation (4G) of digital and wireless connections

iv

CONTENTS

NodeB Cell tower
Corresponds to the BTS, but can be used for WCDMA as well.

RNC Radio Network Controller
A controller for NodeBs

WCDMA Wideband Code Division Multiple Access
Third generation (3G) of digital and wireless connections

v

1. Introduction

Every day millions of users connect to the Internet through their mo-
bile phones. Whether the user wants to check the news, facebook or email,
the phone will use something called General Packet Radio Service (GPRS).
GPRS is a network which will connect the phone to Internet, illustrated in
figure 1.1.

Figure 1.1: Connection between a mo-
bile phone and Internet is through GPRS.

The GPRS consists of various
elements which together make it
possible for phones to use the in-
ternet. The GPRS network is
not only involved in Internet con-
nections, it is involved in every-
thing a cell phone does except voice
calls.

When the phone, for instance,
wants to browse the web it connects
to a cell tower, managed by a controller. The traffic from the mobile phone
passes through the cell tower and its controller and then through the two
GPRS support nodes, Serving GPRS Support Node (SGSN) and Gateway
GPRS Support Node (GGSN), see figure 1.2. From the GGSN the traffic is
sent out on the internet. [7] [8]

Figure 1.3: An Ericsson SGSN [10]

This project is about the SGSN,
figure 1.3. The node consists of
a number of Plug-In Units (PIUs).
Among these, there are Application
Processors (APs) and Device Pro-
cessors (DPs) sending and receiv-
ing traffic via the node’s router.
The AP handles the signaling,
keeping track of which mobile de-
vices are attached, where they are
and which cell towers they are con-

1

1. INTRODUCTION

Figure 1.2: The different components in GPRS.

nected to. The DP boards take care of the traffic the user generates when he
or she surfs the net with the cell phone. The user payload is redirected to-
wards the GGSN and can be monitored in order to charge the user correctly,
or when the phone company wants to control the internet accessibility. In
this report, the word application will be used to denote both AP and DP.

The SGSN also contains a number of Power and Ethernet Boards (PEBs)
with two main functions. As the name suggests, a PEB is responsible for
providing power and ethernet to the other PIUs. The ethernet connections
provided by the PEBs are between the PIUs inside the node, the so called
backplane. The backplane makes it possible to send packets within the node.

The routers used in the SGSN is called Interface Board ATM Single-Mode
Fiber (IBAS) routers. [9] In order to provide resilience and redundancy, there
are multiple routers. A node will then have multiple ways to contact the ex-
ternal networks.

Capacity in the SGSN can be increased with more application PIUs. The
latest version of PEB (version 5) can function as a router, and the IBAS
routers can be replaced by extra application boards. However, by doing so,
there is now a number of internal routing problems to consider. This project
is about these problems, and how to optimize the routing between applica-
tion PIUs and PEBs within the node.

The project aims to improve the routing process in terms of speed and
packet loss, memory space and internal network traffic. The project is located
at Ericsson Lindholmen.

2

2. Purpose

The purpose of this thesis is to present a solution to the internal routing
problems in a SGSN with multiple routing PIUs that are not directly con-
nected to each other.
The project optimizes the internal traffic in the node, with respect to time,
memory space and traffic load over the backplane.

The application boards in the SGSN have limited memory space, so the
routing procedure should limit the memory use.
Traffic load on the internal network in the SGSN should be limited to avoid
a possible flooding situation.

The main focus is the packet loss problem. The memory is today not an
immediate problem and the SGSN in itself is designed to avoid any possible
flooding situations.

3

3. Limitations

Optimally all solutions should be tested on a real SGSN in a real GPRS
environment. Real nodes require setup and configuration, while a simulated
SGSN is preconfigured. Specific hardware problems can be avoided when
working in a simulated environment. Due to time limits of this project and
a lack of available hardware, no parts of this project will be tested on a real
SGSN.
Owing to limitations in the simulated node, measurements might not cor-
respond to a real SGSN. However, this project will mainly focus on the
comparison between different solutions.
There is currently not a simulation of PEBv5 in the GSN Testing Tool
(GTT), but the functionality with route distribution is implemented for IPv6
on the simulated IBAS routers.
The simulated SGSN is not capable of handling heavy traffic load, why no
tests can be performed during such conditions.

There are in GTT support for at most two routers, why no testing will
be done with more routers than that.

5

4. Background

As mentioned in the introduction (section 1) the SGSN is one part of
GPRS, a system used to make mobile devices able to connect to the Inter-
net. The GPRS system is involved in everything a mobile phone does, except
voice calls.
The GPRS consists of various elements with different tasks. We have the
cell tower and its controller that makes the radio contact with the mobile
devices. There is also the GGSN, responsible for keeping billing information
and allocating IP-addresses. The GGSN also has the interface towards the
network known as the Internet.
This project, however, is focused on the SGSN. The SGSN takes care of au-
thentication of users, where they are and what traffic they send and receive
(called user payload).
Most commonly used in the GPRS network is the routing protocol Open
Shortest Path First (OSPF). In this report it is presumed that the GPRS
always uses OSPF internally.

The SGSN is connected to a variety of different networks, and each router
has one routing table for each network. The networks have different tasks,
for instance there is one network for the traffic towards GGSN, one for GSM
cell tower controllers, one for WCDMA controllers etc.

4.1 The problem at hand

Inside the Ericsson SGSN there are a number of boards. Some of these are
applications, either AP or DP, sending and receiving traffic from the outside
world via the router board.
In order to provide resiliency, there is more than one router in the SGSN. If
one router experiences problems, it may be a loose cable or it needs to be
rebooted, the whole node does not have to go out of service since traffic is
re-routed through one of the others.
There are two different types of routers, IBAS routers and PEB routers, the
architecture in the node is described below for each of the two types.

7

4. BACKGROUND

(a) (b)

Figure 4.1: Network sketch for the node’s architecture with IBAS routers. The
routers are connected through the backplane. If one router is unable to forward a
packet, it will be redirected to another router that can.

4.1.1 Architecture with IBAS routers

When the SGSN has multiple IBAS routers, they are directly connected
to each other via the backplane (figure 4.1(a)). The applications send their
packet to any of the router PIUs, and they do not know anything about the
state of them. If one of the routers is unable to forward packets it can still
receive them.

When one router PIU does not succeed in forwarding a packet, it will send
the packet over the backplane to another router in hopes that that router is
able to forward the packet (figure 4.1(b)).

4.1.2 Architecture with PEB routers

The latest version of PEBs (version 5) can function as routers, and the
IBAS routers can then be replaced with application boards in order to in-
crease the total capacity of the SGSN even more.

Each application is connected directly to each of the PIUs, as illustrated
in figure 4.2. The PEB routers are not connected to each other through the
backplane, thus there is no longer any possibility for one router to forward
packets to another.

8

4. BACKGROUND

4.2 Route Distribution

Figure 4.2: Architecture with PEB
routers; routing PIUs not connected
through backplane.

The routing with PEBv5 is to-
day implemented with routing ta-
bles and a state variable, the im-
plementation is called route dis-
tribution. The routers have, as
they used to on IBAS routers,
one routing table for each net-
work. A few tricks have been
implemented in order to come to
terms with the missing redun-
dancy.

4.2.1 Application boards with
routing tables

The application boards have
their own forwarding tables, one ta-
ble for each network on each router.
When an application wants to send
a packet, it first checks the forwarding table to see if the router is able to
forward the packet and then sends the packet. This way the application will
always send packets to a router that can forward them. However, there is
inevitably a small delay from when the router has updated its table until the
application has the updated version (see section below). If a router receives
a packet that it can not forward (due to faulty entries in the forwarding table
on the application) the packet will be dropped.

4.2.2 Updating application boards’ forwarding table

Each router has a state register variable that is set when the routing table
is updated. The applications that have a copy of the routing table is said
to be subscribing to that network on that router. When the state register
variable is set, a notification is sent to all applications. The subscribing ap-
plications will send a request to the PEB router, asking for the new table,
and the PEB replies with the complete, updated routing table.

9

4. BACKGROUND

When one of the PEB routers adds or deletes an entry in its routing table
the following will happen:

1. OSPF updates the router’s routing table.

2. A timeout is (re-)started to avoid frequent updates.

3. The state variable changes.

4. All applications get noticed.

5. Subscribing applications request the new forwarding table.

6. The router replies with the updated table.

7. The applications replace the old routing table with the new one.

These steps are repeated every time the routing table in any of the PEB
routers is updated.

4.2.3 Problems with the current implementation of route
distribution

There are three major problems with the current implementation of route
distribution.

4.2.3.1 Packet loss due to the updating procedure

The update procedure takes a long time, mostly due to the implemented
delay that is restarted every time the routing table is updated, and the ap-
plications’ forwarding tables will be old and might contain errors during this
time. The applications will continue to send packets to the router according
to the old table which might result in packet loss.

4.2.3.2 Network traffic over the backplane

Even though a single entry is updated in the forwarding table, the com-
plete table is sent to the applications. Those big packets plus the high level
of packet loss cause unnecessary load on the backplane.

4.2.3.3 Unnecessary use of memory space on application boards

Most of the routes are the same for the routers since they are connected
to the same external network, and thus most of the entries in the different

10

4. BACKGROUND

routing tables are the same. The applications have one table for each router,
even though we expect most of the entries to be identical. The use of memory
on applications can be optimized.

4.3 Project: propose new solution

This project is about proposing a better solution for this problem. The
three aspects mentioned above (section 4.2.3); packet loss, internal network
traffic and memory use is used to measure the success of the project.

The packet loss and backplane traffic part of the solution is implemented
in the source code and tested.

11

5. Scope

• General analysis

– The project look at these aspects;

∗ Adaptation speed/Packet loss

∗ Memory space on application boards

∗ Traffic load on the internal network

– A new routing solution is proposed and analyzed.

• Implementation

– Suggested solution is implemented in the programming language
C.

– All implementation is on top of the original source code.

• Tests

– The GSN Test Tool (GTT) is used for testing. GTT is a framework
for the SGSN and simulates the nodes surrounding it. It can be
run on a real or simulated node, but for this project the simulated
node is used (see Limitations, section 3, for details).

– Automatic tests are developed in the programming language Er-
lang.

• Test anaysis

13

6. Method

The project was carried out by investigating a proposed improvement
to the routing issues discovered. First, this project developed a solution to
propose. The aspects packet loss and backplane traffic of the solution was
implemented and tested. The memory aspect was not tested, but is analyzed
throughly.

6.1 Proposed Solution

Common routing protocols uses different methods to propagate changes
in the network. The Routing Information Protocol (RIP) adapt to changes
by letting each router send out routing state information every 30 seconds to
its neighbors. Routing protocols such as OSPF and IS-IS send out routing
state information each time the topology in the network has changed. The
solution presented in this thesis is a combination of both of these techniques.
It works with immediate feedback as well as periodic updates.
The period is set to five minutes (compared to 30 seconds for RIP and 30
minutes for OSPF/IS-IS). [1][2][3]

This is how it works:

• Route distribution - complete table
The complete routing table is distributed periodically and when the
node, an application or a router is restarted.

• Feedback
When an application uses a route to send a packet and the router is
unable to forward it, the router sends an error message to the applica-
tion. The application will then consider that route to be invalid until
further notice. Only packets sent during the round trip time will get
lost. After that the application will send the packets to another router.

• Forwarding Tables
Each application has one forwarding table per network.

15

6. METHOD

This solution will discover negative changes, such as an unplugged cable
or other connection errors, really fast. The feedback function makes the ap-
plications aware of changes almost instantly.
Positive changes, such as a new network configured or a cable replugged, is
not discovered as fast. It takes up to five minutes before the router will send
out a notification of its forwarding table’s update. This may cause the work
load to be unevenly distributed over the routers during this time.

6.2 Implementation

The implementation is inserted in the node’s source code. The routing
code on the node is complex, so here follows a rather brief description.

6.2.1 Operating system

The different PIUs in the node are of different types and architecture. All
APs are Linux based while all DPs have VxWorks. IBAS routers also have
VxWorks.
All testing will be done on a simulated node, all simulated nodes have IBAS
routers (see section 6.3). Route distribution is implemented on IBAS routers,
but only for IPv6. IPv6 support is only implemented on VxWorks, not Linux.
Therefore all implementation is done for VxWorks.

#ifdef LINUX

...code only for linux...

#elif VXWORKS

...code only for vxworks...

#endif

Figure 6.1: Code that is only used in Linux
or VxWorks, respectively.

When the code is compiled, cer-
tain parts are included or ex-
cluded depending on the operat-
ing system. With the C function-
ality of #define we can control
which code is compiled, see fig-
ure 6.1.

In a similar manner we can
control if certain code is supposed to only be on routers or only on ap-
plications, or only on PEB routers, or only on applications with Linux etc.

6.2.2 Levels of code

The source code in the node is roughly divided into two levels - kernel
level and user level. The difference is more significant on boards using Linux
than on those using VxWorks.
The code that monitors the routing is on the user level, but the actual routing
is done on kernel level. In the original solution, all routing information takes

16

6. METHOD

place on user level through the system called Connectivity Deamon (ConnD).
This system will receive and send the messages about routing, such as no-
tifications, requests or replies. All packets from GPRS are routed on kernel
level by the Forwarding Engine (FE).

Let us use an simple metaphor. On the user level we have everything
that makes routing possible but does not do any actual routing; packets
from GPRS are not handled on user level. Let us call ConnD a postal ser-
vice. The postal service provides postboxes, employment for postmen, post
offices etc.

Postmen are operating on kernel level, regulated by the guidelines set up
by the postal service. The postmen are the core of the postal service. With-
out them, no mail would ever get delivered. On the other hand, without the
postal service, the postmen would not know where to deliver the letters.

Figure 6.2: The icmp message is con-
structed from the original message.

This is how ConnD and FE in-
teract. FE is the postmen, de-
livering packets according to the
forwarding tables ConnD have set
up.

6.2.3 Proposed solution -
implementation

All implemented code is found
in appendix B.
The solution proposed in this thesis
is only partly implemented in the
node source code. Merged forward-
ing tables are not implemented and
the project is mainly focused on
changes in FE. When the router is
forwarding a packet it does so in
FE.
The only changes in ConnD are to
disable and change the functional-
ity from the original solution.
The original solution had the applications request the forwarding tables ev-
ery 30 minutes. In the proposed solution we want the router to send out its

17

6. METHOD

forwarding tables every 5 minutes. This way, all additions to the forwarding
table on the routers will take at most 5 minutes to propagate.
If the node or just the router is restarted, the router will function as the
original solution for five minutes. The proposed solution is still there and
working, giving feedback if a packet is not forwardable.

6.2.3.1 Router’s code

When the router discovers a packet from the backplane that it is unable
to forward, it constructs an ICMP Destination Unreachable message. The
ICMP message has a specific type and code that is not used anywhere else
in the node (Destination Unreachable - Address Unreachable). The ICMP
message contains information about the router’s location in the node as well
as the header of the undeliverable packet to make the sender recognize which
route it is that is invalid. Figure 6.2 shows a visualization of how the packet is
constructed. Note that this message is only sent when the packet is received
from the backplane.

6.2.3.2 Application’s code

When the application receives an Desination Unreachable ICMP message
with the code Address Unreachable, it will update its forwarding table. The
information in the ICMP message gives the application information about
which router is the sender of the ICMP. In the header from the lost packet
(included in the ICMP message from the router) the destination address is
found. With the application’s normal methods to look up addresses in the
forwarding table it can find the specific entry in the forwarding table and
remove it.

6.3 Testing

The GSN Test Tool (GTT) is used to test the implemented solution.
GTT simulates the environment surrounding an SGSN, the GPRS network.
The tool can also simulate the node itself.
With automatic tests, written in Erlang, and a trace of all packets we can
achieve testing that is repeatable. The test implementation can be found in
appendix C.

18

6. METHOD

6.3.1 Test environment

There is support for two routers in the simulated environment, but the
second router has no default configuration. Everything else in the simulated
node is automatically set up.
By default, all traffic is directed through the first router. By configuring a
static route for IPv6 traffic we make the applications use that route as well.

6.3.2 Test implementation

The testing will give us an answer to the following questions:

1. How fast is traffic redirected?

2. How many packets are lost?

3. How much traffic is sent over the backplane?

The first two questions are essentially the same, the longer time the hand
over process requires the more packets will be lost.

To simulate a OSPF update from the GPRS system we create (and later
delete) a static route on one of the routers. The application will then prefer
this router over any other. The test will generate traffic from the application
to the external network. During the traffic flow the static route is taken down.
The application will update its forwarding table and send traffic through an-
other route. After the test, the number of packets sent from the application is
compared to the number of packets received by GTT (simulating the outside
world) to determine packet loss.

Generation of traffic is done by spawning 500 processes which create one
mobile device each. The device is then attached to the SGSN and starts a
hand shaking procedure with it. Since there are limitations in the test tool,
GTT, it was not possible to generate as much traffic as wished for without
making the node crash.

The static route is taken down during the period when the traffic is
increased, a few seconds after the test has started.

The traffic rate is calculated by counting the number of packets during 2
seconds, ca 0.5 seconds before the update and 1.5 seconds after, and dividing
with two. This way we will get an estimated traffic rate that will help us
predict how the algorithm will behave during more extreme conditions.

19

6. METHOD

6.4 Analysis

6.4.1 Minimize Packet Loss

The original and the proposed solution uses different techniques to avoid
packet loss. The original solution uses routing tables, while the proposed
solution uses direct feedback from the router.

6.4.1.1 Routing Tables

When the router updates its forwarding table, there are numerous steps
until the application finds out about it. First of all, there is a delay imple-
mented in order to avoid too frequent updates. After the delay the state
variable is set, the notification and requests are sent and finally the forward-
ing table is sent and updated.
During this time, the applications continue to send packets according to the
old, outdated forwarding table. All packets sent to a router that can not
forward it, will be lost.

6.4.1.2 Router Feedback

The routers can be designed to give feedback to the applications directly.
Whenever the router receives a packet from an application it will try to for-
ward it. If the router does not succeed it will send a message back to the
application. This way, the applications can know almost instantly if a router
no longer is connected to the desired network. It only takes one round-trip
time until the application has found out about the lost network.

6.4.2 Avoid heavy traffic load on the backplane

We want to minimize the traffic sent over the backplane. The traffic that
is directed into or out from the node is considered minimum already, we do
not want to touch it. However, there is some traffic that is ”unnecessary”.
That is the traffic that is supposed to go out of the node to the GPRS network
but never reaches outside of the node. Other traffic that might be possible
to minimize is the packets sent within the node, containing only routing in-
formation.

20

6. METHOD

6.4.2.1 Minimize unnecessary traffic

All packets that are lost are an unnecessary load on the backplane. As we
will see in the result section, this is a considerably big part of the traffic we
want to minimize (lost packets plus packets with only routing information).

6.4.2.2 Routing traffic

The proposed solution tries to limit the routing information traffic within
the node by working with direct feedback from the router to the interested
applications. While the original solution sends the complete routing table
each time any entry in it has changed, the proposed solution will only gen-
erate extra traffic when the entry is actually used by an application.

6.4.2.3 Limit number of packets vs limit size of packets

There are two different viewpoints of this problem; do we rather cut the
number of packets sent or the number of bytes? In other words; do we prefer
fewer and larger packets or multiple smaller packets? At this point it is
natural to expect that the original solution will result in few, large packets
and the proposed in more but smaller packets.

6.4.2.4 Backplane traffic in the Original Solution

If the network outside the node is stable, with few OSPF updates, there
is not much excessive traffic over the internal network. All packets are sent
to a router that is able to forward them. The forwarding tables are correct
on all applications.
An unstable network will result in heavier traffic load over the internal net-
work. Undeliverable packets might have to be resent, depending on their
protocol (such as TCP or SCTP that uses reliable transmissions).
When the forwarding table is updated on a router, the complete table is sent
out to subscribing applications. If the forwarding table is big, this might
result in rather large packets.

Each OSPF update will cause extra traffic over the backplane. First of
all, there is a notification sent to all applications. Then there is a request sent
from subscribing applications, requesting the updated table. The last part
is the packet containing the routes, sent from the router to all subscribing
applications.

21

6. METHOD

The router sends out notifications to all applications. Subscribing ap-
plications will reply with a request for the updated table.When the router
receives such requests, it will construct a packet containing the complete
forwarding table.

6.4.2.5 Backplane traffic in the Proposed solution

The proposed solution will make the router send an error message for ev-
ery packet that it can not forward. This may increase the pure routing traffic,
but on the other hand the number of undeliverable packets will decrease.

Pure routing messages are sent out, as mentioned, every time a packet
is not forwardable. In addition to that, the router will send out the routing
table to applications periodically and after a router or application restart.
At those times the procedure is the same as for the original solution, with
notifications, requests and replies.

6.4.3 Minimize memory requirements

The memory space on the application boards is limited, why we might
want to have a routing solution which limits the memory usage.

6.4.3.1 Merged Routing Tables

Figure 6.3: How a forwarding table
could look like, with the IP address and
mask as well as a list of which routers
that has that route.

With the currently implemented
solution minimization is possible.
Right now each application has
one routing table per network and
router. These tables can be merged
to decrease the memory space
needed. Each application would
then have one forwarding table per
network, in which all routers are
present. Since most routes in the
different forwarding tables for different routers are the same, the merged ta-
ble is expected to require less space. The forwarding table needs to contain
record of which entries is valid for which routers.
For each entry in that merged table there is a binary list with one bit per
router, 1 if the entry is valid for the router and 0 if it is not. The binary entry
can then be compared to a list with all routers to determine which router
has that route, illustrated in figure 6.3. This way there will be no duplicated
entries of IP address and masks.

22

7. Results

7.1 Packet loss analysis

Each test was performed by creating and deleting a static IPv6 route
while triggering as much traffic the node could handle without crashing. The
application will start using the static route as soon as it finds out about it,
and will prefer it over the other router. When the route is taken down, ap-
plications will use another route (again).

When the application uses the static route 500 simulated mobile devices
is created and attached to the (simulated) SGSN. The test will during these
attachments take down the static route, making it unusable. Until the ap-
plication has updated its forwarding table, it will send traffic towards the
router that can not forward it, and none of the packets are received by the
GTT board.

Figure 7.1: The total sum of packets
lost during the ten test cases for original
and proposed solution.

The test case is monitoring
all traffic sent from the appli-
cation and the traffic received
by the GTT board from the
node. The exact time of the for-
warding table update (when the
static route is taken out of ser-
vice) is determined by looking
at the last packet received by
the GTT board from the static
route.

The number of packets per sec-
ond (pps) is an average, cal-
culated by counting the num-
ber of packet during two sec-
onds, approximately 0.5 seconds
before the update and 1.5 sec-
onds after, and dividing with

23

7. RESULTS

Figure 7.2: The blue line is the number of packets sent, counted every 0.1 seconds.
The vertical red line is the last packet successfully delivered. The green line is the
first packet received after the update. All packets in between are lost. The left graph
is the results from a test of the original solution and on the right is a graph for the
results from the proposed solution.

two.

The sum of all packets lost during all ten tests is illustrated in figure 7.1
for both the original and proposed solution.

7.1.1 Tests of original solution

The traffic rate during each of the tests are found in appendix A. Figure
7.2 shows an example of a typical test result. The graph’s y-axis is number
of packets sent per 0.1 seconds (by the application) and the x-axis is time.
The last packet received by GTT is marked with a vertical red line. The first
packet received after that is marked with a green line, indicating that the
application has updated its forwarding table.

All data is compiled in table 7.1. The update time ranges from 1.78 to
3.9 s, but most of the tests show that the update procedure takes between
two and three seconds. The packet loss is also varying, from 50 packets up
to 185 packets.

24

7. RESULTS

Test Update time Packets lost Average pps
Test 1 3.9 s 78 45.5
Test 2 2.16 s 144 109.5
Test 3 2.22 s 174 116.5
Test 4 1.78 s 185 123.5
Test 5 2.26 s 50 35.5
Test 6 2.12 s 182 96.5
Test 7 2.3 s 85 52
Test 8 2.26 s 136 114
Test 9 2.08 s 143 66
Test 10 2.12 s 144 81

Table 7.1: All tests: Table for all results from the testing of the
original solution

7.1.2 Tests of proposed solution

As for the original solution, we have ten graphs for the ten tests. One of
the graphs are seen in figure 7.2 (all the others are in appendix A). As be-
fore, the blue line indicates the number of packets sent every 0.1 second. The
vertical red line indicates the last packet received from the static route and
the green vertical line indicates the first received by another route. Please
note that the scale is not the same on all graphs.

All data is compiled in table 7.2. The update time ranges from 0.04 to
0.98 s. The update time is calculated from the last packet GTT received
from the static route until the first packet received from the other router.
The traffic intensity is relatively low, and the packets are sent out intermit-
tently. The longer update times measured were due to the application not
sending any traffic, not the updating process to be slow.

The proposed solution is dependent on the packets sent, while the original
solution will make the application update its forwarding table even though
it did not send any packets.

The packet loss varies, but the worst test result from the tests of the
proposed solution, with 16 packets, is far better than the original solution’s
best result, 50 packets.

25

7. RESULTS

Test Update time Packets lost Average pps
Test 1 0.06 s 1 108
Test 2 0.98 s 6 74
Test 3 0.04 s 16 185.5
Test 4 0.32 s 4 75
Test 5 0.04 s 16 53.5
Test 6 0.38 s 9 3200.5
Test 7 0.04 s 7 88
Test 8 0.92 s 7 63.5
Test 9 0.24 s 2 60

Test 10 0.26 s 2 83.5

Table 7.2: All tests: Table for all results from the testing of the
proposed solution

7.1.3 Expected results

7.1.3.1 Original Solution

Figure 7.3: Expected and actual packet
loss for original solution for traffic speed
0-120 pps

Let us assume that we have n
applications. We expect each of
these to send v packets per second
to the route on the forwarding table
affected by an update.

In order to avoid too frequent
updates there is a delay imple-
mented in the router’s code. The
delay is here denoted with D. Af-
ter the timeout, the state vari-
able is set with a message over the
backplane. Notifications to all ap-
plication boards are sent out and
the subscribing applications will re-
quest the updated forwarding ta-
ble. The router will respond with
the new, updated table. The messages sent over the backplane is thus:

1. Message to set the state variable

2. Notifications to all applications

3. Requests from subscribing boards

26

7. RESULTS

4. Reply from router with new table

If each of these takes t seconds to travel between its source and destina-
tion, the total time until the application boards have the correct forwarding
table is thus (besides computing time):

Torig = D + t + t + t + t (7.1)

Using the values from table 7.1 we get data points for the traffic rate and
packet loss. With the least square method we can find an approximation to
a linear relation between the points.
We get the equation:

PLorig = v ∗ 1.5336 (7.2)

The implemented delay is one second, and a trip over the backplane takes
a packet 0.01 seconds. The expected coefficient is thus at least 1.04. The
approximation from the least square function does exceed this limit. The
expected packet loss for traffic intensity, from 0-120 pps, is shown in figure
7.3, together with the measured values.

The range of traffic 0-120 pps is chosen because that is what the test
traffic was measured.

7.1.3.2 Proposed solution

Figure 7.4: The expected and actual packet
loss for traffic 0 - 200 pps

With the proposed solution
the router immediately responds
with feedback when it can’t de-
liver a packet. Packets sent dur-
ing the round trip time will be
lost. The time frame we are ex-
pecting is:

Tprop = t + t (7.3)

As before, a packet takes 0.01
s for one trip over the backplane.
The time frame is thus:

Tprop = 0.02 (7.4)

All packets sent during this
time frame will be lost. The tests did however show a higher rate of packet
loss, except for test number 6. In that test the result should be (according

27

7. RESULTS

(a) Test results plotted (b) Test results and linear approximations

Figure 7.5: Comparison between results from original and proposed solution

to the equation above) lost 64 packets, but only nine were lost. This is the
result of a lot of good luck and is not representative for the algorithm. That
data point will be disregarded.

The packet loss is dependent on how much traffic the application sends
out during a period of 0.02 seconds. Even though the average traffic rate
(during two seconds) is low, the application might send out many packets
during one 0.01 s time slot. The traffic is unevenly distributed over time,
when we look at the resolution 0.01 s.

We expect that the relation between packet loss and packet speed would
be much more linear and accurate with higher traffic rates. We do the least
square method to find the best linear relationship among the remaining test
results. We find that the best line would be:

PLprop = v ∗ 0.065 (7.5)

where v is the number of packets per second.

In the graph in figure 7.4 we can see this approximation and the actual
test results.

28

7. RESULTS

7.1.3.3 Comparison between original and proposed solution

Figure 7.6: Linear approximations for proposed
and original solution for higher traffic rate.

When we compare the
test results we see that the
proposed solution gives sig-
nificantly better results. The
test results can be seen to-
gether in the graph in figure
7.5(a).

Figure 7.5(b) illustrates
the test results plus the pre-
dictions.

Finally, we can look at
the predicted values for traf-
fic rates up to 10 000 pps.
It is obvious from figure 7.6
that the proposed solution
will result in much lower
packet loss, even though it is overly negative.

7.2 Backplane Traffic

The backplane traffic is dependent partly on the number of undeliverable
packets and partly on the number of pure routing packets.

We can either just count the packets or also consider the size of the
packets. This section will go through the number of packets in the tests
followed by a discussion of the size of the packets.

7.2.1 Test results

7.2.1.1 Original Solution

In the original solution, the unnecessary traffic is dominated by the packet
loss, see figure 7.7. The monitored traffic is the traffic going in and out of an
application. The router does only have one entry in its forwarding table at
the beginning of the test, an entry which is removed during the test. If the
routing table does not contain any entries, the router will discard the table.
All tests resulted in five pure routing messages:

• Notification of an updated table

• Request for the new table

29

7. RESULTS

Figure 7.7: Lost and routing packets - Original solution

• Router response - it has no table

• Another request for the new table

• Another decline from the router

After these messages, the application knows the router is not to be counted
on (for that route).

Test no 1 2 3 4 5 6 7 8 9 10

Packets lost 78 144 174 185 50 182 85 136 143 144
Routing messages 5 5 5 5 5 5 5 5 5 5

Table 7.3: Unnecessary packets in the original solution

Test no 1 2 3 4 5 6 7 8 9 10

Packets lost 1 6 16 4 14 9 7 7 2 2
Routing messages 6 11 21 9 6 10 12 12 7 7

Table 7.4: Unnecessary packets in the proposed solution

7.2.1.2 Proposed Solution

All tests were performed when the router was newly restarted, why the
original routing solution was still in use. This made all pure routing messages
that are seen in the tests of the original solution (section 7.2.1.1) are also seen

30

7. RESULTS

Figure 7.8: Lost and routing packets - Proposed solution

here. In addition to these, there is the ICMP responses to the undeliverable
packets, one for each undeliverable packet. The ratio between routing packets
and lost packets is illustrated in figure 7.8.

7.2.1.3 Comparison of test results

The sum of the lost packets and the routing packets for all tests is illus-
trated in figure 7.9(a) for both the original and proposed solution. As we
might have expected, the original solution does perform worse, but only due
to its large packet loss. In figure 7.9(b) we can see that the pure routing traf-
fic is higher in the proposed solution than in the original. Even though the
routing messages that are sent because the recent restart are disregarded,
the original solution does result in as many pure routing messages as the
proposed.

31

7. RESULTS

(a) All routing traffic (b) Pure routing traffic

Figure 7.9: Comparison between results from original and proposed solution

32

8. Conclusion

Even though the merged memory part was not implemented, the project
can be considered a success. The packet loss was significantly better with
the proposed solution and with that comes that the backplane did not have
to carry a lot of undelivered packets.

8.1 Packet loss

Figure 8.1: Comparison be-
tween original and proposed so-
lution - Packets lost

The test results from the proposed so-
lution shows a much smaller time window
during which packets sent will be lost. This
resulted in fewer packets lost, see figure
8.1.

The maximum number of packets
lost was 16 for all tests of the pro-
posed solution. The minimum number
for the original solution is 50. The
best result in the original solution is
thus more than three times worse than
the worst result for the proposed solu-
tion.

The update time will never be shorter than the implemented delay for the
original solution while the proposed solution will never have shorter update
time than a round trip time of a packet, which is considerable smaller.

8.2 Backplane Traffic

The pure routing traffic is heavier in the proposed solution than in the
original solution, if we consider only the number of packets containing pure
routing information. The sum of all traffic sent which only contains routing
information is seen in figure 8.2.
All packets that are lost contributes to unnecessary load on the backplane.

33

8. CONCLUSION

If these are counted as unnecessary load on the backplane, the proposed
solution does perform much better than the original.

8.2.1 Theoretical analysis

The tests might not give a fair picture of the actual traffic situation.
There are many things that we need to consider that is not tested:

• Size of the forwarding tables

• Traffic is only calculated for one application

• Tests are too short to cover periodical updates

8.2.1.1 Forwarding tables

Figure 8.2: Comparison be-
tween original and proposed solu-
tion - packet loss and pure rout-
ing traffic

When a real node is in use, in a
real environment, its router’s forward-
ing tables will contain more than one
entry. The tests did only cover the
case where the forwarding table only
contains one single entry. Therefore
it was not interesting to look at the
size of the packets sent. However,
on a real node, the forwarding table
might contain thousands of entries and
cause the router’s reply to applications
to be very big. In the proposed so-
lution all routing messages will only
have the size of a standard icmp mes-
sage.
If all the routes in one network are down,
maybe a cable is unplugged, the original so-
lution will only generate one message. The
proposed solution will generate one mes-
sage each time any of the routes are re-
quested.

8.2.1.2 Multiple applications

During tests, only a single application was used. In a real environment
all applications will send and receive traffic. The pure routing traffic is then
proportionally heavier than the measured values in the tests. The expected
packet loss is also proportional to the packet loss for a single application.

34

8. CONCLUSION

8.2.1.3 Periodical updates

The tests did not show any sign of periodical updates. In the proposed so-
lution the routers set the state variable every five minutes, announcing their
forwarding tables. The original solution does also have periodical updates
but the period is 30 minutes. In the original solution the applications request
the newest version of the forwarding tables they have.

The routing messages for periodical updates are very few compared to
other traffic and can be disregarded in this context.

8.3 Further work

The most obvious next step would be to implement the proposed memory
solution with merged tables.
Another step further would be to revise the code together with designers,
maybe improve some details that is now overseen. One improvement could
be a limit to how many similar ICMP messages the router will send out.
Before the code is a part of the product, it needs to be tested much more
throughly. The biggest consideration is that the solution might not be fast
enough when the traffic is heavy.

35

Bibliography

[1] C. L. Hendrick (1988) Routing Information Protocol RFC
1058
Document describing the standards to be used when using the routing
protocol RIP (version 1).

[2] J. Moy (1998) OSPF version 2 RFC 2328
Document describing the standards to be used when using the routing
protocol OSPF (version 2).

[3] D. Oran (1990) OSI IS-IS Intra-domain Routing Protocol
RFC 1142
Document describing the standards to be used when using the routing
protocol IS-IS (version 1).

[4] Information Sciences Institute, University of Southern Cali-
fornia (1981) Internet Protocol RFC 791
Document describing the standards for IP version 4

[5] S. Deering, R. Hinden (1998) Internet Protocol, Version 6
(IPv6) RFC 2460
Document describing the standards for IP version 6.

[6] J. Hawkinson, T. Bates (1996) Guidelines for creation, selec-
tion, and registration of an Autonomous System (AS) RFC
1930
Document describing how a autonomous system should be set up, reg-
istered and managed.

[7] Ericsson.com SGSN-MME - Ericsson http://www.ericsson.

com/ourportfolio/products/sgsn-mme (accessed 2011-03-14)
Ericsson information about their SGSN-MME.

[8] Ericsson.com GGSN-MPG - Ericsson http://www.ericsson.

com/ourportfolio/products/ggsn-mpg (accessed 2011-03-14)
Ericsson information about their GGSN-MPG

37

http://www.ericsson.com/ourportfolio/products/sgsn-mme
http://www.ericsson.com/ourportfolio/products/sgsn-mme
http://www.ericsson.com/ourportfolio/products/ggsn-mpg
http://www.ericsson.com/ourportfolio/products/ggsn-mpg

BIBLIOGRAPHY

[9] L. Ekeroth, P-M Hedström (2000) GPRS Support Nodes
http://www.ericsson.com/ericsson/corpinfo/publications/

review/2000_03/files/2000034.pdf (accessed 2011-03-18)

[10] DegroupNews Image du dossier : Bouygues Telecom nous ou-
vre ses portes http://www.degroupnews.com/galerie-D-56-5666.

htm (accessed 2011-05-26)

38

http://www.ericsson.com/ericsson/corpinfo/publications/review/2000_03/files/2000034.pdf
http://www.ericsson.com/ericsson/corpinfo/publications/review/2000_03/files/2000034.pdf
http://www.degroupnews.com/galerie-D-56-5666.htm
http://www.degroupnews.com/galerie-D-56-5666.htm

A. Test Results
A.1 Original Solution

Packets Lost 78
Update time 3.9 s
Average pps 20

Figure A.1: Results Test 1

Packets Lost 144
Update time 2.16 s
Average pps 67

Figure A.2: Results Test 2

39

A. TEST RESULTS

Packets Lost 174
Update time 2.22 s
Average pps 67

Figure A.3: Results Test 3

Packets Lost 104
Update time 1.78 s
Average pps 67

Figure A.4: Results Test 4

40

A. TEST RESULTS

Packets Lost 50
Update time 2.12 s
Average pps 67

Figure A.5: Results Test 5

Packets Lost 182
Update time 2.12 s
Average pps 67

Figure A.6: Results Test 6

41

A. TEST RESULTS

Packets Lost 85
Update time 2.3 s
Average pps 67

Figure A.7: Results Test 7

Packets Lost 136
Update time 2.26 s
Average pps 67

Figure A.8: Results Test 8

42

A. TEST RESULTS

Packets Lost 143
Update time 2.08 s
Average pps 67

Figure A.9: Results Test 9

Packets Lost 144
Update time 2.12 s
Average pps 67

Figure A.10: Results Test 10

43

A. TEST RESULTS

A.2 Proposed Solution

Packets Lost 1
Update time 0.06 s
Average pps 108

Figure A.11: Results Test 1 (Proposed)

Packets Lost 6
Update time 0.98 s
Average pps 74

Figure A.12: Results Test 2 (Proposed)

44

A. TEST RESULTS

Packets Lost 16
Update time 0.04 s
Average pps 185.5

Figure A.13: Results Test 3 (Proposed)

Packets Lost 75
Update time 0.32 s
Average pps 75

Figure A.14: Results Test 4 (Proposed)

45

A. TEST RESULTS

Packets Lost 16
Update time 0.04 s
Average pps 53.5

Figure A.15: Results Test 5 (Proposed)

Packets Lost 9
Update time 0.24 s
Average pps 3200.5

Figure A.16: Results Test 6 (Proposed)

46

A. TEST RESULTS

Packets Lost 7
Update time 0.04 s
Average pps 88

Figure A.17: Results Test 7 (Proposed)

Packets Lost 7
Update time 0.92 s
Average pps 63.5

Figure A.18: Results Test 8 (Proposed)

47

A. TEST RESULTS

Packets Lost 2
Update time 0.24 s
Average pps 60

Figure A.19: Results Test 9 (Proposed)

Packets Lost 2
Update time 0.26 s
Average pps 83.5

Figure A.20: Results Test 10 (Proposed)

48

B. Source Code

This appendix will present the code parts that was written during this
project. [---] indicates omitted lines of code.

B.1 ConnD Changes

#define DYNC_RTREQ_TIMEOUT (5*60) /* cyclic rt req interval: 5 minutes */

[---]

static void ConndTimer_TimeoutHandler(void)

[---]

/* if the routing table is updated */

if (g_update_route_table6[i]) {

/* timer to avoid frequent changes */

if (tickGet() > g_update_route_table6[i]) {

rt_InfoShow_v6CreateRoutesLists(i);

rt_InfoShow_UpdateRtFileIpv6(i);

/*Route distribution works in RTR only for IPV6*/

if (!(my_board_type & PEB_BOARD)) {

/* if the update is successful */

if (rt_CM_UpdateForwardingTable(i, PROTO_IPV6)) {

/* set new timeout*/

g_dync_route_req_timer[i] = tickGet()/60 + DYNC_RTREQ_TIMEOUT;

/* set route distribution the first 5 minutes from router start */

if(tickGet() < 180000)

setSRV = TRUE;

} else {

AS_Trace(TRDEBUG, "IPv6:No route distribution change is needed for NW: %lu\n", i);

}

}

g_update_route_table6[i] = 0;

rt_InfoShow_v6DeleteRouteLists();

49

B. SOURCE CODE

}

}

[---]

#ifdef LINUX

struct timeval current;

gettimeofday(¤t, NULL);

startTime = current.tv_sec;

#else /* VxWorks */

startTime = tickGet()/60;

#endif

if (my_board_type & ROUTER_BOARD){

/*skip nw is 0, no routes should be download from IB for nw 0 */

for (i=1; i < MAX_NBR_OF_VPNS; i++) {

if (g_dync_route_req_timer[i]) {

if (startTime > g_dync_route_req_timer[i]) {

rt_CM_SetRouteDistributionSRV();

}

g_dync_route_req_timer[i] = startTime + DYNC_RTREQ_TIMEOUT;

AS_Trace(TRDEBUG, "next cyclic route set for VPN %d will occur at %d\n",

i, g_dync_route_req_timer[i]);

}

}

}

#endif

[---]

B.2 FE changes

int fe6_internal_input(struct mbuf** m0)

[---]

if(feBoardTypeRouter()) { /* Don’t do anything on appl. board */

[---]

50

B. SOURCE CODE

outError = ip6_output (m, NULL, NULL, 0, NULL, NULL);

if(outError){

struct mbuf* med;

Bool handled = FALSE;

med = fe6_icmp6_addr_unreach(m);

fe6_inbound_forward(&med,vpn,&handled);

printf("sent something?\n");

if(!handled){

m_free(med);

m_free(m);

}

}

[---]

} else if (feBoardTypeApplication()) {

fixTable(m);

}

static

struct mbuf* fe6_icmp6_addr_unreach(struct mbuf *m)

{

struct mbuf *packet = NULL;

struct ip6_hdr *ip = NULL;

struct ip6_hdr *oip = NULL;

struct icmp6_hdr *icp = NULL;

int icmp_len = 0;

eq_pos myeq = {2, 9};

/* take the ip header from the original message */

if(m != NULL) {

oip = mtod(m, struct ip6_hdr *);

}

/* allocate memory for the packet */

MGETHDR1(packet, CL_SIZE_256, M_DONTWAIT, MT_HEADER);

if (packet == NULL) {

51

B. SOURCE CODE

printf("ERROR: Couldn’t allocate mbuf\n");

goto end;

}

if(m != NULL) {

icmp_len += sizeof(struct ip6_hdr);

}

/* the size of the packet is the ip header, icmp header,

ip header again (from the original message) and the position */

packet->m_len = sizeof(struct ip6_hdr) +

sizeof(struct icmp6_hdr) +

icmp_len +

sizeof(myeq);

MH_ALIGN(packet, packet->m_len);

/* Create IPv6 header */

ip = mtod(packet, struct ip6_hdr *);

ip->ip6_vfc = IPV6_VERSION; /* = 0x60 */

ip->ip6_flow = 0;

ip->ip6_plen = htons(icmp_len + (int)sizeof(struct icmp6_hdr));

ip->ip6_nxt = IPPROTO_ICMPV6; /* Next header */

ip->ip6_hlim = 0xFF; /* Hoplimit */

/* byta plats p src/dst */

ip ->ip6_dst = oip->ip6_src;

ip ->ip6_src = oip->ip6_src;

packet->m_data += (sizeof(struct ip6_hdr));

packet->m_len -= (sizeof(struct ip6_hdr));

/* Create ICMPv6 header */

icp = mtod(packet, struct icmp6_hdr *);

icp->icmp6_type = ICMP6_DST_UNREACH;

icp->icmp6_code = ICMP6_DST_UNREACH_ADDR;

icp->icmp6_cksum = 0;

icp->icmp6_cksum = in6_cksum(m,

52

B. SOURCE CODE

IPPROTO_ICMPV6,

sizeof(struct ip6_hdr),

packet->m_len);

packet->m_data += sizeof(struct icmp6_hdr);

packet->m_len -= sizeof(struct icmp6_hdr);

/* add the original header */

if(m != NULL) {

bcopy((caddr_t)oip, (caddr_t)packet->m_data, icmp_len);

}

packet->m_data += (sizeof(struct ip6_hdr));

packet->m_len -= (sizeof(struct ip6_hdr));

/* add the position of me */

bcopy((caddr_t)&myeq, (caddr_t)packet->m_data,sizeof(myeq));

packet->m_data -= (sizeof(struct ip6_hdr) + sizeof(struct icmp6_hdr)) +

(sizeof(struct ip6_hdr));

packet->m_len += (sizeof(struct ip6_hdr) + sizeof(struct icmp6_hdr)) +

(sizeof(struct ip6_hdr));

packet->m_pkthdr.len = packet->m_len;

end:

return packet;

}

static int fixTable(struct mbuf* m){

int proto = 0;

struct ip6_hdr* ip = NULL;

int returnval = 0;

ip = mtod(m, struct ip6_hdr *);

proto = ip->ip6_nxt;

53

B. SOURCE CODE

if(proto == IPPROTO_ICMPV6){

struct icmp6_hdr *icp;

/* struct ip6_hdr *ip; */

int ip6_hlen = sizeof(struct ip6_hdr);

int icmp6_hlen = sizeof(struct icmp6_hdr);

int icmp_type = -1;

int icmp_code = -1;

/* find the icmp header */

m->m_data += ip6_hlen;

m->m_len -= ip6_hlen;

icp = mtod(m , struct icmp6_hdr *);

icmp_type = icp->icmp6_type;

icmp_code = icp->icmp6_code;

/* after the icmp header comes the original header */

/* the packet the routers couldn’t forward */

m->m_data += icmp6_hlen;

m->m_len -= icmp6_hlen;

ip = mtod(m , struct ip6_hdr *);

m->m_data += ip6_hlen;

m->m_len -= ip6_hlen;

if((icmp_type == ICMP6_DST_UNREACH)

&& (icmp_code == ICMP6_DST_UNREACH_ADDR)){

register FeVpn_t* vpn = NULL;

FeRt6Entry_t* rte = NULL;

u16 eqid;

u8 mag, slot;

/* find vpn for the sent message */

vpn = feVpnIp6ToVpnLookup(&(ip->ip6_src));

if (vpn == NULL) {

return -1;

}

/* the data is the position of the sending router */

54

B. SOURCE CODE

/* first byte is mag and second is slot */

mag = *(m->m_data);

slot = *(m->m_data +1);

eqid = POSTOEQID(mag,slot,GICPOSITION);

/* find the entry in the forwarding table */

rte = adt_RdxTree6_Lookup(vpn->fwd_tbl_in6,&(ip->ip6_src));

DeleteRt6EntryAll(vpn->fwd_tbl_in6, rte, eqid);

returnval = 1;

}

/* reposition the pointers */

m->m_data -= ip6_hlen;

m->m_len += ip6_hlen;

m->m_data -= icmp6_hlen;

m->m_len += icmp6_hlen;

m->m_data -= ip6_hlen;

m->m_len += ip6_hlen;

}

return returnval;

}

55

C. Test implementation

tc_004_setup_static_ipv6route(config)->

ok;

tc_004_setup_static_ipv6route(unconfig)->

case gtt_testcase:was_successful() of

yes ->

ok;

no ->

?CLI_CMD("undo_config_pending")

end,

ok;

tc_004_setup_static_ipv6route(exec)->

?CLI_MATCH("modify_sctp_profile -pn Pn_2.5 -bundling 0",[]),

?CLI_MATCH("create_eth_port -eqp 2.9 -ep 0",[]),

create_ip_interface("188","elisabet","2088::1",

"S1-MME-VPN1","elsa_gtt","2088::2"),

create_static_route("S1-MME-VPN1","2027::","2088::2"),

?CLI_CMD("check_config"),

?CLI_OBM_MATCH_UNDO("activate_config_pending", []),

?SLEEP(2000),

send_packet(exec),

ok.

test(config)->

ok;

test(unconfig)->

case gtt_testcase:was_successful() of

yes ->

ok;

no ->

56

C. TEST IMPLEMENTATION

gtt_dp_control:send_command_sgsn_ss7("be5TraceStop",[1500]),

gtt_dp_control:wait_command_response(),

gtt_dp_control:send_command_gtt_dp("ethTraceStop",[0]),

gtt_dp_control:wait_command_response()

end,

ok;

test(exec)->

gtt_dp_control:send_command_gtt_dp("ethTraceStart",[1500]),

gtt_dp_control:wait_command_response(),

gtt_dp_control:send_command_sgsn_ss7("be5TraceStart",[1500]),

gtt_dp_control:wait_command_response(),

?SLEEP(2000),

?CLI_CMD("delete_static_ipv6route -eqp 2.9 -nw S1-MME-VPN1

-dip 2027:: -pl 64 -gip 2088::2 "),

?CLI_CMD("check_config"),

spawn(ervkat_esveeli,spawn10,[20]),

?SLEEP(2000),

% remove the route

?CLI_OBM_MATCH_UNDO("activate_config_pending", []),

% sleep one minute

?SLEEP(60000),

gtt_dp_control:send_command_sgsn_ss7("be5TraceStop",[1500]),

gtt_dp_control:wait_command_response(),

gtt_dp_control:send_command_gtt_dp("ethTraceStop",[0]),

gtt_dp_control:wait_command_response(),

ok.

hej(0)->

ok;

hej(N)->

spawn(ervkat_esveeli,create_and_delete,[]),

57

C. TEST IMPLEMENTATION

hej(N-1).

spawn10(0)->

spawn(ervkat_esveeli,create_and_delete,[]);

spawn10(20)->

?SLEEP(5000),

spawn10(19);

spawn10(N)->

?SLEEP(700),

hej(30),

spawn10(N-1).

create_and_delete()->

?SLEEP(500),

UeId = gtt_mme_library:create_ue(?CONF(location_eriksbo)),

{UeId,SessionId} = gtt_mme_library:attach(UeId),

?SLEEP(1000),

gtt_library:detach({UeId, SessionId}, normal_detach).

58

	Nomenclature
	Introduction
	Purpose
	Limitations
	Background
	The problem at hand
	Architecture with IBAS routers
	Architecture with PEB routers

	Route Distribution
	Application boards with routing tables
	Updating application boards' forwarding table
	Problems with the current implementation of route distribution

	Project: propose new solution

	Scope
	Method
	Proposed Solution
	Implementation
	Operating system
	Levels of code
	Proposed solution - implementation

	Testing
	Test environment
	Test implementation

	Analysis
	Minimize Packet Loss
	Avoid heavy traffic load on the backplane
	Minimize memory requirements

	Results
	Packet loss analysis
	Tests of original solution
	Tests of proposed solution
	Expected results

	Backplane Traffic
	Test results

	Conclusion
	Packet loss
	Backplane Traffic
	Theoretical analysis

	Further work

	Bibliography
	Test Results
	Original Solution
	Proposed Solution

	Source Code
	ConnD Changes
	FE changes

	Test implementation

