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ABSTRACT 

The PCs corbel is a prefabricated beam-column connection produced by Peikko. 
Today the connection is only used in concrete columns where it has been proven to be 
a well functioning solution. Peikko wants to further develop the product by using it in 
a new context, together with a composite column, which in this case means a concrete 
filled steel tube. However, before modifying the PCs corbel and applying it in this 
type of column, research must be done. This master thesis focuses on how the load 
bearing capacity of the PCs corbel is affected by exposure to fire. Steel loses stiffness 
at relatively low temperatures and therefore when used in this kind of construction it 
must be investigated if the capacity of the system is high enough even at elevated 
temperatures. 

The aim of this thesis is therefore to study if the benefits of using the PCs corbel can 
be transferred to the new composite system. One main objective is to investigate the 
extent to which the column cross section affects the behavior of the connection at 
elevated temperatures. Two types of cross sections are analyzed: circular and 
rectangular. 

A finite element model was established in the software Abaqus, in this model both 
static and thermal simulations were performed. The thermal simulation ended in a 
temperature distribution after 60 minutes of fire and all material properties changed 
according to this. The following mechanical simulation uses these changed material 
properties in a static analysis to study the stress distribution in the connection and the 
surrounding structural elements. Bond slip between steel and concrete and the non-
linear behaviour of concrete are not taken into account. 

The simulations show that the cross section of the column is of minor importance in 
this study. Columns with circular and rectangular cross section, and with almost 
identical cross sectional area, were analyzed and the difference was found to be small 
enough not to be governing the fire design. As the temperature rises stress 
redistribution can be observed from the steel shell to the concrete core. 

It should be noted that this is a pre-study for further investigations according 
development of the PCs corbel, but from the results presented no reasons can be seen 
why this development should not continue. 

Key words: Composite column, concrete, steel, thermal analysis, static analysis, 
PCs corbel, finite element modeling, Abaqus 
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SAMMANFATTNING 

PCs konsolen är en prefabricerad pelar-balk koppling som produceras av Peikko. Idag 
används kopplingen endast i armerade betongpelare där den har visat sig vara en 
framgångsrik produkt. Peikko vill nu vidareutveckla PCs konsolen för att kunna 
använda den i samverkanspelare. Förändring av PCs konsolen kräver utredningar 
avseende till exempel hur bärförmåga påverkas. Detta examensarbete fokuserar på hur 
kopplingens bärförmåga påverkas av brand. Stål förlorar sin styvhet redan vid relativt 
låga temperaturer därför är denna studie motiverad. 

Syftet med examensarbetet är att studera om PCs konsolens positiva egenskaper kan 
utnyttjas i det nya systemet. En annan av huvuduppgifterna är att utreda i vilken 
omfattning pelarens tvärsnitt påverkar kopplingens beteende vid förhöjda 
temperaturer. Två olika tvärsnitt analyseras: cirkulärt och rektangulärt. 

Finita element modeller skapades i Abaqus där både statiska och termiska 
simulationer genomfördes. Den termiska simulationen avslutades efter 60 minuters 
brand vilket resulterande i en temperaturspridning som i sin tur leder till förändring av 
materialegenskaperna. Efterföljande mekaniska simulering använder de förändrade 
egenskaperna för att studera spänningsfördelningen. Vidhäftning mellan stål och 
betong samt icke linjära egenskaper hos betongen har inte beaktas i modellen.  

Simuleringarna visar att skillnaden mellan tvärsnitten är marginella. Pelare med 
liknade tvärsnittsarea men med olika tvärsnittstyper studerades och skillnaden var 
tillräckligt liten för att inte vara avgörande vid branddimensionering. Resultaten visar 
också en tydlig omfördelning av spänningar från det omgivande stålskalet till den inre 
betongkärna.  

Det skall förtydligas att examensarbetet är en förstudie för vidareutvecklingen av PCs 
konsolen. Resultaten presenterade i denna rapport påvisar dock inga tydliga hinder 
mot dessa planer. 

 

Nyckelord: Samverkanspelare, betong, stål, termisk analys, statisk analys, PCs 
konsol, finita element modellering, Abaqus 
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Notations 
Roman letters 

݄ Convection coefficient 

ܶ Initial temperature 

ܶ Ambient temperature 

௦ܶ Surface temperature 

 Time ݐ

  Convective heat fluxݍ

  Radiation heat fluxݍ

 

Greek letters 

  Partial safety factorߛ

 True strain ߝ

  Emissivity of ambientߝ

  Nominal strainߝ

 ௦ Emissivity of surfaceߝ

 True stress ߪ

  Stephan-Boltzmann’s constantߪ

  Nominal stressߪ

 ோௗ Stress capacityߪ

߶ Shape factor, radiation 

 

Abbreviations 

CFCHS Concrete Filled Circular Hollow Section 

CFHS Concrete Filled Hollow Section 

CFRHS Concrete Filled Rectangular Hollow Section 

EC Eurocode 

PCs Peikko Corbel short 
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1 Introduction 
Reducing the costs is one of the most important things in the competitive building sector of 
today. Use of standard solutions for different cases similar to each other can reduce working 
hours both in design and construction stage, which saves money for the actors. With a 
standard solution there is also a higher chance that all components have the same high quality 
and the risk for unforeseen errors are kept to a minimum. 

This master thesis is focusing on one such standard solution. A connection detail in steel used 
to connect a beam to a column for composite steel concrete structures. The studied detail is 
called the PCs corbel and is produced by Peikko AB. PCs stand for ‘Peikko Corbel short’. 

Due to the high thermal conductance of the steel the corbel will act as a reversed thermal 
bridge during fire. This can affect the properties of the concrete core and lead to a decreased 
load bearing capacity of the connection. 

 

1.1 Background 
The idea to this master thesis was presented by Peikko Sverige AB. They are producers and 
developers of prefabricated building components, mainly in steel constructions. The 
component studied in this thesis is a connection detail between composite steel concrete 
columns and beams, called PCs corbel, see Figure 1. 

 

Figure 1: Illustration of a PCs corbel placed in a column 

 

The PCs corbel is today only used in reinforced concrete columns. But as a step towards 
making this corbel a standard solution even for composite steel concrete columns a computer 
analysis of its fire behaviour has to be performed. 

Changes of the corbel design are made to adapt the corbel to a composite column. The steel 
shell of the column makes it possible to remove the anchorage bars and replace their function 
with both welds around the corbel and a U-shaped steel plate. Welds and U-shaped plate have 
the purpose to transfer the shear forces to the steel shell and concrete core respectively. 

An investigation about the most favourable column cross section of two given alternatives is 
also an issue, one circular and one rectangular. These cross section types will further on be 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 2

referred to as CFCHS and CFRHS, short for Concrete Filled Circular Hollow Section and 
Concrete Filled Rectangular Hollow Section or CFHS when both types are represented. See 
cross sections in Appendix A. The comparison regards the behaviour under fire and heat 
distribution through the corbel and the column. 

For accurate simulation results it is important to know how the material properties change 
when temperature raises. 

 

1.2 Aim and Objectives 
The aim of this master thesis is to investigate if the new modified PCs corbel is an efficient 
solution when considering fire design. It should in addition tell to what extension the corbel 
design affects the heat distribution into the column, and if the strength is reduced due to this. 

Other objectives are: 

 To investigate if the column cross section shape affects the heat distribution in the 
areas close to the connection. 

 To provide a base for further investigations and development of this specific corbel 
and similar products regarding fire design. 

 

1.3 Method 
Initially a literature study is performed to get a better knowledge about the behaviour of 
composite structures in general and especially under fire. Studies about the interaction 
between the structural components and the materials bonding when exposed to elevated 
temperatures are done for better modelling results. 

To get a realistic picture of how the connection is working both before and after fire is a FE-
model established and analyses are performed in the software Abaqus. The modelling results 
are then analysed concerning both thermal results and stress redistribution due to the thermal 
distribution. 

Comparisons are made and based on the results a discussion about design and suitability to 
use the modified PCs corbel in this situation is initiated. 

 

1.4 Limitations 
The fire behaviour studied is according to fire class R60, which means that the corbel should 
have enough capacity to carry the loads throughout 60 minutes of fire. 

The PCs corbel is available in several different sizes. This report focuses one of them, called 
PCs-3. 

Stirrups are excluded in the Abaqus model. Stirrups are placed more dense close to the corbel, 
this to hold the cross section together as the outer steel shell loses its capacity when exposed 
to elevated temperatures. It is possible that these stirrups also can have a small effect on the 
temperature distribution since steel transfer heat considerably faster than concrete. However, 
due to the complexity of the model it would lead to an exclusion of these bars are justified. 
Stresses will nevertheless be checked and analyzed to see where stirrups are needed. 
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2 Literature Review 
This chapter intends to summarize the basic knowledge needed to understand the extent of the 
issue regarding modelling, problem description and interpretation of results. 

 

2.1 Composite Structures 
Composite structures mean that multiple materials work together as a single structural 
component. One common composition in construction context is steel and concrete, which in 
this report will be referred to as ‘composite structures’. 

The use of composite structures comes initially from the idea to protect steel columns from 
fire by encasing them in concrete. This encasing was first considered just as cover. When 
calculating the capacity of the column the concrete was neglected. It was later found that the 
effective slenderness ratio of the encased column was significantly increased which also gives 
a positive effect to the buckling resistance (Johnson 2004). 

Today composite structures are used for many different purposes. For fast erection of a floor 
slab it is quite common to use a corrugated steel sheet as a permanent formwork. Composite 
columns are often used when there is a need for slim construction, for example of aesthetic 
reasons. Other reasons could be structural members with an increased risk for accidental 
loads, such as impact from traffic, earthquake or fire (Shanmugam & Lakshmi 2001). The use 
of composite structures can also reduce building time. For example there is no need for 
formwork when enclosing steel is used. Instead the steel works as formwork for the concrete 
to be casted into (INSDAG 2011). 

One of the most important benefits with using composite steel and concrete building 
components is that the strength of a given cross-section can be increased without changing the 
outer dimensions. For example the column in a multi-storey building can have the same 
dimension on all floors, even if the columns near ground level carry higher loads. This since 
the material composition of the column core can be changed to a higher concrete strength, 
combined with a higher amount of reinforcement or other modifications. This way of 
designing gives a unanimity which can be appreciated from an architectural detailing point of 
view (INSDAG 2011). 

Another positive effect, which is an important part in this report, is the fire protection the 
concrete gives the steel. For optimal fire performance the steel should be enclosed by the 
concrete, but even with the steel exposed on the outside the load bearing strength is increased 
compared to a structure in pure steel, this due to the concretes high thermal mass (Purkiss 
1996). Read more about material behaviour in elevated temperatures in Chapter 2.2. 

The analyses presented in this report are made on concrete filled steel tubular columns with 
either cylindrical or rectangular shape. Which basically is a reinforced concrete column 
enclosed by a thin steel shell. 

 

2.1.1 Possible Failure Modes for Composite Columns 

During normal conditions a composite column failure mode depends mainly on its 
slenderness. For short length columns a combination of concrete crushing and yielding in the 
steel defines the failure mode. Intermediate columns failure mode is instead partial yielding in 
the steel and a combined crushing and cracking failure of the concrete. Very slender columns 
are most likely to fail in buckling or global instability (Shanmugam & Lakshmi 2001). 
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The external steel shell can also fail in local buckling, but compared to only steel columns the 
capacity with reference to local buckling is increased. It should be noted that if the criteria in 
Figure 2 are fulfilled there is no considerable risk for local buckling (EC 1994-1-1 2005). 

 

Figure 2: Slenderness calculations according to (EC 1994-1-1 2005) 

 

2.2 Behaviour of Steel and Concrete at Elevated Temperatures 
Several concrete and steel properties change with increased temperature, for example 
Young’s modulus and thermal conductivity. Both of these properties decrease considerably 
when exposed to temperatures developed in a fire, which makes them important to consider. 

Curves and diagrams presented in this chapter are all following the standard definitions used 
in Eurocode. 

 

2.2.1 Steel 

Common knowledge about structural steel is that it loses both stiffness and strength at 
relatively low temperatures, especially considering temperatures developed during a fire. This 
can be seen when plotting the relative Young’s modulus against steel temperature, see Figure 
3. The properties vary depending on how the steel is treated, hot rolled steel show a slightly 
higher capacity during fire than cold rolled. Reinforcement steel can be either hot or cold 
rolled depending on quality. The hot rolled reinforcement steel B500BT, used in this thesis, is 
one of the most used qualities in concrete structures today. 
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Figure 3: Relative Young’s modulus vs. temperature, hot rolled and cold rolled steel (EC 
1993-1-2 2005) 

 

Yield strength of steel is also highly depending on the temperature. Up to 400°C it is 
considered to be constant, but after this limit decreases rapidly, see Figure 4. 

 

Figure 4: Relative yield strength vs. temperature for steel (EC 1993-1-2 2005) 

 

The thermal conductivity of steel is also temperature dependent. In Eurocode the temperature 
dependence is considered to be linear up to 800°C and then be constant 27.3 W/m°C, see 
Figure 5. 
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Figure 5: Thermal Conductivity vs. temperature for steel (EC 1993-1-2 2005) 

 

Specific heat capacity is a measurement on how much energy it takes to increase one 
kilogram of a specific material one degree Celsius. For steel the specific heat capacity can be 
approximated a constant value of 600 J/kg°C for all temperatures except around 735°C where 
discontinuity occurs, see Figure 6. One explanation to this discontinuity is that a phase 
transition takes place in the steel around these temperatures (Burström 2007). 

 

Figure 6: Specific heat capacity vs. temperature for steel (EC 1993-1-2 2005) 

 

2.2.2 Plastic Behaviour of Steel 

Plastic deformations occur when stresses are higher than the yield strength of the material, 
which means that the elastic deformations are exceeded. Plastic deformations are therefore 
remaining even after unloading the structure. 

As the temperature of steel raise, several physical effects take place. One of the most 
important is the decrease of the yield strength, which means that in a fire plastic deformations 
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will be initiated earlier than for steel at room temperature and the plastic deformations will 
therefore be larger than it would be at a normal case. 

In Eurocode the yield stress is assumed to be constant up to 300°C but decreasing afterwards 
for higher temperatures, see Figure 7. Note that only the plastic phase is plotted, the elastic 
deformation up to the yield strength, 0.02=ߝ is excluded. 

 

Figure 7: Plastic Stress-Strain curves (solid line) and True stress–True strain curves (Dotted 
lines) 

 

As can be seen in Figure 7 does the steel continue to strain-harden all the way to fracture, 
which means that the stress needs to increase for producing more deformation, compare the 
plateau for the solid line to the dotted lines small increase in the figure above. Taking this 
strain-hardening into account give the so called ‘True stress-True strain curve’ (Key to Metals 
2011). 

The true stress ߪ is defined in Equation 1 and true strain in Equation 2: 

ߪ  ൌ ߝሺߪ  1ሻ (1) 

ߝ  ൌ ݈݊ሺߝ  1ሻ (2) 

In Figure 7 the nominal values are represented by a solid line and they are from Eurocode 
standards. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 8

2.2.3 Concrete 

When concrete is heated it loses capacity due to both chemical and physical reactions that 
affect the composition of the ingredients. Below some temperature intervals are listed and the 
main changes are summarized. 

 100-200°C:  The free water evaporates and the vapour pressure is increased. The 
strength of the cement paste is constant and the aggregates increase in volume 
deepening on type. No drastic change in structural strength. 
 

 200-500°C: The free water is now evaporated and the chemical bound water starts 
to separate from the cement paste. This leads to a contraction of the cement paste, 
even though the cement itself expands during the temperature increase. The reduction 
of the concrete strength, at this stage, is highly depending on the aggregate type. The 
structural strength is reduced more rapidly in this temperature interval (Svensk 
Byggtjänst 1994). 
 

 500-900°C:  Calcium hydroxide, which is a component in the cement paste, starts to 
separate into water vapour and lime stone. During this temperature interval the largest 
contribution to the concrete strength comes from the aggregates. This is the interval 
where the concrete strength is decreased in the most rapid way. 
 

 900-1200°C: There is no water left to evaporate and there is no interaction between 
the concrete components. The concrete structure has lost over 90 % of its original 
capacity. 

 

During the entire heating process micro cracks can occur due to different behaviour and 
geometry of the ingredients (Betongvaruindustrin 2007). The high vapour pressure built-up 
when the concrete is heated can lead to spalling of the concrete cover. In a CFHS the steel 
shell will stop the concrete cover to fall off, but it do not change the fact that the vapour 
pressure is significantly increased. According to Plos1, there is a need for small holes in the 
shell to let some of the vapour out which prevents the column from damage. These holes are 
often placed near the top and bottom of the column. Due to the reactions explained, the 
material properties will change, which is shown in changes such as Young’s modulus, thermal 
conductivity and specific heat capacity. 

Young’s modulus for concrete is reduced when exposed to high temperatures, see Figure 8. 
As for most materials concrete loses a large part of its capacity when the temperature is 
increasing, but due to high thermal mass the temperature will increase relatively slow. The 
heat buffering properties gives a positive effect since the temperature raise will be postponed 
over a longer period of time. 

                                                 
1 Mario Plos, Department of Structural Engineering Chalmers, 2011-02-24 
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Figure 8: Young's modulus vs. temperature for concrete 

 

The thermal conductivity for concrete at room temperature is normally 1.7 W/m°C, to be more 
accurate one should say that it differs depending on the concrete composition from about 1.4 
to 2.0 W/m°C, mainly depending on the aggregate type. 

Thermal conductivity is decreasing with increasing temperature, and difference between 
concrete compositions becomes less significant, see Figure 9. 

 

Figure 9: Thermal conductivity vs. temperature for concrete (EC 1992-1-2 2005) 

 

The specific heat capacity for concrete is considerably higher than the one for steel. The 
capacity is increasing when the material is heated, which must be considered in a fire 
situation, see Figure 10. The curve represents the specific heat capacity for dry concrete (EC 
1992-1-2 2005). 
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Figure 10: Specific heat capacity vs. temperature for concrete (EC 1992-1-2 2005) 

 

In many situations the characteristic strength of a concrete structure is a better way to describe 
how the load carrying capacity is reduced during fire than Young’s modulus. As mentioned, 
heated concrete will crack and adopt a non-linear behaviour, which may vary considerably. In 
Figure 11 the graphs shows the degradation of characteristic strength. The difference in upper 
and lower bound is mainly depending on aggregate type. 

 

Figure 11: Relative reduction of characteristic strength vs. temperature for concrete with two 
different types of aggregate (EC 1992-1-2 2005) 

 

2.2.4 Interaction between Steel and Concrete 

There are two main mechanical reasons why steel is a good reinforcement material in 
concrete structures. One is the high tensile capacity of steel which compensates for the low 
tensile capacity of concrete. The second main reason is that the materials match each other 
when it comes to thermal elongation, especially around room temperatures, but also for high 
temperatures, see Figure 12. The three curves represent concrete with different aggregate 
types and reinforcing steel. 
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Figure 12: Thermal elongation vs. temperature for concrete (EC 1992-1-2 2005) 

 

The positive effects of having approximately the same elongations are that inner stresses, 
which might cause cracks, can be avoided. This is essential to keep the bond strength, since 
the most important factor influencing the bond strength is friction (Zhong et al. 2011). 
However, avoiding micro cracks entirely at elevated temperatures is not possible. Cracks will 
change the influence of friction and decrease the bond strength. 

When the heat increases both chemical and physical reactions are initiated within the 
materials. Example of such reactions is water migration and an increased water vapour 
pressure in the concrete pores. High water vapour pressure might cause cracks which affects 
the contact area between the steel and concrete. This is one of the reasons why the bond 
strength decreases (Zhong et al. 2011). 

To avoid bond slip, which is a consequence of poor interaction between reinforcement and 
concrete, the anchorage length needs to be sufficient. This is especially important in case of 
fire, when the material properties will change, the interaction will decrease and utilization 
margin of the structure needs to be enough. 

For further reading the authors recommend (Purkiss 1996). 

 

2.3 Fire Design 
Fire is in Eurocode considered as an accidental load. When structure is exposed to fire it is 
important to consider both possible load increase, by including changes due to thermal 
elongation and deformation, and also changes to the structural bearing resistance caused by 
decrease of material properties. These aspects must be considered when verifying the 
structural bearing capacity, which is of most importance during the design phase. 

Heat from the fire is mainly distributed through radiation. Due to this the best way to protect a 
structure is by screening it against direct contact with the flame. This method is often used 
today by enclosing steel columns with gypsum boards or fire protecting paint. Composite 
CFHS columns uses another method, the concrete’s high thermal capacity makes it act like a 
heat sinker in an early stage of a fire, which keeps the stiffness of the steel (Purkiss 1996). 
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2.3.1 Heat Transfer 

Heat transfer between regions is driven by a temperature gradient. This flow is called heat 
flux and the direction of the flow is always from hot to cold regions. Heat can be transferred 
in three different ways; convection, radiation and conduction. 

A structure directly exposed to a fire is heated through radiation and convection. Internally the 
heat is distributed due to conduction. This is true regarding materials with high density, like 
concrete and steel. 

Convection can be either natural or mechanically forced. Natural convective heat distribution 
is possible due to that air change its density depending on temperature. This causes turbulence 
in the air which leads to heat transfer to nearby regions. The convective heat flux (ݍ) is 
described by Equation 3 (EC 1991-1-2 2002). 

ݍ  ൌ ݄ሺ ௦ܶ െ ܶሻ (3) 

݄ Convection coefficient, 25 W/m2K (EC 1991-1-2 2002) 

௦ܶ Surface temperature [K] 

ܶ Ambient temperature [K] 

 

In opposite to convection, radiation does not depend on a medium for heat transfer. Radiation 
is instead electromagnetic waves from a region with high energy to a lower energy region. 
The effect of the radiation is highly depending on the emissivity factor which describes the 
materials ability to absorb radiated energy. The radiation heat flux (ݍ) is described by 
Equation 4 (EC 1991-1-2 2002). 

ݍ  ൌ ߶ ∗ ௦ߝ ∗ ߝ ∗ ߪ ∗ ሺ ௦ܶ
ସ െ ܶ

ସሻ (4) 

߶ Shape factor, usually 1.0 when radiation to ambient temperature and no other 
surface (EC 1991-1-2 2002) 

 ௦ Emissivity of surfaceߝ

  Emissivity of ambient, fire usually 1.0 (EC 1991-1-2 2002)ߝ

 Stephan-Boltzmann’s constant, 5.67·10-8 W/m2K4 ߪ

௦ܶ  Surface temperature [K] 

ܶ  Ambient temperature [K] 

 

The net heat flux is described as the sum of the two equations 3 and 4. 

 ݄௧ ൌ ݍ    (5)ݍ

Both parts are depending on the temperature difference (ܶ߂) between surface and ambient air. 
For low temperature the main contribution to the total heat flux is from convection but as the 
temperature raises the influence from radiation becomes governing. 
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Conduction is heat transfer between solid materials and is depending on the variables thermal 
conductivity and thermal heat capacity. Conductance is taking place within each material as 
well as at the interface between them. 

 

2.3.2 Definition of a Standard Fire 

To perform tests and simulations there is need for describing how a fire evolves regarding 
temperature-time relationship. Therefore several national and international fire test standards 
have been developed. The most used standard is ISO834 in which the temperature increases 
over time according to Equation 6 (Purkiss 1996). 

 ܶ ൌ ܶ  345log ሺ8ݐ  1ሻ (6) 

Where ܶ is the room temperature before fire and ݐ is number of minutes elapsed since fire 
initiation. 

This gives for example that a standard fire generates a temperature of 945°C after 60 minutes, 
see Figure 13. For more temperatures used for fire design see Table 1. 

 

Table 1: Standard temperatures used for fire design (Initial temperature ࢀ=20 °C) 

Time 
[minutes] 

30 
min 

60 
min 

90 
min 

120 
min 

180 
min 

Temperature 
[°C] 

842 
°C 

945 

°C 
1006 

°C 
1049

°C 
1110

°C 

 

The standard fire curve is developed to be used as a preference when testing structural 
components. But it should be noted that it does not fully follow the behaviour of a real fire, 
which is much depending on the amount of oxygen and combustible materials available. 
When there is a shortage of one of these the fire temperature will decay (Betongvaruindustrin 
2007). The standard test do not consider this effect, it is instead focusing on the earlier stages 
of the fire where the temperature increase is most rapid. The logarithmic curve shows 
increasing temperatures for eternity and is therefore not a relevant approximation after long 
time. However, it is designed to be on the safe side. 
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Figure 13: ISO834 standard fire curve 

 

2.3.3 Fire Resistance Classes 

Building components are divided in to fire resistance classes depending on how long the 
properties of a component are expected to sustain fire. Some requirements used to classify is; 
load bearing capacity (R), insulation (I), smoke leakage (S) etc. The letter is followed by a 
number, which says how many minutes the criterion is fulfilled during a standardized test (SP 
2011). For example; the fire resistance class R60 means that the load bearing capacity should 
sustain at least 60 minutes of fire. If a member is tested and sustains not more than 59 
minutes, the assigned fire resistance class will be R30 until the member is improved and a 
new test is done (Purkiss 1996). 

 

2.4 Previous studies 
Composite structures are used in many countries worldwide. Much research has been done 
within the subject, both real testing and finite element modelling. For example did (Zha 2002) 
investigate the temperature spread and critical failure mode in a composite column with an 
outer steel shell, and found that it was the degradation of material properties in combination 
with the increased compression stresses that caused the failure of the studied composite 
column. This study is largely relevant for this thesis to understand what can happen to the 
system, anyhow is the study not including any irregularity such as the PCs corbel and 
therefore is the research not fully applicable. 

The higher strength of steel columns when encased in concrete or filled with concrete is often 
mentioned in terms of ‘composite action’ (Han et.al 2002). What this composite action really 
is must be a subject for further research, especially when the composite column is exposed to 
elevated temperatures (Shanmugam & Lakshmi 2002). 
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3 Description of the System 
The PCs corbel is made of steel quality S355 and is used to connect the Deltabeam to the 
column. The corbel is placed in a formwork with the rest of the reinforcement and is anchored 
to the column by the in situ casted concrete (Peikko 2008). See drawings in Appendix A. 

 

3.1 PCs Corbel 
The PCs corbel is a connection usually used between a concrete column and a Deltabeam. 

The supporting part of the corbel can be adjusted both vertically and horizontally, after the 
anchorage part being fixed to the column. In Figure 14 the non-painted parts of the corbel is 
casted-in, and the painted are the adjustable support where the Deltabeam is placed. It can 
also be seen that the top of the support is rounded. This makes the Deltabeam slide in to 
correct place by its own weight (Peikko 2006). More pictures of the modified PCs corbel are 
presented in Appendix C. 

  

Figure 14: Peikko’s PCs-3 corbel 

 

Today the PCs corbel is a standard solution used in reinforced concrete columns. But in the 
future the goal is to expand the usage to also involve CFHS columns. With the use of CFHS 
columns the steel shell can contribute to the stiffness of the connection, for example by 
welding the base plate to the column shell. This new connection method makes a modification 
of the corbel possible. 

The anchorage bars, see Figure 1, are removed and partially replaced by a U-shaped steel 
plate intended to distribute vertical forces. This steel plate is welded to the back of the base 
plate. The intension of this modification is to have at least the same performance for the 
connection as for the original PCs corbel used in a reinforced concrete column. 

In this report will the modified PCs-3 corbel from now on will be referred to as the PCs 
corbel. 
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3.2 Deltabeam 
The PCs corbel is designed to be used with the Deltabeam, see Figure 15. Deltabeam is a 
registered brand from Peikko, the name comes from its shape which is comparable to the 
Greek capital letter delta (Peikko 2011). The shape is adapted for easy placement of 
prefabricated concrete slabs, for example hollow core slabs, resting on the flanges. 

After placing the prefabricated slabs and connecting them through the Deltabeam with 
reinforcement, the system is filled with reinforced concrete for full interaction (Peikko 2008). 

 

Figure 15: Peikko's Deltabeam 

 

Extensive fire testing performed on the Deltabeam shows that, even with the bottom flange 
unprotected, it is certified for R180, this because of the concrete filling’s high thermal mass, 
as explained in Chapter 2.2.3 (Peikko 2011). 

 

3.3 Corbel Load Distribution 
The design load of the PCs3 connection is 300kN, calculated according to Eurocode standards 
(Peikko 2006). The load is transferred from the Deltabeam through an endplate to the rounded 
topside of the corbel. The thickness of this endplate varies with beam type. The endplate used 
with PCs3 corbel is 20 mm thick. Due to the shape of the corbel the load transferring contact 
surface is approximately 45 mm wide, multiplied with the thickness of the endplate gives an 
approximate load transferring contact area of 900 mm2. 

The eccentricity of the applied load produces a bending moment within the column. This 
bending moment creates axial reaction forces in the corbel studs, which leads to tension and 
compression stresses along the studs respectively within the concrete core, see Figure 16. Due 
to concretes poor tensile capacity there is a considerable risk that this effect will cause the 
failure of the connection. This is why stirrups are more concentrated closer to the corbel. The 
steel shell does also contribute to the prevention of cracking at normal temperatures, but this 
aspect cannot be included in fire design. 
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Figure 16: Principal sketch of moment equilibrium for the PCs3 corbel 

 

3.4 Critical Regions 
Before performing the computer simulations an assessment regarding the most critical regions 
and connections were performed. This was done with the purpose to identify possible failure 
of the corbel connection. 

Previous tests performed by Peikko showed two different failure modes, concrete cone failure 
or yielding of the ribbed base plate (Peikko 2000). The column used in previous tests is a 
reinforced rectangular concrete column without any steel shell and no elevated temperature. A 
theory from the authors is that this new model will fail in the corbel. This since steel strength 
is reduced much more than concrete strength when exposed to elevated temperatures. 
Especially since the ribbed base plate is only partially protected against fire. 

 

3.4.1 Ribbed Surface 

Due to the fast temperature distribution in to the corbel, which is partially exposed to direct 
fire, the steel properties can change fast. For example the yield strength is decreasing 
considerably which enhances the risk for plastic behaviour in the ribs and thereby large 
deformations. 

 

3.4.2 U-plate to Concrete Connection 

The purpose of the U-shaped steel plate is to enlarge the contact area between corbel and 
concrete. Still the risk for local crushing of concrete at the contact zones must be considered if 
the distribution area is not sufficient. 
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3.4.3 Studs to Concrete Connection 

As mentioned, the load is applied on the edge of the corbel. This will due to the eccentricity 
cause tension in the upper stud and compression in the lower stud. This will affect the 
surrounding concrete which can easily crack when tension stresses are created. To prevent 
this from happening stirrups are placed denser close to the corbel, However, the risk for 
cracking must still be considered, especially since the temperature development within the 
stud is expected to be faster than in the surrounding concrete. 
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4 Computer Modelling 
All modelling of the studied system has been performed in the finite element based software 
Abaqus. An extract from the modelling script created for the simulations is summarized in 
Appendix E. 

Furthermore, all material properties are based on standard values presented in Eurocode (EC 
1992 1-2 2005) and (EC 1993 1-2 2005). 

 

4.1 Modelling Plan 
First the model has been established by running simplified, decoupled simulations. The main 
study is then divided into three separate Abaqus-jobs, which are presented in a flowchart, see 
Figure 17. 

 

Figure 17: Flow chart over the modelling plan 

 

In the first simulation, only the mechanical load is considered, which means constant room 
temperature is assumed. The result from this simulation is used for comparison with the final 
results. The second simulation involves only the thermal load applied as an ambient 
temperature according to ISO834 standard fire curve. The purpose is to study the temperature 
distribution through the connection and the column during and after 60 minutes of fire. 

The results from the second simulation are regarded as prescribed data when performing the 
final mechanical simulation. Since Young’s modulus, thermal mass capacity and thermal 
conductivity is temperature dependent these properties will change following the definitions 
in Eurocode, see Chapter 2.2. 

After performing the final simulation, when both static loading and temperature conditions are 
considered, the results will be compared to the results of the first static simulation and a 
behaviour analysis will be performed. 
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This methodology will be used twice, both for CFCHS and CFCRS, in order to be able to 
compare the performance of the two different cross sections. 

 

4.2 Simplifications in the Modelling Phase 
To create a model that describes the geometry of the real PCs corbel exactly is both redundant 
and time consuming. Therefore, some simplifications are made, but still it should be possible 
to study all relevant and dangerous parts of the system. The purpose is to later verify these 
made assumptions by evaluation of the results. 

 

4.2.1 Mechanical simplifications 

All load applied from the Deltabeam is transferred from the rounded corbel part to the base 
plate through the ribbed surface. The only purpose of the bolts is to press the ribbed surfaces 
together, which means that no external load is transferred through the bolts, and therefore they 
are neglected in this model. The ribbed surface is replaced with an assumption of full 
interaction between the two steel parts. This assumption is well motivated since the ribbed 
surface is designed to fulfil such behaviour. However, this criterion has to be verified. 

Also the outer plate in the corbel is omitted. The purpose of this part is to prevent accidents 
during erection of beams, meaning that the Deltabeam should not slide of the support. In 
normal situations, the outer plate does not carry any load, and since it is embedded in concrete 
its contribution to the temperature distribution is assumed to be small. 

See comparison between the Abaqus model and the real PCs corbel in Figure 18. 

 

Figure 18: To the left the Abaqus-model, to the right a real specimen 

 

Stirrups in the column are, as well, excluded due to the complexity and time consuming work 
it would lead to, see Chapter 1.4. To exclude the stirrups could cause higher stresses in the 
concrete close to the connection, but if stresses high enough to cause cracking of the concrete 
are detected in this region the conclusion that stirrups are needed can be drawn. 
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4.2.2 Material simplifications 

The specific heat capacity of steel is small compared to concrete, except at around 735°C, 
where there is a peak in the specific heat capacity for steel, see Chapter 2.2.1. Including this 
peak in the Abaqus simulation will probably cause convergence problems in the numerically 
based software. Therefore it was decided to leave it out. The result will be a slightly increased 
temperature which leads to decreased properties for the steel, but the difference is small and 
the simulation can be considered to be on the safe side. 

 

4.3 Modelling Steps 

4.3.1 Model Generation and Material Properties 

The modelling of the connection is made in Abaqus/CAE where each part is drawn separately 
and then composed to one assembly. All parts are created as 3D solids. 

Material properties are defined according to Eurocode, as presented in Chapter 2.2. Young’s 
modulus, thermal conductivity and specific heat capacity are all temperature dependent and 
are therefore given in tabular form where the property varies with temperature (EC 1993-1-2 
2005). 

Other material properties which are not considered to be temperature dependent are density 
and Poisson’s ratio, see Table 2. 

 

Table 2: Non-temperature dependent material properties 

 Density Poisson’s ratio 

Steel 7800 kg/m3 0.2 

Concrete 2300 kg/m3 0.3 

 

In order to simulate fire on one floor and to be able to study the temperature spread in the 
vertical direction to the floor above, a screen is used, as shown in Figure 19. This screen is 
modelled as a homogenous concrete slab with thickness 265 mm. In addition to screening, the 
concrete’s large thermal capacity helps keeping a lower temperature of the steel. 

 

Figure 19: The circular column seen from below, with the concrete screen used to limit the 
fire 
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4.3.2 Interaction and Load Application 

4.3.2.1 Thermal Loading and Interaction 

The thermal load from the fire is defined by an ambient temperature following the standard 
fire curve ISO834. Heat flux to the structure is due to both radiation and convection, for more 
detailed information, see Chapter 2.3.1. These two effects are managed separatly in Abaqus, 
even though they are active on the same surfaces. Convection is defined as a ‘film condition’ 
with constant convection coefficient ݄ = 25 W/m2K. Radiation is defined by the interaction 
‘surface radiation’, and is depending on temperature and emissivity. Radiation becomes 
governing as the temperature rises, see Chapter 2.3.1. The emissivity is set to 0.8 for both 
steel and concrete since nothing else is mentioned in the standards, (EN 1991-1-2 2002). Due 
to that radiation calculations must be performed using temperatures in unit Kelvin, the entire 
model is defined using this unit (0 K = 273°C). 

The interaction properties between assembled parts with the same or different materials are all 
described by the interaction ‘conductance’. In reality, during fire, the conductance between 
materials decrease with increased temperature. In this simulation the decrease is neglected. 
Instead the conductance is kept very high compared to the conductance within each separate 
material, meaning that any possible thermal resistance at the surface between two materials 
are neglected. This is motivated since the aim of the heat transfer analysis is to obtain a 
reasonable temperature raise within the connection, but a slightly higher temperature than ‘the 
real case’ will only result in a conservative result for the following quasi-static analysis. 

The fire is simulated to be on the lower side of the screen and the column, see Figure 19, 
where parts of the corbel are exposed directly to the fire. Initial temperature for the whole 
system is considered to be 20°C (293 K). 

 

4.3.2.2 Mechanical Loading and Interaction 

The load is defined as a pressure load applied in the contact area between the endplate of the 
Deltabeam and the corbel, see Figure 20. The contact area is approximately 900 mm2 and the 
load corresponds to 300kN. It should also be noted that this is the only load active on the 
column. 

A pressure load means that the load are in all points perpendicular to the surface, which in this 
case means that the load is not fully vertical, but the angle is small enough to be neglected in 
this model. 

Welds connecting the corbel base plate to the column steel shell is replaced with an 
assumption of full interaction between the steel parts. In a similar way is the interaction 
between steel parts within the corbel and steel to concrete interface modelled. 
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Figure 20: Illustration of the mechanical load application area 

 

4.3.3 Step 

In the third analysis, see Figure 17, the connection is studied at every five minute instance, but 
due to the non-fixed increment size some deviations are inevitable. This will anyhow not 
affect the final results. 

To be able to compare the heat distribution in the two column types, it would be preferable to 
have a fixed time increment (time step), but due to the non-linear shape of the ISO834 
standard fire curve, which can cause convergence problems, this is not possible. 

The third analysis is divided into several steps where each step is using temperature 
distribution data from associated time period and initial deformation data from the previous 
step. The temperature distribution is retrieved from the thermal analysis and is assigned as a 
predefined field. ‘Predefined field’ is a tool in Abaqus which is used for example to assign 
initial conditions to a region. 

 

4.3.4 Boundary Conditions 

To minimize the risk that the results are affected by assigned mechanical boundary 
conditions, the modelled part of the column is relatively long in comparison to the corbel size. 
Mechanical boundary conditions preventing displacement are set at the upper and lower edge 
of the column, see Figure 21. 

The column is clamped at both top and bottom because of symmetry reasons. A building 
using the PCs corbel is usually a multi-storey building and thereby including more than one 
connection per column. 
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Figure 21: Mechanical boundary condition on the top of the column. The same boundary 
condition is applied at the bottom part of the column. 

 

4.3.5 Mesh 

There are several ways to establish and determine a suitable mesh. How the mesh is 
established is mainly depending on what kind of results that are expected. Basically, to obtain 
more precise and accurate results, the elements size should be small and the element type 
should contain a large number of nodes. It is also preferable that the approximation technique 
should be of high order. The negative aspect of this is that the simulation can be time 
consuming and also the mesh can become too complex to work with. 

Abaqus contain specific element types for each simulation, for example for thermal analysis. 
Since the geometry of the corbel connection, including column, is relative complex to 
establish, the mesh has to be automatic generated. It is the automatic generation that 
determines what kind of mesh that will be used in present situation, this since, ‘mesh by hand’ 
is not an option. 

The mesh that is used in all cases contains tetrahedral shaped elements which are either linear 
or quadratic. Quadratic elements are preferable since they give more accurate results, but due 
to the irregularities which give a partially distorted mesh is it not possible to use quadratic 
elements over the entire model. Some parts are therefore meshed with linear elements, each 
containing 4 nodes compared to 10 nodes per element for quadratic approximation. 
Furthermore the element size is set to approximately 12 mm. 

 

4.4 Limitations of the Model 
To model such a complex connection as the PCs corbel in an exact way is not possible. As 
mentioned earlier, simplifications are needed. Simplifications will make it easier to model, but 
it must be considered that it will also affect the results from the simulations. 

The most important limitation is that the concrete is modelled as a linear elastic material, 
which means that redistribution of stress due to cracks in the concrete is not considered in the 
model. Stresses in the concrete that might cause cracking must be located analogously. Plastic 
behaviour of steel is included in the model. 

The corbel is modelled with full interaction between all steel parts as well as between steel 
parts and the concrete. This is done in Abaqus by using ‘Constraints’. In real case scenario 
will the base plate of the corbel be welded to the steel shell, but here is the welds left out and 
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replaced with an assumption of full interaction between corbel and steel shell, this leads for 
example to an assumption of no slip displacement between the two components. Same 
condition is applied for the ribbed surface, as mentioned is this one of the regions that must be 
studied separately since it is identified as a critical region. 

Due to simulation technical reasons the results from the thermal simulation has been chosen 
to be updated every five minute to the temperature dependent mechanical simulation. This is 
an alternative method to the fully coupled mechanical and thermal simulation which was an 
option. Effects on the final result are anyway expected to be small since deformation from one 
step to another is kept. 
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5 Results 
The most important results are presented in this chapter. More figures and illustrations are 
presented in Appendix D. 

If nothing else is mentioned is the presented stresses are so called ‘von Mises-stresses’, 
corresponding to the effective stress in the material.  

 

5.1 Reference Simulation 
As explained in Chapter 4.1 the purpose of this simulation is to be used as a reference to the 
final where both thermal and mechanical load is considered. Hence, the propose is to study 
the change in mechanical response during fire. This analysis has been carried out for both 
CFHS columns. 

Figure 22 shows the stress distribution in a cut through the middle of the connection. The 
highest stresses are removed from the spectrum, this in order to eliminate local peak values 
and to make the stress distribution more visible. 

The spectrum indicates that, at room temperature, most of the load is transferred through the 
steel shell. The stress magnitude in the steel shell is almost symmetrical above and below the 
corbel in both cases.  

 

Figure 22: Stress distribution at room temperature. To the left rectangular column and to the 
right circular column 
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5.2 Thermal Analysis 
The temperature analysis is made with the purpose to study where the highest, and thereby the 
most dangerous, temperatures will appear. Furthermore, the actual temperature distribution 
will result in different material properties used in the final quasi-static simulation. 

Figure 23 shows an overview of the whole model after 60 minutes of fire. The red surface 
temperature is 907°C, which is the warmest in the simulation, and the visible part of the corbel 
has a surface temperature of about 700°C. 

 

Figure 23:Temperature distribution in the connection after 60 minutes of fire exposure 

 

The temperature distribution can also be studied in a cut through the middle of the connection, 
see Figure 24. The corbel is on located on the right hand side of the column in the figure. 

 

Figure 24: Cut through the middle of the connection in a CFCHS column Temperature 
distribution after 60 minutes of fire, Red=907°C, Blue=20°C 

 

The true green colour represents about 470°C, and is the highest temperature in the concrete 
core of the column. 

For a more detailed figure, all temperatures below 50°C or above 500°C are eliminated in 
Figure 25. The black parts have a temperature lower than 50°C and grey parts are warmer than 
500°C, which for example shows that the steel shell has a temperature of more then 500°C in 
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all points exposed to direct fire. The load bearing capacity of steel with this high temperature 
is small, and therefore can it be assumed that the load bearing capacity of the connection is 
now depending on the concrete and its bonding to the cast-in corbel parts. 

It can also be seen that the steel corbel is spreading the temperatures far more then the 
concrete, see especially the lower stud. Apart from the column steel shell the corbel is the part 
with highest overall temperatures. 

 

Figure 25: Cut through the middle of the connection in a CFCHS column Temperature 
distribution after 60 minutes of fire, Red=500°C, Blue=50°C 

 

Figure 24 and 25 are both cuts through the connection in a CFCHS-column. The temperature 
distribution for a CFRHS-column is similar and is therefore left out in this chapter, but is 
presented in Appendix D. 

Studying the connections where the load is transferred from the PCs corbel to the column is of 
particular interest. The weld connecting the corbel base plate to the steel shell is new for this 
design and therefore extra important. The analysis of the CFCHS column show that the 
temperature is higher than 400°C in 30 percent of the total weld length, which means that full 
capacity of the weld can only be expected in 70 percent of the weld. It should also be noted 
that the entire weld has a temperature higher than 100°C, which is the limit where Young’s 
modulus starts to decrease. 

Load transfer from the PCs corbel to the column also occurs through the studs to the nearby 
concrete. Figure 25 shows that the anchorage studs act as a heat bridge in to the column. A 
more detailed study of the studs are made by measuring the temperatures along the studs, 
starting at the back of the corbel base plate, see Figure 26. As expected the temperature is 
higher in the lower stud, and along a short part of the stud the temperature is so high that it 
will affect the material properties of the steel. 
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Figure 26: Temperatures along the two studs, starting at the back of the corbel base plate 

 

5.2.1 Thermal Comparison between CFCHS and CFRHS Columns 

To make the comparison of the temperature distribution for the two different column cross 
sections, some reference points are chosen (see Figure 27): 

 Node ID 1 is located at the bottom of the rounded corbel part. 
 Node ID 2 is located at the bottom of the base plate. 
 Node ID 3 is located in the middle of the base plate. 

 

Figure 27: Reference points for comparison between CFCHS and CFRHS columns 

 

As expected, the surrounding concrete has a heat buffering effect which helps the steel to 
keep a lower temperature and thereby decrease the degradation rate of the steels load bearing 
capacity, see Figure 28. The three coloured lines show how the temperature increases in the 
three reference points with time and they are significantly lower than the black line indicating 
the ISO834 standard fire curve. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 30

 

Figure 28: Temperature raise in three different point of the corbel, compared to the ambient 
temperature, to the left CFRHS and to the right CFCHS. 

 

In the final stage of the simulation the difference between temperatures in the reference points 
Node ID 1,2 and 3 is 2.5°C, 18.8°C and 25.7°C respectively. It should also be noted that the 
difference in temperature between CFCHS and CFRHS is never larger than in this last stage 
of the simulation, see graphs Figure 29. The highest temperature in the reinforcement bars are 
302°C for the circular column and 380°C for the rectangular. 

 

 

Figure 29: Temperature development in three reference points within the corbel 
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5.3 Mechanical Quasi-Static Analysis with Temperature 
Dependent Mechanical Properties 

5.3.1 Deformation 

A mechanical load, applied according to Figure 20, with the magnitude 300kN is present from 
the start of the simulation and causes an instant deformation of the corbel and column. As the 
temperature raises this affects the material properties and the deformation increases. However, 
the vertical deformations in reference Node 1 are small both before and after influence from 
fire, see Table 3. The differences between CFCHS and CFRHS columns are also small, even 
though the rectangular seems to have a slightly higher stiffness than the circular after 60 
minutes of fire. Rotation was also measured, but the results are small enough that they can be 
negligible. 

 

Table 3: Rotation and deflection results of the connection 

 CFCHS CFRHS 

Δy(0 min) 0.16 mm 0.13 mm 

Δy(60 min) 0.31 mm 0.21 mm 

ω(0 min) 0.47‰ 0.44‰ 

ω(60 min) 1.04‰ 0.71‰ 

 

5.3.2 Stress Redistribution 

Significant stress redistribution from the steel shell to the interior concrete core can be seen 
when the temperature raises, see Figure 30. 

Studying the stresses in the column before fire (on the left hand side in Figure 30) shows that 
the highest stresses are in the steel shell both above and below the PCs corbel, compare the 
quasi-static load case in room temperature in Chapter 5.1. After fire exposure (on the right 
hand side) the stresses in the steel shell below the corbel have been considerably reduced, this 
since the steel properties has changed as explained in Chapter 2.2. 

Stresses in the concrete under the corbel have increased and has moved towards the middle of 
the column because of the elevated temperatures which also affects the properties of the 
concrete. 

Stresses in the thermally unaffected steel above the corbel have also increased. 
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Figure 30: Stress distribution before fire initiation (left) and after 60 minutes of fire (right) 

 

In both cases shown in Figure 30, the highest stresses are removed from the spectrum and 
here shown in grey, this to eliminate local peak values and to make the stress distribution 
more visible. Figure 30 illustrates the results from the rectangular column the results for the 
circular column are similar, see Appendix D. 

 

5.3.3 Reinforcement 

By conduction through the steel shell and the concrete the longitudinal reinforcement bars 
will also experience elevated temperatures. The highest reinforcement temperature measured 
was 380°C and 302°C in CFRHS and CFCHS columns respectively, see Appendix D. These 
temperatures do not affect the yield strength of the material, which means that the 
reinforcement does still have full capacity. With a highest detected stress of 40MPa the 
conclusion can be drawn that the reinforcement capacity is not the determining for the 
capacity of the whole connection. 

 

5.3.4 Critical Regions 

In Chapter 3.4 was some possible critical regions were identified. Results from both thermal 
and mechanical analysis in these regions are studied more detailed. 

 

5.3.4.1 Ribbed Surface 

To evaluate if the is any risk for yielding in the ribbed surface temperature and stresses along 
the centre line of the surface is plotted, see Figures 31 and 32. Figure 31 shows the 
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temperature distribution starting from the bottom side of the rounded corbel part and going 
upwards. It can be seen is that the surrounding concrete makes a considerable impact on the 
temperature in the steel, dropping from 439°C at the bottom to 206°C at the top. A 
temperature of 206°C does not give any lowering of the steels load bearing capacity, but at 
439°C, only about 80% of the original load bearing capacity remains. 

 

Figure 31: Temperature distribution along the ribbed surface starting from the bottom of the 
rounded corbel part after 60 minutes of fire 

 

Stresses along the ribbed surface are shown in Figure 32. The risk for yielding in the ribs is 
largest at the bottom of the corbel since a stress peak coincides with the highest temperature, 
439°C. At this temperature, 91% of the yield strength is left. The used steel quality, S355, has 
original yield strength of 355 MPa which gives: 

ோௗߪ  ൌ 0.91 ∗
355
ߛ

ൌ 0.91 ∗
355
1.0

ൌ 323  (7) ܽܲܯ

The peak at the top of the corbel is due to its rounded shape which decreases the contact area. 
However, the temperature there is not high enough to affect the yield strength of the steel, and 
the peak only leads to a utilization ratio of about 34% at this point of the corbel. 

 

Figure 32: Stresses along the ribbed surface, starting from the bottom of the rounded corbel 
part after 60 minutes of fire 
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5.3.4.2 U-plate to Concrete Connection 

At the interface between U-plate and concrete, the maximum compressive stress was 
measured to be 7.6 MPa. The temperature in the same point was 477°C. By using the graph in 
Figure 11 showing how the characteristic strength of concrete changes with temperature, it 
can be stated that about 70% of the characteristic concrete strength remains. 

Since fire is considered an accidental load in Eurocode the partial factor is γc = 1.2 for 
concrete, compared to γc = 1.5 which is the normal case. 

ோௗߪ  ൌ 0.70 ∗
25
ߛ

ൌ 0.70 ∗
25
1.2

ൌ 14.6  (8) ܽܲܯ

This calculation shows that the compression capacity is not exceeded. 

 

5.3.4.3 Studs to Concrete Connection 

From the thermal analysis it can be seen that the temperatures in the two studs are elevated, 
and especially the lower stud has such high temperature that it will affect the capacity of the 
steel, see Chapter 5.2. 

Comparing stresses in the lower stud soon after fire initiation and after 60 minutes of fire 
shows that the stress are increased along the entire stud after 60 minutes, see Figure 33. This 
can be an effect of the reduced steel properties, which results in a longer effective anchorage 
length of the studs. 

 

Figure 33: Stresses in the steel along the lower stud for times 5 min and 60 min after initiated 
fire 

 

It is also of interest to study the concrete in the region close to the studs. Since the applied 
load will create a rotation of the corbel the concrete must have the capacity to withstand shear 
forces along both upper and lower stud. 
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Shear stresses in the concrete are presented in Figure 34. It shows that the shear stresses are 
higher near the base plate in the CFCHS column. It is true in both upper and lower stud, but is 
more significant in the upper. 

The stresses are high enough to cause cracking of the concrete, but due to known limitations 
in the model it is not possible to conclude if the stress peaks occur neither in the correct 
position nor with the correct magnitude. What can be concluded is that this is a critical region 
and that the situation gets worse after exposure to fire. Cracking of concrete will cause 
redistribution of stresses and introducing stirrups in the model could also influence the stress 
pattern. Exactly how this will affect the system must be further investigated. 

 

Figure 34: Shear stresses in the concrete along the studs 
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6 Conclusions and Discussion 
The main interest in this report was to study if the PCs corbel is an efficient solution in case of 
fire. That it has several benefits in the building phase and in serviceability limit state has 
already been established, but considering fire was not enough investigated earlier. Also 
should the PCs corbels influence on heat distribution be studied and two column shapes be 
compared and evaluated. 

There is a need for further investigations before concluding that the PCs corbel is an suitable 
solution to use in a composite column like the case investigated in this master thesis, but the 
results given from Abaqus simulations presented in this report is cautiously optimistic and can 
be used as a base for further investigations. 

As expected does the corbel act as a heat bridge, but the temperatures in the connection are 
still kept on a lower level than could be foreseen. One explanation to this can be the large heat 
buffering effect from the concrete slab used to screen the fire, in combination with the design 
where only a small part of the PCs corbel is exposed to direct fire. 

Studying the PCs corbel exclusively shows that the temperature distribution is similar for 
CFCHS and CFRHS columns, see figures in Appendix D. Even if the temperature differences 
within the connection are small between the two column types, the difference has to be 
considered in other parts of the system. For example in the longitudinal reinforcement bars is 
maximal temperature difference about 80°C, highest in the CFRHS column. However the 
reinforcement temperature after 60 minutes of fire is still below the limit where steel’s yield 
strength is affected. It is therefore not possible to say that one column is preferable before the 
other considering fire design. 

Presented results show that the column shape to a small extent affect the temperature 
distribution, the difference is not enough to be able to recommend which one to use from a 
fire design point of view. Other aspects have to be considered as well, for example behaviour 
in serviceability limit state and aesthetics. The fact that fire design does not limit the selection 
considering cross section type must be seen as a benefit for the PCs corbel. It gives a freedom 
for the designer to choose circular or rectangular columns depending on what is best suited for 
the context, not only which withstands fire best. 

One effect of the fire is that stresses in the steel shell are redistributed to the concrete and 
longitudinal reinforcement bars, this since steels stiffness is considerably reduced, see Figure 
30. At room temperature the steel shell also holds the cross section together, when it loses 
stiffness the role is taken over by stirrups. 

As far as this study goes one cannot see any risk for total failure of the connection when 
exposed to 60 minutes of fire. Temperatures are elevated, but in general not high enough to 
cause severe degradation of the material properties, which is a condition needed to be present. 
This since the applied load (300kN) is not high enough to cause any failure at room 
temperature. 

Concerning the quasi-static analysis the generated results show almost no plastic behaviour in 
the steel. This could be prevented by adding a higher shear force to the system. Although this 
would be to exceed the design load used by Peikko it might be of interest since the load of 
300kN gave small deformations and a not very defined stress pattern for the connection. 

In this model are stresses created along the studs not high enough to cause neither yield 
failure in steel nor anchorage failure in the nearby region, but due to limitations in the model 
this possible failure mode most be investigated further. 
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As mentioned in the introduction is standard solutions like the PCs corbel preferable both 
from a reliability and economical point of view. Prefabrication and standard solutions is a 
growing branch within the building industry today. Therefore development of an already 
existing standard solution for use in new contexts is encouraged. From the results presented in 
this report there cannot be seen any reason why this development should not continue. 

 

6.1 Recommendations for Future Studies 
In this master thesis is some simplifications made and decisions about limitations are taken. 
This affects the results and therefore is further research needed to fully investigate the 
connection and its suitability for this kind of structure. 

The most important limitation made is the assumption of linear concrete behavior, which in 
practice means that an assumption of no cracks in the concrete is made. To be able to perform 
a complete analysis of the system must the non-linearity of concrete be built-in to the model. 
For example since cracks will for example lead to redistribution of stresses. 

The connection is modeled with an assumption of full interaction between all parts of the 
system. Any change in bond properties between concrete and steel due to temperature 
changes must also be included in a future model. 

Modelling of the ribbed surface can be done in a more advanced way by including the real 
geometry of the surface and the prestressing force in the bolts. When the temperature raise in 
the interface, the prestressing force will decrease and there will most likely be a redistribution 
of stresses to the upper bolt, which has as a lower temperature and thereby higher stiffness. If 
this will have a significant impact on the load bearing capacity is still to be investigated. 

In this master thesis it was agreed with Peikko to simplify the system of joists separating the 
fire on the lower floor from the upper floor with an equivalent concrete screen. Since the PCs 
corbel is designed to support a Deltabeam (composite beam, see Chapter 3.2) it would be 
more correct to include this one in the model. The difference will probably be very small 
compared to the results in this report. 

When the PCs corbel is used in a building it is likely to believe that there are several floors. 
Therefore it could be of interest to put a normal force on the column illustrating load coming 
from floors above, this load case was never discussed in this thesis. 

An alternative method to analyse this connection could have been by performing a coupled 
analysis. Coupled analysis means that temperature will be distributed in the same time as a 
mechanical load is applied. The difference between coupled analysis and the method used in 
this thesis is that the temperature distribution is loaded gradually with five minutes intervals. 
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Appendix A – Problem description (in Swedish) 
These drawings were provided by Peikko Sverige AB and show the connection and the 
original framing of the question. 
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Appendix B – PCs3 corbel dimensions 
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Appendix C – Pictures of the PCs3 corbel 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 44

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 45

Appendix D – More Simulation Results 
A selection of the most important results are presented in the report, more figures 
and details about the simulation results are collected in this appendix. 

 

Thermal Simulation Results 
One of the main objectives in this thesis was to study what a 60 minutes long fire 
will lead to when it comes to temperature distribution in to the connection. Based 
on these results also determine if the PCs corbel is a trustworthy connection detail. 
In this chapter additional results to those shown in Chapter 5.2 are presented. 

 

Connection in ‘Concrete Filled Rectangular Hollow Section’ 

Temperature distribution after 60 minutes of fire for the column with rectangular 
cross section is presented in Figures 35 and 36. They show a very similar behavior 
to the rectangular column seen in Figures 24 and 25. 

 

Figure 35: Temperature distribution in CFRHS connection after 60 minutes of fire. 
Blue=20°C Red=922°C 
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Figure 36: Blue =50°C Red=500°C 

 

Thermal Distribution in Corbel 

The most important part in the studied connection is the PCs corbel, in addition is 
steel much more sensitive to temperature changes than concrete. Therefore an 
extended analysis of temperatures in the corbel has been performed. 

Note that the simulation is performed with the corbel placed within the connection, 
but for studying the corbel exclusively all other parts are hidden. 

 

Corbel in ‘Concrete Filled Circular Hollow Section’ 

Figures 38-40 show the temperature distribution for the PCs corbel when placed in 
a CFCHS column, ߶273mm. 

For current temperature scale and spectrum see Figure 37. Note that the unit is 
Kelvin, to get the results in Celsius subtract 273 from the Kelvin temperature. 

 

Figure 37: Temperature scale in Kelvin 
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Temperatures are from 628.6°C (red region) down to 44.2°C (darkest blue regions) 
are found in the PCs corbel in the circular column. 

At temperatures over 400°C is the steels yield strength starting to decrease. Looking 
at the corbel from the side it can be seen that such high temperatures are found at 
the parts directly exposed to fire and the nearby region, see Figure 38. The lower 
stud is more critical than the upper since its temperature is considerably higher in 
the lower stud. 

 

Figure 38: Corbel in CFCHS from side 

 

In Figure 39 the backside of the corbel can be seen showing the U-shaped plate has 
an elevated temperature close to the lower corner (green region). 

 

Figure 39: Corbel in CFCHS from back 
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Figure 40: Corbel in CFCHS from front 

 

Corbel in ’Concrete Filled Rectangular Hollow Section’ 

Figure 41-44 show the temperature distribution for the PCs corbel when placed in a 
composite column with rectangular cross section, 250x250mm2. 

 

 

Figure 41: Temperature scale in Kelvin 

 

Temperatures from 596°C (red region) down to 48°C (darkest blue regions) are 
found in the PCs corbel in CFRHS column. 

Compared to the CFCHS column, the temperature span from highest to lowest 
temperature is smaller for the CFRHS column, ߂ ோܶ=547.2°C compared to 
߂ ܶ=584.4°C. 

Maximum temperature within the corbel is 33°C higher for a CFCHS column. 

Minimum temperature within the corbel is 4°C lower for a CFRHS column. 
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Figure 42: Corbel in CFRHS from side 

 

By studying Figures 42-44, showing temperature distribution in the corbel when 
placed in a rectangular column, it can be seen that it is very similar to the case with 
circular column. 

 

Figure 43: Corbel in CFRHS from back 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 50

 

Figure 44: Corbel in CFRHS from front 

 

Undisturbed Column Section 

Here is a comparison between CFCHS and CFRHS-columns presented. The 
comparison regards temperature distribution in a cutting plane where the section is 
not affected by the corbel connection, see Figures 45 and 46. 

 

Figure 45: Temperature distribution in CFCHS-column 
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Figure 46: Temperature distribution in CFRHS-column 

 

Reinforcement temperature is 302°C for the circular column and 380°C for the 
rectangular. 

A comparison between the two cross sections are made in Figure 47, here can it be 
seen that the temperature distribution is very similar in the two cases. Some small 
differences are expected since the circular has an outer diameter of 273mm 
compared to the quadratic with outer measurement 250x250mm2. Zero at the x-axis 
is placed centric of respectively column. 

 

Figure 47: Temperature in a cut through the middle of both CFCHS and CFCHS 
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Temperature distribution simulations has been made by Peikko, see Figure 48. This 
simulation is anyhow not based on Eurocode, but is still accurate enough to be used 
as a reference. 

 

Figure 48: Reference simulation provided by Peikko 

 

Stress Simulation 
As the temperature raises does stresses redistribute from the steel shell to the inner 
concrete core. In Figure 49 are the stresses in a CFCHS column presented before 
fire initiation and after 60 minutes of fire. Similar illustration from CFRHS column 
was presented in Chapter 5.3.2. 

 

Figure 49: Stress redistribution before fire initiation and after 60 minutes of fire 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 53

Appendix E – Extract from Abaqus Job Input Data 
 

[CFCHS corbel - Thermal analysis] 
** Job name: convect-temp2 Model name: Corbel-heat 
** Generated by: Abaqus/CAE 6.10-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** ---------------------------------------------------------------- 
**  
. 
. 
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Gap Conductance 
1000.,   0. 
   0.,1000. 
*Film Property, name=IntProp-2 
25. 
**  
** PHYSICAL CONSTANTS 
**  
*Physical Constants, absolute zero=0., stefan boltzmann=5.67e-08 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Initial Conditions, type=TEMPERATURE 
_PickedSet639, 293. 
**  
** INTERACTIONS 
**  
** Interaction: corbel-shield 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE 
_PickedSurf486, _PickedSurf485 
. 
. 
. 
** 
**  
** STEP: heat 
**  
*Step, name=heat, inc=150 
*Heat Transfer, end=PERIOD, deltmx=1500. 
300., 3600., 10., 3600.,  
**  
** INTERACTIONS 
**  
** Interaction: CONVECTION 
*Sfilm, amplitude="ISO834 kelvin" 
_PickedSurf641, F, 1., IntProp-2 
** Interaction: RADIATION CONCRETE 
*Sradiate, amplitude="ISO834 kelvin" 
_PickedSurf634, R, 1., 0.8 
** Interaction: RADIATION STEEL 
*Sradiate, amplitude="ISO834 kelvin" 
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_PickedSurf633, R, 1., 0.8 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT,  
*Output, history, frequency=0 
*End Step 
***********************************************************************
* 
[CFRHS corbel - Thermal analysis] 
** Job name: conv-rad-heat-R-column Model name: Corbel-heat-
rectangular-column 
** Generated by: Abaqus/CAE 6.10-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** ---------------------------------------------------------------- 
**  
** PART INSTANCE: Corbel-3-1 
**  
. 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Gap Conductance 
1000.,   0. 
   0.,1000. 
*Film Property, name=IntProp-2 
25. 
**  
** PHYSICAL CONSTANTS 
**  
*Physical Constants, absolute zero=0., stefan boltzmann=5.67e-08 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Initial Conditions, type=TEMPERATURE 
_PickedSet687, 293. 
**  
** INTERACTIONS 
**  
** Interaction: corbel-2-concrete 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE 
 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE 
_PickedSurf668, _PickedSurf671 
** ---------------------------------------------------------------- 
**  
** STEP: heat 
**  
*Step, name=heat, inc=150 
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*Heat Transfer, end=PERIOD, deltmx=1500. 
300., 3600., 10., 3600.,  
**  
** INTERACTIONS 
**  
** Interaction: CONVECTION 
*Sfilm, amplitude="ISO834 kelvin" 
_PickedSurf663, F, 1., IntProp-2 
** Interaction: RADIATION CONCRETE 
*Sradiate, amplitude="ISO834 kelvin" 
_PickedSurf660, R, 1., 0.8 
** Interaction: RADIATION STEEL 
*Sradiate, amplitude="ISO834 kelvin" 
_PickedSurf662, R, 1., 0.8 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT,  
*Output, history, frequency=0 
*End Step 
 

 
[CFRHS corbel – Quasi-static analysis (temperature dependent input 
data] 
** Job name: R-column-final Model name: Corbel-CFRHS-final 
** Generated by: Abaqus/CAE 6.10-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** ---------------------------------------------------------------- 
**  
 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Gap Conductance 
1000.,   0. 
   0.,1000. 
*Film Property, name=IntProp-2 
25. 
**  
** PHYSICAL CONSTANTS 
**  
*Physical Constants, absolute zero=0., stefan boltzmann=5.67e-08 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Displacement/Rotation 
*Boundary 
_PickedSet723, 1, 1 
_PickedSet723, 2, 2 
_PickedSet723, 3, 3 
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** Name: BC-2 Type: Displacement/Rotation 
*Boundary 
_PickedSet724, 1, 1 
_PickedSet724, 2, 2 
_PickedSet724, 3, 3 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Initial Conditions, type=TEMPERATURE, 
file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, step=2, inc=0, 
interpolate 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 5min 
**  
*Step, name="stress - 5min" 
*Static 
1., 1., 1e-05, 1. 
**  
** LOADS 
**  
** Name: Load-1   Type: Pressure 
*Dsload 
_PickedSurf736, P, 3.21964e+08 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=1, einc=1, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 10min 
**  
*Step, name="stress - 10min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=2, einc=2, interpolate 
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**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 15min 
**  
*Step, name="stress - 15min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=3, einc=3, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 20min 
**  
*Step, name="stress - 20min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=4, einc=4, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
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**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 25min 
**  
*Step, name="stress - 25min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=5, einc=5, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 30min 
**  
*Step, name="stress - 30min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=29, einc=29, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
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*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 35min 
**  
*Step, name="stress - 35min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=44, einc=44, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 40min 
**  
*Step, name="stress - 40min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=49, einc=49, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
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*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 45min 
**  
*Step, name="stress - 45min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=50, einc=50, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 50min 
**  
*Step, name="stress - 50min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=51, einc=51, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:67 61

** STEP: stress - 55min 
**  
*Step, name="stress - 55min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=52, einc=52, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: stress - 60min 
**  
*Step, name="stress - 60min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/conv-rad-heat-R-column.odb, 
binc=53, einc=53, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
NT, U, UR, UT 
*Element Output, directions=YES 
E, EE, PE, PEMAG, S, PEEQ 
*Output, history, frequency=0 
*End Step 
 

 
[CFCHS corbel – Quasi-static analysis (temperature dependent input 
data] 
** Job name: C-column-final Model name: Corbel-CFCHS-final 
** Generated by: Abaqus/CAE 6.10-2 
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*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Initial Conditions, type=TEMPERATURE, 
file=/beda/users/home/jkvist/convect-temp2.odb, step=2, inc=0, 
interpolate 
** ---------------------------------------------------------------- 
**  
** STEP: Stress -5min 
**  
*Step, name="Stress -5min" 
*Static 
1., 1., 1e-05, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Displacement/Rotation 
*Boundary 
_PickedSet597, 1, 1 
_PickedSet597, 2, 2 
_PickedSet597, 3, 3 
** Name: BC-2 Type: Displacement/Rotation 
*Boundary 
_PickedSet598, 1, 1 
_PickedSet598, 2, 2 
_PickedSet598, 3, 3 
**  
** LOADS 
**  
** Name: Load-1   Type: Pressure 
*Dsload 
_PickedSurf476, P, 3.21964e+08 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=1, 
einc=1, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
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*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 10min 
**  
*Step, name="Stress - 10min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=2, 
einc=2, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 15min 
**  
*Step, name="Stress - 15min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=3, 
einc=3, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
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*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 20min 
**  
*Step, name="Stress - 20min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=4, 
einc=4, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress -25min 
**  
*Step, name="Stress -25min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=5, 
einc=5, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
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**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 30min 
**  
*Step, name="Stress - 30min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=17, 
einc=17, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 35min 
**  
*Step, name="Stress - 35min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=31, 
einc=31, interpolate 
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**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
*Contact Output 
CDISP, CSTRESS 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 40min 
**  
*Step, name="Stress - 40min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=36, 
einc=36, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 45min 
**  
*Step, name="Stress - 45min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
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**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=39, 
einc=39, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 50min 
**  
*Step, name="Stress - 50min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=42, 
einc=42, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 55min 
**  
*Step, name="Stress - 55min" 
*Static 
1., 1., 1e-05, 1. 
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**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=45, 
einc=45, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Stress - 60min 
**  
*Step, name="Stress - 60min" 
*Static 
1., 1., 1e-05, 1. 
**  
** PREDEFINED FIELDS 
**  
** Name: Predefined Field-1   Type: Temperature 
*Temperature, file=/beda/users/home/jkvist/convect-temp2.odb, binc=46, 
einc=46, interpolate 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
*Node Output 
CF, NT, RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S, TEMP 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 

 

 



 

 


