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ABSTRACT 
 

Feedback in a communication system enables the transmitter to employ channel 
adaptive signaling and avoid interference which leads to improvements in all 
performance metrics. In the case of a multiple-input multiple-output (MIMO) 
channel, research has repeatedly shown that by sending small number of 
information bits as feedback about the channel conditions to the transmitter, 
optimal channel adaptation can be achieved. 
 
MIMO feedback specifies a precoding matrix which activates the dominant 
channel modes at the transmitter. When the feedback channel is severely limited, 
important issues are how to quantize and compress the information needed at 
the transmitter. In this process the design should balance amount of feedback, its 
complexity and associated performance. This thesis addresses the efficient use 
of channel state information to improve the communication systems by 

employing precoding matrix transformation and quantizer design. 
 
Key words:-Limited feedback, MIMO systems, Vector quantizer, MIMO precoder 
design, procoder matrix transformations. 
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 Abbreviations used in the text 
 
MIMO   Multiple-Input Multiple-Output 

SISO   Single-Input Single-Output 

AWGN  Additive White Gaussian Noise 

BER   Bit Error Rate 

QPSK  Quadrature Phase Shift Keying 

QAM   Quadrature Amplitude Modulation 

CSI   Channel Side Information 

CSIR   Channel Side Information at the Receiver 

CSIT   Channel Side Information at Transmitter 

ZMSW  Zero-Mean Spatially White 

SVD   Singular Value Decomposition 

LBG   Linde-Buzo-Gray 

MSE   Mean Squared Error 

WMSE  Weighted Mean Square Error 

MAE   Mean Absolute Error 

DM   Delta Modulation 

SNR   Signal to Noise Ratio 
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Chapter 1 

1 Introduction 
 

MIMO technology has attracted attention in wireless communications, as it offers 
considerable increases in data throughput, enhanced resistance to interference, and 
reduces the deleterious effects of fading in wireless communication channels.  MIMO 
systems provide a number of advantages over single-antenna-to-single-antenna 
communication. The two most vital advantages are reduction in sensitivity to fading by 
provided by multiple spatial paths and increase in capacity. The next sections explain 
MIMO channels and feedback models which are the bases of this technology.   

1.1 MIMO Channel Model 

We consider a narrowband, point-to-point MIMO channel which consists of Mt transmit 
and Mr receive antennas as shown in figure 1.1  

  
Figure 1-1.1: MIMO Channel 

The transmit data streams go through Mt × Mr  paths which can be modeled by a channel 
matrix H. The MIMO system can be represented by the discrete time model as shown in 
equation 1.1. 
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where X is the input vector and N is an AWGN vector. We can write equation 1.1 by 
simply representing the vectors as bold letters as shown in equation 1.2 

 

NHXY   

 
The knowledge of the channel gain matrix H at the receiver, referred as channel state 
information at the receiver (CSIR) [2] can be determined easily by sending a pilot 
sequence for channel estimation.  
 
In SISO channels the effect of a propagation environment on a radio signal can be 
modeled by Rayleigh fading. Rayleigh fading is a reasonable model when there are 
many objects in the environment that scatter the radio signal before it arrives at the 
receiver. In a MIMO channel each element of the channel matrix represent a SISO path 
hence a MIMO channel matrix can also be modeled by Rayleigh faded elements. 
 
The Rayleigh fading model assumes that the magnitude of a signal that has passed 
through multipath fading channel will vary randomly in an unpredictable manner. When 
there are a large number of paths, and there are many objects in the environment 
that scatter the radio signal, the central limit theorem can be applied to model the 
impulse response of the channel as a complex-valued Gaussian random process.  When 
the impulse response is modeled as a zero mean complex-valued Gaussian process the 
envelope of the channel response will therefore be Rayleigh distributed. 
  
In the Rayleigh flat fading channel model the channel is assumed to be independent and 
randomly varying in time for each transmit antenna. The real and imaginary parts of 
each complex element Hij of the channel matrix can be modeled by Gaussian distribution 
N having mean μ(Hij) =0 and variance σ2(Hij) =1/2 as represented by equation 1.3 

  )2/1,0(2/1,0 21 NiNHij   

The Rayleigh flat channel model will be used in the simulations because it is simplest 
fading model in wireless environments and it gives good realizations of Raleigh fading. 
This work can be extended by including Doppler spread and frequency selective fading 
which are exhibited in different types of environment.  

1.2 MIMO Feedback Model 

 
The availability of channel state information at the transmitter substantially improve 
capacity, quality, and reduce interference. The transmitter can customize the transmitted 
waveforms to improve the performance of the downlink channel in multi-input multi-
output (MIMO) communication system.  
 
The transmitter can learn about the channel through a low rate feedback control channel 
which supplies channel state information (CSI). The feedback path can provide partial or 
complete channel state information to transmitter. The systems which supply partial CSI 
are commonly referred as limited or finite-rate feedback systems. If these systems are 
carefully designed, there benefits are nearly identical to systems having perfect channel 
knowledge at the transmitter. 
 

(1.2) 

(1.3) 

http://www.google.se/search?hl=sv&&sa=X&ei=4xc6TYP8Fs3zsgaOn9XzBg&ved=0CCYQvwUoAQ&q=benefit&spell=1
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A communication link with a feedback control channel is shown in figure 1.2 [1]. After 
demodulation and channel estimation, the data and CSI is extracted. The CSI is 
compressed by transformation and quantization. This compressed CSI is send back to 
transmitter through finite rate control pipe. The transmitter uses this information to 
customize the transmitted signal for the channel. The feedback channel rate R is 

typically much smaller than the data pipe rate C to maximize efficiency. 

 
Figure 1-2: MIMO Feedback [1] 

 
The designing of feedback is an important issue because the feedback rate is fixed and 
is generally small to reduce system overhead. Moreover there are several channel 
parameters to send back. If the MIMO wireless channel is changing very fast over time 
due to mobility of the transmitter or receiver, frequent feedback is needed. All these 
issues emphasize the need of selected and limited feedback (or quantized feedback) 
with minimum error [1].  The imperfections like quantization error and delay in feedback 
reduce the performance of closed-loop MIMO systems. 
 

All above mentioned facts highlight the importance limited and selected channel state 
information which should be send back through feedback channel. We will discuss 
instantaneous feedback methods in this thesis i.e. those methods that attempt to inform 
the transmitter about the instantaneous channel state.  
 
Based on the framework illustrated in figure 1.2 our goal is to compress the channel 
coefficients by applying quantization algorithms to reduce the feedback. We will review 
the work done in this field which includes various combinations of transformation and 
quantization techniques and provide a synopsis of the role of limited feedback in the 
standardization of next generation MIMO systems. 

 

1.3 MIMO Functions 

MIMO can be categorized functionally into three main categories. 

1) Precoding 

2) Spatial multiplexing 

3) Diversity coding. 

 

1. 3.1 Precoding 
 

Precoding is a multi-stream beamforming technique in which the user’s signal is 
multiplied with complex weights that adjust the magnitude and phase of the signal to and 
from each antenna. The result of precoding is the output from the array of antennas that 
forms a transmit/receive beam in the desired direction and minimizes the output in other 

http://en.wikipedia.org/wiki/Precoding
http://en.wikipedia.org/wiki/Precoding
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directions. The benefits of this are increase in the received signal gain, by making 
signals emitted from different antennas add up constructively, and to reduce the 
multipath fading effect. Note that precoding requires knowledge of channel state 
information (CSI) at the transmitter. 

1. 3.2  Spatial multiplexing  
 

In spatial multiplexing, a high rate signal is split into multiple lower rate streams and 
each stream is independently encoded and transmitted from each of the multiple 
transmit antennas. These signals reach the receiver with different spatial signatures and 
the receiver separate these streams into parallel channel. Spatial multiplexing can be 
used with or without channel knowledge availability at transmitter. Spatial multiplexing 
can also be used for simultaneous transmission to multiple receivers. 

1. 3.3 Diversity Coding 
 

In diversity coding, a single stream is coded using orthogonal coding and transmitted to 
exploit the independent fading in the multiple antenna links to enhance signal diversity. 
Diversity coding is generally implemented by using space time codes. Diversity 
coding techniques require no channel knowledge at the transmitter. 

1.4 Scope 

The focus of this project is on the performance gain called multiplexing gain. The 
multiplexing gain of a MIMO system results from the fact that a MIMO channel can be 
decomposed into a number R of parallel independent channels. By multiplexing 
independent data onto these independent channels, we can get an R-fold increase in 
data rate in comparison to a system with just one antenna at the transmitter and 
receiver. 

  

http://en.wikipedia.org/wiki/Spatial_multiplexing
http://en.wikipedia.org/wiki/Diversity_Coding
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Chapter 2 
 

2 Matrix Transformations 
 
In this chapter the different matrix transformations by which we can reduce size of the 
feedback matrix will be discussed. The transformation coefficients are send back in 
feedback which can generate the required feedback matrix at the receiver. The core idea 
behind these reversible transformations is to introduce zeros in the matrix, which are not 
needed to be send back. The singular value decomposition will be described in section 
2.1 which can be used to convert the MIMO channel to independent SISO channels and 
provides us the optimal precoding matrix V. The Householder and Givens 
transformations described in section 2.2 and 2.3 use the SVD decomposition. In section 
2.4 the Jacobi rotation is described. Instead of transmit precoding and receiver shaping 
with U and V, the Jacobi rotation matrix can be used to diagonalize the channel 
correlation matrix. 
 

2.1 Singular Value decomposition 

 

A MIMO system can be used to achieve multiplexing gain by the decomposition of MIMO 
channel in to parallel independent channels [2]. In this section we will elaborate how to 
obtain independent MIMO channels by the help of singular value decomposition (SVD) 
of channel matrix H. 
 

Consider a MIMO channel with Mr × Mt channel gain matrix H and let RH denote the rank 
of H. According to matrix theory we can obtain singular value decomposition (SVD) of 
any matrix. Equation 2.1 shows decomposition channel matrix H by applying SVD 
 

 
HVUH   

 
where U is Mr× Mr  unitary matrix, V is Mt × Mt  unitary matrix and Σ is a Mr×Mt diagonal 
matrix of singular values σi . 
 
The singular value σi is equal to the ith Eigen values of HHH and RH of these singular 
values are nonzero, where RH is the rank of the matrix H. We can get parallel 

decomposition of the channel if we apply transformation on the channel input X  and 

output Y , these transformations are called transmit precoding and receiver shaping 
respectively [2].  

Transmit precoding is a linear transformation which convert X
~

to X as shown in 
equation 2.2. 

                 XVX H ~
                    (2.2) 

The vector X
~

 is multiplied with VH to generate X which is antenna input vector.  In 
receiver shaping the channel output Y is multiplied with UH to split MIMO channel into RH 

(2.1) 
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parallel single-input single-output (SISO) channels with input X
~

and output Y
~

. The 

mathematical derivation of the process is shown in equation 2.3(a-e) [2]. 
 

                                    )(
~

NHXUY H                             (2.3a) 

)( NVXUU H                         (2.3b) 

)
~

( NXVVUU HH                   (2.3c) 

                                        NUXVVUU HHH 
~

              (2.3d) 

NX
~~

                                     (2.3e) 

 
 
where Σ is the diagonal matrix of singular values of H with σi on the ith diagonal. By the 
help of this decomposition we can activate the dominant Eigen modes, and the resulting 
parallel channels do not interfere with each other. The MIMO transformation and 
resultant SISO channels with independent gains are shown in figure 2.1 and figure 2.2 
respectively 
 

 
Figure 2-1: MIMO channel transformation [2] 

 
 

 
Figure 2-2: SISO channel [2] 

The multiplication by a unitary matrix does not change the distribution of noise and 
MIMO channel can support RH times multiplexing gain by sending independent data 
across each of the parallel channels. However, the channels have varying SNR due to 
the transform, so the capacities of the channels will be different. 
 
In a nutshell, SVD precoding in MIMO communications is important for interference pre-
cancellation, and singular value decomposition (SVD) approach also leads to 
straightforward transmission architecture. To achieve multiplexing gain the transmit 
beamforming matrix V which is obtained through singular value decomposition is 
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required at the transmitter so matrix V is send back through feedback channel in point-
to-point MIMO systems. 

 

2.2 Householder Transformation 

 
The Householder transformation can be used as reversible matrix transformation to 
selectively introduce zeros in matrix as discussed in [3]. As the transformation is 
reversible, at the receiver it can be reversed with the help of transformation coefficients. 
It is important to note that the transformation coefficients are fewer then the feedback 
matrix elements so the process saves feedback channel bandwidth. Householder 
transformation is a linear transformation that describes a reflection about a plane. By the 
help of Householder reflector we can perform orthogonal triangularization process which 
reduces a matrix to triangular form by a sequence of orthogonal matrix operations. 
 
The Householder vector can be defined in equation (2.4) as 

 

xexv  1                         (2.4) 

 
where e1 is a unit vector. The Householder reflection matrix can be constructed from v 
as shown in equation 2.5 

vv

vv
IF

*

*

2                       (2.5) 

If any vector x is multiplied by Householder reflection matrix F then it is reflected in 
hyper-plane perpendicular to v. To transform any matrix A in to upper triangular form the 
matrix should be multiplied by systematically design orthogonal matrices Qk such that 
the product (Qn, Qn−1 . . . Q1)*A is upper-triangular matrix. Each Qk is an orthogonal 
matrix of the form represented by equation 2.6 
 

   










F

I
Qk

0

0
                          (2.6) 

 
where I is the (k − 1) × (k − 1) identity matrix. Each matrix Qk is designed to introduce 
zeros below the diagonal in column k while preserving previously introduced zeros.  
 
The method of the reversible Householder transformation is described in [3].This method 
is based on iterative quantization of beam forming matrix. The compression is achieved 
by 
       

1) Sending transmit beam-forming vectors V instead of the channel matrix. 
2) Feeds back the beam-forming vectors only for the active spatial channels. 
3) Using house holder matrix repeatedly to reduce the size of vector by one in 

each iteration. 
4) Use vector quantizer to quantize information.  

 
After Householder iterations the matrix becomes identity matrix except the phase shifts 
which need not to be send back according to [3].  The Householder reflection can be 
applied on each vector, and then the vector is quantized before sending it to transmitter. 
The phase shifts are not send back so the reconstructed V matrix may not necessarily 
be same as original. It is proven that by multiplying with global phase eiθ does not affect 
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the close loop MIMO system [3]. Moreover if the off diagonal entries of columns are 
made zero by applying transformation on unitary matrix, the rows automatically 
transformed in to zero. At the transmitter side beamforming matrix V is reconstructed.  In 
reconstruction process the lowest dimension vector is combined with identity vector and 
recursively constructed by multiplying with F at each step as shown in equation 2.7 
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The Householder matrices F2 and F1 can be constructed from V2 and V1 using the 
equation (2.8) 
 

                               2
2

w

ww
IF

H

                                  (2.8) 

where 1evw   
 

The pseudo algorithm described in [3] is as follows 
 
"1: Compute singular value decomposition of the downlink channel matrix H with size m 
by n as (1), and obtain the first k columns of the beam-forming matrix V, where k is the 
number of active spatial channels. 
 
2: Let V=V1:k which is a temporary matrix and is formed by the first k columns of V. 
3. For i = 1: min (k, n-1) 
3.1. Let vi =Vi: 1, which is the first column of V. 
 

3.2. Quantize vi by finding i

H

ciu vuargmax  Vi    where ci is a codebook of unit n-i+1 

vectors. 
3.3. Record the index of vi in the codebook for feedback  

3.4 Construct a Householder reflection matrix as 2
2

w

ww
IF

H

  where 1evw   

and e1 is the unit vector with all zero elements except the first equal to one. 
 
3.5. Conduct Householder reflection on V as V=FiV. To reduce complexity, one only 
needs to compute columns and rows of V other than the first one. 
 
3.6. Update V=V2: n-i+1, 2:k 
 
End " 
 
 

(2.7) 
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2.3 Givens Rotation 
 

The Givens rotation is used to selectively introduce zeros into a matrix to make it an 
identity matrix. The Givens rotation can be applied to the V matrix to reduce the size of 
matrix by half as the transformation parameters are fewer than the matrix elements. The 
matrix V can be reconstructed by using transformation parameters. A real Givens 
rotation is shown in equation 2.9 
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where c and s represent        and        respectively and )/(tan 1 ab

22 bar  . A complex Givens rotation can be formulated by help of two rotation 

angles. Equation 2.10 shows complex Givens rotation and its effect on complex matrix 
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The angles θ1 and θ2 can be determined from input vector as shown in equation 2.11c. 
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
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


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
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b

R

R1

1 tan  , and  ba  2         (2.11c) 

 
As compared to Householder reflection the Givens based unitary precoding method has 
better performance in terms of complexity, feedback resources and quantization noise 
[4]. It is an SVD-based MIMO pre-coding technique, the MSS is required to send beam-
forming matrix V. According to the [4] by successful Givens rotation we can get the 
identity matrix as shown in equation 2.12  
 

VGGGGI NN 1,21,31
.......


                     (2.12) 

                 
Please note that identity matrix in equation 2.12 contains entries in the diagonals which 
are termed as phase shifts. These phase shifts are not sent in feedback as close loop 
MIMO system is unaffected if rotated by a phase shift [4]. 
 
The compression is achieved by sending transformation parameters i.e. C1 and θ2 
instead of matrix V. These parameters are real as compared to complex elements in 
Householder transformation.  
 
The matrix V reconstructed by implementing the equation 2.13 
 

IGGG H

NN

HH

1,1,31,2r .... V                           (2.13)                
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2.4 Jacobi Rotation 
 

The Jacobi method consists of a sequence of orthogonal transformation designed to 
annihilate off-diagonal matrix elements. It can be used to diagonalize autocorrelation 
matrix R by transmit precoding and receiver shaping with Jacobi matrix J and JH 
respectively [5]. A Jacobi rotation is just a plane rotation Qkl which annihilate element 
(k,l) of an object matrix. Successive transformations undo previously set zeros, but the 
off-diagonal terms eventually get smaller and smaller, until they get nearly zero, leftover 
is the only is the diagonal with Eigen values [5]. The method is for symmetric matrices, 
it’s simple and stable algorithm but it becomes slow when matrix grows larger. 
 
 For the real matrices the Jacobi rotation is defend in equation 2.14 
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For any matrix A (only 4 elements are shown which are important for transformation) as 

given in equation 2.15 
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The rotation of the form kl

T

kl AQQ  will transform matrix A in to A  as shown in equation 

2.16 
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The 
T

klQ  multiplication from the left changes only rows p and q of matrix A while 

multiplication of klQ from the right changes only columns p and q. The changed elements 

of matrix A are shown in equation 2.17. 
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A
1
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            (2.17) 

 
 

By multiplying kl

T

kl AQQ  and using the symmetry of A, we can get the required elements 

shown in equation 2.18(a-e). 
 

rqrprp sacaa                                           (2.18a) 

rprqrq sacaa                                           (2.18b) 

pqqqpppp scaasaca 222                       (2.18c) 

pqqqppqq scaacasa 222                        (2.18d) 

)()( 22

qqpppqpq aascasca               (2.18e) 

 

As Jacobi method introduce zeros in off-diagonal elements so by setting pqa  = 0 in 

equation 2.18e to get 2.19 
 

pq

ppqq

a

aa

sc

sc

2

)(

2

)(
2cot

22 



                 (2.19) 

 

Setting t = s/c and θ = 2cot  equation 2.19 can be written in form of quadratic equation 

as shown in equation 2.20 
 

0122  tt                                        (2.20) 

 
By solving for t we get two roots shown in equation 2.21 
 

12  t                                      (2.21) 

 
By rationalization we can write it in more convenient form 
 

1

1

2 



t   and in negative case 

1

1

2 





t       (2.22) 
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1

)(

2 




sign
t                                       (2.23) 

We can evaluate s and c as shown in equation 2.21 and 2.22 

1

1

2 


t
c                                               (2.24) 

 

                              cts                                                      (2.25) 

 
Jacobi rotation for complex channel matrix is defined by J and given in equation 2.26  
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where parameters θ and θ2 can be obtained by the equations 2.27 and 2.28 respectively 
 

01)tan()tan( 1

12

11222
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r

rr
                (2.27) 

           
12

12

r

r
e i 

                                         (2.28) 

  
The Jacobi rotation is implemented as precoder transformation in [5] for 2*2 MIMO 
channel. In Jacobi rotation first channel correlation matrix is computed. The channel 
correlation matrix is obtained by multiplying the hermitian transpose of the estimated 
channel response matrix HH with H itself as given by equation 2.29 
  

     HHR H                                  (2.29) 
 
The estimated channel response matrix H can be decomposed using SVD as shown in 
equation 2.30 
 

HUDVH                                                  (2.30) 

     
By putting value of equation 2.30 in equation 2.29 
 

)()( HHH UDVUDVR                                (2.31) 
 
As U and V are unitary and (AB) H = BHAH so equation 2.31 becomes 
 

HVVDR 2                                                    (2.32) 

 
Comparing equation 2.30 and 2.32 it is obvious that diagonalizing the channel response 
matrix H to find the matrix V is equivalent to diagonalizing the channel correlation matrix 
R as stated in [5]. Jacobi rotation is used to perform the matrix diagonalization of 
channel correlation matrix R such that 
 

2DRJJ H                                                     (2.33) 
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Jacobi matrix parameters θ1 and θ2 are send in the feedback which is same amount of 
feedback as send by Givens rotation i.e. 2 parameter per rotation. As V, the J matrix is 
also unitary in nature. The paper [5] also describes smart procedure for updating 
feedback, managing delay and differential feedback. 
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Chapter 3 

3 Quantizer Design 

3.1 Introduction 

In this chapter quantization techniques for MIMO feedback will be discussed. 
Quantization is the process of mapping very large set of discrete or continuous values by 
a relatively small and finite set of values. The amount of compression has a direct effect 
on design of the quantizer and the quantizer has significant impact on the degradation of 
information incurred in the process.  The quantizer structure consists of encoder and 
decoder mapping. The encoder divides the source output values into a number of 
intervals. These intervals in which all the source output lies can be represented by 
distinct codewords. There could be a lot of source output values that can fall in any given 
interval. The amount of compression achieved by quantizer is described in terms of rate 
and measured in bits/sample.  

Knowledge of the codeword only tells us the interval to which the sample value belongs 
and gives no clue of actual sample value, this makes encoder mapping irreversible. The 
difference between the original signal and the quantized signal is called quantization 
noise and is generally measured by distortion measures which are described in section 
3.2.  
 

3.2 Distance Measure 
 

The distance measures provide us a way to find the closest match between the code 
vectors and the input vector. The most commonly used distance measures are 
described in the following sections 

3. 2.1 Mean Squared Error (MSE) 
 

The mean squared error (MSE) is a method of quantifying the difference between 
estimated and the true value. The mean square error is defined as square of the 
Euclidean distance between two vectors. Mean square error is mathematically shown in 
equation 3.1 
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3. 2.2 Weighted Mean Square Error 
 

In weighted mean square error, each error vector weighted according to some criteria. 
The weighted mean square error is mathematically shown in equation 3.2 
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3. 2.3  Mean Absolute Error 

The mean absolute error is a used to measure how outcomes are close to the actual 
value. The mean absolute error is the average of the absolute errors as show in 
equation 3.3 
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
n

i

ii xx
n

MAE
1

)ˆ(
1

 

3.3  Vector Quantizer 

A vector quantizer Q maps vectors from an input set of vectors X to a finite set of 
codebook vectors C. Figure 3.1 shows the basic structure of the vector quantizer. 
 

 
Figure 3-1: Vector quantizer structure [6] 

 
Encoding sequences of samples instead of encoding individual samples separately 
provides codes having lower distortion for a given rate [6]. So instead of representing a 
single sample of the source output by a single codeword, a vector quantizer group 
source outputs together and encode them as a single block.  
 
After grouping lies the core part of vector quantizer i.e. generation of appropriate 
codebook and finding the closest vector that matches the codebook. The decoding is 
simpler than encoding as it mainly consists of a table lookup. This scheme is excellent 
for the applications in which the resources available for decoding are considerably less 
than encoding. 
 
At both sides of the encoder and decoder of vector quantizer, we have a same set of N-
dimensional code vectors called the codebook which is selected to be representative of 
the vectors we generate from the source output. Each code vector of the codebook is 
assigned a binary index. The number of bits for binary index depends upon the number 
of vectors. At the encoder, the vector quantizer compares the input vector to each code-
vector in order to find the code-vector closest to the input vector. After finding the closest 
vector the binary index which represents the closest vector is send as representative of 
the input vector. As the decoder has exactly the same codebook with same index and it 

can retrieve the code-vector from binary index. 
 

(3.3) 
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Most algorithms for obtaining codebooks are based on one particular approach called 
Linde-Buzo-Gray (LBG) algorithm [6]. The LBG algorithm needs training sequence for 
codebook generation, this training sequence can be obtained from a large database of 
sample output values. For example, if the source is a speech signal, then the training 
sequence can be obtained by recording several long voice conversations. This training 
sequence should be sufficiently large so that all the statistical properties of the source 
are captured by the training sequence [7]. 
 
The performance of vector quantizer can be measured by a distortion function. The most 
common methods of quantifying distortion are described in section 3.2. Suppose we 
have a codebook of size K, and L dimension the input vector. In order to specify which 
code-vector is selected log2(K) bits per vector are required. As each code vector 
contains L source output samples, so the number of bits per sample would be log2(K/L) 
which is expression for rate of vector quantizer. 

The optimal VQ design is associated with finding a codebook that partition the vector 
source in to number of code vectors such that mapping result in the smallest average 
distortion [6]. This requirement leads to design conditions given in section 3.3.1 and 
3.3.2 

3. 3.1 Nearest Neighbor Condition 

The encoding region Sn should consist of all vectors that are closer to code 
vector Cn than any of the other code vectors. A tie-breaking procedure will decide for 
those vectors which lie on the boundary of two regions [6]. This condition is expressed in 
equation 3.4 

 NnncxcnxxSn ,......2,1:
22

                 (3.4) 

3. 3.2 Centroid Condition 

The code vector Cn should be equal to average of all those training vectors that are 
present in encoding region Sn. Also at least one training vector should belong to each 
encoding region. This condition is expressed in equation 3.5 


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x
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

1                  (3.5) 

3.4 LBG Algorithm 
In this algorithm the first centroid is computed by taking the average of the entire training 
sequence. This initial code vector of the training set is then split into two by adding a 
fixed perturbation vector ε. The codebook now contains two code vectors and iterative 
algorithm starts with these two vectors as the initial codebook. The process is repeated 
until the desired number of code vectors or specific distortion is obtained. This algorithm 
can be summarized in following steps [8] 
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“Given number of code vectors N. Let   be a “small” number.   

1.  Let N = 1 and 
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Set N = 2N. 
 

   4:  Iteration: Let
*0

aveave   . Set the iteration index i = 0. 

i) For m = 1, 2….., M, find the minimum value of 
2

)(i

nm XX   overall n = 1, 2, . .N. 

Let n* be the index which achieves the minimum. Set
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ii) Update the code vector 
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iii) Set i = i + 1. 

 
iv) Calculate 
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ave   > ε go to step i. 

vi) Set 
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 as the final code vectors. 

 
   5. Repeat Steps 3 and 4 until the desired number of code vectors is obtained." 
 

 
 
 
 
 
 

(3.6) 
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(3.9) 

(3.10) 
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Chapter 4 

4 Simulation Results and Discussion 

4.1 System Model 
 

To investigate quantization noise and its effect on the system performance feedback 
schemes based on Givens and Jacobi rotation with vector quantizer in the feedback loop 
are considered in this chapter. It is already been proven that Givens rotation outperforms 
Householder transformation in terms of feedback resources and SNR [4]. Both system 
designs are discussed at transmitter, channel and receiver side. The schematic diagram 
of the system model based on Givens rotation is shown in figure 4.1. 

 

 
 

Figure 4-1: Feedback scheme based on Givens rotation 

4.2 Transmit Precoding 

 

In Givens rotation model the QPSK symbols are formed with the help of random input 

bits. The transmit precoding by  ̂ matrix is performed on QPSK symbols. The  ̂ matrix is 
quantized version of V matrix obtained from SVD of channel.  While in feedback based 
on Jacobi rotation the J matrix is used as precoding matrix. 

4.3 Channel Modeling 
 

Computer based simulations require the mathematical representation of the channel, i.e. 
the channel model. From figure 4.1 it can be easily depicted that accurate and realistic 
method for generation of channel matrix H for codebook training as well as for system 
modeling is needed. As discussed earlier in chapter one, we can model input /output 
relationship of the channel by equation 4.1 
 

NHXY   

where X is input, N is AWGN process and H is channel matrix. For measuring 
quantization noise the AWGN noise is neglected the beginning. After modeling the effect 
of quantization noise, AWGN is included to see how system is affected by both noises. 

(4.1) 
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We assume that perfect channel knowledge is available at the receiver, moreover the 
block-fading channel model is assumed in this work. In block-fading channel model the 
channel consists of a finite number of blocks of N symbols. The fading gains of these 
blocks are independent and constant for single block. Block-fading channel model 
assumes slowly varying fading in time.  

4.4 Feedback Loop 
 

As discussed earlier, the feedback loop sends channel state information (precoder 
matrix) to the transmitter. For the feedback scheme based on Givens rotation quantized 
version of Givens rotation parameter (C, θ) are transmitted back which construct 
quantized V matrix at transmitter. This quantized V matrix introduces quantization noise 
in the system. In case of Jacobi rotation system model the quantized version of matrix J 
parameters (θ1,θ2) are transmitted back which construct quantized J at transmitter. Most 
of the details regarding vector quantization and codebook training are already discussed 
in chapter 3. Here the distribution of (C,θ) and codebook points for Givens rotation 
scheme is presented to see how the implemented vector quantizer represent the cluster 

densities. Figure 4.2 shows the distribution of (C,θ) and codebook points.  
 

 
 

Figure 4-2: Givens Rotation, (C, θ) Data points (Green) Codebook points (Red) 

The distribution of (θ1, θ2) and codebook points for Jacobi rotation scheme is shown in 
figure 4.3 
 

 
Figure 4-3: Jacobi Rotation, (θ1, θ2) Data points (Green) Codebook points (Red) 

 
In figure 4.2 we can clearly see that the point density is gradually increasing in y-axis 
direction which represents distribution of C, so we have more representative points of 
code book representing the cluster density near 0.8 value at y-axis. The points (θ1,θ2) 
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and code book points are more evenly distributed as compared to (C,θ) vector. The less 
dense clusters imply more quantization error which will be analyzed in section 4.6. 
 

4.5 Receiver Shaping 
 

In Given based feedback the received data is multiplied with U matrix which is obtained 
from SVD of channel matrix H. The output of receiver shaping is SISO channels with λi 
gain for each “i” stream.  In Jacobi rotation hermitian of the J matrix is multiplied with 

autocorrelation matrix R to get SISO channels with 
2

i  gain for each “i” stream. 

 

4.6 Error Analysis 

The QPSK plots, error histogram and mean square error curve for both systems are 
examined to analyze error in both systems. In QPSK symbols are encoded by changing 
the phase of the transmitted waveform so any change in phase of received symbols 
represents noise in the system. As the quantization noise is similar in both streams so 
the single stream is examined in error analysis. The QPSK plots of different quantization 
levels for both feedback schemes are shown in figure 4.4-4.7 and figure 4.8-4.11 
respectively.  

 

 

Figure 4-4: QPSK plot, Givens feedback, Quantization level 4 

 

 

Figure 4-5: QPSK plot, Givens feedback, Quantization level 8 
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Figure 4-6: QPSK plot, Givens feedback, Quantization level 16 

 

 

 

Figure 4-7: QPSK plot, Givens feedback, Quantization level 32 

 

 

 
Figure 4-8: QPSK plot, Jacobi feedback, Quantization level 4 

 

 

 

 
Figure 4-9: QPSK plot, Jacobi feedback, Quantization level 8 
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Figure 4-10: QPSK plot, Jacobi feedback, Quantization level 16 

 

 
 

Figure 4-11: QPSK plot, Jacobi feedback, Quantization level 32 

 

The plots of Givens and Jacobi rotation show that sufficient reduction in quantization 
error can be achieved by 8 level quantizer. The patterns in quantization noise in almost 
all plots are observed because of symmetry in quantized V matrix. The vector quantizer 
quantizes cluster or block of points to single point i.e. centroid that’s why it is also called 
“block quantization”. The quantization error of vector quantizer is inversely proportional 
to input point density. 

4.7 Error Histogram 
 

The error histogram the error distribution looks like normal (Gaussian). By increasing the 
quantization level the distribution remains same but the variance of error is reducing and 
the histogram is compressing towards zero. The error histogram of both systems is 
compared on level 2 and level 32 as shown in figure 4.12-4.13 and 4.14-4.15 
respectively 
 

 
Figure 4-12: Error vector histogram, Givens rotation 

level 2 

 

 
Figure 4-14: Error vector histogram, Givens rotation 

level 32 
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 Figure 4-13: Error vector histogram, Jacobi rotation 

level 2 

 

 
 Figure 4-15: Error vector histogram, Jacobi rotation 

level 32 

 

4.8 Mean Square Error and SNR  

The most often used measure of distortion or noise contribution in signal is the mean 
squared error. SNR f(MSE) used for evaluating quantization noise as suggested by [6]. 
As we are interested in size of the quantization error relative to the signal, so the SNR 
can be defined as ratio of the average squared value of the source output and the mean 
square error as shown in equation 4.2 
 

MSE

rSignalPowe
SNR                            (4.2) 

 
The mean square error and aggregate SNR of the two feedback schemes are show in 
figure 4.16 and 4.17 respectively. The signal to noise ratio of the Givens based feedback 
schemes is found to be 2 to 2.5 dB better then Jacobi rotation. Due to the difference of 
input distribution of (C, θ) and (θ1, θ2), mean square error of feedback schemes based on 
Jacobi is higher than Givens based feedback scheme. 
 

 
Figure 4-16: Mean Square error, Givens and Jacobi rotation 



 30 

 

 
Figure 4-17: Mean Square error, Givens and Jacobi rotation 

4.9 AWGN Noise 
 

The system performance for Givens rotation feedback scheme is also examined in 
presence of AWGN noise. Any error correct code or equalization technique is not used 
and controlled amount white noise is added in the system by multiplying generated 
AWGN with noise variance sigma. To test the effect of both noises in the system AWGN 
of different variance and quantizer of level 8 and level 16 are used. Figure 4.18 shows 
the effect of AWGN in terms of bit error rate without any quantization noise and bit error 
rate with AWGN and quantization noise of 16 level VQ. 
 

 
Figure 4-18: SNR curve 

The figure 4.19 shows the relation between the SNR of AWGN and SNR f(MSE). 
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Figure 4-19: SNR AWGN vs. SNR f(MSE), Quantization level 16 

 
 
The relationship between these SNR is found to be linear. The QPSK plot in figure 4.20-
4.23 shows the AWGN noise and quantization noise produced by 16 level vector 
quantizer. 

 
 

 

 

 
Figure 4-20: QPSK plot, SNR 20dB and quantization noise of 16 

level vector quantizer. 

 

 

 

 
Figure 4-21: QPSK plot, SNR 15dB and quantization noise of 16 

level vector quantizer. 
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Figure 4-22: QPSK plot, SNR 10dB and quantization noise of 16 

level vector quantizer. 

 

 
Figure 4-23: QPSK plot, SNR 5dB and quantization noise of 16 

level vector quantizer. 

 

  
 

4.10 Scaling factor 
 

In Givens based feedback scheme the parameters (C,θ) are send back, as cosine is a 
periodic function whose values ranges from -1 to 1 for  θ = –α to α. In our case the 
values generated are from 0 to 1. Due to this scaling, vector quantizer put more points in 
θ direction whose range is 4 times as compared to C. This problem can be solved by 
introducing a scaling weight W which shifts the range of C before quantization. The 
values of parameters can be rescaled after the quantization, before sending them back. 
This rescaling of the parameters is equivalent to implementing weighted mean square 
error in which each error vector weighted according to some criteria. Weighted mean 
square error is defined in section 3.2.2 as 
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equation 4.4 and 4.5 
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The weight W can be found by selecting the range of weight values and looking SNR 
response after quantization. The figure 4.24 and 4.25 shows the scaling weight vs. SNR 
for quantization level 8 and 16 respectively 

 

 
Figure 4-24: SNR f(MSE) vs. W, Quantization level 8 

 

 

 
Figure 4-25: SNR f(MSE) vs. W, Quantization level 16 

 
The reduction in BER by selecting 2 as scaling factor of C parameter is shown in figure 
4.26 
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Figure 4-26: SNR vs.BER 

5  Conclusion 
 

This thesis presents detailed survey on existing and most significant methodologies for 
MIMO systems feedback. The transmission imperfections due to feedback quantization 
of CSI is extensively been treated in the literature. In this study two low rate feedback 
techniques for MIMO systems are compared and the error in system due to 
corresponding quantized feedback is analyzed. 
 
Numerical results show that the performance of Givens transformation performed on 
SVD of the channel matrix in a closed loop MIMO system is better than Jacobi rotation in 
terms of SNR. The difference between these two techniques lies in the distribution of 
transformation parameters. Both schemes are evaluated for 2×2 MIMO system. The 
Givens transformation scheme can be extended to m×n MIMO system (for m and n >2) 
but if we try to diagonalize m×n channel matrix (for m and n >2) with the help of Jacobi 
rotation, the successful transformation undo previously set zeros in off diagonal entries. 
 
In a nutshell the use of Givens decomposition in feedback loop is an effective means of 
reducing the amount of feedback and scheme can easily be applied to m×n MIMO 
system of order greater than 2 without additional complexity. 

 

6 Future Work 
 

A lot of work is already going on adaptive schemes in which the feedback rate is 
optimized as a function of the channel quality [11].  When multiple sub-channels are 
available selecting dominant sub-channel also called "active sub-channel" for 
transmission is also widely discussed in literature. 
 
However in these designs, less attention has been paid to optimize the channel 
feedback by exploiting the matrix transformation such as QRD technique in conjunction 
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with SVD that decomposes the MIMO channel into layered sub-channels [12]. The 
author of this thesis is interested to work more in above mentioned areas. 
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