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Set JPDA Filter for Multi-Target Tracking
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Abstract

In this article we show that when targets are closely spaced, tra-
ditional tracking algorithms can be adjusted to perform better under
a performance measure that disregards identity. More specifically,
we propose an adjusted version of the Joint Probabilistic Data As-
sociation (JPDA) filter, which we call the Set JPDA (SJPDA) filter.
Through examples and theory we motivate the new approach, and
show its possibilities. To decrease the computational requirements, we
further show that the SJPDA filter can be formulated as a continuous
optimization problem which is fairly easy to handle. Optimal approx-
imations are also discussed, and an algorithm, KLSJPDA, which pro-
vides optimal Gaussian approximations in the Kullback-Leibler sense
is derived. Finally, we evaluate the SJPDA filter on two scenarios with
closely spaced targets, and compare the performance in terms of the
mean Optimal Subpattern Assignment (MOSPA) measure with the
JPDA filter, and also with the Gaussian-mixture CPHD filter. The
results show that the SJPDA filter performs substantially better than
the JPDA filter, and almost as well as the more complex GM-CPHD
filter.
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1 Introduction

Traditional target tracking algorithms are designed to track targets over time,
and discriminate between them by labeling them at each time instant. Ex-
amples of such algorithms are the Probabilistic Data Association (PDA) and
Joint PDA (JPDA) filters [1,2], and the Multiple Hypothesis Tracking (MHT)
algorithm [3–6]. In many applications, such as those in which evidence of
target type is being accumulated, the identity (labeling) of the targets is of
great importance; but in other cases where one might say that ”a threat is a
threat”, it is not. In this article we show that by not considering target iden-
tity, the traditional algorithms can be significantly improved both in terms
of density approximations and of estimation accuracy, when evaluated with
a metric that disregards target identity.

For the traditional algorithms, the aim is to minimize the Mean Square
Error (MSE) between target states and corresponding track estimates. When
target identity is not of interest, minimization under such a measure subjects
itself to an unnecessary constraint. Instead we need a measure which only
describes how good an estimate is in determining where the targets are,
regardless of which is which. In this article, we propose the use of the Optimal
Subpattern Assignment (OSPA) metric [7]. More specifically, we study the
Mean OSPA (MOSPA). The tracking problem can thus be formulated as the
minimization of the MOSPA which, as we will see, is significantly different
from the problem of minimizing the MSE.

A framework suitable for the description of tracking without target iden-
tity is Finite Set Statistics (FISST) [8]. Within that framework, the aim
is to track an unordered, or unlabeled, set of targets, described as a Ran-
dom Finite Set (RFS). Two popular algorithms have been derived within
FISST, namely the Probability Hypothesis Density (PHD) and the Cardi-
nalized PHD (CPHD) filters [9–12]. We notice two drawbacks with FISST-
based techniques. First, it is difficult to find an analytical expression for
the posterior density of the RFS. Therefore, the standard technique of cal-
culating and approximating the posterior density is not applicable. Instead,
the filters operate on a first-order approximation of the density of unordered
targets, referred to as the intensity function. Second, the first-order approxi-
mation has the effect that all targets be assumed independent and identically
distributed. Due to these drawbacks, we believe that it is relevant to search
for alternative approaches. In the current article, one such alternative is sug-
gested, where the advantages of FISST methods and those of classic recursive
filtering are combined, and where it is shown how traditional algorithms can
be improved for the problem of minimizing MOSPA.

The approach that we propose relies on the fact that there is a relation
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between an ordered density and the density of a random finite set, here called
the unordered density, or set density. In fact, there is an infinite number of
ordered densities that correspond to the same set density. We refer to a set
of such ordered densities as an RFS family. Since optimal MOSPA estimates
can be derived from the set density, any ordered density in the correspond-
ing RFS family can be used without losing optimality. We thus have a
previously unrecognized possibility of switching ordered densities within tra-
ditional tracking filters, to obtain better approximations and performance,
when target identity is irrelevant. This is useful since the different densities
in the RFS family are more or less suitable to use in practice.

Most tracking algorithms rely on Gaussian approximations. That is, the
posterior density is often described as a Gaussian mixture, where the num-
ber of mixture components is controlled. In the JPDA filter, which is the
filter that we specifically consider in this article, the posterior density is ap-
proximated by a single Gaussian in each iteration. By combining traditional
methods and FISST techniques, we show that this Gaussian approximation
can be made more accurate, when target identity is not of interest. The
approach is to utilize the possibility of switching from the original Gaussian
mixture, to another density in the same RFS family that can be better ap-
proximated as Gaussian. We further show that there is an optimal way, in
Kullback-Leibler sense, of making that density switch. From this, we de-
velop a refined JPDA algorithm for optimal approximations, which we call
Kullback-Leibler Set JPDA (KLSJPDA). The drawback with the algorithm
is its computational demand. We thus also develop a more computationally
efficient algorithm, called the Set JPDA (SJPDA). The SJPDA algorithm,
which is also based on density switches, optimizes MOSPA performance un-
der the constraint of remaining within the family of Gaussian mixtures, and
this generally also leads to a density which is better approximated as Gaus-
sian. Through examples and theory we discuss the reason for that. The
details about the optimization criterion for the SJPDA algorithm, and its
relation to optimal MOSPA estimates, are found in [13]. Throughout the
article, we make the assumption that the number of targets is known.

The article is outlined as follows. In Section II, the problem formulation
is stated. Section III concerns two conceptual solutions to the formulated
problem, based on traditional approaches and FISST, respectively. In Sec-
tion IV, a conceptual solution based on the new approach is presented. We
also discuss how and why traditional tracking methods can be improved
when MOSPA is the target cost function. Section V considers optimal Gaus-
sian approximations in the Kullback-Leibler sense, and the derivation of the
KLSJPDA algorithm. In Section VI, the SJPDA filter is derived, and the op-
timization step is formulated as a continuous optimization problem. Section
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VII regards evaluations of the proposed KLSJPDA and SJPDA algorithms.
For the SJDPA algorithm, we see that the tracking performance in terms
of MOSPA is better than that of the JPDA filter, and almost as good as
that of the more complex Gaussian mixture CPHD filter [12]. We also see
that the track loss probability is dramatically decreased, which leads to a
much longer track life. For the KLSJPDA algorithm we observe similar per-
formance as the SJPDA filter, but the computational complexity is much
larger. In Section VIII the article is concluded.

2 Problem formulation

2.1 Target modeling assumptions

In this article we study the problem of tracking an arbitrary, but known and
fixed, number of targets. Further, we are not interested in the identities of
the targets. To reflect this, we are using a different cost function from the
standard formulation, in which MSE is used.

To formulate the problem, we introduce the vector of ordered (labeled)
target states

Xk =
[(
x
(1)
k

)T (
x
(2)
k

)T
. . .

(
x
(n)
k

)T]T
, (1)

where x
(i)
k is the state vector of target number i at time k, and where n is

the number of targets in the scene. We further introduce the collection of
measurements Zk,

Zk =
{
Z1,Z2, . . . ,Zk

}
, (2)

up to the current time step k, where Zk is a matrix of measurement vectors
at time k.

For the general case, the process model is governed by

xk = fk−1 (xk−1,vk−1) , (3)

where fk−1 is a nonlinear (prediction) function and vk−1 is a realization of the
process noise, which has some assumed distribution. As seen, we sometimes
omit the superscript on the state vectors, and write xk instead of x

(i)
k . The

corresponding linear-Gaussian motion model is written as

xk = Fk−1xk−1 + vk−1, (4)

where vk−1 ∼ N
(
0,Qk−1

)
.
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The general measurement model is given by

zk = hk (xk,wk) (5)

and the corresponding linear-Gaussian model by

zk = Hkxk +wk, (6)

where wk ∼ N
(
0,Rk

)
is measurement noise. The measurement set Zk does

not only include target-generated measurements, but also spurious measure-
ments due to false alarms and clutter. If we let mk be the number of target-
generated measurements (smaller than, or equal to, n), and ck be the number
of clutter measurements at time k, the measurement set is given by

Zk =
{
z
(1)
k , . . . , z

(mk)
k , z

c,(1)
k , . . . , z

c,(ck)
k

}
. (7)

The target-generated measurements, z
(1)
k , . . . , z

(mk)
k , are governed by (5) or (6),

and the clutter measurements, z
c,(1)
k , . . . , z

c,(ck)
k , follow a density function

which is target-state independent.

2.2 MOSPA measure and optimal estimates

The ubiquitous measure in the literature is the squared error (SE)

SE
(
X̂k,

[
x
(1)
k , . . . ,x

(nk)
k

])

=
((

x̂
(1)
k − x

(1)
k

)2
+ · · ·+

(
x̂
(nk)
k − x

(nk)
k

)2)
. (8)

To evaluate the measure, we need estimates of the states of target 1, 2, and
so on, i.e., of the labeled targets. Since this paper is about describing where
there are targets, rather than where a target with a certain label is, the
squared error is not a good measure. We note for example in the two-target
case, that if the identities of the targets have been mixed up, the squared
error can be very large, even though there might be two accurate tracks
available, i.e., even though x̂

(1)
k ≈ x

(2)
k and x̂

(2)
k ≈ x

(1)
k . Therefore, we seek a

measure that can capture the quality of an algorithm to estimate the set of
targets.

Several multi-target performance measures have been proposed in the
literature. An ad-hoc optimal assignment-based approach, with arbitrary
cost function, was given in [14], while the first rigorous theory of multi-
object distances was given in [15]. The measure, which is based on the
optimal assignment approach, is called the Optimal Mass Transfer (OMAT)
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metric. When the number of targets is known, the OMAT metric is identical
to the optimal assignment procedure. OMAT has a number of weaknesses,
discussed in [7]. Apart from not being a metric, the major weaknesses appear
when the number of targets is not known and the estimated number is not
always equal to the true number. As a remedy, a new measure called the
Optimal Subpattern Assignment (OSPA) metric, was proposed in [7]. Since
OSPA both is a true metric and an intuitively appealing measure which
has received much attention of late, we use it as the basis measure for the
problem.

Let X be the set of true target states and X̂ be the set of target estimates,
in our case both with n elements. The OSPA measure d̃

(c)
p is then defined as

d̃(c)p (X̂,X) =

(
1

n

(
min
π∈Πn

n∑

i=1

d(c)(x(i), x̂π(i))p

))1/p

. (9)

Here, d(c)(x, x̂) , min(c, d(x, x̂)) is the distance d between x and x̂, cut-off at

c. Further, Πn is the set of all possible permutations of X̂. The notation x̂π(i)

describes the ith permutation (re-ordering) of the vector x̂. In this article,
we let d be the Euclidean distance, and we use a quadratic measure (p = 2).
In practice, the measure performs an optimal assignment of target estimates
to true target states, possibly clamped at c.1

To describe the performance of an estimator, and to have a measure for
which we can define an optimal algorithm, we average over all state vectors,
which gives us a definition of the mean OSPA (MOSPA) measure

MOSPA(c)
p (X̂) , Ep(X|Zk){d̃(c)p }. (10)

An optimal estimator, in the MOSPA sense, is an estimator which minimizes
the MOSPA measure. Such an estimator is referred to as a minimum MOSPA
(MMOSPA) estimator2.

2.3 Motivation of the problem and the MOSPA mea-

sure

The problem that we study in this paper is the problem of estimating the
unordered set of targets, for which the MMOSPA estimator is optimal. We

1For c = ∞, the above measure d̃
(c)
p is equal to the OMAT metric. A consequence of

this relation, using results from [15], is that the OSPA measure for known target numbers,
and c = ∞, reduces to the optimal assignment approach, presented earlier.

2Note that the relation between OSPA, MOSPA and MMOSPA is analogous to the
relation between the common acronyms SE, MSE and MMSE.
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here give three examples of when minimizing MOSPA provides a solution
which is more reasonable than what is obtained when minimizing the Mean
Square Error (MSE), using an ordered density.

The first application is in radar cueing, i.e., for the problem of steering
a radar sensor to areas of high target existence probability. In such cases,
there is no interest in which target is which, but the question of where there
are targets is very important. The risk with using an ordered density for this
application is that if there is an uncertainty in the labeling of the targets,
the posterior density will be multimodal. Then, there is a high probability
that the mean value is in an area of low target existence probability. Steering
the main lobe of the sensor to such an area is thus prone to low probability
of true-target returns. By disregarding ordering, the posterior density can
be made less multimodal, and the steering of the main lobe can then with
higher probability be directed to an area where targets are likely to be.

A second example is in the automotive industry: In collision avoidance
systems, it is not of interest to know which car is which—the only interest
is to avoid all cars. Finally, when tracking extended objects using radar
measurements, those objects are often described by a set of reflectors. The
problem of interest is then to track that set of reflectors, and not try to
distinguish which reflector is which.

3 Conceptual solutions and the JPDA ap-

proximation

For the case of target tracking, there are two well-studied optimal, or con-
ceptual, solutions, and these will be discussed in this section. By presenting
these conceptual solutions, we believe that it is easier to understand the
new approach of this paper, which is based on a third conceptual solution
introduced in Section 4.

The basis of both conventional solutions is first to calculate an optimal
description of the joint target density, and then to derive MMOSPA estimates
from the optimal description. In the description of the first conceptual solu-
tion, we also describe the data association problem, and how it is solved in the
conventional frameworks. At the end, we describe the JPDA approximation
to the first conceptual solution.

3.1 Conceptual solution I – ordered densities

The first conceptual solution is to use the traditional approach of first calcu-
lating the ordered posterior density p

(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
, and then to derive
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MMOSPA state estimates from it. For the conventional problem of mini-
mizing MSE, the traditional approach is the foundation for methods such as
JPDA and MHT. The first conceptual solution to the considered problem is
presented in Table 1.

Table 1: Conceptual solution I – ordered densities

1) Compute the ordered density p
(
x
(1)
k , . . . ,x

(n)
k

∣∣Zk
)

recursively.
2) Derive MMOSPA state estimates from the ordered density.

For an ordered density with known number of targets, n, the state vectors
of the targets can be stacked in a long vector Xk as shown in (1). To compute
MMOSPA estimates, we seek to calculate the posterior density p

(
Xk

∣∣Zk
)
.

By marginalizing over all global data association hypotheses, H, the density
is given by

p
(
Xk

∣∣Zk
)
=
∑

h∈H
p
(
Xk

∣∣h,Zk
)
Pr
{
h
∣∣Zk
}

(11)

where the densities p
(
Xk

∣∣h,Zk
)
are easy to express. A global data association

hypothesis, h, determines which measurements are clutter and which are
target-generated, and in the latter case their target of origin. If the process
and measurement models are linear and Gaussian, the posterior density is a
Gaussian mixture, with increasingly many components over time. Thus, the
optimal data association solution is practically infeasible, and sub-optimal
solutions are required. One such solution is given by the JPDA filter, which
we describe in Section 3.3.

Apart from being computationally infeasible, there is also a second diffi-
culty with the conceptual solution, namely that it is not obvious how esti-
mates with low MOSPA should be derived from the ordered density. As we
show in Example 1 in Section 4.2, the posterior mean, which is normally the
estimate used in the traditional problem of minimizing MSE, might not at
all be a suitable estimate in MOSPA sense.

3.2 Conceptual solution II – unordered densities

The second conceptual solution relies on the fact that to compute MMOSPA
estimates, it is sufficient to know the unordered posterior density p

(
{x(1)

k , . . . ,x
(n)
k }
∣∣Zk
)
,

since the labeling of the targets has no influence on the MOSPA measure.
An optimal solution utilizing the sufficiency of the unordered density is given
in Table 2.
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Table 2: Conceptual solution II – unordered densities

1) Compute the unordered density p
(
{x(1)

k , . . . ,x
(n)
k }

∣∣Zk
)

recursively.
2) Derive MMOSPA state estimates from the unordered density.

The second conceptual solution has the same two difficulties as the first
one, viz. that approximations are necessary to keep complexity at a constant
level and that derivation of MMOSPA estimates from an unordered density
is a research topic in itself.

Step one of the second conceptual solution (cf. Table 2) is the foundation
of the family of PHD/CPHD algorithms [9–12] with the Gaussian-mixture
CPHD filter [12] as perhaps the most prominent one.

3.3 JPDA approximation

The JPDA filter is an approximative solution to the data association problem,
described in the spirit of the first conceptual solution. The approach of the
filter is to recursively approximate the multi-modal posterior density in (11)
by a single Gaussian. The posterior density can be rewritten as

p
(
Xk

∣∣Zk
)
=
∑

h∈H

p
(
Zk

∣∣Xk, h,Z
k−1
)
p
(
Xk

∣∣Zk−1
)

p
(
Zk

∣∣Zk−1
)

× Pr
{
h
∣∣Zk−1

}
. (12)

Assuming linear and Gaussian models, and a Gaussian prior density p
(
Xk

∣∣Zk−1
)

(given by the JPDA approximation at time index k − 1), the above density
is a Gaussian mixture.

The JPDA filter performs the following steps:

1. Formulate all global data association hypotheses, H, which describe
possible origins of Zk.

2. For each data association hypothesis h ∈ H, update the predicted den-
sity for each target i with the assigned measurement j as a Kalman
filter update. The output of the filter is the mean value xi,h

k|k and co-

variance matrix Pi,h
k|k (cf. (18)–(19)).

3. Calculate the weight βh of each mixture component h.
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4. Use moment matching to approximate the Gaussian mixture by a single
Gaussian, see (17).

The mixture weights βh are given by

βh =
β̄h∑NH
h=1 β̄h

(13)

β̄h =
∏

Sh
0

λ ·
∏

Sh
u

(
1− PD

)
·
∏

{i,j}∈Sh
a

PD gij, (14)

where a constant detection probability is assumed, Sh
0 is the set of unassigned

measurements, Sh
u is the set of unassigned targets, and Sh

a is a set including
the pairs of detected targets, i, and their assigned measurements, j. Further,

gij = N
(
νij ; 0,Sk

)
=

1
∣∣2πSk

∣∣1/2 e
−

d2ij
2 (15)

d2ij = νT
ijS

−1
k νij , ν ij = zjk −Hkx

(i)
k|k−1. (16)

As described above, the first three steps of the JPDA algorithm describe
the calculation of the components in the Gaussian mixture, while the final
step is to approximate that Gaussian mixture density for each target with a
single Gaussian. This is done by moment matching, i.e.,

p
(
x
(i)
k

∣∣Zk
) ∼= N

(
x
(i)
k ;xi

k|k,P
i
k|k
)

(17)

where3

xi
k|k =

NH∑

h=1

βhx
i,h
k|k (18)

Pt
k|k =

NH∑

h=1

βh

{
Pi,h

k|k +
(
xi
k|k − xi,h

k|k
)(
xi
k|k − xi,h

k|k
)T}

(19)

and where NH is the total number of hypotheses.
The JPDA algorithm is often described in an alternative, but equivalent,

fashion [5], where the computation of the state estimates includes the cal-
culation of a weighted measurement residual which is used in an ordinary
Kalman filter update.

3Although the sums in (18) and (19) can be done as written, in practice there would
be a step of marginalization over the single-target association events.
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4 Conceptual solution III – ordered densities

with switching

4.1 The RFS family

In this section we discuss the relationship between ordered and unordered
densities, and the effects and possibilities of that relationship. Further, we
introduce a new, third, conceptual solution to the problem of interest, and
illustrate its properties using simple examples.

The first two conceptual solutions included the calculation of the ordered,
and unordered, posterior densities of the joint target states, respectively. A
key insight, upon which we capitalize, is that there is a relation between
these densities. For n targets, the relation is the following

p({x(1)
k , . . . ,x

(n)
k } = {α1, . . . ,αn})

=
n!∑

i=1

p(x
(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
), (20)

where [α1, . . . ,αn] is a point in the joint target state space, and mi
j , for

j = 1, . . . , n, is index j in permutation number i. To go from an ordered
density to a set density, we thus sum over all possible permutations of the
state vector. For instance, when n = 2 a natural choice is to set m1

1 = 1,
m1

2 = 2 and m2
1 = 2 and m2

2 = 1. One important consequence of this relation
is described in the following proposition.

Proposition 1 For n > 1, the mapping from densities of ordered state vec-
tors, pi(x

(1)
k , . . . ,x

(n)
k ), to RFS densities, p({x(1)

k , . . . ,x
(n)
k }), is many-to-one.

Since many ordered densities correspond to the same unordered density, and
since the RFS density is sufficient to derive optimal estimates, it is fair to
say that the ordered density contains more information than necessary. For
all densities which correspond to the same unordered density, we make the
following definition:

Definition 1 When two labeled densities, p1(x
(1)
k , . . . ,x

(n)
k ) and p2(x

(1)
k , . . . ,x

(n)
k ),

correspond to the same RFS density, we say that they belong to the same RFS
family.

So, using (20), we obtain the same RFS density regardless if p1(x
(1)
k , . . . ,x

(n)
k )

or p2(x
(1)
k , . . . ,x

(n)
k ) is used. In Fig. 1, two labeled densities in the same RFS

121



family are shown, together with the RFS density. Obviously, even though
the ordered densities belong to the same RFS family, their shape, expected
values and covariance matrices can be very different.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

p1(x1
k ,x

2
k)

x1
k

x2 k

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x1
k

x2 k

p2(x1
k ,x

2
k)

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

p({x1
k,x

2
k})

x1
k

x2 k

Figure 1: Marginalized posterior densities before [top left] and after [top
right] switching the indexes under H2, and the RFS density [bottom]. In our
opinion, a Gaussian approximation is much more appropriate in the middle
figure than in the left one. The symmetry line is dash-dotted and the pluses
indicate expected values of the Gaussian mixture components. The RFS
density is inherently symmetric and is not affected by label switches in the
ordered densities.

The MMOSPA estimate can be calculated from the RFS density, but also
from the ordered densities. Since Proposition 1 tells us that several ordered
densities correspond to the same RFS density, all these densities should result
in the same MMOSPA estimates. This assumes, of course, that the estimates
are computed using optimal algorithms. To find the optimal estimates, we
can first calculate the RFS density and then find the MMOSPA estimate
from it using optimal algorithms. All ordered densities which correspond to
the same RFS density must hence yield the same MMOSPA estimate. We
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summarize this in a proposition.

Proposition 2 All ordered densities within an RFS family yield the same
MMOSPA estimate. Further, that MMOSPA estimate is equal to the MMO-
SPA estimate obtained from the corresponding unordered density.

So if we have the RFS family at a certain time, we can use any of the densities
in the family to find the MMOSPA estimate, or we can use the corresponding
RFS density. But what happens when we update the ordered densities with
the same data? Will they still correspond to the same RFS family? With
the following proposition, and its proof, we show that it is actually so.

Proposition 3 Suppose p1(x
(1)
k ,x

(2)
k , . . . ,x

(n)
k ) and p2(x

(1)
k ,x

(2)
k , . . . ,x

(n)
k ) are

two labeled densities within the same RFS family4. When these densities are
updated using the same set of measurements, Zk, the updated densities still
belong to the same RFS family.

Proof of proposition 3 The key to this result is the fact that given the
state vector, the likelihood is the same for all terms in (20), i.e., for all
permutations of the target positions. Intuitively, this means that once the in-
formation about the target identities is lost, it can not be recovered from future
data. Consequently, after the Bayesian update we get p1({x(1)

k , . . . ,x
(n)
k } =

{α1, . . . ,αn}
∣∣Zk)

=

n!∑

i=1

[
p(Zk

∣∣x(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
)

p(Zk)

× p1(x
(1)
k = αmi

1
, . . . ,x

(n)
k = α

m
(i)
n
)

]
(21)

=
p(Zk

∣∣x(1)
k = α1, . . . ,x

(n)
k = αn)

p(Zk)

×
n!∑

i=1

p1(x
(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
) (22)

= p2({x(1)
k , . . . ,x

(n)
k } = {α1, . . . ,αn}

∣∣Zk), (23)

4We also assume that all targets have identical properties conditioned on the state
vector, i.e., that the measurement equations are the same, independent of the target
number. If this is not so, we have no business using the unordered densities in the first
place.
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where the last equality is due to p1(x
(1)
k ,x

(2)
k , . . . ,x

(n)
k ) and p2(x

(1)
k ,x

(2)
k , . . . ,x

(n)
k )

being part of the same RFS family.

As we can see, all labeled densities that correspond to the same RFS
density, 1

n!

∑n!
i=1 p(x

1
k = αmi

1
, . . . ,xn

k = αmi
n
) before measurement update,

still belong to the same (only updated) RFS density, p({x1
k = α1, . . . ,x

n
k =

αn}
∣∣Zk), after the measurement update.
To phrase this differently, all densities that belong to the same RFS fam-

ily should result in the same MMOSPA estimates, both now and for all
future times, i.e., also when new data is available. We can therefore replace
our density at hand with any other density within the RFS family, without
influencing the estimates5. We conclude our findings in a theorem.

Theorem 1 In a recursive filtering framework, at each time instant we have
the possibility of switching between ordered densities in the RFS family with-
out affecting current or future MMOSPA estimates.

From Theorem 1, we see that there is a previously unrecognized possibility
of switching densities at any time in a filtering framework, without affecting
the optimal performance. Based on this, we can describe a third conceptual
solution (see Table 3) to the problem of this paper—a conceptual solution
that utilizes the possibility of switching densities within the RFS family.

Table 3: Conceptual solution III – ordered densities with switching

1) Compute the ordered density p
(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
recursively.

2) Replace p
(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
with another ordered density

which corresponds to the same RFS density.
3) Derive MMOSPA state estimates from the ordered density.

This conceptual solution provides us with new possibilities and tools for
designing novel suboptimal algorithms with better performance. As a switch
within the RFS family does not affect the estimates, we could for instance
make a change to a density which is more accurately approximated with a
Gaussian density. The relevance of that is obvious, considering for example
the JPDA filter, which relies heavily on Gaussian approximations. Since

5It is important, to go between (21) and (22), as with other steps in our development,
that the targets be truly exchangeable and indistinguishable. For example, if target 1 has
a different RCS than target 2, then this cannot be claimed.
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computational complexity must be kept at a constant level, all practical
algorithms need approximations, and Gaussian approximations are common.
In the RFS family, there may be a density which much more resembles a
Gaussian density. An example of that is seen in Fig. 1. By switching to that
density, a more accurate Gaussian approximation is possible.

In practice, the posterior mean is often used as estimate also when the cost
function is not the squared error. With the same reasoning as above, there
may thus also exist densities within the RFS family whose expected value is
closer to the optimal estimate, than the expected value of the original density.
In fact, in [13] it is shown that there is a density in the RFS family whose
mean value is the MMOSPA estimate. In Section 4.2, we study an example
which shows that a density switch can lead to both improved approximations
and to improved state estimates when the posterior mean is the estimator.

4.2 An example of the use of an RFS family

By considering an example, we here illustrate and discuss the potential ben-
efits of density switches, both in terms of accuracy of the Gaussian approxi-
mations and the accuracy of the state estimates, when the posterior mean is
used as estimate.

Example 1: Consider a scenario where we have two Gaussian distributed
targets. The example is illustrated in Fig. 1. The probability of detection is
one for both targets, and we have received two detections. We represent the
two possible data associations by the hypotheses H1 and H2. Now, suppose
that calculations yield the numbers6,

Pr{H1} = 0.3, xk|H1 ∼ N
([

3
−0.5

]
,

[
1 0
0 1

])
(24)

Pr{H2} = 0.7, xk|H2 ∼ N
([

−0.2
2.7

]
,

[
1 0
0 1

])
. (25)

We realize that the two sets {x1
k = β1, x

2
k = β2} and {x1

k = β2, x
2
k = β1}

represent the same set of targets. We may therefore move density from one
such labeled point to the other, without changing the RFS density. One way
to do this is by switching the indexes under H2,

Pr{H1} = 0.3, xk|H1 ∼ N
([

3
−0.5

]
,

[
1 0
0 1

])
(26)

Pr{H2} = 0.7, xk|H2 ∼ N
([

2.7
−0.2

]
,

[
1 0
0 1

])
. (27)

6All probabilities and densities are conditioned on data, but this is omitted for nota-
tional convenience.
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The densities p1(xk), given by (24)–(25), and p2(xk), given by (26)–(27), thus
correspond to the same RFS density

p({x1
k, x

2
k}) = p1(xk)+p1(πxk) = p2(xk)+p2(πxk), (28)

where the matrix π is a permutation matrix, defined as

π =

[
0 1
1 0

]
. (29)

Since the ordered densities p1 and p2 belong to the same RFS family, they
should, ideally, render the same estimates. As illustrated in Fig. 1, the
suggested switch leads to a simpler problem, since the marginalized densities
of x

(1)
k and x

(2)
k can be approximated by a Gaussian density more accurately.

The dash-dotted line in Fig. 1 is a symmetry line. When probability mass
is moved from one labeled point to another, the movement is through this
line to the mirror point. Of course, the example is selected to highlight the
advantages with a switch, and one can easily construct situations when it is
better not to switch indices. Still, the example illustrates a general technique
that can be employed by most tracking algorithms that use merging.

To further improve the understanding of the concepts in Example 1, we
stress the relation to the RFS densities. Let p̃1(x

(1)
k , x

(2)
k ) and p̃2(x

(1)
k , x

(2)
k )

denote the Gaussian approximations of p1(x
(1)
k , x

(2)
k ) and p2(x

(1)
k , x

(2)
k ), respec-

tively. Both p1(x
(1)
k , x

(2)
k ) and p2(x

(1)
k , x

(2)
k ) correspond to the same RFS den-

sity, i.e., p1({x(1)
k , x

(2)
k }) = p2({x(1)

k , x
(2)
k }) (cf. (28)). As the approximation

p̃2(x
(1)
k , x

(2)
k ) ≈ p2(x1, x

(2)
k ) is fairly accurate, it follows that p̃2({x(1)

k , x
(2)
k }) ≈

p2({x(1)
k , x

(2)
k }) = p1({x(1)

k , x
(2)
k }). However, it is likely that the approxima-

tion p̃1({x(1)
k , x

(2)
k }) ≈ p1({x(1)

k , x
(2)
k }) is less accurate. Hence, by switching

densities we will make approximations that better preserve the information
about the desired RFS density, p1({x(1)

k , x
(2)
k }).

It is not obvious how to compute MMOSPA estimates from a given RFS
density. Instead, the proposed algorithms in Sections 5 and 6 use the MMSE
estimates, i.e., the posterior means, of a density of ordered targets. The idea
is to select a density within the RFS family such that the MMSE estimates are
close to the MMOSPA estimates. For the considered example, we illustrate
the importance that the choice of density has on the posterior means and the
MOSPA performance, by studying the MMSE state vector estimates before
and after the index switch. In the original indexation, the posterior means
are

x̂
(1)
k = 0.76, x̂

(2)
k = 1.74 (30)
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whereas the posterior means after the switch are

x̂
(1)
k = 2.79, x̂

(2)
k = −0.29. (31)

The latter posterior means are probably close to the optimal estimates since,
under both hypotheses, one target is fairly close to 2.79 whereas the other
target is reasonably close to −0.29. Hence, although the initial objective
was to improve the Gaussian approximation, the density switch also seems
to yield MMSE estimates which are closer to the MMOSPA estimates.

For more results on the connection between accurate Gaussian approxi-
mations and improved estimates, we refer to Section 6.

5 Optimal approximations in the Kullback-

Leibler sense

In this section, we present a way of switching densities within the RFS fam-
ily such that the new density can be most accurately approximated with a
Gaussian density, in the Kullback-Leibler sense. Note that the description is
only made for a two-target case, but the results can be generalized.

In what follows, we assume that the posterior density is a Gaussian mix-
ture, denoted

p(x) =

NH∑

h=1

βhN (x;µh,Ph). (32)

For the two-target case, we make the following definition of the RFS family,
Ap, of p(x) (cf. (28))

Ap , {f : f(x) + f(πx) = p(x) + p(πx)} . (33)

Here, x is the stacked vector of the state vectors x(1) and x(2) of the two
targets, and π is a permutation matrix (cf. (29)).

Depending on the choice of density f(x), the Gaussian approximation
may be more or less accurate. Our objective here is to

1. find a density f(x) that enables the most accurate Gaussian approxi-
mations; and then to

2. find the Gaussian density N (x; x̄,R) that best approximates f(x).
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As a measure for how accurate a density approximation is, we will use the
Kullback-Leibler divergence [16]. Of course, our interest in f(x) is only as a
means to obtain N (x; x̄,R), which means that one could imagine a technique
that does not involve f(x). The mathematical definition of the problem that
we would like to solve is

{x̄,R} = argmin
x̄,R

{
min

f(x)∈Ap

KL [f(x)||N (x; x̄,R)]

}
, (34)

where

KL [f(x)||N (x; x̄,R)]
△
=

∫
f(x) log

f(x)

N (x; x̄,R)
dx, (35)

and where KL denotes Kullback-Leibler divergence. In the standard pro-
cedure (used in for instance PDA and JPDA) one would use f(x) = p(x)
and only optimize over x̄ and R, for which the optimal solution is given by
moment matching. By also optimizing over f(x) we believe that the approx-
imation errors will decrease significantly compared to JPDA, and slightly
compared to the algorithm that we present in Section 6.

To design an algorithm that can search for x̄ and R, the following results
are very useful.

Theorem 2 The solution to

{x̄,R} = argmin
x̄,R

KL [f(x)||N (x; x̄,R)] (36)

is given by moment matching,

x̄ = Ef(x) {x} (37)

R = Covf(x) {x} . (38)

Furthermore, the density f(x) ∈ Ap that minimizes KL [f(x)||N (x; x̄,R)] is

f(x) = (p(x) + p(πx)) · N (x; x̄,R)

N (x; x̄,R) +N (πx; x̄,R)
. (39)

Proof of Theorem 2 The results in Eq. (37) and (38) are well known, see
e.g. [17]. For (39), see [18].

Based on the above theorem, we propose an iterative optimization algorithm.
The algorithm is illustrated in Fig. 2, where the initial density is p(x).

1. Initiate with i = 1 and let x̄0 and R0 be the first two moments of p(x).
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2. Set

fi(x) = (p(x) + p(πx))

N (x; x̄i−1,Ri−1)

N (x; x̄i−1,Ri−1) +N (πx; x̄i−1,Ri−1)
. (40)

3. Compute

x̄i = Efi(x) {x} (41)

Ri = Covfi(x) {x} . (42)

4. If x̄i ≈ x̄i−1 and Ri ≈ Ri−1 we stop. Otherwise, set i = i + 1 and go
back to 2.

The algorithm is essentially straightforward. However, to implement it we
need the ability to calculate expected values with respect to the densities
fi(x), i = 1, 2, . . . .

RFS family

Family of
Gaussian
densities

Start density

Best
approximation

Figure 2: Illustration of the iterative optimization algorithm which finds
the best Gaussian approximation of the RFS family, in the Kullback-Leibler
sense. The curves represent the functional spaces of densities within the RFS
family (below), and the Gaussian densities (above).

It appears complicated to find analytical expressions for the expected
values in (41) and (42) and we therefore suggest a numerical method based
on importance sampling. As importance density we use

q(x) =
1

2

(
p(x) + p(πx)

)
. (43)
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The expected values can be reformulated as

x̄i = Efi(x) {x} = Eq(x)

{
x
fi(x)

q(x)

}
(44)

Ri = Efi(x)

{
(x− x̄i)(x− x̄i)

T
}

(45)

= Eq(x)

{
(x− x̄i)(x− x̄i)

T fi(x)

q(x)

}
, (46)

and for the selected importance density it is easy to evaluate the ratio

fi(x)

q(x)
= 2

N (x; x̄i−1,Ri−1)

N (x; x̄i−1,Ri−1) +N (πx; x̄i−1,Ri−1)
. (47)

Based on i.i.d. samples x1,x2, . . . ,xN ∼ q(x), we can approximate the de-
sired entities as

x̄i ≈
N∑

n=1

xnwn (48)

Ri ≈
N∑

n=1

(xn − x̄i)(xn − x̄i)
Twn, (49)

where

wn =
fi(xn)/q(xn)∑N
r=1 fi(xr)/q(xr)

. (50)

In (49), we replace x̄i with the approximated value from (48). A beneficial
property with the suggested importance function is that since the RFS family
is preserved we can use the same samples x1, . . . ,xN for all iterations i =
1, 2, . . . .

In this section, we have presented the optimal approach of performing
density switches within the RFS family, such that the final density can
most accurately be approximated with a Gaussian density. We have also
presented a numerical approach of computing the required expected values.
Since the presented algorithm is computationally demanding, we are inter-
ested in a sub-optimal approach, which still has the properties of enabling
better Gaussian approximations than the JPDA algorithm, and which also
presents better estimates than JPDA in MOSPA sense. The development of
such an approach is the topic of the following section.
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6 Set JPDA algorithm

In this section, we derive a sub-optimal approach to the third conceptual so-
lution, called the Set JPDA (SJPDA) algorithm. The filter utilizes the fact
that several ordered densities correspond to the same set density, which pro-
vides the possibility to switch between those ordered densities. The criterion
that we try to minimize with our switch of densities is optimal in terms of
the MOSPA estimates. Still, we argue that it in most cases also gives better
density approximations than the JPDA algorithm.

The Set JPDA algorithm is a modification of the classic JPDA filter.
The difference is that once the posterior density is described as a weighted
sum of Gaussian densities, we allow ourself to switch that density for another
ordered density in the same RFS family. On a high level, the SJDA algorithm
works as follows:

1) Formulate the set of global measurement hypotheses, H, and calculate
conditional densities of all targets as well as the probabilities of all
hypotheses. Approximate the targets as independent.

2) Reorder the target indexes under the different hypotheses with the ob-
jective to make the marginalized densities resemble Gaussian densities
(by minimization in one’s favorite sense, see Sections 6.1 and 6.2 for
details).

3) Approximate the marginalized posterior densities of all targets as in-
dependent Gaussian. Then go back to 1.

A block diagram description of the SJPDA filter is shown in Fig. 3. As
seen in the figure, the difference between SJPDA and JPDA lies in the switch-
ing block. If that block is removed, we obtain the JPDA filter.

The key aspect of the SJPDA filter is the switching of densities. To ob-
tain a filter with good performance, and which enables accurate Gaussian
approximations, the switching criterion is very important. In the follow-
ing two sections, we propose a goal function, and formulate the problem
of minimizing that function (while remaining within the family of Gaussian
mixtures) as a continuous optimization problem.

6.1 Goal function proposal and motivation

For the considered problem, the labeled density is a Gaussian mixture. In
this section, we propose and motivate a goal function for the optimization
problem of finding the best switching of such densities in the SJPDA filter.
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Update Switch
Gaussian

approximation

Prediction

Figure 3: SJPDA block diagram.

Generally speaking, a Gaussian mixture can be accurately approximated
by a single Gaussian density as long as the Gaussian mixture is not too
distinctly multimodal. In the SJPDA filter, we wish to adjust the indexation
within each global hypothesis, in order to find a labeled density which is less
multimodal. The goal function that we propose is hence a function which
measures the multi-modality of the density. The proposed goal function is

n∑

i=1

tr{Pi
k}, (51)

for which Pi
k is given in (19). In the following, we motivate that goal

function, basically by arguing that through minimizing of the function, we
will obtain both better approximations and better estimates than what we
would obtain using the JPDA filter.

In [13], the problem of minimizing MOSPA is considered in more detail.
An important result from the paper is that the problem of minimizing the sum
of the trace of the posterior covariances is equal to the problem of minimizing
MOSPA, given that the expected value is used as estimate and that we search
in the entire RFS family (not restricting the search to Gaussian mixtures in
the RFS family). Thus, the switching criterion that we use is optimal for the
estimation problem.

The second advantage with the cost function is that it enables better
Gaussian approximations. The reason for this is that by minimizing the trace
of the covariance matrices, we make the posterior density less multimodal.
We therefore argue that the Gaussian approximations in the SJPDA filter are
at least as accurate as the JPDA filter approximations, where equality holds
if no switches are made. However, for the density approximations, there are
no optimality results. That is, one cannot show that the approximations
are optimal, for example in a Kullback-Leibler sense, by using the proposed
goal function. Instead, for optimal approximations, we refer to the algorithm
given in Section 5.
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6.2 SJPDA as a continuous optimization problem

In [19], the switching problem of SJPDA was formulated as a discrete opti-
mization problem, for which a brute force solution can be implemented easily.
In this section, we instead show how the problem can be reformulated as a
continuous optimization problem, for which fast solvers can be applied.

We start by assuming that the posterior density is described by a Gaus-
sian mixture, as in (32). To give the problem a continuous formulation, we
introduce the variable φi,h which represent the weight of the Gaussian com-
ponent after permutation. In this way, we can have a linear combination
of the original component and the permuted component. For the discrete
problem, φi,h is either 0 or βh. In the continuous formulation of the problem,
the posterior after switching is given by

q(x) =

n!∑

i=1

NH∑

h=1

φi,hN (x; πiµh, πiPhπ
T
i ), (52)

where πi is permutation matrix number i, and where n! is the total num-
ber of possible permutations. The new weights have to fulfill the following
constraints

n!∑

i=1

φi,h =βh ∀h (53)

φi,h ≥0 ∀i, h. (54)

Note that the densities N (x;µh,Ph) and N (x; πiµh, πiPhπ
T
i ) lie in the same

RFS family for all permutation matrices πi.

To conveniently express the goal function in the above parameters, we
introduce the notations

φ =
[
φ1,1 . . . φn!,1 φ1,2 . . . φn!,2 . . . φn!,NH

]T
(55)

V =
[
π1µ1 . . . πn!µ1 π1µ2 . . . πn!µ2

. . . πn!µNH

]
, (56)

such that

x̄ ,
n!∑

i=1

NH∑

h=1

πiµhφi,h = Vφ. (57)
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We wish to minimize

tr
{
Covq(x) {x}

}

=

n!∑

i=1

NH∑

h=1

φi,h

{
(πiµh−x̄)T (πiµh−x̄)+tr{πiPhπ

T
i }
}

(58)

=

{
n!∑

i=1

NH∑

h=1

φi,hµ
T
hµh

}
− x̄T x̄+

NH∑

h=1

tr{Ph}
n!∑

i=1

φi,h (59)

=

{
NH∑

h=1

βhµ
T
hµh

}
− φTVTVφ+

NH∑

h=1

tr{Ph}βh, (60)

where −φTVTVφ is the only part that depends on φ, subject to the con-
straints presented in (53) and (54). To summarize, we have the optimization
problem

min
φ

s.t.




φi,h ≥ 0 ∀i, h∑n!

i=1 φi,h = βh ∀h

−φTVTVφ. (61)

The problem is non-convex. The goal function is concave, and it is to
be minimized over a convex region, which has the implication that the op-
timal point is along the border of the constraints. We also note that since
the optimal solution is on the border of the constraints, the permutations
either occur or not, i.e., there will be no partial permutations in the optimal
point. A benefit with the continuous formulation is that it enables the use of
commercial optimization solvers, which scale well with increasing number of
targets and hypotheses. To use an optimization solver, we need knowledge
regarding existence of local minima, and how they can be avoided.

It can be analytically shown that there are no local minima for the case of
scalar state vectors and two targets. But when the dimensionality of the state
vector increases, there will in some situations exist local minimum points in
which an optimization algorithm can be trapped. It is thus important to
select a suitable starting point for the algorithm. Through empirical studies,
we have seen that it is only in a small region around the minimum point that
the negative gradient points in the direction of the local minimum. Therefore,
only starting points in a small region around potential local minima should be
avoided. For the problems considered in this article, we have found a suitable
set of starting points which almost always lead the selected optimization
algorithm to the global minimum.

For more details on the characteristics of the optimization problem, see [18].
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6.3 Algorithm description

The SJPDA algorithm has five steps which are executed for each time index
k. In the following, we describe each of those five steps in more detail, and
summarize the algorithm in Table 4.

The algorithm description starts at time k, at which we have available a
set of measurements, Zk, and predicted states xi

k|k−1 and covariance matrices

Pi
k|k−1 for each target i. Note that steps I, II and V are identical to the

JPDA algorithm (one version of it). Note also that we assume linear and
Gaussian process and measurement models in the description, although the
SJPDA algorithm can be easily extended to handle nonlinear models using,
for example, an extended Kalman filter (EKF).

Step I: Data hypothesis extraction

The first step of the SJPDA algorithm is to formulate all possible global
data association hypotheses, H. A hypothesis is possible if it describes the
origin of each measurement in Zk (target-generated or false), and if the total
number of target-originated measurements is at most n.

Step II: Data update

The second step of the algorithm is to update the predicted state vectors and
covariance matrices, and to calculate the mixture weights, βh. For a certain
target i, the updated state and covariance matrix under hypothesis h are
given by

xi,h
k|k = xi

k|k−1 +Ki
k

(
Hkx

i
k|k−1 − zi,hk

)
(62)

Pi,h
k|k =

(
I−KkHk

)
Pi

k|k−1, (63)

where zi,hk is the measurement associated to target i under hypothesis h. If

no measurement is associated, we use zi,hk = 0. An expression for the mixture
weights is given in (13).

Step III: Optimization

Step three of the SJPDA algorithm is the main step, namely to find the
optimal permutation of state vectors under the data association hypotheses.
We find the optimum solution, φ∗, to (61) by applying an optimization solver
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Table 4: SJPDA algorithm description

I: Data hypothesis extraction

formulate all NH global data association hypotheses

II: Data update

for each data association hypothesis h = 1, 2, . . . , NH, do

for each target i = 1, . . . , n, do

update the expected value and covariance matrix of the pre-
dicted state vector x̂i

k according to (62)–(63)

calculate the mixture weight βh according to (13)

III: Optimization

solve the problem defined in (61) using an optimization solver

a suitable pair of starting points is given in (64)–(65), and a useful
third initiation point is to perform a 70% permutation under the N
(e.g. 10) largest hypotheses

IV: Permutation and update

compute the expected value and covariance matrix of the joint state
vector Xk after data update, optimal permutation and Gaussian ap-
proximation, according to (68)–(69)

V: Prediction

for each target i = 1, 2, . . . , Nt, do

predict the state vector and covariance matrix of target i, accord-
ing to (70)–(71).

with different initiation points. A suitable pair of starting points for the two-
target problem is

φstart,1 =
[
0.7β1 0.3β1 . . . 0.7βNh

0.3βNh

]T
(64)

φstart,2 =
[
0.7β1 0.3β1 0.3β2 0.7β2

. . . 0.7βNh
0.3βNh

]T
. (65)
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Step IV: Permutation and update

After the optimal solution φ∗ has been found, we permute the state vectors
according to that solution. The permutation does not have to be done ex-
plicitly, since we are only interested in the Gaussian approximation of the
permuted posterior density. To express the mean and covariance after per-
mutation, we describe the calculation in the joint state vector Xk. Before
permutation, the expected value and covariance matrix of that vector is

Xh
k|k =

[(
x1,h
k|k
)T (

x2,h
k|k
)T

. . .
(
xn,h
k|k
)T]T

(66)

Ph
k|k = diag

{
P1,h

k|k,P
2,h
k|k, . . . ,P

n,h
k|k
}
. (67)

After permutation, the expected value and covariance matrix are given by

Xk|k = Vφ∗ (68)

Pk|k =
Nh∑

h=1

n!∑

j=1

φ∗(i(h, j)
)[
ΠjP

h
k|kΠj

+
(
ΠjX

h
k|k −Xk|k

)(
ΠjX

h
k|k −Xk|k

)T]
, (69)

where the function i(h, j) gives the index in φ∗ which corresponds to per-
mutation i and hypothesis h. We approximate the targets as independent,
which implies that the posterior covariance matrix Pi

k for target i (the indices
are irrelevant) is the corresponding block in the matrix Pk|k.

Step V: Prediction

The final step of the SJPDA algorithm is to let k → k − 1, and predict the
state and covariance matrices of the set of targets to the next time step k. For
linear models, that prediction is done using the ordinary Kalman prediction
equations

xi
k|k−1 = Fkx

i
k−1|k−1 (70)

Pi
k|k−1 = FkP

i
k−1|k−1F

T
k +Qk. (71)

In Fig. 4, the densities of the joint state vector (with two targets and
scalar states) is illustrated for different steps in the JPDA and SJPDA al-
gorithms. In the example, the predicted density is a Gaussian, given by the
top figure. The second row of densities show the density after measurement
update and optimal permutations (for SJPDA). From the figures, we see
that the SJPDA density can be described much more accurately by a Gaus-
sian density. The last row shows the Gaussian approximations of the JPDA
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and SJPDA posterior densities. It is clear that the covariance matrix of the
SJPDA approximation is smaller.
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Figure 4: One-step iteration of the JPDA, SJPDA and KLSJPDA filters. The
prior density is a Gaussian, there are two targets, the detection probability is
0.7, and two target-originated measurements are received. Posterior density
[top left], posterior density after SJPDA optimization [middle left], posterior
density after KLSJPDA optimization [bottom left], JPDA approximation
[top right], SJPDA approximation [middle right], KLSJPDA approximation
[bottom right]. The dashed contours in the right-column figures represent the
densities that are approximated. Clearly, both the SJPDA and KLSJPDA
posterior densities are better approximated by a Gaussian density than the
original posterior density.

7 Evaluations

Two different tracking scenarios are considered for evaluation of the SJPDA
algorithm, and comparison with JPDA and a Gaussian-mixture CPHD filter
with known target number. The first scenario, for which also the KLSJPDA
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algorithm is evaluated, is tracking of two targets, whose trajectories are as
illustrated in Fig. 5. The parameters used in the evaluation are l = 10 m,
d1 = 0.5 m, d2 = 30 m, ϕ = π/3, and v = 1 m/s. The second scenario,
illustrated in Fig. 8, is also a two-target example, but in that scenario the
two targets move around a hexagonal shape. The aim of that scenario is to
evaluate how fast the JPDA and SJPDA algorithms lose track in a challenging
scenario. In both scenarios, a sensor collects measurements at even time
intervals of T0 = 1 second.

l

1
d

2
d

j

v

v

Figure 5: Illustration of the scenario for the first evaluation.

In the filtering algorithms, a nearly constant velocity model is assumed
(see (4) for a general description), which is governed by the system matrix

Fk−1 =

[
I2×2 T0I2×2

02×2 I2×2

]
, (72)

where I2×2 is a 2 × 2 identity matrix, and 02×2 is a 2 × 2 matrix of zeroes,
and by the process noise vk−1 which is zero-mean Gaussian with covariance
matrix

Q = q0

[
T 3
0 I2×2/3 T 2

0 I2×2/2
T 2
0 I2×2/2 T0I2×2

]
, (73)

where q0 is a tuning parameter. In the simulations, the best tuning parameter
is selected for each filter, where the parameter which yields the lowest average
MOSPA is used. Further, the measurement model is assumed linear and
Gaussian (cf. (6)) with observation matrix

Hk =

[
1 0 0 0
0 1 0 0

]
, (74)

which means that the sensor delivers position measurements. The Gaussian
measurement noise wk is zero-mean, with covariance matrix

Rk =

[
σ2
x 0
0 σ2

y

]
, (75)
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where we have used σx = σy = 0.2m.
Fig. 6 shows an example of the JPDA and SJPDA output for d1 = 0.5m,

λ = 0.01, and PD = 1. In the figure we see the track coalescence tendency of
the JPDA filter, which makes it hard for the filter to detect the separation
of the tracks. This leads to high MOSPA after the track separation, and it
also leads to a high risk of losing tracks. In Fig. 7, the MOSPA performance
over 100 Monte Carlo runs is shown for detection probabilities of 1 and 0.85,
respectively. The clutter intensity in the simulations is 0.02 m−2.
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Figure 6: Output of JPDA [top] and SJPDA [bottom] for one sequence of
measurements.

The figures show that the average OSPA performance of the SJPDA filter
is better than for the JPDA filter for almost the entire scenario, and the
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Figure 7: Evaluation of JPDA (green), SJPDA (red), KLSJPDA with 10 000
samples (blue), and GM-CPHD (black) on the two-target scenario for detec-
tion probabilities Pd = 1 [top] and Pd = 0.85 [bottom].

figures also show that the difference between the filters are very large at the
time when the tracks separate. This is due to the track coalescence of the
JPDA filter. Note that the filters are run with different process noises, where
the noise level has been selected to yield the best average MOSPA. When the
filters are run with the same process noise, the SJPDA filter always gives an
average OSPA which is lower than, or equal to, that of the JPDA filter. For
the KLSJPDA algorithm, the performance is similar to that of the SJPDA
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filter, whereas its computational complexity is much higher. We thus suggest
that the SJPDA filter be used.

When compared to GM-CPHD, we see that both the SJPDA and the
KLSJPDA filters for large detection probabilities performs on average equally
well as GM-CPHD (for unity detection probability actually slightly better),
and almost as well for lower detection probabilities. The results are rather
surprising since the GM-CPHD is a more complex algorithm. For the GM-
CPHD algorithm, the best process noise parameter q0 in the aforementioned
set is used, and the filter also uses pruning (threshold 0.0001) and merging
(threshold U = 1, cf. [12]). We note that the somewhat similar JPDA* [20]
was compared to the SJPDA in [21]; in fact the JPDA* performs well, but
the SJPDA is notably superior.
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Figure 8: Example of filter output of the JPDA (crosses) and SJPDA (circles)
algorithms for the track life evaluation scenario (for PD = 1). In the plot,
the output for the first 101 time steps is presented, which is the time it takes
for the two targets to make one loop around the path. In the evaluations,
the full trajectories make ten loops around the hexagonal path.

For the second scenario, the average track life and average track loss for
JPDA and SJPDA are summarized in Table 5, for four different values of
detection probability. In the evaluation, the best process noise parameter
in the set q0 = {0.05, 0.1, 0.2, 0.3, 0.4} has been used, and otherwise the
same parameter values as before. A track is considered lost if the covariance
matrix elements corresponding to the uncertainty in the x or y dimensions
have surpassed 225m2, the estimate of a track is further away than 50 meters
from the true value, or if there has been only two measurements in the gate
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of a track for the last five scans. The selected process noise is such that
the average track life is maximized. The trajectories that the two targets
travel along are illustrated in Fig. 8, where example outputs of the JPDA
and SJPDA filters are included. The angle ϕ (cf. Fig. 5) is π/3, and the
targets travel at a maximum 10 laps around the circuits, which correspond
to 1010 seconds, or almost 17 minutes. From the table we see that the
SJPDA filter has much longer average track life than the JPDA filter, due to
its avoidance of track coalescence and better description of where there are
targets. The lower track-loss probabilities of the SJPDA filter are evident for
all four detection probabilities, but the improvement compared to the JPDA
filter is better the higher the detection probability.

Table 5: Average track lives and average track loss probabilities for the JPDA
and SJPDA algorithms, for different detection probabilities, PD.

JPDA SJPDA Improvement
SJPDA vs. JPDA

PD = 1
Length 97s 993s 924%
Loss 100% 3% 97%

PD = 0.95
Length 128s 734s 473%
Loss 100% 53% 47%

PD = 0.9
Length 152s 456s 200%
Loss 100% 88% 12%

PD = 0.85
Length 142s 251s 77%
Loss 100% 100% 0%

8 Conclusions

In this article we have shown how traditional tracking algorithms can be
improved when target identity is not of interest. The presented approach uses
the relation between the density of ordered (labeled) targets, and the density
of unordered (the set of) targets. More specifically, there is an infinite number
of ordered densities which correspond to the same unordered density, and by
switching between those densities we can obtain densities which have better
characteristics. In order to reflect the fact that target identity is irrelevant,
we use the Mean Optimal Subpattern Assignment (MOSPA) metric instead
of the Mean Squared Error (MSE).
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In the first part of the article, we discuss how the new problem of minimiz-
ing MOSPA differs from the classic tracking problem, and show that there is
substantial room for improvements of the traditional algorithms when eval-
uated according to MOSPA.

In the second part of the article we study the Joint Probabilistic Data As-
sociation (JPDA) filter and how it can be adjusted to the considered problem.
First, we describe how optimal Gaussian approximations in Kullback-Leibler
sense can be found. From this, we develop a new filter called the Kullback-
Leibler Set JPDA (KLSJPDA) filter. Since the filter is computationally
intensive, we propose another approach which operates on a goal function
which leads to both good Gaussian approximations and low MOSPA. The
minimization of that goal function can be formulated as a continuous opti-
mization problem. From this, we develop another adjustment of the JPDA
filter called the Set JPDA (SJPDA) filter.

In the final part of the paper, the SJPDA and KLSJPDA filters are
evaluated on two simulation examples and compared to the JPDA and the
Gaussian-mixture Cardinalized Probability Hypothesis Density (GM-CPHD)
filters. The results show that the SJPDA and KLSJPDA filters have similar
performance and that they perform substantially better than JPDA in terms
of MOSPA. However, due to its lower complexity, we prefer the SJPDA filter.
The results also show that the SJPDA filter has a much longer average track
length than JPDA for the considered scenario. Further, it is seen that the
SJPDA filter performs almost as good as the more complex GM-CPHD filter,
and that it even performs slightly better for a unity detection probability.
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