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self-organizing time division multiple access (STDMA), 
where STDMA was found to perform better than CSMA. 
STDMA is already in commercial use in a collision avoidance 
system, i.e., Automatic Identification System (AIS)[8], for the 
shipping industry. In earlier work [6, 7] there was no channel 
model present and performance in terms of predictability and 
fairness was evaluated on the transmitter side. In this paper we 
have added a Nakagami channel model to our simulator and 
evaluate the performance of CSMA and STDMA from the 
receiver side in terms of the MAC-to-MAC delay, i.e., the 
end-to-end delay for one hop.  This measure captures both the 
reliability and the delay of the messages since it considers the 
MAC induced interference. CSMA and STDMA are two dif-
ferent approaches to channel access and the motivation for 
comparing them is that STDMA is already in commercial use 
in a similar system as the one currently being proposed for 
road traffic safety applications within the vehicular environ-
ment. CSMA has been chosen as the standard for the first 
generation of VANETs despite its very well-known draw-
backs, due to its simplicity.  

II.  MEDIUM ACCESS CONTROL 

Providing access to the shared medium while at the same time 
providing the Quality of Service (QoS) in terms of, e.g., delay 
and reliability, requested by the application, is an important 
and challenging task of the MAC layer. Although, the reliabil-
ity is mostly addressed in the physical layer, the MAC proto-
col can minimize simultaneous channel access attempts in an 
effort to decrease the interference in the system and thereby 
increase reliability. The broadcast nature of messages excludes 
traditional automatic repeat request (ARQ) strategies at the 
link layer found in unicast communication, which implies that 
important messages have to rely on forward error correction 
methods, e.g., repeated broadcasts of the same message in an 
effort to increase the reception probability.  
 STDMA is a guaranteed medium access protocol [9], 
where nodes access the channel in an orderly manner and all 
nodes know when to transmit. The protocol is, in this respect, 
predictable as the channel access delay is upper bounded. 
Time-slotted MAC approaches such as STDMA requires syn-
chronization and one transmission fits into one slot, i.e., fixed 
packet length. Time-triggered data traffic, such as the LDM 
beacons, is suitable for TDMA schemes. CSMA, on the other 
hand, works best for event-driven data traffic where high utili-
zation periods are followed by low utilization periods, which 
allows collisions to be resolved, i.e., the network can recover. 
CSMA belongs to the group of random access schemes [9], 
where nodes contend for gaining channel access. Hence, noth-
ing can be said about when the channel access will actually 
take place. CSMA does not require synchronization and varia-
ble packet lengths are supported. Below is a brief description 
of the channel access procedure of CSMA (as used in 
802.11p) and STDMA. For further protocol details see [5, 10] 
for CSMA and [6, 8] for STDMA. 

A. CSMA 

In CSMA of 802.11p, each node initiates a transmission by 
listening to the channel, i.e., performs a carrier sense opera-
tion, during a predetermined listening/sensing period called 
the arbitration interframe space (AIFS), AIFST . If the sensing is 
successful, i.e., no channel activity is detected, the node 
transmits directly. If the channel is occupied or becomes occu-
pied during the AIFST , the node must perform a backoff proce-
dure, i.e., it has to defer its access for a randomized time peri-
od. The backoff procedure works as follows: (i) draw an inte-
ger from a uniform distribution [0, CW], where CW refers to 
the current contention window, (ii) multiply this integer with 
the slot time, slotT , derived from the physical (PHY) layer in 
use (i.e., in 802.11p slotT =13 µs), and set this as the backoff 
value, (iii) decrease the backoff value by one slotT whenever the 
channel has been free for one slotT , (iv) upon reaching a 
backoff value of 0, send immediately. Further, nodes must 
defer their backoff decrementation whenever the channel be-
comes busy and they must listen a AIFST , after a busy channel 
becomes clear, before decrementation of the backoff value can 
resume. CSMA of 802.11p has support for QoS, where each 
node maintains 4 different queues. The different queues have 
different AIFST  and size of the CW, see [10] for further details. 

B. STDMA 
In STDMA the time is divided into time slots constituting a 
frame. The major difference between STDMA and other self-
organizing TDMA schemes is the lack of a random access 
channel for slot assignment. Instead the nodes in STDMA 
listen to the channel during one frame and then select a num-
ber of free slots for transmission. If no slots are free, a node 
chooses to send in an occupied slot, used by the node situated 
furthest away. Therefore, the position messages used by the 
LDM are also needed by the MAC layer for STDMA. The 
frame is seen as a ring buffer and all nodes have their own 
frame start. Hence, the nodes are slot synchronized, but not 
frame synchronized. In AIS the synchronization is done 
through GPS. When a node is turned on, it follows four differ-
ent phases; (i) initialization, (ii) network entry, (iii) first frame, 
and (iv) continuous operation. During phase (i) the node will 
monitor the channel during one frame to determine the exist-
ing slot assignments, i.e., listen to the position messages sent 
in each slot, which contains the sending node’s position and 
future slot assignments. In phase (ii), the node determines its 
first transmission slot based on the information gathered dur-
ing phase (i) and introduces itself to the network by using this 
slot. After the first slot has been used for transmission the 
node enters phase (iii), where it continues to reserve a prede-
termined number of slots in the current frame and using them. 
If all slots are occupied, the node will select an occupied slot 
based on its knowledge of positions, namely the slot used by 
the node located furthest away from itself. This way channel 
access is always granted and the distance between two concur-
rently transmitting nodes is maximized. In the last phase (iv) 
all the slots determined in the first frame are used for trans-
mission in future frames. To cater for network topology 
changes, the same slot assignment is not kept for long. During 



 
 

phase (iii) the node will also draw a random integer,
{3,...,8}n  , for each allocated slot which determines for how 

many consecutive frames this slot will be used. This random 
number is different for each slot in the frame. When the spe-
cific slot has been used for its number of frames, the node 
must find a new slot and attach a new random number to it. In 
the AIS standard [8], when nodes have packets to transmit that 
are longer than the allowed slot size, they can allocate up to 
five consecutive slots to accommodate the longer packet. A 
node is also allowed to transmit event-triggered messages in 
one or more free slots. STDMA needs synchronization and a 
GNSS will be present in the vehicle due to the global time 
stamp required for, e.g., position messages. As long as the 
GNSS system is connected to a sufficient number of satellites, 
the quality of GNSS-derived global clock will be sufficient for 
synchronizing STDMA. However, whether this is true also 
when satellite coverage is limited or nonexisting is out of 
scope for this article.  

III.  RELATED WORK 

Slotted Aloha (S-Aloha), proposed in 1975 in [11], has served 
as the foundation for many of time-slotted approaches adapted 
to the VANET environment [12-18]. The major difference 
between these time-slotted approaches and the herein pro-
posed STDMA is that the former ones cannot handle scalabil-
ity in overloaded situations, i.e., when all slots are occupied – 
no more nodes can be added to the network. STDMA does not 
have this limitation since a node that wants to join the network 
when all slots are occupied will pinch a slot from another node 
situated furthest away from itself. Another difference is that in 
STDMA, the slot allocation as perceived by a particular node 
is not distributed to its neighbors. Instead the slot allocation 
performed by each STDMA node is based only on the position 
information broadcasted by all participating nodes.  

One way to handle the problems with scalability in MAC 
algorithms, such as CSMA and slotted Aloha, is the addition 
of transmit power control (TPC) or/and data congestion con-
trol algorithms. The most prominent proposals for handling 
scalability through TPC are found in [19]. Of course, also 
scalable MAC algorithms such as STDMA will benefit from 
the use of TPC and data congestion control. However, the 
methods must be carefully designed since the restriction of the 
transmit power and data communicated can deteriorate the 
performance of certain road traffic safety applications, e.g., 
LDM.  

IV.  PERFORMANCE METRIC 

Periodic position messages can be regarded as real-time mes-
sages because they have deadlines, dl , i.e., they must be de-
livered to the recipients in a timely fashion. Therefore, we 
define a performance measure called MAC-to-MAC delay, 

MM , which must satisfy MM dl   to meet the deadline. In 
Figure 1 the delays encountered at the transmitter, TX, the 
receiver, RX, together with the channel are depicted. At 0t a 

channel access request at TX is done, and the time elapsing 
from 0t to 

xTt is denoted the channel access delay, ca , i.e., the 
time from channel access request to actual transmission. For 
periodic position messages, there is no use to transmit the 
packet if ca dl  , because a new message with updated posi-
tion information has then already been generated. 
 
 
 
 
 
 
 
 
 
 
 
 
The packet is therefore dropped already at the transmitter, and 
we say that ca   . The propagation delay is denoted p and 
the decoding delay is dec . If decoding fails, due to noise, 
fading or/and interference, we set dec   . At dt  the decoded 
packet is delivered to higher layers at the receiver. Hence, 

MM is the sum of ca , p , and dec and it is finite if and only if 
the packet is actually delivered to the higher layers at the re-
ceiver. The cumulative distribution function (CDF) of MM  
captures both the delay and the reliability of the system, and 
this metric will be used for performance evaluation in Section 
V. It should be noted that ca is not upper bounded in some 
random access schemes, e.g. CSMA.  

V.  PERFORMANCE EVALUATION 

We study the performance of the MAC methods CSMA of 
802.11p and STDMA when used on a control channel that 
carries both time-triggered position messages and event-driven 
hazard warnings. We consider single-hop communications 
since messages of multi-hop character are restricted to the 
service channels in the current European standardization pro-
posal. A highway scenario with 10 lanes (five in each direc-
tion) is used for evaluating the two MAC methods through 
computer simulations in Matlab. The vehicles arrive at the 
highway entrance according to a Poisson distribution with an 
inter-vehicle arrival rate of 1/3 Hz. The resulting vehicle den-
sity is then approximately 10 vehicles/lane/km. The data traf-
fic generated by each vehicle is periodic, i.e., time-triggered 
position messages, where each vehicle’s initial transmission 
time is independent and random. Hence, no event-driven haz-
ard warnings are present. The position messages are transmit-
ted using the highest priority in CSMA, implying a AIFST  of 58 
µs and the CW set to 3. The vehicle speeds are drawn inde-
pendently from Gaussian distributions with a common stand-
ard deviation of 1 m/s, but with different mean values (23 m/s, 
30 m/s and 37 m/s) depending on lane. The vehicles maintain 
the same speed as long as they are on the highway. All vehi-
cles broadcast position messages with a fixed data rate, R = 6 

TX

 

 

 

Fig 1. Delays found in the MAC layer.  

RX



 
 

Mbps, and two different packet lengths in bytes, B, and update 
frequencies, pf , are used, Table 1.  

Table 1. Data traffic models.  

 
B 

[byte] pf [Hz] 

Band-
width 
req. 

[kbps] 

No of 
slots/ 
frame 

Data traffic model Europe 800 2 12.8 904 

Data traffic model USA 300 10 24 2283 

 
These two data traffic models are selected based on discus-
sions in Europe within ETSI and in the US within IEEE, re-
spectively. The bandwidth requirements for each node based 
on the data traffic models and the number of slots in the 
STDMA frame for each model are also found in Table 1. The 
frame size in STDMA is 1 second.  

The channel model used in the simulator is based on out-
door channel sounding measurements performed at 5.9 GHz 
between moving vehicles [20]. The collected data has served 
as a foundation to find a suitable statistical model and its pa-
rameter setting. The small scale and the large-scale fading is 
both represented by the Nakagami m model [21], which has 
earlier been pointed out to be a suitable candidate for channel 
modeling of the vehicular environment [22]. The probability 
density function for the Nakagami m distribution is:  

  
 

2
2 1

( )2
; , ( ) ,

( ) ( )
r

mxm m
P d

r m

r

m x
f x m P d e

P d m






 (1) 

where m  represents the fading intensity, ( )rP d  the average 
received power at a distance d , and  m  is the gamma 
function. Rayleigh fading conditions, i.e., no line-of-sight 
exists, can be obtained through Nakagami by setting 1m  . 
Higher values of m can be used for approximating Rician dis-
tributed channel conditions where a line of sight exists, while  
m < 1, the channel conditions are worse than the Rayleigh 
distribution. The estimated values of m  from the channel 
measurements are distance-dependent [20], Table 3. The aver-
age received power, rP , is assumed to follow the dual-slope 
model suggested in [19], i.e., 
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where numerical values for the parameters are found in Table 
2. Hence, the instantaneous received power is found by draw-
ing a random number from the distribution in (1), in which 

, ( )/10( ) 10 r dBP d
rP d  is computed from (2).  

Table 2. The path gain model’s parameter values.  

Parameter Value 

Dual slope 1  2.1 

Dual slope 2  3.8 

Critical distance cd [m] 100 

Reference distance 0d [m] 10 

Table 3. The different m values in the Nakagami distribution. 

Distance bin (in meters) m  

0-6 4.07 

6-14 2.44 

14-36 3.08 

36-91 1.52 

91-231 0.74 

231-588 0.84 

 All vehicles use the same output power, ,t dBP , of 20 dBm 
(100 mW) and the reference power,  ,Pr dB od , is calculated 
using the following free space path gain formula[23]: 

  
 

2

, 0 , 2 2
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10 log ,
4

r dB t dBP d P
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
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where 0 10d  m and the wavelength,  , is based on a carrier 
frequency of f = 5.9 GHz. The carrier sense threshold for 
CSMA is 96  dBm and by employing (2), the carrier sense 
range for each vehicle is approximately 500 meter. The result-
ing signal-to-interference-plus-noise (SINR) ratio at the re-
ceiver is calculated using the following formula:   

 
,

,r

n i k
k

P
SINR

P P



 (4) 

where rP is the power of the desired signal, ,i kP is the power of 
the kth interferer, and nP the noise power. The noise power is 
set to 99  dBm.  

Fig. 2 Packet error rate versus signal-to-noise ratio for 300 byte 

and 800 byte long packets, respectively.  

Both MAC methods are using the same PHY layer of 
802.11p, i.e., orthogonal frequency multiplexing (OFDM). 
The packet error probability (PER) for the two different packet 
lengths using the PHY layer of 802.11p is derived from PHY 
layer simulations over an additive white Gaussian noise chan-
nel (AWGN), Figure 2. These PHY layer simulations lack 
interferers and therefore this result in signal-to-noise ratio 



 
 

(SNR) curves. However, if we approximate the interference as 
extra AWGN, we can read off the PER from plots in Figure 2 
by using the SNIR instead of the SNR.  

In Figure 3 the CDF of the MAC-to-MAC delay is depict-
ed for receivers located within different distances from the 
transmitter, i.e., 100 m, 300 m, and 500 m, when a packet 
length of 800 byte and 2 Hz has been used. The deadline, dl , 
is then 500 ms. In Figure 4 the MAC-to-MAC delay for 300 
byte packets at a rate of 10 Hz is shown, implying dl =100 ms. 
Recall that while ca   is always fulfilled for STDMA, 
packet drops may occur at the receiver side for CSMA. How-
ever, by inspecting the results it was found that no packet 
drops occurred for CSMA for any of the data traffic settings 
evaluated, i.e., ca  . At the receiver, packets may also be 
dropped due to decoder failure caused by noise and/or inter-
ference. This leads to dec   and missed deadlines (the posi-
tion message was never successfully received). The decoder 
failures being defined as dec    explains why the CDF 
curves do not reach 1 for finite delays.  

For STDMA nearly 100% of all nodes within 100 meter 
from the transmitter receive the packet correctly for 800 bytes 
and 2 Hz in Figure 3, i.e., nearly 100% packet reception prob-
ability. The deadline miss ratio, i.e., Pr{ }MM dl   is easily 
found in Figure 3 and Figure 4. For nodes situated 100 meter 
from the transmitter in Figure 4, roughly 2% of the deadlines 
are missed for STDMA and 8% for CSMA. Since, in Figure 3 
and 4, missed deadlines are only caused by decoding failures, 
the packet reception probability is simply 1 Pr{ }MM dl   . 

Fig. 3 CDF for MAC-to-MAC delay, 2 Hz, 800 byte, for different 
maximum distances from the transmitter.  

STDMA has on average a longer channel access delay due 
to the slotted scheme but have a higher reliability since the 
transmissions are scheduled further apart in space. The chan-
nel access delay ca  in STDMA is uniformly distributed in the 
interval [0,( / 5)]dl . The scheduling results in less interfer-
ence for the closest neighbors of the transmitter. For CSMA, 
on the other hand, concurrent transmissions are unplanned and 
occur mainly when multiple nodes reach the backoff value 
zero at the same time. This phenomenon occurs despite carrier 
sensing due to the randomness in the CSMA protocol. There-

fore, the reliability of CSMA is decreased compared to 
STDMA for all settings in this study. It should be noted that 
neither the CW setting of CSMA nor the channel access delay 
of STDMA have been optimized. In Figure 4, the overall reli-
ability has decreased compared to Figure 3, because there is 
more data traffic injected into the network. Still the nodes 
employing STDMA have a higher probability of receiving 
packets. At a distance of 500 meter from the transmitter, it is 
the noise rather than the interference that limits the reception 
of transmissions and the performance of CSMA and STDMA 
are therefore similar for both settings. 

Fig. 4. CDF for MAC-to-MAC delay, 10 Hz, 300 byte, for different 
maximum distances from the transmitter.  

VI.  CONCLUSIONS 

A key component to successful deployment of road traffic 
safety applications using an LDM is the ability to transmit 
position messages periodically and reliably on the control 
channel. The delay and interference experienced with two 
different MAC methods CSMA and STDMA have been inves-
tigated through computer simulations of a highway scenario in 
this paper. In contrast to CSMA where nodes may be hindered 
from transmitting, nodes using STDMA will always get timely 
channel access regardless of the number of participating nodes 
in the VANET. The delay is, however, on average higher for 
STDMA than CSMA. Of course a low delay is beneficial but 
for messages that have requirements on a finite delay it is 
more important that the deadlines are kept, i.e., MM dl  . A 
major difference between STDMA and CSMA is that the 
former schedules transmission in space. The scheduling of 
transmissions results in lower interference and higher packet 
reception probability for the closest located receivers. The 
CSMA scheme is less reliable, i.e., has lower packet reception 
probability, due to simultaneous channel access by potentially 
closely located nodes despite the carrier sensing, either in the 
initial channel access attempt or due to reaching a backoff 
value of zero at the same time. To increase the reliability and 
to keep the maximum delay bounded we therefore propose 
using the STDMA algorithm on the control channel of 
VANETs.  
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