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Abstract

This thesis deals with inference problems related to the growth-interaction process (GI-
process). The GI-process is a continuous time spatio-temporal point process with dynamic
interacting marks (closed disks), in which the immigration-death process (ID-process) controls
the arrivals of new marked points as well as their potential life-times. The data considered
are marked point patterns sampled at fixed time points and the main area of application of
the GI-process is the dynamical modelling of the trees in a forest stands.

The parameters related to the development of the marks are estimated using the least-squares
(LS) approach. The death rate, which is assumed to be a function of the mark sizes, and the
arrival intensity and are estimated by (approximate) maximum likelihood (ML) methods. We
also propose three edge correction methods for discretely sampled (marked) spatio-temporal
point processes. The edge correction methods together with the LS approach are applied to
fit the GI-process to a forest stand of Scots pines.

We derive the transition probabilities of the (Markovian) ID-process, which form the likeli-
hood function of its two parameters. We further reduce the ML-problem from two dimensions
to one dimension. Given an equidistant sampling scheme and some conditions for the pa-
rameter space, we manage to prove the consistency and the asymptotic normality of the
ML-estimators. The results are also evaluated numerically.

Measurements of locations and radii at breast height (rbh) made at 3 different time points
of the individual trees in 10 Swedish Scots pine stands, are modelled spatio-temporally by
the GI-process. A new location assignment strategy and a more flexible function for the
open-growth (growth in absence of competition) are suggested in order to improve the fit.
A linear relationship is found between the site productivity index (fertility) and the sizes of
the trees. This relationship is exploited in the estimation of the carrying capacity parameter
(theoretical upper bound for the radii). We also test the goodness-of-fit of the fitted model
in terms of prediction.

By adding scaled continuous white noise to the mark growth equations, we obtain a system
of stochastic differential equation (SDEs) for the mark growth. We consider the case where
there is no interaction present and the mark SDEs are independent Cox-Ingersoll-Ross SDEs.
Closed form expressions are available both for the transition densities and the stationary
distributions. Under the assumption that the mark processes are stationary, consistency and
asymptotic normality of the ML-estimators of the parameters are proved.

Keywords: Asymptotic normality, Consistency, Cox-Ingersoll-Ross process, Diffusion pro-

cess, Edge correction, Goodness-of-fit, Richards growth function, Growth-interaction process,

Immigration-death process, Least squares estimation, Markov process, Maximum likelihood

estimation, Open-growth, Spatio-temporal marked point process, Stationarity, Stochastic

differential equation, Transition density.
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Chapter 1

Introduction

In many different instances in our surrounding world we find point patterns of
different kinds. Such patterns include galaxy locations, locations of earthquake
epicentres, locations of cell centres and locations of trees in a forest stand. In
order to help analysing point patterns the field of spatial statistics has lent a
helping hand and has simultaneously also been developing through it. The field
of spatial statistics incorporates a few different disciplines within the field of
stochastic mathematics and in this thesis we will focus on the parts played by
stochastic geometry (the study of random geometrical objects) and spatial point
processes (the study of random point structures) (see e.g. [7, 10, 20, 21, 33]).

Sometimes one does not solely record the locations of the points in a point
pattern but also some additional features connected to each point, such as
the radii of the trees in a forest stand or the amount of seismic energy in
earthquakes. This additional variable, called a mark, can often be quite helpful
in explaining the behaviour of the point pattern in question. When focusing
on the statistical analysis of these point patterns or marked point patterns, we
employ spatial point processes or marked spatial point processes, respectively
(see e.g. [7, 12, 20, 33, 34]). However, to a large extent, the field of spatial
(marked) point processes has mainly concentrated on treating marked point
patterns within a purely spatial framework. In such a setting one fully ignores
that the patterns studied, in fact, almost always are results of evolutionary
processes in which the changes occurring among the marks are time dependent.
Such situations motivate a change of regime to an approach where one instead
considers spatio-temporal marked point processes (see e.g. [14, 24, 36]). To fully
take the evolution of these marked patterns into consideration it is reasonable
to demand that the models describing them should incorporate interaction
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2 1. Introduction

between marks during the development phases.

The application motivating the work presented in this thesis is found in forestry.
Treating a forest stand which is recorded at a specific time point as a static
entity, thus ignoring the temporal aspects, the literature offers a wide range
of statistical tools for analysing and drawing conclusions about its inherent
features, whether one includes marks or not (see e.g. [12, 20, 16, 34] to mention
a few). However, here we are interested in modelling the development of a forest
stand in both space and time. Figure 1.1 illustrates the type of recorded time
series of marked point patterns we refer to – a data set of Swedish Scots pines
recorded in 1985, 1990 and 1996 where we have scaled the radii (our marks)
for more clear visualisation.
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Figure 1.1: Locations and sizes (measured in metres) of Swedish Scots pines
recorded in 1985 (left), 1990 (middle) and 1996 (right). The radii of the trees
(marks) are scaled by a factor of 10.

A clear risk when formulating the type of spatio-temporal models we are inter-
ested in is that the models easily become too involved and we loose both trans-
parency, interpretability and tractability (see e.g. [15]). A spatio-temporal
marked point process which manages well to describe this type of spatio-
temporal behaviour of a marked population is the so called Growth-Interaction
process (GI-process) (see [28, 29, 32] or Papers I and III), which is a combi-
nation of stochastic and deterministic components (note that it has also been
referred to as the Renshaw-Särkkä growth-interaction model). It has been used
to study, among other things, the development of forest stands [32]. Since this
model, in spite of being very flexible, is both tractable and easily interpreted
it is quite natural to further assess its potential. In the coming chapters we
will present and discuss the GI-process together with different statistical tools
developed for it (and other models of this type) and further developments of
it.

Since this process deals with both space and time we need to be able to fit, not
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only, the stochastic process controlling the arrivals and deaths of new marked
points in time, but also the mechanism controlling the growth of and interaction
between the marks. In the GI-process the arrivals and deaths are controlled by
a so-called immigration-death process (ID-process) – a continuous time Markov
chain.

In both Paper I and Paper II estimators for the two parameters of the ID-
process are given and in Paper I we also recall how the growth and interaction
parameters of the GI-process are estimated. Additionally in Paper I, for the
Scots pine data in Figure 1.1, we evaluate some of the estimators of the GI-
process in the context of the edge correction methods developed in Paper I. In
Paper II, where the likelihood estimation of the discretely sampled ID-process
is tackled, we prove that the obtained likelihood estimators are both consistent
and asymptotically normally distributed. Having obtained ideas in Paper I
about how to improve the fit of the GI-process, in Paper III the model is
altered in the way individuals (trees) are assigned locations in the study region
and in the way they grow in absence of competition (open-growth). As the
main objective of Paper III is to evaluate further how the GI-process fits Scots
pine data, we fit the model to a series of pine data sets of the type presented
in Figure 1.1 and finally exploit a set of goodness-of-fit procedures (spatial
and forestry related) to assess the fit of the predicted model. In Paper IV we
modify the model by adding scaled white noise to the equations which govern
the growth of the marks, and hereby the mark growth will be driven instead by
a system of stochastic differential equations (SDEs). By utilizing the findings
in Paper II and properties of the mark SDEs, under the restriction that there
is no interaction present among the individuals, a full likelihood estimation
procedure is developed in Paper IV. By putting some additional restrictions on
the SDEs, consistency and asymptotic normality are proved.
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Chapter 2

The process

We will here define the spatio-temporal marked point process ΦM (t) =
{[Xi,Mi(t)] : i ∈ Ωt}, which we refer to as the Growth-Interaction process
(GI-process) (see e.g. [32], Paper I and Paper IV). Consider a spatial study
region W , which either is given by a subset of the Euclidean space R

2 (or
possibly R

3) or by a torus (see e.g. [12]). As time t ∈ [0, T ) ⊆ [0,∞) passes,
individuals (marked points) arrive to W at random times and receive loca-
tions Xi ∈ W . Additionally, as time passes, the dynamical and interacting
marks Mi(t) change size until they die and leave W . In order to keep track
of which individuals are alive at a given time, we define the index process
Ωt = {indices of individuals alive at time t} . Before giving a detailed descrip-
tion of the GI-process, however, we first describe the immigration-death pro-
cess, {N(t)}t≥0, which controls the arrivals and deaths.

2.1 The immigration-death process

The immigration-death (ID) process, {N(t)}t≥0, is a time-homogeneous ir-
reducible continuous-time Markov chain (see e.g. [23]) where the possible
states for which transitions i → j are possible are supplied by the state space
E = N = {0, 1, . . .}. It is governed by the parameter pair γ = (α, µ) which we
here assume to take values in some compact parameter space Γ ⊆ R

2
+.

One way of viewing {N(t)}t≥0 is to treat it as a special case of a birth-death

5



6 2. The process

process, for which the infinitesimal transition probabilities are given by

pij(t; γ) := P (N(h+ t) = j|N(h) = i) =






λit+ o(t) if j = i+ 1
1− (λi + µi)t+ o(t) if j = i
µit+ o(t) if j = i− 1
o(t) if |j − i| > 1,

where the birth rates are given by λi = α, i = 0, 1, . . ., and the death rates are
given by µi = iµ, i = 0, 1, . . ., (see [17], p. 268-270). Within this framework
the interpretation of {N(t)}t≥0 is the following. By letting the arrivals of new
individuals to a population occur according to a Poisson process with intensity
α and upon arrival assigning to all individuals independent and exponentially
distributed lifetimes with mean 1/µ, N(t) gives us the number of individuals
alive at time t. Another possibility is to view it as an M/M/∞ queuing system;
each customer (arriving according to a Poisson process with intensity α) is being
handled by its own server so that its sojourn time in the system is exponential
with intensity µ and independent of all other customers.

Being a Markov process, the finite dimensional distributions of {N(t)}t≥0 are
controlled by its transition probabilities, pij(t; γ) which are given in Paper II.

Proposition 2.1.1 (Paper II). The transition probabilities of the ID-process
are given by convolutions of Poisson densities and Binomial densities, i.e.

pij(t; γ) =
(
f
Poi(ρ)

∗ f
Bin(i,e−µt)

)(
j
)

=

j∑

k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) =

i∧j∑

k=0

f
Poi(ρ)

(j − k)f
Bin(i,e−µt)

(k)

=
e−

α
µ (1−e−µt)

j!

j∑

k=0

(
α

µ

)k (
j

k

)
e−(j−k)µt

(1− e−µt)j−2k−i

i!

(i− (j − k))!

where i, j ∈ E = N, γ = (α, µ) ∈ Γ ⊆ R
2
+, f

Poi(ρ)
(·) is the Poisson density

with parameter ρ = α
µ (1− e−µt), and f

Bin(i,e−µt)
(·) is the Binomial density

with parameters i and e−µt. Moreover, we have that the probability generating
function (p.g.f.) of (N(s+ t)|N(s) = i) is given by

Gi (s; γ) =
(
1 + (s− 1) e−µt

)i
eρ(s−1) (2.1)

and

E[N(s+ t)|N(s) = i] = i e−µt +ρ (2.2)

E[N2(s+ t)|N(s) = i] = i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.



2.2. The GI-process 7

The interpretation of pij(t; γ) is quite clear. Note that

fPoi(ρ)(j − k) = P(j − k new arrivals during (h, h+ t))

fBin(i,e−µt)(k) = P(k of the i individuals alive at time h survive (h, h+ t)),

so that pij(t; γ) expresses the sum of the probabilities of all possible ways
in which we can decrease i individuals to j individuals. Furthermore, when
i ≤ j, we get that pij(t; γ) simply represents the convolution of the Bin(i, e−µt)-
density and the Poi(ρ)-density. One can easily show that for the marginal
distributions of {N(t)}t≥0 we have that P(N(t) = j|N(0) = 0) = e−ρ ρj/j!, i.e.

(N(t)|N(0) = 0) ∼ Poi
(
α
µ (1 − e−µt)

)
, and that (N(t)|N(0) = 0)

d→ Poi(α/µ)
as t → ∞. Note that this invariant distribution is unique due to the positive
recurrence, and it is also the same as its asymptotic distribution since every
asymptotic distribution is an invariant distribution.

Proposition 2.1.2. The ID-process is ergodic with invariant distribution πN
given by the Poisson distribution with mean α/µ, i.e. πN (·) = P(Poi(α/µ) ∈ ·).

A further characterisation of {N(t)}t≥0 which sometimes is useful to exploit is
to consider {N(t)}t≥0 as a Markov jump process (see Paper II).

Proposition 2.1.3 (Paper II). Let γ = (α, µ) ∈ Γ ⊆ R
2
+. {N(t)}t≥0 is a

Markov jump process with state space E = N, jump intensity function

λ(γ; i) = α+ µi, i ∈ E,

and transition kernel r(γ; ·) = {r(γ; i, j) : i, j ∈ E}, where

r(γ; i, j) =
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) , i, j ∈ E.

2.2 The GI-process

The process ΦM (t) = {[Xi,Mi(t)] : i ∈ Ωt} can be described as follows. As time
elapses, the arrivals in time of new individuals to W ⊆ R

2 and the time these
individuals live in W are governed by an ID-process, N(t), having arrival/birth
rate αν(W ) and death rate µ, where ν(·) denotes volume in R

2. Furthermore,
for the N ∼ Poi(αν(W )T ) individuals who arrive during [0, T ), upon arrival
at times B1, . . . , BN they are assigned locations Xi ∈ W (precise description
given below) and initial marks Mi(Bi) = M0

i , i = 1, . . . , N , with the latter
taken either as some fixed positive value (as will be the case here), or as a
value drawn from some suitable distribution ([32] considers M0

i ∼ Uni(0, ε),
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ε > 0). When an individual’s (Exp(µ)-distributed) life time has expired at
time Di we say that its has suffered a natural death and we set its size to 0.

Once individual i has arrived it starts growing deterministically according to

Mi(t) = M0
i +

∫ t

Bi

dMi(s), Bi ≤ t ≤ Di, (2.3)

where

dMi(t) = f(Mi(t); θ)dt −
∑

j∈Ωt

j 6=i

h (Mi(t),Mj(t), Xi, Xj ; θ) dt.

Here Ωt = {i ∈ {1, . . . , N} : individual i is alive at time t}, θ is a parame-
ter vector, the function f (Mi(t); θ) determines the open-growth of mark i
(growth in absence of competition with other (neighbouring) individuals) and
h (Mi(t),Mj(t), Xi, Xj ; θ) is a function handling the individual’s spatial (pair-
wise) interaction with other individuals. We note that as a radius/mark Mi(t)
changes with time, also the closed disk BXi

[Mi(t)] with centre Xi and radius
Mi(t), which denotes the occupied space, will change in size.

In addition to the natural death, an individual can die competitively which we
consider to happen as soon as Mi(t) ≤ 0, and the we set Mi(t) = 0 once this
happens.

In Papers I and IV we assign the locations to the individuals according to
Xi ∼ Uni(W ). We note that for this choice, when we ignore the competitive
deaths, at each fixed time t the locations form a spatial Poisson process with
intensity α

µ (1 − e−µt), which is restricted to W . In Paper III, however, we

let Xi ∼ Uni(W \⋃i∈Ωj∈ΩBi

BXj
[Mj(Bi)]), i.e. we let the location of the ith

individual be uniformly distributed on the part of W which is not covered by
other trees.

We note that in the case of no interaction, i.e. when h(·) = 0, expression (2.3)
turns into dM(t)/dt = f (M(t); θ), M(0) =M0, which has M(t) as its solution
(for simplicity we here write M(t) for Mi(t)). The literature offers a wide range
of possible choices for the growth function (see e.g. [31]), and one of the models
considered in this thesis is the Richards growth function (see e.g. [28, 31]),
which is given by

dM(t)

dt
= f (M(t); θ) =

λ

δ
M(t)

((
K

M(t)

)δ

− 1

)
,

M(t) = K
(
1 +

(
(M0/K)δ − 1

)
e−λt

)1/δ
,
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which is a strictly increasing growth function with carrying capacity (upper
bound/asymptote) K > 0 and growth rates δ 6= 1 and λ > 0. If we set δ = −1,
we obtain as special case the so called logistic growth function. The logistic
growth function has been considered in most of the papers which deal with the
GI-process (see e.g. [32] or Paper I), and the more general Richards growth
function has been employed in both [28] and in Paper III for the modelling of
Scots pine stands.

Just as for the individual growth function, the possible choices of spatial inter-
action functions are many (c.f. [22, 28, 32] for examples of interaction functions
and related discussions). One example is given by (see [32])

h (Mi(t),Mj(t), Xi, Xj ; θ) = c1
{
BXi

[rMi(t)] ∩BXj
[rMj(t)] 6= ∅

}
,

where 1{A ∈ ·} denotes the indicator function for the set A, c ∈ R is the
force of interaction and r > 0 is the scale of interaction. Furthermore, the
closed disk BXi

[rMi(t)] with centre Xi and radius rmi(t) is referred to as the
’influence zone’ of individual i. Since competition for resources takes place
only within influence zones ([3, 37]), individuals i and j will compete only
when their influence zones intersect, i.e. when BXi

[rMi(t)] ∩BXj
[rMj(t)] 6= ∅.

This symmetric interaction function has the effect that small individuals have
the same impact on large (neighbouring) individuals as the large individuals
have on small individuals. Unless our forest stand consists of trees of similar
size, this interaction function becomes unrealistic. In order to circumvent this
problem we here consider instead the so called area interaction function, given
by

h (Mi(t),Mj(t), Xi, Xj; θ) = c
ν
(
BXi

[rMi(t)] ∩BXj
[rMj(t)]

)

ν (BXi
[rMi(t)])

, (2.4)

This non-symmetric soft core interaction has the effect that large marks in-
fluence small marks more than the other way around, yet allowing the small
marks to play their part. This interaction model is more realistic in tree mod-
elling applications than symmetric interaction models (see [28, 32]). Depending
on the choice of parameters, this area interaction function has the ability to
generate regular as well as aggregated point patterns (despite the possible un-
derlying uniform distribution of the locations) [27]. Note that the parameter r
determines how large the range of interaction is and c mainly determines how
regular the point patterns are.

2.2.1 The natural death rate

As previously mentioned the so called natural deaths are governed by the death
process part of the ID-process. In situations where it seems plausible that the
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natural deaths depend on an individual’s size, we may let the death rate be
given by some function µη(·), µ > 0, where η(·) is a function of the marks. This
means that as time passes the Exp(µη(Mi(t)))-distributed remaining lifetime
of an individual will change with its size. An alternative way of expressing the
behaviour of the death process is to say that the conditional probability that an
individual i dies naturally during (t, t+ dt), given Mi(t), equals µη(Mi(t)) dt+
o(dt). Note that if η(·) ≡ 1, we retrieve the ordinary ID-process. In Paper I,
we choose to evaluate the GI-process under η(Mi(t)) = 1/(1 +Mi(t)) which
implies that individuals become more viable as they grow; a choice motivated
by our forestry applications. In Papers II and IV, as well as in [27, 28, 29, 32]
the model is chosen to have η(·) ≡ 1.

2.2.2 Remarks about the competitive death

As previously mentioned, one of the possible death occurrences present in the
GI-process is the competitive death. Consider the infinitesimal-size interval
(t, t+ dt) and recall that we classify an individual as having died from compe-
tition in (t, t + dt) if Mi(t) > 0 and Mi(t + dt) ≤ 0. Let us call this scenario
1. Consider now an alternative approach, which we call scenario 2, where the
individual suffers a competitive death if Mi(t) > 0 and dMi(t) < 0. Now a rea-
sonable question emerges, namely, which of the two scenarios should be used
to represent competitive/interactive death for tree data. In a tree stand model
one could argue that scenario 1 is a more appropriate view than scenario 2
since trees do not disappear immediately after they die. This thus indicates
that they should not be removed as soon as dMi(t) < 0, since dead trees occupy
the ground where they have been standing some time after their deaths. Also,
to some extent, dead trees inhibit the nutrient access and light absorption of
other trees close to it. Furthermore, it is not reasonable that a new tree would
end up very close to the centre of a one. Although a bit artificial in its nature
we thus have chosen to use of scenario 1 to represent competitive deaths, just
as in [32].

2.3 The stochastic GI-process

In the case where the mark equations of expression (2.3) are instead given by
stochastic differential equations (SDEs), we refer to ΦM (t) = {[Xi,Mi(t)] :
i ∈ Ωt} as the spatio-temporal stochastic growth-interaction process. In the
simplified case where there is no interaction between the individual, i.e. h(·) =
0, we will simply refer to ΦM as the spatio-temporal stochastic growth (SG)
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process. Note that in this case there is no competitive death.

We build ΦM in two steps: The underlying marked point process Φ(t), governs
the locations of the individuals on W as well their arrival times and lifetimes,
and the marking process, which may be regarded as an extension of Φ, assigns
the set of processes which control the growth of the marks (disks) BXi

[Mi(t)].

We start by describing the underlying process Φ. Consider an ID-process N(t)
which controls the arrival times B1, . . . , BN , lifetimes L1, . . . , LN and death
times Di = min(Bi +Li, T ) = (Bi +Li)∧T of the N = Φ(T ) ∼ Poi(αTν(W ))
individuals who arrive toW at the locationsXi ∼ Uni(W ). The process Φ(t) is
given by the marked Poisson process B1, . . . , BN on [0, T ) for which the marks
are given by the pairs (Li, Xi) (note that conditional on N , Bi ∼ Uni(0, T )).
Note that here Ωt = {i ∈ {1, . . . , N} : t ∈ [Bi, Di]}, Ω0 = ∅, and N(t) = |Ωt|.

We now turn to the second part of ΦM . Given some suitable diffusion coefficient
σ(x) and independent standard Brownian motions Wi(t), i = 1, . . . , N , we have
that, loosely speaking, the mark radii are controlled by the system of SDEs
(dM1(t), . . . , dMN (t)), where

dMi(t) = f(Mi(t); θ)dt −
∑

j∈Ωt

j 6=i

h (Mi(t),Mj(t), Xi, Xj ; θ) dt

+σ(Mi(t))dWi(t),

and Mi(t) = 0 for t /∈ [Bi, Di].

In the special case of the SG-process, which is studied in Paper IV, we let
f(x) = λ(1 − x/K), h(·) = 0 and σ(x) = σ

√
x, whereby we obtain a system of

independent (time-shifted) Cox-Ingersoll-Ross (CIR) processes for the growth
of the marks (see e.g. [6, 13, 19]). We make this precise by letting t ∈ [0, T )
denote our global time and consider the ith CIR-process {Yi(t)}t∈[0,T ) where,
given Yi(0) = M0

i and the Brownian motion Wi(t), the SDE generating Yi(t)
is given by

dYi(t) = λ (1− Yi(t)/K) dt+ σ
√
Yi(t)dWi(t), (2.5)

so that its integral form is given by

Yi(t) = M0
i +

∫ t

0

λ

(
1− Yi(s)

K

)
ds+

∫ t

0

σ
√
Yi(s)dWi(s). (2.6)

By then letting τi(t) = t−Bi be our ith local time and defining

Mi(t) =

{
Yi(τi(t)) for t ∈ [Bi, Di]
0 for t /∈ [Bi, Di]

, (2.7)
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we have expressed Mi(t) by means of the global time scale.

The parameters (λ,K, σ) ∈ Θλ × ΘK × Θσ ⊆ R
3
+ in this mean-reverting SDE

control different aspects of the growth: The diffusion coefficient σ controls the
magnitude of the random individual fluctuations of the radii. The interpreta-
tion of the remaining two parameters becomes most clear by noticing that Yi(t)
is a so called mean-reverting process: As Yi(t) starts to move away from its long
term equilibrium K, the drift term starts pulling it back towards K and the
speed at which this occurs is given by λ/K. Related to this interpretation we
find that if we set σ = 0 in expression (2.5), we retrieve the GI-process (without
interaction) and the size development of the disks will comprise the differen-
tial equation dYi(t) = λ (1− Yi(t)/K)dt. This differential equation is often
referred to as the linear growth function (see e.g. [28, 32]) and in this setting
the parameter λ is referred to as the (individual) growth rate and recall that
the upper bound K is the carrying capacity. In conclusion, ΦM is controlled by
the parameter vector θ = (λ,K, σ, α, µ) ∈ Θ = Θλ×ΘK×Θσ×Θα×Θµ ⊆ R

5
+.

We note that we also may treat ΦM (t) as a multivariate (N -dimensional) dif-
fusion (hence a Markov process), for which all components are independent,
stopped and time-shifted CIR-processes.

Regarding the initial size Mi(Bi) = Yi(0) = M0
i , a few different options are

available. As previously mentioned, the choices M0
i ≡ M0 ∈ R+ and M0

i ∼
Uni(0, ε), ε > 0, have already been explored (see e.g. [32] and Paper I). Here,
however, we also have the further option to sample each Mi(Bi) from the
stationary distribution of Yi, which turns the radius diffusion processes into
strictly stationary processes.

It is also possible to represent ΦM as a spatial entity, under the condition
that T <∞. By restricting a homogeneous spatial Poisson process on R

2 with
intensity αT to W ⊆ R

2 (see e.g. [10, 12, 30, 33]), we obtain the Poisson process
Φ′ = {X1, . . . , XN} with intensity measure Λ(B) = αTν(B ∩W ), B ∈ B(R2),
where ν(·) denotes Lebesgue measure and B(R2) are the Borel sets in R

2. By

now considering ΦM = {[Xi,Mi([0, T );Bi, Li)]}Ni=1, which is a marked version
of Φ′ such that the ith mark is given by the random element Mi([0, T );Bi, Li) :
X → Vi = {f ∈ C+

[0,T ) : supp(f) = [Bi, Di]}, where C+
[0,T ) = {f : [0, T ) → R+ :

f > 0, f continuous} and supp(f) denotes the support of the function f , we
have obtained a different representation of the SGI-process. Note that ΦM is a
marked spatial Poisson process for which the marks are random elements which
take values in the function space {f ∈ C+

[0,T ) : supp(f) ⊆ [0, T )}, and in the

case of the SGI-process these random elements are dependent.
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2.3.1 Distributional properties of the SG-process

We give here some results concerning different properties of the CIR-process
(they can be found in e.g. [6, 19]) and then turn to the finite dimensional
distributions (fdds) of the SG-process (its likelihood function is given by the
joint density).

When 2λ ≥ σ2 the process Yi(t) stays strictly positive [6], and we note that this
means that the drift of the SDE dYi(t) must be large enough, in comparison to
the diffusion term, to ensure that the mean-reversion is strong enough to keep
the process a.s. positive. By recalling that the individual is alive if Mi(t) > 0,
it becomes clear that we will have to require that 2λ ≥ σ2 so that Mi(t) > 0
for all t ∈ [Bi, Di]. Moreover, since Yi(t) is a Markov process, when we require
that 2λ ≥ σ2, it is possible to derive explicit statements about the transition
distributions, i.e. the distributions of the random variables Yi(t)|Yi(s), s ≤ t.
For instance, under the hypothesis that 2λ ≥ σ2 and s ≤ t, the transition
density of Yi(t), conditional on Yi(s) = ys, is given by the noncentral χ2-
distribution density

pYi
(t− s, yt|ys;λ,K, σ) = a e−(u+v)

(v
u

)q/2
Iq
(
2
√
uv
)
, (2.8)

where a = 2λ/
(
σ2K

(
1− e−(t−s)λ/K

))
, u = ays e

−(t−s)λ/K , v = ayt and q =
2λ/σ2 − 1. The function Iq(x) =

∑∞
k=0(x/2)

2k+q/k!Γ(k+ q+1), x ∈ R, where
Γ(·) denotes the gamma function, is the modified Bessel function of the first
kind of order q.

The ergodic process Yi(t) also has a stationary (invariant) distribution π =
πλ,K,σ which is given by the Gamma distribution with shape parameter 2λ/σ2

and scale parameter σ2K/2λ. Hereby, the density of the stationary distribution
is given by

π(x;λ,K, σ) =

(
2λ/σ2K

)2λ/σ2

Γ(2λ/σ2)
x2λ/σ

2−1 e−x(2λ/σ2K), x ≥ 0, (2.9)

so that π has mean K and variance σ2K2/2λ and, moreover, for s < t, the

covariance function of Yi is given by Cov(Yi(s), Yi(t)) =
σ2K2

2λ e−(t−s). As pre-
viously mentioned Yi(t) is a Markov process and given that we start a Markov
process in its stationary distribution, it is a strictly stationary process. In
the case of Yi(t) this means that Yi(0) = M0

i ∼ π and that its fdds are shift
invariant w.r.t. time, i.e. (Yi(T1), . . . , Yi(Tn)) =d (Yi(T1 + h), . . . , Yi(Tn + h))
for any set of times T1 < . . . < Tn, any h ≥ 0 and any n ∈ N. Hereby the
marginal/transition distributions do not change, i.e. for any (s, t), t > s ≥ 0,
Yi(t) ∼ π and Yi(t)|Yi(s) ∼ π.
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Since both the ID-process and the CIR-process are Markov processes, also
the SG-process will be Markovian, and this fact is exploited in Proposition
2.3.1, where the fdds of ΦM (t) are given. To set the framework, consider
now the (sample) times 0 = T0 < T1 < . . . < Tn ≤ T and the distribu-

tion of (ΦM (T1), . . . ,ΦM (Tn))
T , when we are concerned with exactly, say,

d ∈ {1, . . . , N} individuals which appear at T1, . . . , Tn (recall that N is the
total number of individuals observed if we monitor the process continuously).

Furthermore, provided that the joint density of (ΦM (T1), . . . ,ΦM (Tn))
T

exists,
when evaluated at the size-time matrix

M =



m11 · · · m1n

...
. . .

...
md1 · · · mdn


 ∈ R

d×n,

we will denote it by pT1,...,Tn
(M; θ). It should be emphasized that the ith row

of M represents the evaluation-sizes of the ith individual under consideration,
at the respective times T1, . . . , Tn. We further also note that if mik = 0,
we are considering the case where the ith individual is not alive at time Tk.
Consequently, if a row were to contain only zeros, we would be considering an
individual who is not alive at any of T1, . . . , Tn, whence that individual/row
may be removed from consideration.

Proposition 2.3.1 (Paper IV). Given 0 = T0 < T1 < . . . < Tn ≤ T
and ΦM (T0), if we let M0

i = M0 > 0 for all i, then the joint density of

(ΦM (T1), . . . ,ΦM (Tn))
T
, evaluated at M ∈ R

d×n, d ≥ 1, is given by

pT1,...,Tn
(M; θ) = C

n∏

k=1

pN

(
∆Tk, |ωk|

∣∣∣|ωk−1|;αν(W ), µ
)

(2.10)

×
n∏

k=1

∏

i∈ωk−1∩ωk

pY1(∆Tk,mik|mi(k−1);λ,K, σ)

×
d∏

i=1

∫ Tki

Tki−1

pY1(Tki
− t,mi(ki−1)|M0;λ,K, σ)

Tki
− Tki−1

dt,

where ∆Tk = Tk − Tk−1 and ωk = {i : mik > 0}, k = 1, . . . , n, and ki =
min{k : i ∈ ωk}, i = 1, . . . , d. C = C(ν(W ),M) is a positive constant, and
the densities pY1(·) and pN (·) are given, respectively, by expression (2.8) and
Propostion 2.1.1.

We recall that when M0
i ∼ π, the process Yi(t) is a strictly stationary process

and this will have a further impact on the joint densities in Proposition 2.3.1.
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Corollary 2.3.1 (Paper IV). Given the preliminaries and notation of Propo-
sition 2.3.1, by instead assuming that M0

i ∼ π, the joint density (2.10) becomes

pT1,...,Tn
(M; θ) = C

n∏

k=1

pN

(
∆Tk, |ωk|

∣∣∣|ωk−1|;αν(W ), µ
)

×
n∏

k=1

∏

i∈ωk

π(mik;λ,K, σ). (2.11)

We may additionally require that also N(t) starts in its stationary distribu-
tion πN (see Proposition 2.1.2) so that also N(t) becomes a strictly stationary
process. Hereby the transition probabilities pN

(
∆Tk, |ωk|

∣∣|ωk−1|;αν(W ), µ
)

in
(2.11) in the above corollary will be replaced by πN (|ωk|;αν(W ), µ), which is
given in Proposition 2.1.2. Note that this change will imply that N(t) = |Ωt| ∼
Poi(α/µ) for all t ≥ 0 and under this setup, since all Yi’s are stationary, we
have that Mi(0) ∼ π for all individuals i ∈ Ω0.

We note further that if M0
i ∼ π, conditionally on Ω0 = ∅, the process

Ξ(t) =
⋃

i∈Ωt
BXi

[Mi(t)] at each fixed time t corresponds to a Boolean model
(see e.g. [33]) with germs {Xi}i∈Ωt

generated from a Poisson process with
intensity measure Λt(B) = α

µ (1− e−µt)ν(B ∩W ), B ∈ B(R2), and grains given

by {BXi
[Mi(t)]}i∈Ωt

, where all Mi(t)’s are iid Γ(2λ/σ2, σ2K/2λ)-distributed.
Note that this follows since Ωt can be generated as a thinned Poisson process
(see Paper II).
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Chapter 3

Parameter estimation

Assume now that we sample the process at times 0 = T0 < . . . < Tn = T .
Then, for each k = 1, . . . , n, this gives rise to a sampled marked point config-
uration X(Tk) = {[xi,mik] : i ∈ ΩTk

} (Figure 1.1 illustrates such a scenario).
We start by considering the estimation of GI-process (Papers I and III), then
we consider the (asymptotic) Maximum Likelihood (ML) inference for the ID-
process (Paper II) and the SG-process (Paper IV), and we finally briefly discuss
the edge correction methods developed in Paper I.

3.1 Estimation of the GI-process parameters

3.1.1 Estimation of the growth and interaction parame-

ters

The following least squares approach for estimating the mark related parame-
ters, θ = (λ,K, c, r) ∈ R

2
+ × R× R+, and method for the labeling of naturally

dead individuals originally was suggested in [32]. We here present it in the
context of an open-growth function with two parameters λ and K and an in-
teraction function with the parameters c and r. The procedure can easily be
altered to accommodate any other open-growth and interaction functions. Let{
m̃i (Tk+1; θ,X(Tk)) : i ∈ ΩTk

}
denote the set of predictions of the actual data

marks,
{
mi(k+1) : i ∈ ΩTk

}
, generated by equation (2.3) under the regime of θ,

based on the configuration X(Tk) (in practice we employ the simulation algo-
rithm presented in [32] in order to create each predicted set). If the predicted

17
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mark indicates that the individual is alive but the individual is dead in reality,
this predicted individual will be treated as having died by natural causes during
(Tk, Tk+1). The least squares estimates are then found by minimising

S (θ) :=

n−1∑

k=1

∑

i∈ΩTk

1{i ∈ ΩTk+1
}
[
m̃i (Tk+1; θ,X(Tk))−mi(k+1)

]2

with respect to θ = (λ,K, c, r) ∈ R
2
+ × R × R+, where 1{i ∈ ΩTk+1

} is an
indicator function being 1 if the actual data individual i is alive at time Tk+1.

In order to minimize S (θ) some optimization procedure is required. The ap-
proach used in [32] is to create a grid of parameter values for each of the
parameters in θ = (λ,K, c, r) and then calculate S (θ) for all combinations of

values taken from these grids. One then lets θ̂ = (λ̂, K̂, ĉ, r̂) be given by the
combination of grid values which gives rise to the smallest value of S (θ) and

either accepts θ̂ as one’s final estimate or one creates a new, finer, grid centred
around the estimated parameter values in θ̂ and repeats the procedure a num-
ber of times until no change in θ̂ takes place and the grids have all become very
dense. This procedure encounters the problem that the actual optimal combi-
nation of parameters may fall outside the grids, as the grids are becoming finer,
if the initial grid is not chosen correctly. Another approach which is similar
in its nature to the grid search, still avoiding the aforementioned problem, is
to repeatedly draw parameter values θ = (λ,K, c, r) where λ ∼ Uni(λL, λU ),
K ∼ Uni(KL,KU ), c ∼ Uni(cL, cU ), r ∼ Uni(rL, rU ) and for each such com-
bination calculate S (θ), choosing as final estimate the parameter combination
giving rise to the smallest S (θ). This MCMC type of method, however, has the
drawback that one needs to make a choice on the upper and lower bounds in
the uniform distributions being drawn from. One could handle this by choosing
initial intervals on which we sample while successively extending the intervals
if candidates near the boundaries are the ones minimizing S (θ). Note that
we do not have to bother too much about the lower bounds since most of the
parameters are bounded below by 0.

Paper I adopts an MCMC-type method (see [26]) where we start by choosing
initial parameter estimates, i.e. let λ = λ0 > 0, K = K0 > 0, c = c0 > 0 and
r = r0 > 0, for which we calculate S (θ) = S (λ,K, c, r). We also define the
step sizes δλ > 0, δK > 0, δr > 0, and δc > 0. Now, in each round we

1. randomly choose one of the parameters λ,K, r, c;

2. for our parameter of choice, say λ, let λ′ = λ + Z, for Z drawn from
Uni(−δλ, δλ);

3. calculate S (θ′) = S (λ′,K, r, c);
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4. if S (θ′) < S (θ) let λ = λ′, otherwise let λ = λ;

5. return to step 1.

We continue to run the algorithm until either S (θ) is less than some predefined
minimum value or until we have not seen any decrease in S (θ) for a predefined

number of consecutive runs. We let our final estimates θ̂ = (λ̂, K̂, ĉ, r̂) be given
by the last θ obtained in the algorithm above. Note that we here utilize the
information obtained in the previous step in order to stepwise get closer to the
final estimate.

When minimizing S (θ), in the case of a simulated data set, it can be seen
that S (θ) may not attain its minimum at the true parameter set but instead
at some biased θ. This ’incorrect’ shape of S (θ) is mainly due to edge effects
and dependence between certain parameters. This phenomenon is illustrated
in Figure 3.1. It is a plot of S(θ) as a function of only λ and K, where c and
r are kept fixed at their actual values. Note that we have used the logistic
growth function and the area interaction function. It is clear from the graph
that S(θ) is decreasing as λ moves away from its actual value 0.2.
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Figure 3.1: Plot of S(θ) as a function of only λ and K. c and r are kept fixed
at their actual values, where (λ,K, r, c) = (0.2, 0.1, 1.5, 0.1).

Note that, for instance, two different sets of c and r may result in similar
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interactions, due to the form of (2.4). In order to control the estimation routine,
so that this risk of bias is reduced, the approach of Paper I is to find good
starting values, (λ0,K0, c0, r0), (as opposed to arbitrarily chosen ones) and to
choose sensible step sizes, δλ, δK , δc, δr. Further details about this fine-tuning
of the optimization can be found in [8].

3.1.2 Estimation of the death and arrival rates

We here give the form of the ML-estimators used for the estimation of α
and µ in Paper I. The estimator µ̂ takes the form of the natural death rate
function η(·) into consideration, and the α-estimator partially compensates
for the unobserved individuals who arrive and die during the same sam-
ple interval, (Tk, Tk−1). Note that in Paper I and Paper III, the function
η(Mi(t)) = 1/(1 +Mi(t)) is used.

Denote by L1, . . . , LnT
the random lifetimes of the nT individuals who have

died from natural causes by time Tn, given some natural death rate function
µη(Mi(t)) (recall that we label an individual i as naturally dead once the
predicted mark m̃i (Tj+1; θ,mi(Tj)) > 0 while the actual data individual is alive
at Tj+1, during the calculation of S(θ)). Furthermore, let t0i(L1)

, . . . , t0i(LnT
)

denote the birth times of the individuals having these lifetimes. Also let Tj,i(Lk)

be the last sample time at which individual i(Lk) was observed alive and let
m̃i(Lk)(Tj,i(Lk)) denote the prediction of its mark at Tj,i(Lk). Furthermore,
under the same natural death rate regime, let S1, . . . , SmT

denote the mT

random lifetimes of the individuals who are still alive at time Tn and mi(Sl)(Tn)
the size of each such individual at the final sample time. The (approximate)
ML-estimator of the death rate, µ, is given by

µ̂ = nT

/(
nT∑

k=1

η
(
m̃i(Lk)

(
Tj,i(Lk)

))(
Tj,i(Lk) − t0i(Lk)

)
(3.1)

+

mT∑

l=1

η(mi(Sl)(Tn))
(
Tn − t0i(Sl)

))
.

Note that the process is observed only at the sampled time points 0 = T0 <
T1 < . . . < Tn = T so that the actual birth times (and death times) of the
individuals remain unknown. Conditioned on the number of individuals ar-
riving during (Tj−1, Tj ] the arrival times of the individuals will be uniformly
distributed on (Tj−1, Tj) (see e.g. [23]). Thus, when estimating µ, for each
interval (Tj−1, Tj] we simulate as many Uni(Tj−1, Tj)-distributed birth times
as there are observed newcomers and these are in turn assigned to all individ-
uals observed for the first time at Tj . The question regarding which arrival
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time to assign to which individual is solved by giving the first arrival time to
the individual who is the largest at time Tj, the second arrival time to the
individual which is the second largest at time Tj and so forth. This will have
the consequence that the lifetimes will be random. By repeating this procedure
a suitable number of times, each time simulating new random birth times, we
could generate a set of estimates of µ which are used to estimate a standard
error for µ̂. In the case of η(·) ≡ 1, expression (3.1) reduces to the estimator
found in [32].

Let NTj
=
∣∣⋃n

j=1 ΩTj

∣∣, j = 1, . . . , n, denote the number of individuals observed
at sample times up to Tj. [32] proposes a simple estimator for the arrival in-
tensity α. However, this estimator underestimates α since it does not take into
account the unobserved individuals who arrive and die within the same sam-
ple interval (see [32]). In order to (partially) compensate for these unobserved
individuals who arrive and die in the same sample interval, (Tk, Tk−1), when
estimating α we use the following estimator (see [8] or the Appendix for its
derivation);

α̂ =
NTn

Tnν(W )
+

1

Tnν(W )

n∑

j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂η(m0

i )∆Tj−1

)⌋
, (3.2)

where bxc denotes the integer part of x, ∆Tj−1 = Tj − Tj−1 and µ̂ is the
estimate of µ found previously. Note that the first term in expression (3.2) is
the estimator found in [32].

3.2 Estimation in the ID-process

We will here look at the estimation of (α, µ) when the ID-process, {N(t)}t≥0,
is considered as its own entity. The results presented in this section can be
found in Paper II.

Assume now that we sample {N(t)}t≥0 as N1, . . . , Nn at the respective times
0 = T0 < T1 < . . . < Tn. Since the likelihood function for γ = (α, µ) ∈ Γ,
Ln(γ), is given by the joint density of the distribution of (N(T1), . . . , N(Tn)),
by the Markov property of N(t) it can be factorised into a product of transition
probabilities, i.e. Ln(γ) = P(N(T1) = N1)

∏n
k=2 pNk−1Nk

(t; γ). By assumption

we condition on N(T0) = 0, so that the log-likelihood will be given by

ln(γ) =

n∑

k=1

log p
Nk−1Nk

(∆Tk−1; γ), (3.3)
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where ∆Tk−1 = Tk −Tk−1. In the case of equidistant sampling, i.e. ∆Tk−1 = t
for each k = 1, . . . , n, the log-likelihood takes the form

ln(γ) =
∑

i,j∈E

Nn(i, j) log pij(t; γ), (3.4)

where Nn(i, j) =
∑n

k=1 1 {(Nk−1, Nk) = (i, j)}.

Hereby, for each of the sampling schemes, the likelihood estimator of γ =
(α, µ) ∈ Γ (obtained by replacing Nk by N(Tk), k = 0, 1, . . ., in the expressions
(3.3) and (3.4)) will be defined as

(α̂n, µ̂n) = γ̂n = argmax
γ∈Γ

ln(γ). (3.5)

3.2.1 The ML-estimators

The ML-estimator for γ = (α, µ) is given by solving the system of equations

{
∂
∂α ln(γ) =

∑
i,j∈E Nn(i, j)

∂
∂α log pij(t; γ) = 0

∂
∂µ ln(γ) =

∑
i,j∈E Nn(i, j)

∂
∂µ log pij(t; γ) = 0.

As no closed form solution can be found by solving theses likelihood equations,
numerical methods have to be employed in order to get ML-estimates. What
is possible, however, is to express the estimator of α as a function of both
the sample and the parameter µ, hence reducing the maximisation to a one
dimensional problem.

Proposition 3.2.1. The ML-estimator, γ̂n = (α̂n, µ̂n), is found by maximising
ln(α̂n(µ), µ) over Γ2 ⊆ R+ (the projection of Γ onto the µ-axis), i.e.

µ̂n = argmax
µ∈Γ2

ln(α̂(µ), µ)

α̂n = α̂n (µ̂n) ,

where

α̂n(µ) :=
µ/(1− e−µt)

2
(

1−e−µt

µt − e−µt
)
− 1

1

n

∑

i,j∈E

Nn(i, j)(j − i e−µt)

=
µ

2
(

1−e−µt

µt − e−µt
)
− 1

1

n

(
e−µtNn −N0

1− e−µt
+

n∑

k=0

Nk

)
.
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3.2.2 Asymptotic properties of the ML-estimators

Assume now that we sample N(t) at the times Tn = nt, n ∈ N, t > 0 (equidis-
tant sampling). The following two results show that the ML-estimator (3.5) is
strongly consistent (Proposition 3.2.2) and asymptotically Gaussian (Proposi-
tion 3.2.3). We denote by γ0 = (α0, µ0) ∈ Γ the true parameter pair of the
ID-process. These results can be found in Paper II. For further discussions on
ML-estimation in Markov processes and asymptotic properties thereof, see e.g.
[2, 4, 11, 18, 35].

Proposition 3.2.2. Let Γ be any compact subset of R2
+. Then the maximum

likelihood estimator for the ID-process satisfies

(α̂n, µ̂n)
a.s.−→ (α0, µ0)

as n→ ∞, where (α0, µ0) ∈ Γ is the true parameter pair.

Proposition 3.2.3. Let Γ be any compact subset of R
2
+. Furthermore,

assume that (log(α0 + µ0) − log(α0))/µ0 ≥ 2t. Then, as n → ∞,√
n ((α̂n, µ̂n)− (α0, µ0)) converges in distribution to the two-dimensional zero-

mean Gaussian distribution with covariance matrix, I(γ0)
−1, given by

I(γ0)
−1 =

µ0

t ((1 + e−µ0t) ρ0(Ξ− 1)− 1)
(3.6)

×




ρ0(2τ0−µ0t(1−e−µ0t))+

ρ20
µ0t

(Ξ−1)(τ0−µ0t)
2

(1−e−µ0t)2
1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1
µ0t

(Ξ− 1) (1− e−µ0t)
2



 ,

where Ξ =
∑

i,j∈E
(pi(j−1)(t;γ0))

2

pij(t;γ0)
πγ0(i), τ0 = 1 − e−µ0t −µ0t e

−µ0t and ρ0 =
α0

µ0
(1− e−µ0t). Here πγ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution of

the ID-process.

3.3 Maximum likelihood inference in the SG-

process

Conditionally on ΦM (T0) = ΦM (0), assume now that we sample the
SG-process ΦM (t) as φ1, . . . , φn at the sample times T1, . . . , Tn on the

compact region W . Here φk = (1ωk
(1)m1k, . . . ,1ωk

(N)mdk)
T
, ωk =

{indices of individuals present at time Tk}, k = 1, . . . , n, and d = |⋃n
k=1 ωk|.

Now, based on this sampling scheme we want to find the Maximum Likelihood
(ML) estimate of the parameter vector θ = (λ,K, σ, α, µ) ∈ Θ.
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The likelihood function of the parameters of the SG-process, Ln(θ), is given
by the joint density of (ΦM (T1), . . . ,ΦM (Tn)), evaluated at (φ1, . . . , φn) and
treated as a function of θ ∈ Θ. Therefore, depending on whether we choose
Mi(0) to be fixed or drawn from the stationary distribution, we end up evalu-
ating either expression (2.10) or expression (2.11) when we evaluate Ln(θ).

3.3.1 ML-estimation: M
0
i
= M0 ∈ R+

When we let all Yi(0) = M0
i = M0 ∈ R+ be given by the same fixed value,

from expression (2.10) we obtain

Ln(θ) = CL1,n(θ)L2,n(θ)L3,n(θ) ∝ L1,n(θ)L2,n(θ)L3,n(θ),

where, for ki = min{k : i ∈ ωk},

L1,n(θ) =
n∏

k=1

∏

i∈ωk−1∩ωk

pY1(∆Tk,mik|mi(k−1);λ,K, σ)

L2,n(θ) =
∏

i∈
⋃

n
k=1 ωk

1

∆Tki

∫ ∆Tki

0

pY1(t,mi(ki−1)|M0;λ,K, σ)dt

L3,n(θ) =

n∏

k=1

pN

(
∆Tk, |ωk|

∣∣∣|ωk−1|;αν(W ), µ
)
.

The (rescaled) log-likelihood is given by

ln(θ) = log
(
C−1Ln(θ)

)
= logL1,n(θ) + logL2,n(θ) + logL3,n(θ)

=: l1,n(θ) + l2,n(θ) + l3,n(θ),

and the ML-estimator of θ ∈ Θ, based on (ΦM (T1), . . . ,ΦM (Tn)), will be given
by

θ̃n := θ̃n (ΦM (T1), . . . ,ΦM (Tn)) (3.7)

= arg max
θ∈Θ

ln(θ; ΦM (T1), . . . ,ΦM (Tn))

= arg max
θ∈Θ

(l1,n(θ) + l2,n(θ) + l3,n(θ))

= θ̃1,n + θ̃2,n

= arg max
θ∈Θλ×ΘK×Θσ×{0}2

{l1,n(θ) + l2,n(θ)} + arg max
θ∈{0}3×Θα×Θµ

l3,n(θ),

whereby we may estimate the parameters of the ID-process and the parameters
related to the mark growth separately. Moreover, since there is no closed form
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expression available for the ML-estimator (α̃n, µ̃n) of the ID-process (see [9]),

there is also no closed form for θ̃n in (3.7). Hence, in modelling situations one

has to rely on numerical methods to find θ̃n.

3.3.2 ML-estimation: M
0
i
∼ π

Under the assumption that we start the diffusions in their stationary distribu-
tions, M0

i ∼ π, from expression (2.11) we obtain the likelihood function

Ln(θ) = CL1,n(θ)L2,n(θ) ∝ L1,n(θ)L2,n(θ)

and the (rescaled) log-likelihood

ln(θ) = log
(
C−1Ln(θ)

)
= logL1,n(θ) + logL2,n(θ)

=: l1,n(θ) + l2,n(θ),

where

l1,n(θ) = log

(
n∏

k=1

∏

i∈ωk

π(mik;λ,K, σ)

)
=

n∑

k=1

∑

i∈ωk

log π(mik;λ,K, σ)

l2,n(θ) = log

(
n∏

k=1

pN

(
∆Tk, |ωk|

∣∣∣|ωk−1|;αν(W ), µ
))

=

n∑

k=1

log pN

(
∆Tk, |ωk|

∣∣∣|ωk−1|;αν(W ), µ
)
.

Here, just as in the fixed initial value case of Section 3.3.1, we deal with the
separate estimators

θ̂n = θ̂1,n + θ̂2,n = arg max
θ∈Θλ×ΘK×Θσ×{0}2

l1,n(θ) + arg max
θ∈{0}3×Θα×Θµ

l2,n(θ) (3.8)

and, similarly, there is no closed form expression available for θ̂n.

3.3.3 Asymptotic inference under stationarity

When dealing with asymptotic spatial statistics, there are different types of
asymptotics which may be considered. In the case of the SG-process, within
the framework of so called increasing domain asymptotics (see e.g. [39]), there
essentially are two different ways to increase the total number of individuals
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considered, and consequently also the number of transitions taking place be-
tween pairs of consecutive sample times Tk−1 and Tk; Either increase the num-
ber of sample points or increase the size of W . We here consider the approach
where we increase the number of sample times, i.e. we apply the equidistant
sampling scheme Tk = k∆, k = 1, . . . , n, ∆ > 0, where T = Tn = n∆. We will
denote by θ0 = (λ0,K0, σ0, α0, µ0) ∈ Θ the true parameter vector value which
generates ΦM , and we assume that Θ is a subset of R5

+ such that

Θ ∩ {(λ,K, σ, α, µ) ∈ R
5
+ : 2λ < σ2} = ∅. (3.9)

Recall that this is required to keep the Yi(t)’s positive.

Theorem 3.3.1 (Consistency). Let Θ be a compact subset of R
5
+ such that

(3.9) holds. Then, for θ0 ∈ Θ, the estimator θ̂n in expression (3.8) is strongly
consistent, i.e. as n→ ∞,

θ̂n
a.s.−→ θ0.

Now, by putting some additional restrictions on the parameters we may also
prove the following theorem.

Theorem 3.3.2 (Asymptotic normality). Let θ0 be in the interior of Θ, where
Θ is a compact subset of R5

+ such that (3.9) holds. Require further that θ0 and
∆ > 0 are such that (log(α0 + µ0)− log(α0))/µ0 ≥ 2∆.

Assume that λ0 is known, so that θ̂n = (K̂n, σ̂n, α̂n, µ̂n) is the ML-estimator of
θ0 = (K0, σ0, α0, µ0). Then, as n→ ∞, we obtain

√
n
(
θ̂n − θ0

) d−→ Y ∼ N


04×1,




µ0

α0

K2
0σ

2
0

2λ0
0 01×2

0 µ0

α0

σ4
0

8λ0C(θ0)
01×2

02×1 02×1 IN (θ0)
−1





 ,

where C(θ) = 2λ
σ2ψ

′
(
2λ
σ2

)
− 1 > 0, ψ(x) = Γ′(x)/Γ(x), 0i×j denotes the i × j

zero matrix and the 2 × 2 matrix IN (θ0)
−1, which can be found in expression

(3.6), is the covariance matrix related to the ID-process.

Similarly, when σ0 is known, we estimate θ0 = (λ0,K0, α0, µ0) by θ̂n =

(λ̂n, K̂n, α̂n, µ̂n) and, as n→ ∞, we obtain

√
n
(
θ̂n − θ0

) d−→ Y ∼ N


04×1,




µ0

α0

λ0σ
2
0

2C(θ0)
0 01×2

0 µ0

α0

K2
0σ

2
0

2λ0
01×2

02×1 02×1 IN (θ0)
−1





 .
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3.4 Spatio-temporal edge correction

When sampling real data, {X(Tk)}nk=1, one usually considers all individuals
within some region A (in Figure 1.1 circular) which is part of some larger region
W . The individuals in A interact with each other but simultaneously also with
the individuals present outside A, i.e. the individuals in B =W \A. So, if one
were to estimate some statistics and/or model parameters in a situation where
the interaction among (neighbouring) individuals plays a role, by only taking
into consideration the individuals in A the estimators may generate biased
estimates since the interaction between the individuals in A and those in B
would be neglected. The effects of the absence of the information regarding
this interaction are commonly referred to as edge effects. The risk that the edge
effects generate biases rapidly increases when one deals with small quantities
of data in A, as is the case with our tree data set introduced in Figure 1.1.
Hence, some type of correction method is needed (see e.g. [12, 20, 38]).

We here give the idea behind the edge correction methods proposed in Pa-
per I. One starts by finding initial (possibly biased) estimates of the model

parameters, θ̂∗, based on the original data set (region A). Then, under the

regime of θ̂∗, we wish to find the expected model behaviour when restricted to
region B (possibly conditioned on the actual data in A), Eθ̂∗

[ΦM [0, T ]|B]. By
doing so we wish to establish the expected interaction between the individuals
in B and the individuals in region A. With Eθ̂∗

[ΦM [0, T ]|B] at hand we now
re-estimate the model parameters from the actual data (region A), however,
this time allowing for Eθ̂∗

[ΦM [0, T ]|B] to interact with the actual data during
the estimation. Once these new estimates have been obtained, we let them
replace θ̂∗ and repeat the above procedure again. By continuing in this fash-
ion we have an iterative procedure which we stop once it has fulfilled a given
predefined convergence criterion.

The three edge correction methods presented in Paper I. We refer to as them
as The simple correction method, The rotated surrounding correction method
and The influenced growth correction method, and they are all explained for
the GI-process but they may be applied to other spatial and spatio-temporal
(marked) point processes as well. In the algorithms presented in Paper I the
large rectangular window W will be wrapped onto a torus when we generate
the individuals in the outer region, B, (see e.g. [12, 25, 29, 38]).
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Chapter 4

Future work and extensions

There are some remarks which may be addressed about the general development
of the GI-process. Note that the GI-process here is presented for a single
species. However, it can easily be extended to include the scenario where
interaction takes place also between different species, living and interacting
within the same study region. This extension is made by letting each species
be governed by both its unique open-growth function and interaction function,
and the latter can be different within and between species. Hereby the amount
an individual is affected by its neighbours not only depends on its distance
to the neighbours and the neighbours’ sizes, but also on the species of the
neighbours.

An improvement of Paper II that possibly can be made is to improve the in-
vertibility condition given in Proposition 3.2.3 in Chapter 3 so that asymptotic
normality holds for all (α0, µ0) ∈ Θ. Furthermore, in order to become more
realistic in applications, N(t) could be extended by letting the arrival intensity,
α, and the death rate, µ, be non-constant functions of time, or in themselves
Markov chains (in the latter case N(t) thus becomes a hidden Markov model).
Results similar to the ones found in Paper II could be established and the type
of modelling done in Paper I could be developed.

Regarding the development of Paper IV, we could employ some other positive
diffusion for the growth of the marks. It should be noted that the linear growth
function, which is the drift function in the CIR-process, is a special case of the
Richards growth function (see e.g. [28, 31]). Hence, a further possibility would
be to use the Richards growth function, or one of its other special cases, as
drift in the mark-SDEs dYi(t).

29
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A further modification which may be made is to change the diffusion term
σ(Yi(t); θ) = σ

√
Yi(t) into any other diffusion term which keeps Yi(t) positive,

e.g. σ(Yi(t); θ) = σYi(t)
γ , γ > 0, which is the diffusion coefficient found in

the CKLS-model (see e.g. [5]). Note that when applying these changes, we
would typically not have known closed form expressions for the transition den-
sities, pYi

(t, y1|y0; θ). The transition densities are know only for a few special
cases, including the CIR-process. Therefore, we have to use different approx-
imated/pseudo likelihood methods for the estimation of the parameters (see
[19] for a good general overview).

Our final goal is to ML-estimate all parameters of the full SGI-process, i.e.
to include also the spatial interaction function h(·) in the SDEs. Note that
on a compact space-time domain this amounts to considering a multivariate
diffusion. Here the lack of closed form expression for the transition densities
remains and, just as for the previous adjustments suggested, the estimation re-
quires that we employ approximated/pseudo likelihood methods. For instance,
[1] suggests an approach where the transition densities of multivariate diffusions
may be approximated by series expansions based on hermite polynomials. Note
further that within this setting, in order to reduce edge effects (absence of in-
dividuals outside the boundary of W ), it would be sensible to choose W to be
a torus. Furthermore, instead of using the edge correction methods in Paper
I, an altered version could be considered which is more in the lines of an EM-
algorithm. This would also allow us to study convergence properties of the edge
corrected ML-estimators of the SGI-process from a theoretical perspective.

Thus far we have introduced only natural deaths in the SG(I)-process. It should
be possible also to introduce competitive deaths as well, however, this would
entail a slightly different formulation of the diffusions Mi(t), i = 1, . . . , N . By
defining the death-time of individual i to be (the stopping-time) ζi = inf{t >
Bi :Mi(t) = 0}∧Di, it follows that if Mi reaches the absorbing state Mi(t) = 0
for some t ∈ (Bi, Di), where Di = Bi + Li, it stays 0 and we say that it has
suffered a competitive death. Furthermore, if it does not die from competition
during (Bi, Di) it will still die at timeDi, i.e. at its natural death time. As soon
as t > ζi the interaction between Mi(t) and the other marks will terminate,
hence we remove individual i from consideration.

Paper I motivated the study conducted in Paper III. Although the modifica-
tions of the GI-process made in Paper III improved the fit to the Scots pine data
type considered, some improvements can still be made. It was seen that spatial
characteristics and basal area of simulated predictions were similar to the ones
of the data. However, it was also seen that the empirical diameter distributions
of the data trees and the simulated predicted trees differed, and we further also
saw that the predicted and observed number of alive individuals differed sub-
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stantially. The former seems to be the result of the chosen growth/interaction
functions, whereas the latter seems to be the result of having only very few (3)
sample time points to estimate the ID-process. Hence, although the GI-process
described the data quite well in most aspects, there are still improvements to
be made. As a first step one should try to fit the model to data sets with more
observed time points. A further step which could be made is to evaluate other
kinds of growth and interaction functions to see if the fit is improved. It is
also our belief that once we have developed the ML-estimation scheme for the
SGI-process (with interaction), a better approach to fitting the process to data
will be available. We further hope that this could improve the modelling of the
considered (pine) stands.
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Chapter 5

Summary of Papers

Paper I: Some edge correction methods for

marked spatio-temporal point process models

In this paper we consider the GI-process/RS-model where the death rate of the
underlying immigration-death process depends on each individual’s mark size,
as opposed to the approach used in [32] where the death rate was constant.

We then discuss the estimation of the parameters when the process is sampled
discretely in time. To improve the estimation of the growth and interaction
parameters, three edge correction methods for (marked) spatio-temporal point
processes are proposed. They are all based on the idea of placing an approxi-
mate expected behaviour of the process at hand outside the study region. We
then let these simulated realizations outside the study region interact with the
data during the estimation. We estimate this expected behaviour by simulating
realizations of the process, under a parameter choice based on some non-edge
corrected initial estimates, and for each such realization we generate new es-
timates which we average over to get our final estimates. By rerunning the
whole procedure and using our edge corrected estimates to generate the sur-
rounding realizations, we have created an iterative procedure which we stop
once some given stopping criterion is fulfilled. Furthermore, we discuss three
different approaches to run this type of edge correction and we present each of
them in the context of the RS-model. When we numerically evaluate our edge
corrected estimation procedures for the RS-model we see that we manage to
reduce the bias substantially, compared to when no edge correction is applied.
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We finally evaluate the performance of the edge corrected estimation of the
model by fitting it to a Scots pine data set.

Paper II: The Discretely Observed Immigration-

Death Process and its Maximum Likelihood Esti-

mation

In this paper we consider the immigration-death process, N(t), and specifically
we treat the ML-estimation of the parameter pair governing it, θ = (α, µ) ∈
Θ ⊆ R

2
+, when Θ is compact and N(t) is sampled discretely in time; 0 = T0 <

T1 < . . . < Tn, N(T0) = 0.

In order to find the likelihood structure of this continuous time Markov chain
we derive its transition probabilities, and further, we manage to reduce the
likelihood maximisation from a two dimensional problem to a one dimensional
problem, where we maximise the likelihood, L(α, µ) = L(α̂n(µ), µ), over the
projection of Θ onto the µ-axis.

Furthermore, by considering N(t) as a Markov jump process we have shown
that, under an equidistant sampling scheme, Tk = kt, t > 0, k = 1, . . . , n,
the sequence of ML-estimators, θ̂n(N(T1), . . . N(Tn)), is consistent and asymp-
totically Gaussian. The asymptotic normality requires the Fisher information
matrix invertability condition (log(α0 +µ0)− log(α0))/µ0 ≥ 2t, where (α0, µ0)
is the underlying parameter pair. These results are further verified through
simulations. In the simulations we see that the estimates approach the ac-
tual parameters and also that the empirical distribution of the estimates show
strong indications of Gaussianity, even when the invertability condition is not
fulfilled.

Paper III: Spatio-Temporal Modelling of Swedish

Scots Pine Stands

Motivated by the study in Paper I, we here alter the GI-process to obtain
a better fit to Scots pine stands. Specifically, we propose a new (hard core)
arrival strategy and a different open-growth function. The space-time data set
considered here consists of ten Scots pine plots and each plot is measured at
three occasion. Since the trees in the plots are young, it is hard to estimate
the carrying capacity correctly, so we estimate the carrying capacity (upper
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bound for the size of a tree) from a separate set of data which contains older
pines. A linear relationship is found between the carrying capacity and the
so called site productivity index, which is a fertility measure. The arrival and
death intensities are estimated by means of the estimators in Paper II and
the growth and interaction parameters are estimated using the edge corrected
least squares approach of Paper I. The fit of the model is tested by comparing
estimated summary statistics of the data and the simulated fitted model. Two
of the summary statistics used deal with the spatial structures of the plots and
the remaining summary statistics, which are common in forestry, mainly focus
on the sizes of the trees. In comparison to Paper I, we here improve the fit of
the model.

Paper IV: Likelihood Inference for a Stochas-

tic Version of the Spatio-Temporal Growth-

Interaction Process

In this paper we define a version of the GI-process (see e.g. [32]) – the SGI-
process – which is given by the GI-process with mark sizes driven by stochastic
differential equations (SDEs) instead of ordinary differential equations. Fur-
thermore, we concentrate on a special case, the SG-process, where there is
no interaction between the marks. The specific SDEs used here are iid CIR-
processes. Since its building blocks, the immigration-death process and the
CIR-process, are Markov processes also the SG-process is a Markov process.
By exploiting this property we have derived its transition densities, which take
closed forms since its building blocks have closed form transition densities.
The transition densities are then in turn used to write down a full likelihood
function based on the process sampled according to a discrete sample scheme.
Furthermore, given that we start the CIR-process in its stationary distribu-
tion, it becomes strictly stationary. Under this condition and some additional
conditions on the parameters, by using an equidistant sampling scheme, we
prove consistency and asymptotic normality of the ML-estimators. We finally
evaluate both types of estimators numerically, i.e. we compare those derived
under the stationarity assumption to those derived when stationarity is not
assumed. As a study of robustness against the stationarity assumption, we
compare the biases obtained for both types of estimators when applied to dis-
cretely sampled realizations of the process, which have been generated in the
non-stationary setting. We conclude that the non-stationary estimator gener-
ally performs quite well whereas the stationary estimator works well only for
certain parts of the parameter space.
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Appendix A

Appendix

In this Appendix we recall the derivation of the estimator for the arrival in-
tensity α̂ which was derived in [8]. It is the estimator used in Paper I but its
derivation was excluded in Paper I.

When constructing our α-estimator we wish to somehow compensate for the
unobserved individuals who arrive and die during the same interval (Tj−1, Tj),
j = 1, . . . , n.

For each j = 1, . . . , n, let NTj
be the number of individuals observed at sample

times up until Tj , i.e. NTj
=
∣∣∣
⋃j

i=1 ΩTi

∣∣∣, where Ωt consists of the indices of the

individuals alive at t and |A| denotes the cardinality of a set A. Recall that
η(·) is the function which controls the death rate (see Paper I). Further, let
B(t) ≥ 0 denote the number of arrivals to W by time t. Instead of considering
∆B(Tj−1) = ∆NTj−1 , where ∆B(Tj−1) = B(Tj) − B(Tj−1) and ∆NTj−1 =
NTj

− NTj−1 , and let our likelihood be based on these independent Poi(Tj −
Tj−1)-distributed increments, as was done in [32], we here consider

∆B(Tj−1) = ∆NTj−1 (A.1)

+ E




∆B(Tj−1)∑

k=1

1 {Individual k dies in (Tj−1, Tj)}





︸ ︷︷ ︸
I

,

where 1 {·} is an indicator function. In other words, we add to the ob-
served increments the expected number of individuals arriving and dying during
(Tj−1, Tj).
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Let L
∆Tj−1

k denote the lifetime of individual k ∈ {1, . . . ,∆B(Tj−1)} in (A.1)
and denote by t0i ∼ Uni(Tj−1, Tj) its arrival-time (the jumps of a Poisson pro-
cess occurring in given time interval are uniformly distributed on that interval
[23]). Recall that m0

k is its (deterministic) initial size. By the memoryless-
property of the exponential distribution and by Fubini’s theorem the expecta-
tion in expression (A.1) can be written as

I = E



∆B(Tj−1)∑

k=1

1

{
Tj−1 < t0k + L

∆Tj−1

k < Tj

}

 (A.2)

= E



E




∆B(Tj−1)∑

k=1

1

{
Tj−1 < t0k + L

∆Tj−1

k < Tj

} ∣∣∣∣∣∆B(Tj−1)









= E




∆B(Tj−1)∑

k=1

1

∆Tj−1

∫ Tj

Tj−1

E

[
1

{
Tj−1 < xk + L

∆Tj−1

k < Tj

}]
dxk





= E




∆B(Tj−1)∑

k=1

1

∆Tj−1

∫ Tj

Tj−1

P
(
L
∆Tj−1

k < Tj − Tj−1

)
dxk





≈ E




∆B(Tj−1)∑

k=1

(
1− e−µη(m0

i )∆Tj−1

)




= αν(W )∆Tj−1

(
1− e−µη(m0

i )∆Tj−1

)
.

Since the actual µ is unknown we will replace it by its estimate, µ̂, found in
expression 3.1. Furthermore, this expression also contains α, the parameter
we want to estimate. We deal with this by replacing α by an initial estimate,
namely, α̂0 = NTn

/(Tnν(W )), which is given in [32].

In order for expression (A.1) to be treated as an actual Poisson process incre-
ment it needs to be integer valued, hence

∆B(Tj−1) = ∆NTj−1 +

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂η(m0

i )∆Tj−1

)⌋
, (A.3)

where bxc denotes the integer part of x. For convenience we will denote the
right hand side of (A.3) by J(∆Tj−1,∆NTj−1 , µ̂, NTn

). We end up with the
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likelihood function

L(α) =
n∏

j=1

P
(
∆B(Tj−1) = J(∆Tj−1,∆NTj−1 , µ̂, NTn

)
)

(A.4)

=

n∏

j=1

e−αν(W )∆Tj−1(αν(W )∆Tj−1)
J(∆Tj−1,∆NTj−1

,µ̂,NTn)

J(∆Tj−1,∆NTj−1 , µ̂, NTn
)!

and by evaluating dl(α)/dα = 0 we finally arrive at the estimator

α̂ =
NTn

Tnν(W )︸ ︷︷ ︸
=α̂0

+
1

Tnν(W )

n∑

j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂η(m0

i )∆Tj−1

)⌋
.(A.5)

Since µ̂ > 0, ∆Tj−1 > 0 and η(x) > 0, for all x > 0, and since f(x) = 1− e−x

is strictly increasing and bounded below by 0 and above by 1, for x > 0, it is
clear that α̂ is increasing with µ̂ and

α̂0 = lim
µ̂→0

α̂|µ̂ < α̂ < lim
µ̂→∞

α̂|µ̂ = α̂0 +
1

Tnν(W )

n∑

j=1

⌊
NTn

∆Tj−1

Tn

⌋
.

For a random variable Z = X + Y it holds that Var(Z) = Var(X) + Var(Y ) +
2Cov(X,Y ). Let now X = α̂0 and let Y be the sum in expression (A.5). Since
X and Y are positively correlated (both contain NTn

) and since Var(Y ) ≥ 0
it is clear that Var(α̂) > Var(α̂0) for all µ̂ > 0. This implies that the trade
off for using α̂ instead of α̂0 is a higher standard error. Furthermore, as α̂ is
increasing with µ̂, so is Var(α̂).

Table A.1 gives us the estimated means and standard errors (s.e.) of α̂ (and
α̂0) for a few values of µ̂, based on 30 realizations simulated on W = {yR2 :
‖y‖ ≤ 10} from the parameters α = 0.007, µ = 0.02, λ = 0.08, K = 0.1, c = 2,
and r = 2 (model set-up as in Paper I).

In estimations of µ based on simulated realizations it has been observed that
there seems to be no indication of over-estimation of µ. As one can see in
Table A.1, on average α̂0 under-estimates α more than α̂ does when µ̂ ≤ µ, in
the above scenario indicating that α̂ is preferred to α̂0. Note also the smaller
standard error of α̂0.
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α = 0.007 Est. mean Est. s.e. Est. bias (%)
α̂0 = limµ̂→0 α̂|µ̂ 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.0002) 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.002) 0.0061 0.0009 -0.00089 (-13%)
α̂ (µ̂ = 0.02) 0.0074 0.0011 0.00044 (6%)
α̂ (µ̂ = 0.1) 0.0102 0.0014 0.00320 (46%)
α̂ (µ̂ = 0.2) 0.0111 0.0016 0.00411 (59%)
α̂ (µ̂ = 5) 0.0119 0.0017 0.00489 (70%)
limµ̂→∞ α̂|µ̂ 0.0119 0.0017 0.00489 (70%)

Table A.1: Estimated means, standard errors (s.e.), and biases of α̂ (and α̂0),
based on 30 realizations simulated on W = {yR2 : ‖y‖ ≤ 10} from the param-
eters α = 0.007, µ = 0.02, λ = 0.08, K = 0.1, c = 2, and r = 2 (model set-up
as in Paper I).
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