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Abstract 

This project is a part of the Architecture For Future Electric-vehicles (AFFE) project. AFFE 

project is a research project funded by VINNOVA to bring out the next generation electric 

vehicles based on AUTomotive Open System Architecture (AUTOSAR). Modern vehicles are 

containing many electronic devices therefor the system complexity is also growing. Therefor 

this thesis project aims to find a methodology to develop software applications with 

instantiation possibility using Model-based Design environment, then do code generation and 

finally integrate into hardware without modifying the software applications configurations 

between different phases. For this purpose Simulink from Mathworks has been used as a 

Model Based Development tool for developing software applications, simulating and 

generating AUTOSAR compliant code. Mecel Picea Workbench has been used to make 

configuration for simulation in PC environment and hardware platform. The project ends with 

analysis of compatibility of different tools and configuration possibilities in different phases. 

The outcome of this project shows that the AUTOSAR standard is young and therefor 

compliant tools have limitations. 
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1 Introduction 

This chapter introduces the thesis with the background, scope and objective of the project. 

1.1 Background 

Vehicles today have a large impact on the global environment and the automotive industry 

wants to reduce emissions [1]. Therefore the automotive industry is forced to make a shift 

from the traditional designed power train solutions to more environment friendly, efficient 

and long lasting solutions. Mecel is part of the AFFE (Architecture For Future Electric 

vehicles) project funded by VINNOVA, which aims to develop the next generation of hybrid 

vehicles. By developing a new architectural design it is possible to improve the hybrid 

technology to be more efficient. 

A new standardized automotive software architecture called AUTOSAR (AUTomotive Open 

System Architecture) has been developed by a joint group of automotive manufacturers and 

suppliers. The concept of AUTOSAR is to decouple the functionality from the hardware and 

to simplify communication between applications [2].  

Furthermore simulation of the system has become increasingly important as the system 

complexity grows, the earlier simulations are done the earlier are errors detected and the cost 

associated with correcting the errors are reduced significantly [3]. By introducing different 

phases of simulation; model-in-the-loop (MIL), software-in-the-loop (SIL) and hardware-in-

the-loop (HIL) the functionality of the system can be verified in each phase and any errors can 

be detected as early as possible. The software developed should be easy to move between the 

different phases in order to reduce the cost of modifying an application. 

Model based development (MBD) tools such as Simulink can be used to model the 

functionality of the system and to generate AUTOSAR compliant code and descriptions from 

these models. However there are still uncertainties on how well different tools support the 

AUTOSAR standard and the compatibility within the tool chain. 

1.2 Purposes 

The purpose of this thesis is to find a methodology on how to develop software components 

(SW-C) in Simulink and how to go from MIL to SIL to HIL simulations of the system. 

The purpose is also to investigate how SW-Cs can be instantiated multiple times and how 

each instantiation can be configured to provide a unique behaviour when developing the SW-

C in Simulink. 

1.3 Problem 

The first part of the main problem of this thesis is to investigate how a SW-C developed in 

Simulink can be; 
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• Instantiated multiple times 

• Simulated in the MIL phase 

• Generated with AUTOSAR compliant code 

The second part of the problem consists of finding what is necessary to configure in order to 

go from one phase to the next, i.e. from MIL to SIL or from SIL to HIL, without the need to 

change the behaviour of the models used during the MIL phase or manually modify the 

generated code in the SIL and HIL phases.  

1.4 Delimitations 

The software components and models developed should be kept very simple. Since this 

project focuses on model based design and methodology we will not elaborate on parts of 

AUTOSAR that is not related to software components. 

Authoring tools will be used but will not be covered since it is out of the scope for this 

project. 

In automotive system CAN is often used for communication between ECUs, which will be 

used in this project and FlexRay, LIN communication interfaces will be left out. 
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2 Theory 

In this chapter the theory and technical background regarding AUTOSAR standard and MBD 

will be described. 

2.1 AUTOSAR 

AUTOSAR is a common agreement of a software architecture standard developed by the 

automotive industry; manufacturers, suppliers and tool developers. The number of electronic 

systems in vehicles increases each year and the industry as a whole agreed to address the issue 

of developing and maintaining larger systems. Previously no standard existed to allow 

different parts of a system to efficiently be reused and developed separately. [4] 

The goals of AUTOSAR, easier development and verification, reuse and maintenance of 

software is achieved by adding additional layers on top of the hardware. These layers provides 

an interface to the applications that can be used to send messages to other applications, read 

sensor values or write actuator values. This allows the software to be developed 

independently of the hardware and can more easily be reused. Each application also specifies 

its own interface, according to the AUTOSAR standard, which simplifies the integration of 

applications developed by different suppliers. Also AUTOSAR makes it easier to move the 

applications between different ECUs. [5] 

The AUTOSAR standard consists of many specifications and concepts, in this chapter the 

basic concepts of AUTOSAR is covered. To create software applications according to the 

AUTOSAR standard it is necessary to use an AUTOSAR Authoring Tools (e.g. Mecel Picea). 

2.2 AUTOSAR Concepts 

There are a few key concepts in AUTOSAR [6] 

• Software Component (SW-C) 

• AUTOSAR Interface 

• Virtual Function Bus (VFB) 

• Runtime environment (RTE) 

• Basic Software (BSW) 
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Figure 1 – An overview of AUTOSAR and the usage of interfaces 

2.2.1 Software Component 

A SW-C in AUTOSAR is an application that performs some duty (e.g. a brake controller) 

with a well-defined interface and internal behaviour. The interface is the connection point 

between different SW-Cs and there are several port types available in AUTOSAR. Internally 

the SW-C consists of one or more runnables that can be executed to perform a task. 

SW-Cs that read the input of sensors or outputs to actuators needs to be located on the same 

ECU as the sensor or actuator in order to use them. The communication between 

sensor/actuator and SW-C is handled by drivers loaded onto the ECU and because the 

implementation details are very hardware dependent only the interface of the drivers are 

specified by AUTOSAR. 

A SW-C can also be a composition of other SW-Cs (e.g. the vehicle itself can be seen as a 

SW-C composition of all SW-Cs in the vehicle). A SW-C composition can be distributed on 

many different ECUs but a SW-C that is not a composition must be located on a single ECU. 

2.2.1.1 Runnables 

As mentioned before a SW-C consists of one or more runnables which are executed based on 

events the runnable receives from the RTE. The event for a periodically executed runnable is 

a TimingEvent but there are also other events, ex. DataReceivedEvent where incoming data 

triggers the execution of a runnable (e.g. used for servers). Each runnable in a SW-C has its 

own triggers and can be triggered by different types of events. 

Data can be shared between the runnables of a SW-C by using interrunnable variables. These 

variables are visible to all runnables within the same SW-C and can be accessed implicit or 

explicit, same semantics as the Sender/Receiver interface applies. 
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2.2.2 AUTOSAR Interface 

To achieve scalability and transferability of SW-Cs between different vehicle platforms 

AUTOSAR standardized the communication interface used by the components, the use of 

standardized interfaces can be seen in Figure 1 – An overview of AUTOSAR and the usage of 

interfaces. There are two different port types in AUTOSAR, provide port (P-Port) and receive 

port (R-Port). These ports implements one of two possible interfaces, either Sender/Receiver 

or Client/Server.  The Sender/Receiver interface is used for one way communication while the 

Client/Server interface is used to perform an operation and return the result to the caller. [6] 

A P-port implementing Sender/Receiver provides a signal whereas an R-Port implementing 

the Sender/Receiver interface requires a signal. When implementing the Client/Server 

interface a P-Port provides a service to a client and an R-Port requires a service.  

2.2.2.1 Sender/Receiver interface 

To determine if a P-port and an R-port, both implementing the Sender/Receiver interface, are 

compatible the R-Port must accept a subset of the data elements provided by the connected P-

Port. E.g. if the P-Port provides an 8-bit integer and a 16-bit integer then any R-Port 

connected to it must accept either one or both of the 8-bit and 16-bit integer. The data 

elements accepted by the R-Port must also have a name that matches the data elements of the 

P-Port. If these conditions are not meet the ports are not compatible. 

The Sender/Receiver interface allows for queued and unqueued communication, this means 

that data sent to a receiver can either be queued, handled one by one, or unqueued, the most 

recent data received is used. Also the communication can be of two different modes, explicit 

or implicit. Explicit indicates that the data should be sent immediately and the receiver always 

reads the latest data while implicit means that the data will be buffered when the runnable 

starts and it will use the same data throughout its execution. When implicit is used queued 

data is not allowed.  

2.2.2.2 Client/Server interface 

Ports implementing the Client/Server interface are compatible if the server P-Port provides all 

the operations required by an R-Port with matching names and arguments (name, direction 

and data type). The call to a server can be either synchronous, client will block when calling, 

or asynchronous, client will not block when calling. 

2.2.3 Virtual Function Bus 

The Virtual Function Bus (VFB) is an abstraction of the communication between SW-Cs. It 

connects different SW-Cs without knowledge of their actual assignment to ECUs as is done in 

Figure 2, this allows for simpler transferring and integration of SW-Cs. [4] 
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Figure 2 – The Virtual Function Bus abstracts communication between Software Components 

A VFB simulator can be used to simulate the system in a PC-environment and perform 

system testing without the need of ECUs to be available.  

2.2.4 Runtime environment 

The RTE implements the VFB and provides communication between SW-Cs both internally 

(SW-Cs on the same ECU) and externally (SW-Cs on different ECUs). Also it decouples the 

SW-C from the underlying hardware and software, making the SW-C independent of the 

hardware (Figure 3). The RTE is generated for each ECU and implements the necessary parts 

which the SW-Cs assigned to the ECU requires.  

 

Figure 3 – The RTE layer separates the SW-Cs on an ECU from the BSW layer.  

2.2.5 Basic Software 

The Basic Software (BSW) is implemented below the RTE layer on each ECU (figure 2). It 

abstract details of the hardware and allows the RTE to communicate with other ECUs over a 

bus network (CAN, FlexRay etc.). The BSW is divided into different layers with different 

responsibilities and it contains both hardware dependent and independent software. E.g. the 
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Service Layer manages operating system, diagnostic protocols and other services used by the 

RTE and BSW. There are layers that abstract the details of the microcontroller and ECU 

layout, ECU Abstraction Layer and Microcontroller Abstraction Layer, and there is a complex 

driver layer that contains drivers for hardware dependent features that are not covered by the 

AUTOSAR standard. The implementation of the modules in the complex driver layer are not 

part of the standard, because it can be very specific implementations with strong timing 

requirements, but their interfaces are part of the AUTOSAR standard. [4] 

The operating system located in the BSW is responsible for scheduling and trigger execution 

of the runnables in the SW-Cs located on the same ECU. 

2.2.6 Multiple instantiation 

Multiple instantiation can be done in different ways, either the code of the SW-C is shared 

among the instantiations and it is required of the SW-C to support re-entrancy, that shared 

code can be executed simultaneously by different threads, or the code should be duplicated in 

which case each thread executes its own copy.  

In AUTOSAR multiple instantiation of a SW-C is done by code sharing and requires all 

instances to be located on the same ECU, it is not supported to instantiate a SW-C on multiple 

ECUs because support for code duplication is not yet included in the AUTOSAR standard [7]. 

2.2.7 Calibration parameters 

Calibration parameters can be used to dynamically control the behaviour of a SW-C, e.g. the 

parameters of a SW-C can during simulation have different values to find which value is the 

most suitable. Instances of a SW-C can either share the calibration parameters or have 

instance specific calibration parameters to make it possible to differentiate the behaviour of 

multiple instances of the SW-C. 

2.2.8 Methodology 

Development of SW-Cs can be done using two different workflows, either top-down or 

bottom-up [8].  

In the top-down approach the AUTOSAR system architecture is specified in an authoring tool 

and each SW-C has its interfaces, enumerations, events specified. These details of a SW-C are 

called a SW-C description (SW-CD). The SW-CD can be exported and used to specify the 

skeleton of the SW-C which has to be completed with the implementation details.  

The bottom-up approach is used for when there are existing software models that are not 

AUTOSAR compatible and needs to be modified to be used in an AUTOSAR platform. Then 

a SW-CD, containing the same information as in the top-down approach, should also be 

created along with the implementation details for the SW-C.  
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Figure 4 - The mapping of SW-Cs to ECUs 

Once the SW-Cs has been specified and implemented a VFB simulator can be used to 

simulate the system. This early simulation results in errors of the SW-Cs or compatibility 

errors between SW-Cs are detected earlier when the cost for correcting any error found is still 

low [8]. 

The SW-Cs are then mapped to the ECUs in the system as is shown in Figure 4. An ECU 

description can be derived from all the SW-Cs located on one ECU and it specifies the 

content of that ECU. Once all SW-Cs are known for one ECU and the configuration of the 

ECU and hardware drivers is complete the source code can be generated, built and loaded into 

the hardware. 

2.3 Model Based Development 

Model based development is a development process where a system model acts as the center 

point and the system model contains sub-models which contain additional models or 

implementation details, creating a complete system in one system model. Benefits with this 

design concept, the system could be developed faster, more cost effective, less error prone and 
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work can be split into separate tasks [8]. Simulation of the integration of different sub-models 

can be done early, as soon as the implementations of these models are completed.  

 

The development process can be split up into three phases as in Figure 5. These phases are 

model-in-the-loop, software-in-the-loop and hardware-in-the-loop.  

2.3.1 MIL Phase  

The MIL phase consists of developing the models as well as simulating the behaviour of the 

system. This is done in a modelling tool e.g. Simulink. As development progresses more sub-

models are completed and more parts of the system can be included in the simulations to 

verify the functionality of each sub-model. [9] 

2.3.2 SIL Phase 

In the SIL phase the code which was generated from the models in the MIL phase are 

simulated. The results of the simulation are compared to the result of the simulation done in 

the MIL phase, since the functionality of the system should be the same independent of which 

phase the development process is in [9]. If any errors are detected in the generated code from 

the MIL phase during the simulations, the developer should return to the MIL phase and 

correct the erroneous models. [9] 

2.3.3 HIL Phase 

During the HIL phase the system is integrated to and executed on the target hardware. Again 

the system is simulated and the functionality compared to that of the previous steps. 

With these three phases the system errors can be detected and solved earlier, this decreases 

the cost of the development process. Further the models provide a better overview of the 

system even as complexity grows since the details can be abstracted to sub-models. [9] 
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Figure 5 - Model Based Development process 
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3 Developments tools 

3.1 Software 

3.1.1 MATLAB/Simulink 

One of the main tools which have been used in this project is MATLAB/Simulink, version 

7.7, from Mathworks. Simulink provides an MBD environment which allows modelling with 

building blocks. In this project the Embedded Coder 6.0 was used to generate AUTOSAR 

compliant code from the models and a pilot support package was used for importing SW-CD 

into the Simulink environment. [10] 

3.1.2 Mecel Picea Workbench 

Picea Workbench is an AUTOSAR Authoring Tool developed by Mecel. This tool is used for 

efficient development of AUTOSAR compliant ECUs. With Picea Workbench it is possible 

to configure, generate, validate and integrate RTE and BSW modules based on AUTOSAR 

methodology. [11] 

3.1.3 Visual C++ Express & Visual C# Express 

Visual C++ Express and Visual C# Express are two integrated development environment 

(IDE) tools for developing and testing software available for free by Microsoft. These tools 

had been used in the project for developing a simulation and test application and for 

building/compiling the VFB simulator in the SIL phase. 

3.1.4 Tasking 

Tasking is an embedded software development tools from Altium Limited. Tasking provides 

embedded development environment, with C compiler, assembler, debugger and Real Time 

Operating System (RTOS) for microcontroller development such as Triboard TC1797. This 

tool was included with the hardware and is used for compiling code for the target hardware in 

the HIL phase. 

3.1.5 Trace32 

Trace32 is a set of microprocessor development tools that includes multi processors emulators 

and disassemblers from German Lauterbach. With Trace32 it is possible to load the binary 

executable code into the target hardware, debug and run the application. It makes it easier to 

step through the assembler instructions in the application running on the hardware and tracing 

if errors occur. 

3.2 Hardware 

3.2.1 TriBoard TC1797 

TriBoard TC1797 (see Figure 6) from Infineon includes a high performance 32bits Tricore -

based microcontroller for automotive system. 

It has support for communication interfaces such as CAN, FlexRay and also DAP, PWM 

signals and ADC. Applications can be developed with corresponding tools that was included 

and loaded to the TriBoard TC1797 and tested with a debugger, such as Trace32 from 

Lauterbach as mentioned in section 3.1.5. 
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Figure 6 - TriBoard TC1797 from Infineon 

3.2.2 Kvaser USB to CAN 

To allow for CAN communication between a PC and the TriBoard an adapter, called Kvaser 

USB to CAN (USBcanII HS/HS) (Figure 7), for converting CAN to USB was used. To be 

able to use Kvaser USBtoCAN with the software in this project a library called CANLIB 

SDK were downloaded from Kvaser homepage. 

 
Figure 7 - Kvaser USB to CAN adapter 

3.2.3 Lauterbach Debugger 

For loading the application in binary code to the target hardware and debugging a Power 

Debug Interface / USB 2 from Lauterbach were used (Figure 8). It connects to a PC by USB 

and is used by the Trace32 software mentioned in section 3.1.5 for operating and debugging 

purposes. This debug interface supports different target processors by changing the debug 

cable and the software. 
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Figure 8 - Lauterbach Power Debugger 

3.2.4 Wheel Prototype 

The wheel prototype used in this project consists of two separate hardware modules, the 

steering servo and the speed servo. 

3.2.4.1 Steering servo 

The steering servo consists of two small electric servos for controlling the steering axis of the 

wheel and is shown in Figure 9. There are three potentiometer sensors which are used to 

determine the position of the wheel axis. The steering servo is controlled by PWM signals at 

50Hz with a duty cycle of 1-2ms. The range 1-2ms duty cycle is to determine how turning 

angle is going to be. The largest turning angle to the left is equal to 1ms and the opposite 

applies for the turning angle to the right which is 2ms pulse and straight forward is 1.5ms. 

 

 
Figure 9 - The steering servo 
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3.2.4.2 Speed servo 

Speed servo (Figure 10) is a prototype in miniature of an independent wheel node in a vehicle. 

The concept is to make all wheel nodes driveline separated and independent of each other. 

The wheel nodes are controlled by a PWM signal at same frequency as the steering servo, 

50Hz and 1-2ms duty cycles and the power input is 5V. The wheel is driving forward or 

backward depending on the duty cycle of the PWM signal controlling the servo. 

 
Figure 10 - The speed servo 
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4 Method 

The project behind this report is divided into three phases. 

(1)   MIL - Make a design pattern and methodology for Simulink models 

(2)   SIL - Simulation and integration into VFB 

(3)   HIL – Integration into target hardware 

Implementation and configuration possibilities are evaluated in each phase to find the most 

suitable methodology for the AFFE project. 

4.1 MIL 

In this section the Model in the Loop methodology and the choices that has been made to be 

able to meet the design requirements will be described. 

4.1.1 Study of AUTOSAR, AFFE project and Simulink MBD 

A study on AUTOSAR concepts and the AFFE project was needed in order to obtain a better 

understanding of the problem. Specifically more knowledge was required regarding the 

AUTOSAR concept, why AUTOSAR is needed in the automotive industry and how 

AUTOSAR makes it possible to reuse SW-Cs. Also the purpose of the AFFE project and 

possible requirements from the different companies involved in AFFE needed to be better 

understood. This information was provided by Mecel and the AUTOSAR [2]. 

Since Simulink was used as the modelling environment better knowledge of the capabilities 

of Simulink and how it supports AUTOSAR was also needed. The material used was 

retrieved from Mathworks [15] and also provided by the Simulink support team at 

Mathworks. 

4.1.2 Modelling in Simulink 

According to the requirements of the AFFE project [16] the architecture of the vehicle uses 

four separate wheel nodes and two control units (Figure 11). To simplify the decision was 

made to instead use two wheel nodes to represent the front wheels of a vehicle and one 

control unit to convert the input to the system to torque given to each wheel node (Figure 12). 

This decision was made because the same modelling method should be used disregarding of 

whether two or four wheel nodes are present in the system and the control unit logic to 

support multiple control units was not a part of this project.  
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Figure 11 - The planned architecture for the AFFE project 

 
Figure 12 - The architecture used for this thesis 

The different modelling methods examined during the MIL phase were model referencing and 

libraries. The focus was to determine how well they supported multiple instantiation, 

calibration of the different instances, and simulation of the system and code generation.  

4.1.3 Evaluating the models and methods 

As mention before there are different design choices when developing models in Simulink 

that fulfils the AUTOSAR requirements. Different modelling methods generate different 

system designs and therefor the methods mentioned in section 4.1.2 needed to be evaluated. 

Evaluating modelling methods consist of parts such as; how different methods can be used 

when modelling, configuration possibilities, SW-C code generation for AUTOSAR 

requirements and how multiple instantiation can be done and how calibration parameters are 

supported. 

These properties need to be evaluated to determine which method is appropriate for the AFFE 

system. 



17 

 

 

4.1.4 Simulate models in Simulink 

Simulation of the models in Simulink is done to verify the functionality of the included SW-

Cs and the system. By connecting sinks to the different signals of the model and analysing the 

output window it is possible to observe how different parts of the model behave. Simulating a 

model early in the development process allows for earlier detection of errors and the 

functionality of the model can be verified before code is generated. 

4.1.5 Importing SW-C description into Simulink 

One way of reusing SW-Cs is to import the SW-C description into the MBD environment 

such as Simulink. With Mathworks PSP toolbox it is possible to import and create a model 

skeleton of the SW-C to Simulink. It is then possible to reconfigure, modify and test the 

models to new requirements.  

To be able to test the functionality of the PSP and how well it works an already existing SW-

C description was used and a MATLAB script was developed. 

4.2 SIL 

This section describes the workflow and methodology in the SIL phase 

4.2.1 Configuration and code generation of SW-Cs in Simulink 

Before exporting and code generating the models in Simulink there are configurations needed 

to be examined e.g. how behaviours, settings should be set to be compliant with AUTOSAR. 

Therefor the models need to be configured with the AUTOSAR toolbox in Simulink. How 

parameters, instantiation of SW-Cs, runnables, samples time should be set and which level of 

the model can be generated together. These properties need to be explored for generating code 

correctly. 

For code generation of the SW-Cs with AUTOSAR configuration a toolbox called Simulink 

Coder in MATLAB version r2011a needed. Within this toolbox it is possible to configure the 

SW-Cs for AUTOSAR requirements. 

4.2.2 Generating configuration files in Picea Workbench 

To able to test the generated code for a SW-C a basic platform consisting of the RTE and 

some of the BSW modules are required. These modules can be generated by AUTOSAR 

authoring tool such as Mecel Picea Workbench mentioned in section 3.1.2. 

In Picea Workbench it is possible to set up signals, signals routing, communication interfaces 

and configuration of the modules for the required system. How signals should be routed 

between the modules and how the SW-Cs communicates with each other. 

4.2.3 Simulation and Testing 

To verify the functionality of the AFFE system an application was created which inputs data 

to the system and displays the output. From here this application will be referred to as the test 

application and the test application is presented in section 5.4. 
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Also an analysis was done to show the possibility of using external tools, such as Simulink, to 

model the environment or behaviour. 

4.2.3.1 Test application for the AFFE system 
The test application was written in C# because of the simplicity to include different form of 

graphical displays using WPF. The focus was not to have the highest performing test 

application but rather show how the input and output can be generated and displayed. 

The source of the input for testing in the SIL phase can vary, e.g. the gas pedal value might be 

from; a physical gas pedal connected to a PC, a gas pedal in the test application or values 

entered manually. To simplify two methods of input was chosen in the test application for 

AFFE, a simulated gas pedal in the GUI as well as the possibility to enter values manually. 

There are also different options for how to present the output data; list the output signals and 

their values or visualize the signals graphically, e.g. a speedometer or in a graph. The test 

application uses two methods to present the output; a speedometer for the different wheel 

nodes and a list of signals and their values received from the VFB simulator. 

Depending on the functionality of the system there might be a need to simulate the behaviour 

in some way, e.g. the AFFE system outputs torque for each wheel node but the test 

application displays the speed which is calculated depending on the torque and previous 

speed. This was done by generating code from the behaviour model that was used during the 

MIL phase. Simulink generated C code so it needed to be converted to C#. 

To transmit and display the input and output frames the signal names, bit size, bit position in 

the frame and if the signal is signed or unsigned needed to be extracted from the configuration 

exported from Picea Workbench. 

4.2.4 Extending VFB for calibration parameters 

The VFB simulator was extended to support calibration parameters to verify that Simulink 

supports generating code that uses calibration parameters. To simplify implementation the 

SW-Cs does not use the RTE layer but rather directly calls the created calibration parameters 

manager. Support for loading the VFB with configuration parameters was also included in the 

test application. 

4.3 HIL 

In this section the methodology of the HIL phase will be described. 

4.3.1 Hardware testing with sample software 

When running an application on the target hardware for the first time there could be numerous 

issues. To verify that the hardware and cabling works as intended a reference software, which 

has previously been proven to work, can be loaded and executed. Any errors encountered 

when running the reference software could be assumed to be related to the hardware or setup, 

once any errors are taken care of the newly developed software can be loaded and executed. 

This time any errors encountered could be assumed to be software or configuration related. 
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When going from the SIL phase to the HIL phase this approach was used to verify the 

functionality of both the hardware and the AFFE application. The reference software used 

was included in the Picea suite. 

4.3.2 Simulate the environment in HIL 

As in the SIL phase a PC based test application which simulates the environment and gives 

input to the AFFE application was required. The test application created in the SIL phase 

communicated over TCP/IP, but the target hardware only allows for communication using 

CAN, FlexRay and LIN. 

To allow for communication with the target hardware the Kvaser USB to CAN adapter was 

used. This adapter connects to the hardware using the CAN interface and to a PC using the 

USB interface and it also had several libraries the CANLIN SDK which could be used in 

different programming languages to support sending and receiving CAN frames. The best 

option in the AFFE project was determined to be the integration of the C# dlls from CANLIB 

to extend the test application to also support communication over USB. 

4.3.3 Integrate AFFE application to hardware 

Similar to the SIL phase the source code and configuration needed to be generated from Picea 

Workbench. However the HIL phase requires more of the BSW layer to be included and also 

configuration for the drivers of the hardware which are intended to be used, e.g. interrupt 

handling. 

The configurations used by the TriBoard drivers were the same as the ones used in the Picea 

reference application. This was because the AFFE application did not, at this point, use the 

hardware any differently than the reference application which already supported CAN 

communication. By using the same configuration as the reference application the cause of any 

error would be easier to locate. 

4.3.4 Testing in HIL phase 

For the functionality of the AFFE application to be verified the test application was run and 

used in the same way as in the SIL phase.  

4.3.5 Adding support for PWM signals and AD conversion 

In order for the SW-Cs to control an electric engine the system needs to support generating 

PWM signals, the PWM drivers had to be configured and included in the build process. 

Also sensors are used to provide information regarding the surrounding and environment and 

therefore an analog to digital converter is necessary to input the sensor values. The ADC 

driver had to be configured and included in the build as well.  

Since both PWM and ADC is very hardware dependent only the driver interfaces is part of the 

AUTOSAR standard, not the actual implementation. Therefore the actual configuration for 

the PWM and ADC drivers is less important but rather how the SW-Cs can interact with 

them. 
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5 Analysis and Results 

In this section the result of the constructed models in Simulink will be discussed. How these 

models have been designed and which setting/configuration has been chosen due to 

AUTOSAR implementation requirements. The different methods have been analysed and 

compared to be able to point out which settings/configurations are recommended for 

particular issue. 

5.1 Modelling in Simulink - MIL 

During the MIL phase the system was modelled in Simulink and simulated to verify the 

functionality. Different methods for how to instantiate and configure the SW-Cs were 

evaluated. 

5.1.1 Modelling methods 

As mentioned in section 3.2.3 there are different ways to model in Simulink. The two 

methods that has been evaluated and tested are model referencing and using libraries. The 

results of the simulation are identical for both methods. 

There is another method to create models where subsystem is used at top level model. But 

with this method multiple instantiation of one SW-C is not possible. In order to have different 

instantiation of on SW-C the model block must be duplicated, which is not optimal. Therefor 

Subsystem method will not be used in this project. 

5.1.1.1 Model Reference 

It is possible to include one model in another model using Model blocks in Simulink. A 

Model block is one building block in a model that can reference to another model. Each 

Model block at the top level represents an instance of another model, called sub model or 

referenced model, and is not containing any building blocks itself. The model that contains 

the referenced model is called parent model. All sub models and parent models together 

define a hierarchy of modelling. 

The referenced model block show the input and output ports of the sub model and these ports 

can be connected to other blocks to create a large scale model. [12] 

5.1.1.2 Libraries 

If one block is repeatedly used in a model there is a method to create a template and reuse it 

everywhere it’s needed. This template is called a library block and can be created as a normal 

model and stored as a library. Once the library has been created it can be locked and imported 

into the Library browser. 

When a library block is used a reference block to it is created. The reference block is an 

instance of the library block and the contents of the library block are not stored in the model, 

the reference block only stores a library link which contains a path to the library block. To be 

able to modify the reference block the link between the library block and the reference block 
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must be disabled. However if only the values of the reference block are modified then the link 

becomes parameterized. [13]  

5.1.2 System overview 

The system (Figure 13) contains one control unit, called ControlUnit, and two wheel nodes, 

called LeftWheelNode and RightWheelNode. The two wheel nodes should be instances of a 

common base model, so that the only difference between them is the configuration parameters 

applied.  

In addition there is a simulation environment consisting of LeftWheelSpeed and 

RightWheelSpeed whose tasks are to simulate the speed of each wheel based on the torque 

that has been calculated at each wheel node and the current speed of the wheel. 

 

Figure 13 - An overview of the system developed during the MIL phase 

5.1.2.1 ControlUnit 

The control unit is responsible for the dynamic control of the vehicle. In this very simplified 

system the control unit is only converting a gas pedal input to a torque request. From the max 

torque and gas pedal inputs the torque is calculated and sent to the wheel nodes, and the 

steering angle is passed on to the wheel nodes without modification.  
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Figure 14 - The ControlUnit SW-C 

As can be seen in Figure 14 there are two runnables in the control unit SW-C, each with their 

respective tasks. The first runnable (Runnable2 in Figure 14) is reading the max torque and 

gas pedal inputs, uses a lookup table to convert the gas pedal value to a percentage of the max 

torque that should be applied. Once this is done the torque is written to the torque output port 

of the control unit SW-C. The second runnable (Runnable3 in Figure 14) reads the steering 

angle input and writes the value to the steering output of the SW-C. The execution period for 

each runnable is set to 100ms.  

5.1.2.2 WheelNode 

A wheel node SW-C (Figure 15) has one runnable which calculates the torque that is applied 

to the wheel associated with the wheel, the model of the runnable is shown in Figure 16.  

 

Figure 15 - The WheelNode SW-C 
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The torque is calculated based on the current steering angle and the torque received from the 

control unit. If the vehicle is turning the inside wheel node should apply less torque because it 

has a shorter distance to go than the outer wheel, i.e. if the vehicle is turning right, the right 

wheel node should output less torque than the left wheel node and if the vehicle is turning left 

the left wheel node should output less torque than the right wheel node.  

 

Figure 16 - Model of the Runnable in the WheelNode SW-C. The torque is calculated based on the angle and torque 

values received from the control unit. 

To know how much torque to apply the wheel node contains an algorithm that calculates a 

speedfactor, this is multiplied with the input torque to determine the torque to apply. 

The speedfactor is calculated for the inner wheel using the wheel base and wheel track 

distances. Wheel base is the distance between the front and rear wheels (assuming there is 

four wheels) and the wheel track is the distance between the front wheels which are the only 

wheels modelled in the AFFE system.  

The parameters that can be configured in the wheel node are; the wheel id which determines if 

the wheel node is on the left (0) or right (1) side of the vehicle, the wheel track distance and 

the wheel base distance. Only the wheelID parameter is instance specific, wheel track and 

wheel base are the same for all instantiations. 

5.1.2.3 WheelSpeed 

The WheelSpeed model contains the simulation logic to, given a torque and the previous 

speed of a wheel, calculate the current speed of the wheel. The torque input is read from the 

wheel node to which the WheelSpeed model is connected, the previous speed is stored locally 

from the previous execution. 

The speed calculation is done by accounting for the weight of the vehicle (kg), existing 

counter forces (N), e.g. friction and wind, and the wheel radius (m). 
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5.1.2.4 Model configuration file 

To simplify the instantiation and applying parameters to the different instances and blocks in 

the system a configuration file was used, this file configures the models with the appropriate 

parameters and is executed in the MATLAB environment. The file used in this project is 

included in Appendix X. 

5.1.3 General observations when modelling 

To model and generate code for AUTOSAR there are a few general guidelines to use.  

Mask parameters can be used to create instance specific parameters for SW-Cs in both Model 

Reference and Libraries methods. However the mask parameters cannot be used as 

AUTOSAR calibration parameters when generating code, this limits the usefulness of these 

and therefore it is not a feasible option.  

5.1.3.1 Simulink workspaces 

The different parameters, types and variables available in Simulink can be located in different 

workspaces. There is the base workspace which is the MATLAB environment; there are also 

workspaces for each model. Using the model explorer the parameters can be created in the 

appropriate workspace and the properties of the parameters can be modified (e.g. initial 

values, sizes etc.). To generate code that includes calibration parameters and per instance 

memory the parameters has to be located in the base workspace when generating otherwise 

the calibration parameters will be regarded as constants by the code generator. 

5.1.3.2 Type of parameters to use 

There are different types of parameters used when modelling for AUTOSAR, most common 

are MATLAB variable, Simulink signal, Simulink parameter, AUTOSAR signal and 

AUTOSAR parameter.  

The MATLAB variables, Simulink signals and Simulink parameters will all be converted to 

constants with their current value when the code is generated. 

The AUTOSAR signal type is used for per-instance-memory to store data between executions 

of runnables. For example in the WheelSpeed model discussed in 5.1.2.3 the previous speed is 

stored using the AUTOSAR signal. To have calibration parameters generated the parameter 

must be of the AUTOSAR parameter type. The difference between a parameter and a signal is 

that the value of the signal is expected to vary throughout the execution, i.e. similar to a line 

that connects blocks when modelling. A parameter will be configured and will remain 

constant throughout the simulation. 

5.1.4 Modelling using Model Reference 

With model reference the model was created in a separate model file. Parameters and 

calibration parameters needed to be created in the models workspace in order to have instance 

specific calibration parameters and have each instance of the model act differently. The initial 

values will be used if the parameters are not set to something else before simulation either in 

MATLAB or Simulink environment.  
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The system model which includes all parts of the system can be seen in Figure 17. The values 

of the instance specific calibration parameters are set by providing the Model blocks with 

arguments, either through the GUI or by executing a command in the MATLAB environment. 

The arguments can be configured in a MATLAB script file and the script can be executed to 

automatically assign the values to the different Model blocks. The order of the arguments are 

specified in the Model Explorer and can be specified at the same time as the instance specific 

calibration parameters are created in the model’s workspace. 

 

Figure 17 - System model when using model referencing 
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An issue discovered was that the function call cannot cross the boundaries of the Model 

block; this is because the data type must be specified for all the input ports of a Model block 

but it does not exist a data type for a function call. Since the function calls cannot be given as 

input to the referenced model the Function-Call Generator or Stateflow chart must be on the 

same level as the SW-C within the referenced model (Figure 18). This introduces extra work 

of having both the ports of the Model block and the ports of the SW-C well specified and 

matching, but it is necessary if model referencing is to be used. 

 

Figure 18 - The referenced model contains a chart and the SW-C 

Model Reference also makes it possible to develop models separately and combine them once 

completed. Although it has a slow initial build time and is time consuming for prototyping 

because if the model that is being referenced is modified then it needs to be rebuilt, but once it 

has been built and is not modified it offers fast simulation time. Therefore model reference is 

appropriate for large models with many blocks since it does not need to keep all the 

referenced models in memory, only the top model [14]. 

A list of advantage and disadvantage regarding Model Reference can be viewed in Appendix 

section Modelling method. 

5.1.5 Modelling using Libraries 

When it comes to instantiation of the wheel nodes, separate workspaces for each wheel node 

do not exist for Libraries; therefor it is not possible to have the same parameter in the different 

instantiations if the instances need to have different values of their parameters. Instantiation 

using Libraries can be done in two ways to support simulation; either masking the subsystems 

or having unique names of the parameters for each instance, e.g. wheelIdLeft and 

wheelIdRight.  
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Figure 19 - Modelling using library blocks 

Function calls can cross the boundaries of the library block as seen with the control unit block 

in Figure 19, so it does not need to contain the extra level which was required when using 

Model Reference and this makes it easier if different instantiations requires different sample 

times.  

Using Libraries it is easy to model as long as the models are small with few blocks. But it 

becomes complicated to edit the content of an existing block since the link between the 

reference block and library block must be deleted and the library block must be unlocked. 

This makes it complicated to integrate SW-Cs that have been developed separately and to 

update existing SW-Cs. 

Since each instantiation of a library block is built separately during simulation [14] it takes 

longer to run a simulation if the SW-C that has been instantiated contains many blocks.  
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5.1.6 Importing Software Components to Simulink 

To be able to import SW-C XML description file into Simulink environment, an additional 

MATLAB Toolbox was needed. The package named Pilot Support Package for AUTOSAR 

(PSP) where arxml.importer class exists was used to import old SW-C which created a 

skeleton of the model in Simulink model workspace for editing and reconfiguration. In the 

arxml.importer class there exist a few methods for importing AUTOSAR SW-C. These 

methods had been tried and evaluated for different purposes to determine which method is 

appropriate for what kind of purposes. These methods can be found by first creating an 

importer object from the xml description file. For more details regarding the methods in the 

PSP see Appendix B – Importing SW-C using PSP. 

5.1.6.1 Importing SW-C using a PSP from MathWorks 

To import SW-Cs to the Simulink environment for editing and testing a MATLAB script was 

created where the methods available in the PSP were used. 

First define the name of the SW-CD file and then create an ARPSP importer object which 

imports the SW-CD. The importer object now contains all information regarding the SW-C 

model. Next is to analyse the SW-Cs dependencies, enumerator classes to determine what can 

be done with the importer object. Before finally creating SW-C model of the importer object 

to Simulink all dependencies must be set and enumerator classes needs to be created 

otherwise it will not be visible in the model. 

When steps above are done, then the method createComponentAsModel with the component 

name holding in the importer object then create a skeleton of the SW-C model. With the 

R2011 release of the PSP used the internal behaviours of the SW-C will be included, but still 

not all detail/configuration will be set in the Simulink model. If using a previous release of the 

PSP then another method called createComponentWithInternalBehaviorAsSubsystem 

should be used to create a skeleton model with internal behaviour included. 

5.1.6.2 Bug detection and fixes with PSP importer class 

The importer class from the PSP used is still under development and therefore contains bugs 

and unsupported behaviour which have been detected. One of the bugs was that the importer 

class does not import all detail and behaviour of the SW-CD. Another bug was Data Type 

error. MATLAB does not support non-standard data type such UInt4, when UInt4 is used and 

import to Simulink model it converts automatically to uint8(15), but it should convert the data 

type UInt4 to FixPoint type instead. Furthermore the data type of the initial value of some of 

the input ports in the imported model where supposed to be set to uint8(0) but was set to a 

FixPoint value instead. MathWorks has been notified of these issues. 

Also the importer class will create a default Init-runnable even if the SW-CD contains a 

custom predefined Init-runnable. The custom predefined Init-runnable was converted to a 

runnable in Simulink model after importing procedure which required a periodic event which 

was not expected according to the SW-CD.  
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5.2 Code generation MIL ���� SIL      

From MIL to SIL Simulink Coder has been used for code generation of the models. 

5.2.1 Code generation using Simulink Coder 

When generating the C code and the SW-CD from the models in the MIL phase the toolbox 

Simulink Coder was used. In this toolbox there were settings that had to be configured before 

AUTOSAR compliant code can be generated. The solver needed to be set to discrete with 

fixed step and the inline parameters option had to be set if calibration parameters should 

generate correctly, also the target file had to be changed to “autosar.tlc”. See Appendix C – 

Settings in Simulink Coder for instructions on how to set these settings.  

To instantiate SW-Cs it is possible to use the AUTOSAR instantiation, where each 

instantiation must be located on the same ECU, or generate each instantiation as a separate 

SW-C to allow for them to be assigned to different ECUs. If each instantiation is generated as 

a separate SW-C and they are using calibration parameters it will not be possible for them to 

be located on the same ECU unless the instance specific calibration parameters have different 

names during code generation. 

In the AFFE system, each instantiation of a wheel node was expected to run on separate 

ECUs, therefore the wheel nodes were generated as separate SW-Cs. 

As mentioned in 5.2.1, in order to instantiate a SW-C during simulation each instantiation had 

to have its own parameters; either configured by model arguments when using Model 

Reference or different parameter names or masked subsystem when using Libraries. But when 

code generating these settings had to be changed for calibration parameters to be generated 

correctly since the AUTOSAR parameters have to be located in the base workspace.  

To generate a SW-C the triggers of the runnables and the settings of the ports had to be 

specified, e.g. sender/receiver, implicit/explicit mode, data types etc. Also it is not possible to 

generate the complete system; each SW-C needs to be generated one at a time.  

5.2.1.1 Code generation using Model Reference 

The parameters required for instantiation of the SW-Cs which had previously been located in 

the model workspace needed to be moved to the base workspace in order to generate 

calibration parameters, otherwise they will be generated as constants.  

It is not possible to configure a Model block as an AUTOSAR SW-C. Only a Subsystem 

block can be configured as a SW-C therefore it was necessary to model the SW-C, when 

using model reference, as it was discussed in section 5.1.4 to be able to generate code for the 

SW-C.  

5.2.1.2 Code generation using Libraries 

To be able to generate code for a SW-C using the Simulink Coder the parameters which was 

used had to be modified. Because during simulation it was necessary to have either masked 

parameters or use different names for the parameters of different instantiations the library 
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block had to be modified to use the AUTOSAR parameters located in the base workspace. 

Otherwise the calibration parameters would not be generated correctly. 

5.2.2 Code generation issues 

There were issues when trying generating code for SW-Cs. The sample times for runnables 

and instantiation of SW-Cs are discussed in this section. 

5.2.2.1 Inheriting sample time 

One of the issues with the code generation part was to inherit the sample time from the 

Function-Call Generator block or the Stateflow chart. Because the function call generator 

source cannot be code generated together with the SW-Cs and therefor the sample time for the 

runnables in SW-Cs needs to inherit from function call generator. 

One of the required functionalities was to be able to have different sample times for different 

runnables in SW-C. It is possible to have different sample time but needed to be changed 

manually before generating C code. 

It is not possible to have several function call generators with different sample time for 

different runnables in one SW-C. The same issue occurs when using stateflow charts instead 

of function call generator. The sample time is inherited only from the source connected to the 

chart, not the actual sample times calculated in the chart. 

This issue is confirmed by the support group of MathWorks. They are aware of this problem 

and currently don’t have a solution yet, but in future release they hope to have a solution for 

this inherit sample time issue. 

5.2.2.2 Instantiation of a SW-C 

One of the requirements in this project was to be able to have multiple instantiations of one 

SW-C. This functionality is possible in the MIL phase by using either Model Referencing or 

Libraries to instantiate. But generating code with instance specific parameters and ports is not 

possible. This has to be done manually, which mean the SW-C developer has to modify the 

generated code.  

This has been confirmed by MathWorks and currently there is no solution to instantiate a SW-

C. 

 

 

5.3 Virtual Function Bus Simulation – SIL 

5.3.1 Configuration in Picea Workbench 

As mentioned in section 3.1.2 Picea Workbench can be used to configure a basic platform and 

generate RTE and BSW modules for the system. In Picea Workbench it is possible to 

configure each module, how the modules are connected and how the signals are routed 

through the RTE and BSW layers. 
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5.3.1.1 Input 

Different inputs were given to Picea Workbench to configure the basic platform. These inputs 

are signal names, data types of the signals, SW-C interface, communication interfaces and 

connection between different runnables. The input varies depending on the designed system. 

5.3.1.2 Output 

From the input and configurations made in Picea Workbench the output is the configuration 

description files for different modules. The configuration files are then processed through 

Picea code generator for generating code for all modules. It is the .c and .h files which will be 

built together with the SW-C files generated from Simulink to make a complete test 

environment. Any IDE software with C-compiler can be used to build the test system. 

5.3.2 Integrate SW-C into VFB simulator  

With the platform configured the SW-Cs code generated from the Simulink Embedded coder 

could be integrated. The platform consist of folder structure with configuration files, RTE 

files, BSW files, integration package and SW-Cs folders. The software components source 

codes from embedded coder were then copied into the platform folders ad Visual C++ 2008 

Express were used to compile and debugging the executable output. 

The software components which were integrated into the extended VFB are; 

1.             CentralControlUnit 

2.             LeftWheelNode 

3.             RightWheelNode 

5.3.3 Extending VFB Simulator to support calibration parameters 

To support calibration parameters some changes were necessary to the VFB simulator, a 

module was added to the VFB to handle periodic parsing of a xml file to support updating of 

the calibration parameter values, and provide access to the calibration parameters for the SW-

Cs. 

5.3.4 Connecting VFB to Simulink 

To connect the VFB simulator to Simulink to allow for more advanced simulations different 

options exist. The TCP/IP receive and send blocks, that is part of the Instrument Control 

Toolbox, could be used to handle TCP/IP communication, but the toolbox was not available 

during this thesis to be tested and validated.  

Instead a server module was created in Java which were loaded into MATLAB and allowed 

communication between the VFB simulator and the Simulink models. The server was setup 

similar to the test application where a callback had to be registered to which the server 

module forwards any incoming CanFrames. Since MATLAB supports the use of Java objects 

in its environment the callback function can use the CanFrame datatype to extract signal 

values and update a Simulink model with the new values, e.g. update the value of a constant 

block with a signal value each time a new frame is received. 
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There also exist other options to provide this functionality, e.g. writing the server module in 

C, C# or using S-functions within Simulink. 

5.4 HIL 

The HIL phase consists of extracting the extended configuration from Picea Workbench, 

generating source code from the configuration, building the application and running it on the 

hardware to test the functionality. 

5.4.1 Testing the hardware 

Initially the Triboard was loaded with the reference application, which contains the 

AUTOSAR stack and a SW-C that transmits messages over CAN. The messages were 

transmitted from the Triboard but could not be received in the PC due to timing errors. It was 

discovered that the current clock frequency on the Triboard was slower than the clock 

frequency that the hardware drivers had been configured for. This caused timing errors and 

the clock had to be changed from 20MHz to 24MHz in order for the timing of the signals to 

be correct. 

5.4.2 Configuration in Picea Workbench 

As in SIL step section 4.2.3, configurations needed to be done in Picea Workbench for the 

HIL step. In HIL step Picea Workbench is used to configure the module drivers for the target 

hardware, in this case Infineon Triboard TC1797. The outputs is the same as in the SIL 

process where configuration description files are exported and Picea code generator is used 

for generating .c and .h code for all modules and configurations of the system. 

5.4.3 Integrating SW-Cs into AUTOSAR Picea Integration Package 

To build the AFFE application and generate a binary file, which could be loaded on the 

hardware, the complete system had to be integrated. The configuration from Picea Workbench 

was used to generate the source code for the different modules used and together with the 

SW-Cs source code the AFFE application was built. Two issues were found during the build 

phase and these issues are described in 4.3.3. 

5.4.3.1 Error in Math Library 

The control unit SW-C used functions from the math library; fmod, ceil, floor and sin, in its 

implementation but at compile time errors were encountered regarding unknown symbols in 

the math library. The issue was solved by removing the functions from the library and 

recompiling them using the same compiler that is used to build the application. The 

assumption is that the libraries had been built using another version of the compiler which 

was not compatible with the current compiler. 

5.4.3.2 Error in hardware initialization function 

The default initialization functions for the hardware can be included by the linker, unless a 

flag is set to instruct the linker not to include these functions. If the application linked 

provides its own initialization functions this flag has to be set. 
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An issue that occurred during the building of the application was that the default initialization 

functions had unknown symbol errors, similar to those with the math library. The application 

provided its own initialization functions in the Mcal (Microcontroller abstraction layer) 

module and the default function was not used. The issue was solved by removing the 

functions from the library since it was not needed. Again it is assumed that the library had 

been compiled using a compiler with a different version and therefor caused the unknown 

symbol errors. 

5.4.4 Running application on hardware 

When the AFFE application was loaded and executed on the target hardware another issue 

was encountered, the ECU manager transitioning into sleep mode (section 5.3.4.1). Once this 

issue was taken care of the functionality of the AFFE application was tested and confirmed to 

be the same as in the SIL phase. 

5.4.4.1 Issue with ECU manager going into sleep mode 
The application was running as expected but did not transmit any CAN signals and after 

debugging it was discovered that the ECU manager module transitioned from run mode into 

sleep mode before the application could request communication. But in order for the 

application to request communication the ECU had to be in the run mode. 

This problem was caused by the runnables in the AFFE application having a higher sample 

rate, 100ms compare to the 10ms in the reference application. The issue can be solved in two 

ways, either increasing the sample rate of any runnable requesting communication, or increase 

the duration before the ECU manager transitions from run mode to sleep mode. These 

modifications are done when the configuring the application in Picea Workbench. 

5.4.5 Extend application to support PWM signals and ADC 

For the purpose of creating a demo application of the system the SW-Cs needed to not only 

transmitting CAN frames with the output but also control servos and read sensor values. 

5.4.5.1 Pulse Width Modulation 

A PWM signal is used to control an electric servo. In the AFFE application there are two 

electric motors to control, a steering servo which changes the steering angle and a wheel servo 

which causes a wheel to rotate. 

The configuration of the MCU, PWM and PORT drivers, which are necessary for generating 

PWM signals, was included from a different project at Mecel. The PWM signal is generated 

from the General Purpose Timer Array whose settings have been configured in the MCU 

drivers. 

The control unit SW-C controls the steering servo and sets the duty cycle and period to reflect 

the input steering angle. The wheel node SW-Cs controls one PWM signal each that is used to 

output the current torque for that wheel node to the wheel servos.  
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5.4.5.2 Analog to Digital Conversion 

The steering servo used provides sensors that can read the actual steering angle, which might 

not always be the same as the angle output by the control unit SW-C. 

To read sensor values the ADC drivers needed to be configured and activated on the 

hardware. The resolution of the conversion was chosen to be 12-bits. 

5.5 Simulation and Test Application 

To test and simulate the generated code from MATLAB/Simulink an application was created 

using C# and WPF. 

 

Figure 20 - How the test application is used with the AFFE system 

The test application provides the max torque, steering angle and gas pedal input to the AFFE 

system and receives the torque output from each wheel node (Figure 20).  

5.5.1 Test application overview 

The test application consists of three modules as shown in Figure 21, the GUI that has two 

different options for how to give input and display output from the system; the graphical 

interface which provides graphical components and the generic table view which list all 

signals in tables and allows the user to input values by hand. The other two modules are the 

communication modules, one for the SIL phase when CAN frames was sent over TCP/IP and 

one for the HIL phase when CAN frames was sent over USB.  
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Figure 21 - The three modules of the test application 

5.5.2 GUI 

In this section the two different options to input data to the system are presented. 

5.5.2.1 Graphical Display 

In Figure 22 the graphical display is at the top of the window, the input to the system is 

visualized using two sliders which give the gas pedal and steering angle values. The 

maximum torque input is also displayed in a textbox.  

 

Figure 22 - The GUI of the test application for the AFFE project 

To transmit the input to the system the values of the sliders will continuously be read and sent 

by a separate thread once the autosend feature is activated. 

Since the output from the AFFE system is the torque of each wheel it needs to be put through 

a simulation to determine the actual speed of the wheels. Once the simulation is done the 
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calculated speed will be displayed in the speedometers, there is one speedometer for each 

wheel and also one to display the torque. 

5.5.2.2 Generic table view 

The different signals in the system are presented to the user by two different tables; see the 

lower part of Figure 22, the input table and the output table. In each table the signals are 

grouped by the CAN frame they belong to, i.e. in the AFFE system there is one CAN frame 

with id 102, which is an input to the system, and the signals available in that frame are: 

·         ComRxSigDesireAngle 

·         ComRxSigMaxTorque 

·         ComRxSigOnlineStatus 

·         ComSigRxGasPedal 

The properties for each signal are; the name, whether the signal is signed or unsigned, which 

bit position the signal has in the payload of the CAN frame, the size in bits of the signal and 

the value to send to the AFFE system. The output table displays the same properties. 

The third table available, the rightmost, displays the calibration parameters which needs to be 

parsed separately, once parsed the values can be changed and then saved to the location where 

the extended VFB simulator looks for a new file. Calibration parameters are not supported 

during the HIL phase. 

5.5.3 Communication modules 

The test application has been designed to support different modules that allows for output and 

input during the SIL and HIL phases. Currently there are two modules, TCPtoCAN and 

USBtoCAN, which supports CAN communication over both TCP/IP and USB, see figure Y.  

The modules for both TCP/IP and USB are loaded as dynamic-link libraries (dll) and share 

the same architecture. They are initialized with either port (for TCP/IP) or channel (for USB) 

and both require a Signal Group Manager object (see section Signal handling) which contains 

all information regarding the signals in the system. A callback is also necessary to specify so 

the modules know where to forward any incoming CAN frames. 

Each module has its own receive thread which starts to execute once the module has been 

initialized. When a packet arrives it is parsed and forwarded to the callback. 

5.5.4 Test application internals 

Internally the test application uses several threads to provide better performance and to 

simulate the speed of the wheels. In addition to the threads in the communication modules 

(section 5.5.3) the GUI is using four threads (Figure 23) to perform updating of the graphics, 

simulating the speed and auto transmit values.  
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Figure 23 - The different threads used in the GUI module of the test application 

The UI thread is the default thread in C# / WPF. It handles user interaction, e.g. button clicks 

and selections as well as updating the graphics. 

The AutosendReader thread reads the values off the graphic controls, steering angle slider and 

the gas pedal slider. These values are then put into a CAN frame and sent to the AFFE 

system. 

The two simulation threads, LeftWheelSpeed and RightWheelSpeed, uses the last received 

torque values and calculates the speed based on the torque and the previous speed of the 

wheel. The execution period is 100ms for both of these threads. 

5.5.4.1 Parsing of signals and calibration parameters 

The signals and calibration parameters used in the AFFE system is parsed from the 

configuration generated by the authoring tool.  

5.5.4.2 Signal handling 

For the test application to handle the different frames present in a system it needs to know the 

mapping of signals to the payload of the frame, i.e. which bits of the payload belongs to 

which signal.  

 

Figure 24 - Class diagram of the relations between SignalGroupManager, SignalGroup and Signal 

The signals that are included in a certain CAN frame are stored in a SignalGroup. The 

SignalGroups are stored in a SignalGroupManager object and each is mapped to a CAN frame 
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ID. Once a CAN frame is received the SignalGroupManager is queried for the SignalGroup 

associated with the frame. See Figure 24 for the relations between SignalGroupManager, 

SignalGroups and Signals. 

For the AFFE system there are two different types of frames available, a CAN frame with ID 

102 which contains the input signals and a CAN frame with ID 256 which contains the output 

signals of the AFFE system. These two signal groups are stored in the signal group manager. 

The AFFE Vehicle Simulator can handle signals of sizes 1 – 32 bits, both signed and 

unsigned and requires no special alignment within bytes.  

Little endian is used by the AFFE system for all the signals it receives and sends and this 

requires the test application to use this as well. When the bytes are created for a signal group 

and sent, all signals are converted to little endian. Similar when frames are received, the 

signal group expects the signals to be little endian. 

5.5.4.3 Calibration Parameters 

The calibration parameters parsed are visible in the calibration parameters table in the GUI. 

To load the parameters to the VFB the signals are saved in an XML file to a location on the 

disc where the VFB simulator loads the calibration parameters from. The calibration 

parameters were only used in the SIL phase. 
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6 Discussion 

6.1 Model based development 

Using MBD methodology has simplified the development process both in complexity and 

time. It is less time consuming to create models in Simulink that fulfils the requirements and 

to run the simulation to view the outputs of a system than by writing the code by hand. 

When integration testing of the system is possible early on in the development process errors 

are detected early on and the cost of correcting errors are reduced. With MBD it is much 

easier to hide implementation details in subsystem and provide a higher overview of the 

system. This helps a lot when the system becomes more complex by clearly showing how 

different parts of the system are connected. 

However with MBD the developer is losing the freedom of writing code by hand. Simple 

tasks for which only a few lines of code is required can take considerably more time to 

implement in a model, especially if a developer is not used to the MBD environment. Another 

possible issue is that often the generated code is heavily optimized and hard to read for a 

developer, e.g. it can be very hard to understand which part of a model that is the cause of 

some error detected in later phases (SIL or HIL) when the generated code is used. 

6.2 Multiple instantiations and AFFE 

One issue that was discovered concerning AUTOSAR and the AFFE project was that 

AUTOSAR only supports multiple instantiations of a SW-C when all instances are located on 

the same ECU. If the instances will be located on different ECUs it is not possible to use the 

AUTOSAR feature of multiple instantiation (5.1.). Instead each instance needs to be 

generated as a separate SW-Cs. The architecture for the AFFE project specified two control 

units and four wheel nodes, each of these should be located on separate ECUs. Therefor they 

have to be generated as separate SW-Cs, at least until the AUTOSAR standard supports 

multiple instantiation across several ECUs. 

An issue that arises of having multiple SW-Cs generated from a common model is that the 

instance specific calibration parameters could be more complicated to provide in the SIL and 

HIL phases. If the SW-Cs are located on separate ECUs they can have the same name for 

these instance specific calibration parameters, since each ECU has its local calibration 

parameters. However when the system is simulated during the SIL phase there could be an 

issue if the VFB simulator cannot differentiate between each instantiations own calibration 

parameters. E.g. two SW-Cs, A and B, that have been generated from the same model uses an 

instance specific calibration parameter X. Even though A and B will be located on different 

ECUs, it will be an issue during the SIL phase if the VFB simulator only provides one copy of 

the calibration parameter X and forces both A and B to use the same value. It has to be known 

before generating code for different instances that uses instance specific calibration 

parameters how the VFB simulator handles this issue.  
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This can be viewed more generally as a problem in the SIL phase when all the SW-Cs are 

included in one system, then the name of e.g. functions, parameters, runnables and data types 

has to be unique not only within a SW-C but also within the entire system that is simulated.  

6.3 MIL to SIL to HIL 

6.3.1 MIL > SIL 

Before generating code for the models is possible it is necessary to first configure the SW-Cs. 

The expected result was to find a path from the MIL to the SIL phase without modifying the 

models. However the results (section 5.2.1) shows that before it is possible to generate code 

for the SW-Cs the calibration parameters, instantiation of SW-Cs and function calls must be 

modified. Furthermore from modelling to code generation the internals of the SW-C such as 

the sample time did not follow automatically and needed to be set manually. 

6.3.2 SIL > HIL 

The issues encountered when moving from SIL to HIL (see sections 5.4.3.1, 5.4.3.2 and 

5.4.4.1) were not related to the actual implementation of the SW-Cs but rather the 

configuration of the BSW modules. This was not only due to the low complexity of our SW-

Cs, but also because the functional errors were discovered and corrected during the MIL 

simulations. With correct configurations and building properties the system could be built and 

the simulations in the SIL and HIL phases ran smoothly. 

6.3.3 Tool chain 

The tool chain that has been used during the three phases did not have support for all needed 

functionality for AUTOSAR. The MATLAB and Simulink versions which has been used and 

evaluated in this project does not have full support for all functionality in which is needed, 

such as code generation for different instantiation of SW-Cs and importing of SW-C 

description into Simulink MBD. The missing functionality support in the tool chain is because 

AUTOSAR standard is still young and therefor development tools such as Simulink and its 

toolboxes are still under development. 

 

6.4 Testing during MIL, SIL and HIL 

The earlier errors are detected during the development process the lower are the costs, both in 

money and time. By using different phases during development more parts of the final system 

is included at each step, e.g. the MIL phase consist of the SW-Cs, the SIL phase includes part 

of the RTE and the HIL phase requires both RTE and BSW layers to be included. 

The testing process in this project consisted of verifying in each phase (SIL and HIL) that the 

SW-Cs had the same functionality as we observed during the previous phase. By creating the 

simulation environment in the MIL phase, it could be reused later on, either by generating the 

code and implementing in a separate test tool or by allowing for communication between the 

system and Simulink. 
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6.4.1 Improving the system test process 

To improve the testing process further we would have liked to observe not only the input and 

output of the system but also the internal communication, e.g. during the SIL phase being able 

to view what is sent between the different SW-Cs, not only the CAN, Lin or FlexRay frames. 

A possible improvement we investigated was to use Simulink during the SIL phase to 

simulate the input or output of the system. This can be done in different ways. In this thesis 

we developed a Java server that was executed in the MATLAB environment, it receives IP 

packets sent by the VFB simulator and triggers a MATLAB function which then updates the 

model environment. Also blocks can be used in Simulink that provides TCP communication 

for the models, unfortunately this was not available to us during this thesis and this possible 

method could not be investigated further. 

Another issue that might arise is that the SIL and HIL phase uses different communication 

protocols to wrap the CAN frames in, SIL uses TCP and the HIL uses USB. Any testing 

environment would need to support both protocols in order to function. Also during HIL it 

could be different protocols depending on if FlexRay or Lin was used, that would further 

complicate the matter. A solution to this problem could be to instead use a proxy to translate 

the USB communication to the TCP protocol used by the VFB. This way the testing 

environment would only be required to support one protocol and therefore can be easier to 

integrate in the different phases of the development process.  
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7 Conclusion 

This project has been profitable in the sense of knowledge in AUTOSAR and model-based 

development. We have gained more knowledge on how the AUTOSAR standard works and 

the possibilities with AUTOSAR and MBD. 

With MBD the development process has been able to split up in different phases. It has been 

able to test the models in all phases to detect implementation errors in the model and verify 

that the model behaves the same in all phases. With MBD the time and cost in the 

development process can be reduced. The system and its behaviour are the same in all phases, 

it can therefore be possible to have the same test and simulation environment throughout all 

phases. 

When modelling in Simulink model reference is more appropriate to use to instantiate a SW-

C. There are minor issues related to model reference (see Appendix A – Modelling methods 

pros and cons) but to instantiate it remains the best choice.  

It is however not possible to generate code for multiple instantiation of the SW-C and 

AUTOSAR only supports multiple instantiation if the instances are located on the same ECU 

using code sharing method. This requires instantiation to multiple ECUs to be done by 

generating separate SW-Cs for each instance. As discussed in section 6.2 this can cause issues 

in the SIL phase when the entire system is built into one application and names conflict. 

Calibration parameters are supported both in AUTOSAR and when modelling Simulink, 

however we were unable to generate code for instance specific calibration parameters. 

7.1 Future work 

To continue on our work done in this project there are additional interesting topics that could 

be included.  

Multiple ECUs can be used in the HIL phase, instead of one as done in this thesis, to better 

understand the steps required to go from SIL to HIL when the mapping of the ECUs is done.  

Further we discussed ways of connecting Simulink to the SIL phase, where we created a Java 

server to show that it is possible. However there might be other ways to connect a simulation 

environment in Simulink to the SIL and HIL phases, which could be examined.  

CAN is the only communication protocol used in this project, to increase the understanding of 

going from MIL->SIL->HIL it is possible to use additional protocols such as Lin or FlexRay. 
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Appendix A – Modelling methods pros and cons 

 

Model Reference 

Pros: 

• Easy to modify sub-content, Hierarchy 

• Easy to make different instances of a model block 

• Good for model with many blocks 

• Support standalone simulation 

• Faster simulation time if models are not updated or if several instances exist 

• Store component as separate mdl files and not with links 

• Support for parallel development 

Cons: 

• Function call cannot cross the boundaries, bus-interface does not recognize the signal 

from higher level 

• Slow initial builds, time consuming for prototyping 

• Needs to have the SW-C as a subsystem inside the model 

Libraries 

Pros: 

• Static – Well defined blocks that does not change alot 

• Easy to use when comes to models with few blocks 

• Suited for low level utility functions 

Cons: 

• Hard to edit sub content 

• Slower simulation when larger models are used, each instance is built separately and 

each time simulation is started 

• Instantiations is possible but it must be parameterized, which mean different block has 

different calibration parameters 
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Appendix B – Importing SW-C using PSP 

 

Follow these steps to import the SW-CD into Simulink 

• E.g. xml description file is: sofwarecomponent.xml 

• Then type: myObject = arxml.importer(‘softwarecomponent.xml’); 

• To get all methods type: methods(myObject); 

• If the Pilot Support Package is not installed with MATLAB version 2010a or beyond 

that then only these methods will be shown: 

 

o % createCalibrationComponentObjects 

o % createComponentAsModel 

o % createComponentAsSubsystem 

o % createOperationAsConfigurableSubsystems 

o % display 

o % getCalibrationComponentNames 

o % getClientServerInterfaceNames 

o % getComponentNames 

o % getDependencies 

o % getFile 

o % importer 

o % loadobj 

o % saveobj 

o % setDependencies 

o % setFile 

 

• If the Pilot Support Package (PSP) is installed these extra methods can be found also. 

 

o % addDataType                                   

o % createComponentWithInternalBehaviorAsSubsystem  

o % createEnumClasses                             

o % createOperationAsConfigurableSubsystems       

o % createPerInstanceCalibrationObjects           

o % createSharedCalibrationObjects                

o % getInternalBehaviorNames 

 

• Use % createComponentWithInternalBehaviorAsSubsystem to import the SW-CD 

with internal behaviour and creating skeleton of the SW-C 

o SW-Cname = getInternalBehaviorNames(myObject) 

o createComponentWithInternalBehaviorAsSubsystem(SW-Cname) 
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Appendix C – Settings in Simulink Coder 

Code generation 

When generating code, the variables in the Model workspace must be moved to Based 

workspace otherwise these variable will not be generated. Furthermore mask parameters 

created must be removed in order to code generation with AUTOSAR compliant. 

Configuration in Configuration Parameters needs to be done before generating code for the 

SW-Cs.  

Configuration options: 

• Type: Fixed step 

• Solver: Discrete (no continuos states) 

• Inline parameters – should be checked 

• Target file: autosar.tlc 

AUTOSAR Code Generation options: 

• Ports should be choose as explicit send and receive 

• Check runnable names and set sample time as desired 

• Validate configuration 


