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ABSTRACT

In this paper, we describe a minimal mean square error (MMSE)
optimal interpolation filter for discrete random signals. We explicitly
derive the interpolation filter for a first-order autoregressive process
(AR(1)), and show that the filter depends only on the two adjacent
points. The result is extended by developing an algorithm called
local AR approximation (LARA), where a random signal is locally
estimated as an AR(1) process. Experimental evaluation illustrates
that LARA interpolation yields a lower mean square error than other
common interpolation techniques, including linear, spline and local
polynomial approximation (LPA).

Index Terms— Interpolation, LMMSE estimation, autoregres-
sive modeling, adaptive filtering

1. INTRODUCTION

When sampling signals, a traditional assumption is that the sam-
pling frequency must be higher than twice the signal bandwidth (the
Shannon-Nyquist rate), in order to avoid aliasing. However, recent
studies have shown that this is an unnecessary limitation and pro-
vide ways to sample a signal below this rate and compensate for the
aliasing that occurs [1], [2].

Matthews [3] has studied the problem of designing a filter to
reconstruct a continuous signal that has been sampled below the
Shannon-Nyquist rate. However, since most signals are stored and
processed in digital format, a densely sampled signal is often a suf-
ficient representation of a continuous signal. Furthermore, a digital
to digital converter is easier to implement than an analogue to dig-
ital converter. In this paper, we investigate the reconstruction of a
discrete random signal by interpolating a downsampled version of
the signal. Reconstructions of this nature have diverse applications
including biomedical imaging [4] and audio processing [5].

For a discrete random signal with known spectrum, we derive
the optimal interpolation filter in a minimum mean square error
(MMSE) sense. Based on statistical information about the spectrum
of the signal, the filter is designed to compensate for the aliasing
and to retain the statistical properties of the signal. We derive an
explicit form of this filter for a stationary first-order autoregressive
process (AR(1)). The resulting filter is then extended to a general
interpolation algorithm, that can be used on a larger set of signals.
This is done by approximating the signal locally as an AR(1) pro-
cess, where the AR(1) parameter is estimated from the data without
prior information about the original signal. We name this algorithm
local AR approximation (LARA).

To evaluate the performance of LARA interpolation, we com-
pare it with other interpolation techniques: linear, spline and local
polynomial approximation (LPA) [6] interpolation.

2. PROBLEM STATEMENT

Consider a wide-sense stationary, discrete signal z[n], which is sam-
pled into

za[n] = z[nL], ))

where L, the downsampling factor, is a positive integer. Our ob-
jective is to reconstruct x[n] from z4[n], even though aliasing has
occurred. We limit our solution to the set of linear reconstructions,
and aim to minimise the MSE within this set. When interpolating
a discrete signal, the optimal interpolation filter is a digital multi-
rate filter, since for each sample the filter yields several interpolation
points. By dividing the filter into L parallel filters, where L is the
upsampling factor, the multirate filter can be represented by a bank
of single-rate filters.

Let us therefore introduce the filters Hy, (k = 0,..,L — 1),
where H, reconstructs samples of the form

zak[n] = z[nL + kJ. (2)

For each of these interpolation filters, the optimal filter, in the MMSE
sense, is a Wiener filter [7]:
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where g is the angular frequency in radians/sample, Py, is the
spectrum of xq and Py 4, is the cross spectrum of x4 and xqx. Ex-
pressing the cross spectrum in terms of the spectrum of x[n] results
in the following proposition,

Proposition 1. Let a random signal x[n] with known spectrum Py,
be sampled into x4[Ln] with spectrum P .. Then the MMSE op-
timal interpolation filter to reconstruct x from xq is given by
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Proof: See Appendix A.
This is a general expression of the optimal reconstruction filter
when P, is known.

3. APPLICATION TO A FIRST-ORDER
AUTOREGRESSIVE PROCESS

Assume that the process z[n] is a stationary AR(1) process,

z[n] = ax[n — 1] + v[n], ®)



where a is a constant, |a| < 1. The signal is downsampled with a
factor L into zq[n] = z[nL]. It is then easy to show that zq4[n] is
also an AR(1) process,

za[n] = aaza[n — 1] + va[n], (6)

where aq = a” and vq = .5 a"v[Ln — 7]. The spectra of the
AR(1) processes are,
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where (g = QL. Inserting (7) and (8) into (4) leads to the following
result,

Proposition 2. Let z[n] be an AR(1) process that is sampled into
zan] = x[nL]. Then the MMSE optimal interpolation filter to re-
construct the signal x[n] from the samples xq[n] is given by

hin] = c1d[n + 1] + cod[n], ©)

where
c1 = ﬁa“’“(l —a®), (10)
co = ﬁak(l —a*t 7k, (11)

i.e., the filter depends only on the neighbouring samples.

Proof: See Appendix B.

Since the AR(1) process is Markovian, it is reasonable that the
optimal interpolation filter only needs to consider information from
the two adjacent points. While downsampled AR(1) processes are
still AR(1), this is unfortunately not the case for higher-order AR
processes, thereby limiting the generalisation of Proposition 2.

3.1. Comparison to linear interpolation

According to (9), the filter produces interpolation points by a
weighted mean of the previous and the following sample point.
Note the close relationship between the AR(1) filter and ordinary
linear interpolation, defined as

z[Ln+ k] = (L;k)xd[n]—i-%xd[n—i—l], (12)

and for the AR(1) interpolation filter,
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z[Ln + k] =

+ a1 = a®)zan + 1]. (13)

Fig.1 shows that the coefficients of the AR(1) filter are damped ver-
sions of the linear interpolation coefficients. The AR(1) filter con-
siders the stochastic nature of the signal and introduces a bias to-
wards the mean, which in this case is zero. The larger a is (i.e., less
stochasticity), the more our filter resembles linear interpolation.
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Fig. 1. The coefficients for linear interpolation (doy = k/L,

di = (L — k)/L) and the coefficients for the AR(1) filter in (9)
with L = 10.

4. LOCAL AR APPROXIMATION

Unfortunately, real world signals are not always well approximated
as stationary AR(1) processes. In order to extend the above results
and to take advantage of the simplicity of the interpolation filter, we
propose to model an arbitrary signal locally as an AR(1) process, in
other words to use a non-stationary AR(1) model.

We propose an algorithm where the a-parameter in (5) is opti-
mised locally. This is done by first estimating aq with a weighted
prediction error method [8], i.e.,

aqa = afgnggnf(ad)z (14)
where
N-1
flaa) =Y w(m) (za[m] — aazalm —1))*.  (15)
m=0

The weights, w(m), are selected as a Gaussian window, centered at
the time of the interpolation point (ny = n + k/L),

—(m—ny)?
wim) =e 22, (16)

where « is the standard deviation of the Gaussian window. We call
the algorithm local AR approximation (LARA), since it can be seen
as a stochastic version of the LPA method [6], the latter being better
suited for deterministic signals.

Since aq = a” ,we attaina = a;/ L. To obtain a unique solution
for a, negative values are excluded. This is equivalent to assuming
that both processes are of a low-pass character. Note that this as-
sumption is only necessary for signals with unknown spectra.



5. NUMERICAL EXPERIMENTS AND RESULTS

In this section, we test the AR(1) filter and the LARA algorithm.
We generate discrete signals, upsample and interpolate them, then
compute the resulting MSEs. To facilitate the comparison between
different processes, the MSEs are normalised by the variance of the
signal.

5.1. AR(1) filter experiments

First, we compare the resulting MSEs when interpolating a true
AR(1) signal with the AR(1) filter and the linear interpolation filter.
Three different AR(1) processes are investigated. Each signal is
10.000 samples long and a normalised MSE is computed from 250
Monte Carlo simulations. We confirm that the derived AR(1) filter
is indeed better than linear interpolation, see Table 1. The difference
is higher the smaller a is.

5.2. LARA filter experiments

Secondly, we investigate the performance of LARA. The processes
are generated, downsampled and interpolated with LARA and other
interpolation techniques. The MSE is computed over 500 Monte
Carlo simulations, where each signal consists of 3.000 samples. The
first process is an AR(2) process,

z[n] = 0.3z[n — 1] + 0.4z[n — 2] + v[n], a7

where v is white Gaussian noise, (0, 1). The resulting normalised
MSE, for different L, is compared to other interpolation techniques:
linear, spline and LPA. The parameters of LPA are set to m = 1 and
h = 0.02L. The standard deviation, «, of the weight function for
LARA (see (16)), is set to 20 samples (« = 20L). These parame-
ter settings were empirically selected to minimise the interpolation
MSE for the evaluated interpolation techniques. Fig. 2 shows the re-
sulting MSE for the different interpolation techniques. In this case,
the optimal LPA is indistinguishable from linear interpolation, and
both are outperformed by LARA.

To see how the LARA algorithm performs when the process is
not stationary, we investigate the result for an AR(1) process where
the pole is changing with time according to a = sin(27n200/T),
where 7' is the time between two samples in z. The results are shown
in Fig. 3. As seen, the performance of LARA is clearly better than
that of the other interpolation methods for both simulated processes,
especially for large L.

Table 1. MSE for linear and AR(1) filter interpolation of three

AR(1) processes
Method | a L=2|L=3|L=4|L=5|L=8
AR(1) 0.5 0.30 0.48 0.59 0.67 0.79
Linear 0.5 0.31 0.52 0.68 0.80 1.05
AR(1) 0.7 0.17 0.29 0.39 047 0.64
Linear 0.7 0.17 0.30 041 0.50 0.73
AR(1) 09 0.05 0.09 0.13 0.17 0.26
Linear 09 0.05 0.09 0.13 0.17 0.27

6. CONCLUSIONS AND FUTURE WORK

We have derived a MMSE optimal interpolation filter for a discrete
signal with a known spectrum. We have explicitly derived this filter
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Fig. 2. Normalised MSE for interpolating the AR(2) process in (17)
with LARA algorithm, linear and spline interpolation.
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Fig. 3. Normalised MSE when applying LARA, LPA, linear and
spline interpolation on an AR(1) process with varying parameter,
a = sin(2mn200/T),T = 0.1.

for an AR(1) process and shown that it is similar to a linear interpo-
lation filter, but biased towards the mean.

We also introduce the LARA algorithm, which locally approx-
imates an unknown process as an AR(1) process. Numerical ex-
periments show examples of processes where the LARA algorithm
outperforms commonly used interpolation techniques. The filter re-
sulting from the LARA algorithm depends crucially on the width of
the Gaussian window, a.. Currently, the selection of « is done em-
pirically. Therefore, the obvious next step in developing the LARA
algorithm is to propose a theoretical approach for the selection. Fur-
thermore, it needs to be more thoroughly investigated for which pro-
cesses the algorithm is effective.

7. APPENDIX
A. PROOF OF PROPOSITION 1

The spectrum P, ,.,, is the Fourier transform of Ru,u. [T] =
E[za[n]zax[n]], which after reformulation yields,

Pzdzdk (ejﬂd) = Z Rzz[TL + k]eijszdﬂ—,

T=—00



where
Ruo[TL + k] = Rya|7'] Z St —nL — k]
This yields
gk X
Proag, =€ 717 Z Z S[r' —nL — k.

Expressing the pulse train as its Fourier series results in
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Inserting (18) into (3) now yields (4).

B. PROOF OF PROPOSITION 2

Inserting (7)-(8) into (4) results in
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where z = ¢’%_ Equation (20) can be simplified by noting that

(ej27rkm/L)L =1, (20)
and, from inverting a geometric sum (z # 1),
L1
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Using (20) and (21), we can rewrite the terms in the numerator (let
2k ) and (19) becomes
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The sum over mis Lifn—k —p = kL, k € Z, and zero otherwise.
This yields

1 k— L*l*k
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Taking the inverse Z-transform shows (9)-(11).

(1]

(2]

(3]

(4]

(31

(6]

[71
(8]

8. REFERENCES

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,”
IEEE Signal Processing Mag., vol. 26, no. 3, pp. 48-68, May
2009.

M. Unser, “Sampling — 50 years after Shannon,” Proc. IEEE,
vol. 88, no. 4, pp. 569-587, Apr. 2000.

M. B. Matthews, “On the linear minimum-mean-squared-error
estimation of an undersampled wide-sense stationary random
process,” IEEE Trans. Signal Processing, vol. 48, no. 1, pp.
272-275, Jan. 2000.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpola-
tion methods in medical image processing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 18, no. 11, pp. 1049-1075, Nov. 1999.

S. V. Vaseghi and P. J. W. Rayner, “A new application of adap-
tive filters for restoration of archived gramophone recordings,”
in Proc. Int. Conf. on Acoust., Speech and Signal Process., 1988,
vol. 5, pp. 2548-2551.

V. Katkovnik, K. Egiazarian, and J. Astola, Local Approxima-
tion Techniques in Signal and Image Processing, SPIE Press,
Bellingham, Washington, 2006.

A. Papoulis, Signal Analysis, McGraw-Hill Companies, 1977.

L. Ljung, System Identification: Theory for the user, Prentice-
Hall, Upper Saddle River, NJ, 2nd edition, 1999.



