
 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

Göteborg, Sweden, June 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Implementing an AC97Audio Controller IP 
 

Master of Science Thesis in Integrated Electronic System Design 
 

 

 

JOSÉ ROBERTO SÁNCHEZ MAYEN 

 

 
  



The Author grants to Chalmers University of Technology and University of Gothenburg 

the non-exclusive right to publish the Work electronically and in a non-commercial 

purpose make it accessible on the Internet.  

 

The Author warrants that he/she is the author to the Work, and warrants that the Work 

does not contain text, pictures or other material that violates copyright law.  

 

The Author shall, when transferring the rights of the Work to a third party (for example a 

publisher or a company), acknowledge the third party about this agreement. If the Author 

has signed a copyright agreement with a third party regarding the Work, the Author 

warrants hereby that he/she has obtained any necessary permission from this third party to 

let Chalmers University of Technology and University of Gothenburg  store the Work 

electronically and make it accessible on the Internet. 
 

 

 

 

Implementing an AC97 Audio Controller IP 

 

 

JOSÉ ROBERTO SANCHEZ MAYEN 
 

 

© JOSÉ ROBERTO SANCHEZ MAYEN, June 2011 
 

 

Examiner: LARS SVENSSON 

Supervisor: JIRI GAISLER 

 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

Cover:   

The cover picture shows a field programmable gate array attached to an electronic board. 

Taken from: http://www.seasolve.com/wireless-ip-cores.html  

 

Department of Computer Science and Engineering 

Göteborg, Sweden June 2011 
 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 I 

 

Implementing an AC97 Audio Controller IP  

JOSÉ ROBERTO SÁNCHEZ MAYEN 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

 

 

Abstract 

The purpose of this Master’s project is to develop an AC97 IP core for Aeroflex Gaisler 

AB. The IP core’s function is to control the playback of digital audio in an embedded 

system and it will be introduced in a LEON3-based system, which is programmed in a 

Virtex 5 FPGA in the Xilinx ML505 prototype board. The core is implemented in 

VHDL using the Two Process Methodology. The design of the AC97 core was divided 

in two stages. The first stage of the design aimed to achieve communication among the 

LEON3-based system, the AC97 core, and the AC97 CODEC (controlled by the AC97 

IP core); in the second stage of the design, a DMA engine was introduced to transfer 

PCM data from memory to the CODEC. Through the medium of assessing the thesis 

objectives and the obtained outcomes, the design of the AC97 IP core was partially 

verified. Simulation in ModelSim was carried out for both stages. The second stage of 

the design still has to be thoroughly verified in hardware by playing real audio on the 

Xilinx prototype board. 

 

Keywords: AC97, IP core, CODEC, LEON3, FPGA, VHDL, Two Process 

Methodology, DMA, PCM, ModelSim. 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 II 

 

Acknowledgements 

I would like to express my gratitude to my examiner Lars Svensson for accepting this 

responsibility, for taking the time to have meetings at the company, for following up my 

progress, for his detailed feedback on the report, and for helping me in any possible way 

he could. 

 

Correspondingly, I am very grateful to my supervisor Jiri Gaisler for giving me the 

chance to work at Aeroflex Gaisler AB. I am deeply indebted with Jan Andersson in 

particular from Gaisler Research, because all along the development of my thesis he 

advised and aided me invaluably. Likewise, I found Magnus Hjorth’s comments and 

advices very useful for the project. I appreciate the kindness of Gaisler’s staff in general 

for their friendly behavior towards me. 

 

Likewise, I would like to thank The Swedish Foundation for International Cooperation 

in Research and Higher Education for backing me up financially amid the two years the 

Master’s degree lasted. 

 

I am very thankful to Olivia Cintas Sánchez for giving me all her support and 

knowledge in the process of writing and presenting a Master’s thesis. 

 

Last but not least, I want to acknowledge my family: Aurelia Mayen Pereira, Roberto 

Sánchez Ramírez, Zyanya Sánchez Mayen, and Heriberta Mayen Pereira for 

encouraging me in my studies abroad and in every other aspect regarding my personal 

decisions in life. 
 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 III 

 

Content 

Abstract.......... ............................................................................................................................................... I 

Acknowledgements ..................................................................................................................................... II 

Content…………… ................................................................................................................................... III 

List of Figures ............................................................................................................................................. V 

List of Tables ............................................................................................................................................. VI 

List of Excerpts ......................................................................................................................................... VII 

List of Acronyms..................................................................................................................................... VIII 

1. Introduction ................................................................................................................................ 1 

2. Overview of the AC97 IP Core in a Typical System .................................................................. 2 

2.1. LEON3 ................................................................................................................................... 2 

2.2. GRLIB .................................................................................................................................... 2 

3. Background on the AC97 Standard and IP Cores .................................................................. 4 

3.1. AC97 Specification ................................................................................................................ 4 

 3.1.1.     CODEC Reset ........................................................................................................... 5 

 3.1.2.     AC Link Digital Serial Interface Protocol ................................................................ 6 

 3.1.3.     Detailed Slot Description ......................................................................................... 7 

4. Background on the Communication Bus .................................................................................... 9 

4.1. AMBA .................................................................................................................................... 9 

 4.1.1.     AHB ......................................................................................................................... 9 

 4.1.2.     AHB Transfers ......................................................................................................... 9 

 4.1.3.     APB ........................................................................................................................ 10 

 4.1.4.     APB Transfers ........................................................................................................ 10 

5. The Two Process Design Method ......................................................................................... 12 

5.1. Comparison with the Dataflow Method ............................................................................... 12 

6. The Design of the AC97 Core  ................................................................................................. 14 

6.1. Design Choices ..................................................................................................................... 14 

6.2. The Functionality of the AC97 IP Core in the LEON3-Based System ................................ 15 

6.3. First Stage ............................................................................................................................. 15 

 6.3.1.     The Clocks Entity ................................................................................................... 15 

 6.3.2.     The AC Link Entity ................................................................................................ 18 

 6.3.3.     Serializing the Parallel Data ................................................................................... 20 

 6.3.4.     The Link/Clocks Entity .......................................................................................... 23 

 6.3.5.     The AHB/APB Bridge ............................................................................................ 23 

 6.3.6.     The Interface Entity ................................................................................................ 23 

 6.3.7.     The Plug-In of the AC97 Core into the System ...................................................... 26 

 6.3.8.     AC97 Top Module .................................................................................................. 26 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 IV 

 

6.4. Second Stage ........................................................................................................................ 27 

 6.4.1.     The DMA to AHB Entity ....................................................................................... 28 

 6.4.2.     The DMA Controller .............................................................................................. 30 

 6.4.3.     DMAC Status Flags ................................................................................................ 32 

 6.4.4.     Data Burst Transfer Type ....................................................................................... 33 

 6.4.5.    The DMA Engine .................................................................................................... 33 

 6.4.6.     The Modified AC Link Entity ................................................................................ 35 

 6.4.7.     The Modified Interface Entity ................................................................................ 38 

 6.4.8.     The Modified Top Module ..................................................................................... 39 

7. Verification ............................................................................................................................... 40 

7.1. First Stage ............................................................................................................................. 40 

 7.1.1.     Stand-Alone Test Bench in ModelSim ................................................................... 40 

 7.1.2.     System Test Bench in ModelSim ........................................................................... 42 

 7.1.3.     Synthesis ................................................................................................................. 43 

 7.1.4.     Post-Synthesis Verification .................................................................................... 43 

 7.1.5.     Enountered and Solved Problems ........................................................................... 44 

7.2. Second Stage ........................................................................................................................ 45 

 7.2.1.     Stand-Alone Test Bench in ModelSim ................................................................... 46 

 7.2.2.     System Test Bench in ModelSim ........................................................................... 48 

 7.2.3.     Synthesis ................................................................................................................. 49 

 7.2.4.     Post-Synthesis Verification .................................................................................... 49 

8. Discussion ................................................................................................................................. 51 

9. Conclusion ................................................................................................................................ 52 

10. Further work ............................................................................................................................. 53 

11. References ................................................................................................................................ 54 

A. Appendix .................................................................................................................................... 1 

A.1. AC Link VHDL Code ............................................................................................................ 1 

A.2. AC97 Top Module VHDL Code .......................................................................................... 12 

A.3. Clocks VHDL Code ............................................................................................................. 15 

A.4. DMAC VHDL Code ............................................................................................................ 18 

A.5. DMA Engine VHDL Code ................................................................................................... 23 

A.6. Interface VHDL Code .......................................................................................................... 25 

A.7. Link Clocks VHDL Code ..................................................................................................... 30 

A.8. Stand-Alone Testbench VHDL Code for the First Stage of The Design .............................. 32 

A.9. Stand-Alone Testbench VHDL Code for the First Stage of The Design .............................. 40 

A.10. System Test C Code for the First Stage ................................................................................ 46 

A.11. System Test C Code for the Second Stage ........................................................................... 48 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 V 

 

List of Figures 

 

Figure 1: LEON3-based system designed with GRLIB ........................................................................ 2 

Figure 2: AC97 Controller and AC97 CODEC .................................................................................... 5 

Figure 3: Cold Reset ............................................................................................................................. 5 

Figure 4: Warm Reset ........................................................................................................................... 5 

Figure 5: Detailed description of the AC Link ..................................................................................... 6 

Figure 6: Different timing between the SYNC and SDATA_OUT signals  ......................................... 6 

Figure 7: Generic two process circuit. Courtesy of Gaisler Research [17] ......................................... 12 

Figure 8: AC97 IP core at its first stage .............................................................................................. 15 

Figure 9: Clocks entity ........................................................................................................................ 16 

Figure 10: Rising and falling edges synchronized with the system clock........................................... 16 

Figure 11: Implementing the rising and falling edges ........................................................................ 17 

Figure 12: AC Link entity ................................................................................................................... 19 

Figure 13: AC Link flow chart ............................................................................................................ 20 

Figure 14: AHB/APB Bridge .............................................................................................................. 23 

Figure 15: Interface entity ................................................................................................................... 24 

Figure 16: Interface entity flow chart ................................................................................................. 25 

Figure 17: AC97 Top Module ............................................................................................................. 27 

Figure 18: AC97 IP core at its second stage ....................................................................................... 28 

Figure 19: DMAC finite state machine ............................................................................................... 31 

Figure 20: Four-beat incrementing burst  ........................................................................................... 33 

Figure 21: Modified AC Link entity (refer to Figure 13 for the original AC Link flow chart)  ......... 36 

Figure 22: Modified Interface entity (refer to Figure 16 for the original Interface flow chart) .......... 38 

Figure 23: Successful stand-alone test bench simulation .................................................................... 41 

Figure 24: Intentionally unsuccessful stand-alone test bench simulation  .......................................... 41 

Figure 25: ML505 Xilinx prototype board. Courtesy of Xilinx [19] .................................................. 43 

Figure 26: Connection between GRMON and the target board .......................................................... 44 

Figure 27: Wave form of the second stage stand-alone test bench ..................................................... 47 

Figure 28: Zoom in to a specific frame of Figure 27 .......................................................................... 47 

Figure 29: Wave form of the second stage system test bench ............................................................ 48 

Figure 30: Zoom in to a specific frame of Figure 29 .......................................................................... 49 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 VI 

 

List of Tables 
 

Table 1: Detailed slot description ......................................................................................................... 7 

Table 2: Bit-wise representation of slot 0: tag phase ............................................................................ 7 

Table 3: Bit-wise representation of slot 1: control address ................................................................... 8 

Table 4: Bit-wise representation of slot 2: control data ........................................................................ 8 

Table 5: Bit-wise representation of slot 3: PCM playback left channel ................................................ 8 

Table 6: Bit-wise representation of slot 4: PCM playback right channel ............................................. 8 

Table 7: Dataflow VS Two Process Comparison ............................................................................... 13 

Table 8: Combinations for the rising and falling edges ...................................................................... 17 

Table 9: clks_in_type signals .............................................................................................................. 18 

Table 10: aclink_inl_type signals ........................................................................................................ 18 

Table 11: aclink_outl_type signals ...................................................................................................... 18 

Table 12: Values in slots while sending a command .......................................................................... 21 

Table 13: Values in slots while sending PCM data............................................................................. 22 

Table 14: Values in slot 0 while sending PCM data and a command ................................................. 22 

Table 15:  apb_slv_in_type signals for the AC97 core [12] ................................................................ 24 

Table 16:  apb_slv_out_type signals for the AC97 core [12] [14] ...................................................... 24 

Table 17:  ahb_mst_in_type signals [12] ............................................................................................ 29 

Table 18:  ahb_mst_out_type signals [12] .......................................................................................... 29 

Table 19:  dma_in_type signals for the AC97 core [12] ..................................................................... 30 

Table 20: dma_out_type signals for the AC97 core [12] .................................................................... 30 

Table 21: DMAC status flags description ........................................................................................... 32 

Table 22: pcm_in_type signals ............................................................................................................ 34 

Table 23: pcm_out_type signals .......................................................................................................... 34 

Table 24: ac97if_in_type signals ........................................................................................................ 34 

Table 25: ac97if_out_type signals  ..................................................................................................... 35

 

 
 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 VII 

 

List of Excerpts 

Excerpt 1: Adding the AC97 core into Gaisler Research device ID’s in the devices.vhd file ..... 26 

Excerpt 2: Adding the AC97 core into the LEON3 design in the config.vhd file ........................ 26 

Excerpt 3: Generics declaration and configuration for the GRLIB .................................................... 26 

Excerpt 4: AC97 (1
st
 stage of the design) component instantiation in the leon3mp.vhd file ........ 27 

Excerpt 5: AC97 (2
nd

 stage of the design) component instantiation in the leon3mp.vhd file ........ 39 

Excerpt 6: System test transcript with the introduced AC97 controller (1
st
 stage of the design) ........ 40 

Excerpt 7: AC97 (1
st
 stage of the design) component instantiation in the stand-alone test bench ...... 40 

Excerpt 8: Do file to execute the stand-alone test bench .................................................................... 41 

Excerpt 9: AC97 (1
st
 stage of the design) component instantiation in the testbench.vhd file .... 42 

Excerpt 10: Commands to execute the system test bench ................................................................... 42 

Excerpt 11: Added AC97 signals to the system test bench do file ..................................................... 42 

Excerpt 12: Modified leon3mp.ucf file......................................................................................... 43 

Excerpt 13: AHB memory instantiation in the stand-alone test bench ............................................... 46 

Excerpt 14: AC97 (2
nd

 stage of the design) component instantiation in the stand-alone test bench ... 46 

Excerpt 15: Command to convert into srecord files ........................................................................... 50 

Excerpt 16: Example of srecord representation .................................................................................. 50 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 VIII 

 

List of Acronyms 

AC97:  audio coder-decoder 1997. 

AHB: advanced high performance bus. 

AMBA: advanced microcontroller bus architecture. 

APB: advanced peripheral bus. 

ASB: advanced system bus. 

ASIC: application specific integrated circuits. 

CAD: computer aided design. 

CODEC:  coder-decoder. 

CPU: central processing unit. 

DAC: digital to analog converter. 

DDR2: dual data rate 2. 

DMA: direct memory access. 

DMAC: direct memory access controller. 

EDA: electronic design automation. 

FIFO: first in first out. 

FPGA: field programmable gate arrays. 

GNU: GNU’s not unix. 

GPIO:  general purpose input-output. 

GPL: general public license. 

GRLIB: Gaisler Research intellectual property library. 

GRMON: Gaisler Research debug monitor. 

GUI: graphical user interface. 

HD:  high definition. 

HDL: hardware description language. 

IC: integrated circuit. 

ID: identification data. 

IP:  intellectual property.  

ISE:  intelligent synthesis environment.  

JTAG: joint test action group. 

LFE:  low frequency effect. 

LSB:  least significant bit. 

MODEM:  modulator-demodulator. 

MSB:  most significant bit. 

PCM:  pulse code modulation. 

PC: personal computer. 

SoC: system on chip. 

SPDIF: Sony Phillips digital interface format. 

SYNC:  synchronization. 

TDM:  time division multiplexing.  

USB: universal serial bus. 

VHDL: very high speed integrated circuit hardware description language. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 1 

 

1. Introduction 

 

Since more than forty years ago, the semiconductor industry has obeyed Moore’s Law: 

the density of the transistors within an integrated circuit doubles approximately every 

two years [1]. It is possible to manufacture 22 nm working circuits with higher 

performance, lower power consumption, and lower costs than their predecessors, i.e. 

fulfilling Moore’s Law [2]. This has made embedded systems and system on chips 

(SoC) a reality, starting with the manufacture of integrated circuits in the late 1950’s 

[1]. 

 

Aeroflex Gaisler provides a full library of IP cores (i.e. GRLIB) as an evaluation 

version freely distributed in full source code under the GNU GPL open-source license 

so a corporate or an academic user can evaluate and utilize the cores. Nonetheless, for 

commercial applications, Gaisler offers low-cost commercial IP licenses for the whole 

or parts of the library. GRLIB and all the required supporting development tools for 

embedded processors are written in VHDL [3]. In spite of that, Aeroflex Gaisler does 

not have an audio coder-decoder 1997 (AC97) digital audio controller intellectual 

property (IP) core in its Gaisler Research IP Library (GRLIB). Implementing this audio 

controller IP will enrich its IP cores catalogue and herein lays the relevance of this 

Master’s thesis.  

 
The objective of the project is to design an AC97 IP core to control compatible sound 

devices (e.g. the AC97 CODEC [4]) and reproduce digital audio. The controller must 

read and write AC97 registers, read and write accesses to the sound channel FIFOs, 

include a direct memory access (DMA) engine to fill/empty the FIFOs without central 

processing unit (CPU) use, and generate interrupts on various events. The AC97 IP core 

should be implemented in VHDL using the Two Process Design Methodology [5].  

 

The document is organized in eleven sections and eleven appendices. The section after 

this brief introduction (Section 2) gives an overview of the AC97 in a typical system; 

Section 3 deals with the background on the AC97 standard (including the AC97 

specifications) and IP cores; subsequently, Section 4 gives a technical background on 

the used communication bus in the system; Section 5 explains the Two Process Design 

Method and compares it with the dataflow style; then, the design of the AC97 core is 

described in detail in Section 6 (the functionality of the AC97 IP core in a system-level 

is explained first and then the first stage of the design is described followed by an 

explanation of the second stage of the design); following the design description, Section 

7 shows the verification process in both stages of the design; the discussions are 

presented in Section 8 and the conclusion is placed in Section 9; further work on this 

project is included in Section 10; finally, the references can be found in Section 11. In 

the appendices, all the VHDL and C code (all the entities of the design, stand-alone test 

benches, and test C programs) written by the author is included. 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 2 

 

2. Overview of the AC97 IP Core in a Typical System  

 

Herein, a brief top view is given of where the AC97 IP core can be used. The AC97 IP 

core maybe introduced in an embedded system which uses the LEON3 processor, as it 

was done in this project. Such a system has several IP cores besides the AC97. Gaisler 

Research supports and develops their own collection of IP cores (i.e. GRLIB) and it is 

intended to introduce the AC97 IP core in the GRLIB library. The system where the 

AC97 IP core is placed uses the AMBA bus as a backbone for communication among 

the cores and the processor itself. Besides the processor and the required bus, a typical 

system where the AC97 core could be utilized would need an AC97 CODEC to be 

controlled by the core. The CODEC is situated in the prototype board and has 

connection with the FPGA and audio output jacks. 
 

2.1.  LEON3 

 
The embedded system, in which the AC97 core will be introduced, utilizes a LEON3 

processor, which is a 32 bit processor that uses the SPARC V8 architecture that in turn 

supports multiprocessing configuration. The LEON3 multiprocessor solution has a 

better performance under lower frequencies than single processor configurations. This 

means that it reduces the overall costs, power, and time to market; while still keeping 

compatibility with standard EDA tools. Nonetheless, the AC97 IP core was is included 

in a single processor configuration system. Another important feature of this processor 

is that it takes advantage of the plug&play
1
 capability of the GRLIB IP library; thus, the 

development time is reduced and its flexibility is increased [6].  
 

2.2.  GRLIB 

 

The GRLIB is a set of reusable IP cores meant to be used in a SoC. These cores are set 

on a common bus (the AMBA bus) and are compatible with the current computer aided 

design (CAD) tools. Furthermore, the library has the plug&play configuration so the 

cores can be introduced easily into it without making any global changes [7]. 

 

 
 

Figure 1: LEON3-based system designed with GRLIB. 

 

                                                 
1
 Plug&play is a capability developed by Microsoft for its Windows 95 and later operating systems that 

gives users the ability to plug a device into a computer and have the computer recognize that the device is 

there [7]. 

USB
Serial

Dbg Link

JTAG

Dbg Link

Ethernet

MAC

Spacewire

Link

CAN 2.0

Link
PCI

AHB

Controller

VGA PS/2 UART Timers Irq Ctrl I/O port

PROM

LEON3 Template Design

USB PHY RS232 JTAG PHY LVDS CAN PCI

AMBA   AHB

AMBA   APB

8/32 – bits memory bus

Video

DAC

PS/2  IF RS232 WDOG 32 – bit I/O port

Memory

Controller

SRAM SDRAMI/O

AHB/APB

Bridge

AC link

LEON3

Processor

AC97 Crtl



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 3 

 

Figure 1 illustrates a LEON3-based system designed with GRLIB. Cores with higher 

bandwidth requirements are connected to the processor through the AHB bus and cores 

like the AC97 (highlighted in blue in Figure 1) are connected to the LEON3 through the 

APB bus. However, the AC97 IP core is connected also to the AHB bus through the 

DMA Engine (further explained in Section 6.3.3).  
  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 4 

 

3. Background on the AC97 Standard and IP Cores 

 

In this section, a brief background on the AC97 protocol and on IP cores will be given 

with the intention that the reader may get acquainted with these concepts, before getting 

into technical details about the design and the protocol itself. 

 

The AC97 is a popular standard for computer audio and embedded systems, introduced 

by the Intel Corporation in 1997. It has been superseded by the high definition (HD) 

audio standard but it is still very much used in SoCs [8]. 

 

IP cores are components of integrated circuits (ICs) which have been designed and 

tested before-hand so they can be easily used in embedded applications. These kinds of 

cores are designed to be reusable hardware components [9]. They are part of the 

growing electronic design automation (EDA) industry trend towards the repeated use of 

previously designed and verified components [10]. This enables application specific 

integrated circuits (ASIC) or field programmable gate array (FPGA) designs to be built 

more quickly and at a lower cost. In this fashion, the opportunity to make it on time to 

the marketplace is ensured at a greater extent [9]. Ideally, an IP core should be entirely 

portable. This means that it should be able to easily be inserted into any vendor 

technology or design methodology [10]. 

 

3.1.  AC97 Specification  

  

This Section explains the AC97 specification in general terms. Then it goes into detail 

about the CODEC reset in Section 3.1.1, highlighting its importance. Subsequently, the 

communication between the controller and the CODEC is explained. The last Section 

gives a detailed description about the slots, which are part of the controller-CODEC 

communication protocol. 

 

The AC97 consists of a digital controller (the core itself) and audio/MODEM CODECs. 

The CODEC sends the clock signal at a fixed frequency of 12.288 MHz (i.e. Bit Clock 

signal) to the controller. An external oscillator generates the clock (24.576 MHz) for the 

CODEC. It is divided by two inside the CODEC to obtain the required frequency for the 

core. The synchronization signal has to have a fixed frequency of 48 kHz (or 48 k 

frames are sent per second), which leads to 256 bits per frame (refer to Equation 1). 

 
        

    
                (1) 

 

The communication between the core and the CODEC is called AC link digital serial 

interface protocol. This protocol consists of five signals (SYNC: the synchronization 

signal between the controller and the CODEC; BIT_CLK: the clock provided by the 

CODEC to the controller; SDATA_OUT: serial data going from the controller to the 

CODEC; SDATA_IN: serial data going from the CODEC to the controller; RESET#: 

reset signal provided by the controller) as shown in Figure 2: 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 5 

 

 
 

Figure 2: AC97 controller and AC97 CODEC. 

 

 

3.1.1.  CODEC Reset 

 

The reset is vital for the correct communication between the core and the CODEC. 

When this signal is asserted, the codec will start to generate the Bit Clock. In the worst 

case scenario, if the reset signal is not properly asserted the CODEC will lose its clock 

and will lock up indefinitely [11]. 

 

The CODEC has three kinds of reset: cold reset, warm reset, and register reset. As seen 

in Figure 3, the cold reset is performed when the reset signal is pulled low for at least 1 

µs. All internal circuitry and registers are set to their default values. This reset is done 

right after the system reset. 

 

 
 

Figure 3: Cold reset. 

 

Figure 4 shows how the warm reset happens. This reset occurs when the 

synchronization signal is held high for more than 1 µs when the Bit Clock is not present. 

It does not change the content of the internal circuits. The warm reset occurs when a 

restart is forced without powering down the circuitry. It is very important to realize that 

the synchronization signal has two purposes: warm reset when the Bit Clock is not 

present and proper synchronization between controller and CODEC when the Bit Clock 

is present. The issue of deciding which one is which is explained in more detail in 

Section 6.2.3.  

 

 
 

Figure 4: Warm reset. 

Controller CODEC

SYNC

BIT_CLK

SDATA_OUT

SDATA_IN

RESET#

BIT_CLK

RESET#

1 µs

BIT_CLK

SYNC

1 µs



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 6 

 

The register reset occurs when any value is written into the reset register 0x0. This 

action will reset all the registers to their default values and will modify the 

configurations of circuitry accordingly, although it does not reset any other internal 

circuits [4] [12] [13].  

 

3.1.2.  AC Link Digital Serial Interface Protocol 

 

The data flows from the CODEC to the controller and the other way around (in full 

duplex). The interface between the core and the CODEC is called AC link, as explained 

in Section 3.1. It consists of only 5 signals: clock, synchronization, reset, input data, and 

output data. The bidirectional data stream is divided into frames, with a frame rate of  

48 kHz. Each one of these frames is subdivided into 13 slots of data employing a time 

division multiplexing (TDM) scheme. Slot 0, is known as the tag phase and it is the 

only one composed of 16 bits. Slots 1 to 12 are known as the data phase and they are 

composed of 20 bits each, summing up a total of 256 bits per frame (refer to Equation 

1). For a better understanding of the protocol, Section 3.1.3 explains in detail the slot 

description. 
 

 
 

Figure 5: Detailed description of the AC Link. 
 

The synchronization (SYNC) signal is sent by the controller to the CODEC to let it 

know that a new frame will arrive. It has a frequency of 48 kHz and a duty cycle of 

6.25%. This signal remains high roughly the same time as the first phase of the data 

stream. It is very important to realize that the SYNC signal goes out one clock period 

before the data. 
 

 
 

Figure 6: Different timing between the SYNC and SDATA_OUT signals. 

Valid
frame

slot(0) ... slot(12) 0 ID1 ID2

1 2 3 17161514

BIT_CLK

SDATA_OUT

SYNC

19 0 19 0

...

... ......

Codec IDTime slot valid bits

Tag phase Data phase

1256... ... 255

20.83 µs

81.38 ns

...
Slot 0 Slot 1 Slot 12

Previous
frame

Duty cycle: 6.25%

The synchronization 

signal is sent 

by the controller

The synchronization 

signal is sampled 

by the codec

The controller

starts to stream

out data

The codec 

samples the  first 

bit of the data.

BIT_CLK



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 7 

 

The reset signal is given by the controller to the CODEC; it is an asynchronous cold 

reset, meaning that the CODEC registers are initialized to their default values. This is 

achieved by asserting it low for the minimum specified time (1 µs, around 13 Bit Clock 

cycles) and then de-asserting it high (please refers to Figure 3).  

 

The data output signal goes from the controller to the CODEC. The audio streams use a 

pulse code modulation (PCM) scheme and a 16 bit resolution. The data going into the 

CODEC is sampled on the falling edges of the Bit Clock. The data going out of the 

controller is transitioned on the rising edges of the Bit Clock. This is illustrated in 

Figure 6 for the sake of clarity. 

 

The data input signal goes from the CODEC to the controller. The data going into the 

controller is sampled in the falling edges of the Bit Clock. The data going out of the 

CODEC is transitioned on the rising edges of the Bit Clock. 
 

3.1.3.  Detailed Slot Description 

 

As explained previously in Section 3.1.2, the audio frames in the AC97 communication 

protocol are divided into slots, and each slot has its own name and its content differs 

among each other. Table 1 summarizes how the slots are respectively named. 

 
Table 1: Detailed slot description. 

Slot number Slot name 

0 Tag phase 

1 Control address 

2 Control data 

3 PCM playback left channel 

4 PCM playback right channel 

5 MODEM line 1 output channel 

6 PCM playback center channel 

7 PCM playback surround left channel 

8 PCM playback surround right channel 

9 PCM playback low frequency effect (LFE) channel 

10 MODEM line 2 output channel 

11 MODEM handset output channel 

12 
MODEM general purpose input output (GPIO) control 

channel. 
 

The slots are in turn subdivided into bits. Slot 0 is called the tag phase and has only 16 

bits. The description of the bits in slot 0 is represented in Table 2: 

 
Table 2: Bit-wise representation of slot 0: tag phase. 

Bit number 15 14:3 2 1:0 

Description 
Valid frame Valid data in slots (1:12) Reserved (0) CODEC 

ID 

 

Slot 1 is called the control address and it has 20 bits. The bits description in slot 1 is 

represented in Table 3: 

 

 
 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 8 

 

Table 3: Bit-wise representation of slot 1: control address. 

Bit number 19 18:12 11:0 

Description 
Read from (1)/write to (0) 

the CODEC’s registers 

Control register index. Specifies the register address 

of the operation. 

Reserved 

(0’s) 

 

Slot 2 is called the control data and it has 20 bits. The bits description in slot 2 is 

represented in Table 4: 
 

Table 4: Bit-wise representation of slot 2: control data. 

Bit number 19:4 3:0 

Description 
If it is a read operation, they are filled with zeros. Otherwise, sends control data if 

it is a write operation. 

Filled with 

0’s 

 

Slot 3 is called the PCM playback left channel and it has 20 bits. The bits description in 

slot 3 is represented in Table 5: 
 

Table 5: Bit-wise representation of slot 3: PCM playback left channel. 

Bit number 19:4 3:0 

Description PCM audio data. 0’s 

 

Slot 4 is called the PCM playback right channel and it has 20 bits. The bits description 

in slot 4 is represented in Table 6: 
 

Table 6: Bit-wise representation of slot 4: PCM playback right channel. 

Bit number 19:4 3:0 

Description PCM audio data. 0’s 

 

It is important to emphasize that in slot 3, the sent out data are the 16 most significant 

bits (MSBs) (31:16) of the 32 bit PCM input. Similarly, in slot 4 the sent out data are 

the 16 least significant bits (LSBs) (15:0) of the 32 bit PCM input. 

 

In implementation, only slots 0 to 4 are used. This is due to the fact that the prototype 

board has one single CODEC and it can drive only 1 stereo signal (i.e. PCM left & right 

channels). If the whole 6 audio channels (PCM left & right, PCM center channel, PCM 

surround left & right channels, PCM LFE channel) would have to be driven, 3 CODECs 

would be necessary. Furthermore, only playback will be implemented in the project as it 

was mentioned in the Abstract and Introduction. 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 9 

 

4. Background on the Communication Bus 

This Section explains the advanced microcontroller bus architecture (AMBA) that is 

used as the backbone for communication in the LEON3-based SoC in which the AC97 

core will be introduced. After the AMBA description, the advanced high performance 

bus (AHB) and the advanced peripheral bus (APB) are explained along with their 

respective transfers.  
 

4.1.  AMBA 

The AMBA specification defines an on-chip communication standard for designing 

high performance embedded microcontrollers. Three different buses are defined within 

the AMBA specification: the AHB, the advanced system bus (ASB), and the APB [14]. 

However, only the AHB and the APB buses were used in the design of the AC97 core.  

 

The AMBA specification was designed: to satisfy four objectives. The first one is to 

ease the first-right-time development of embedded microcontroller products with one or 

more CPUs or signal processors. The second one is to be technology independent, along 

with the certainty that highly reusable peripheral and system macrocells can be migrated 

across a diverse range of IC processes; also, it has to be appropriate for full custom, 

standard cell and gate array technologies. The third objective is to encourage modular 

system design to improve processor independence, and provide a development road map 

for advanced cached CPU cores and the development of peripheral libraries. The last 

objective is to minimize the silicon infrastructure required to support efficient on-chip 

and off-chip communication for both operation and manufacturing test [8]. 

 

4.1.1.  AHB 

In order to attain the requirements of high performance synthesizable designs, the AHB 

bus has to be used. It supports multiple bus masters and provides high-bandwidth 

operation. This bus implements the required features for a high performance in high 

clock frequency systems, which include: burst transfers, split transactions, single cycle 

bus master handover, single clock edge operation, non tristate implementation, and 

wider data bus configurations [14].  

 

A design that uses this bus may contain one or more bus masters. Typically, a system 

would contain at least the processor and the test interface as masters. However, it would 

be common for a DMA Controller to be included as a bus master. The external memory 

interface, an APB Bridge, and any internal memory are the most common AHB slaves. 

Any other peripheral in the system could also be included as an AHB slave. 

Nevertheless, low bandwidth peripherals normally reside on the APB [14]. 

 

4.1.2.   AHB Transfers 

The data is moved around the system by using data transfers. Just before an AMBA 

AHB transfer can start, the bus access has to be granted to a bus master. This process is 

started when the master asserts a request signal to the arbiter. Afterwards, the arbiter 

indicates when the master will be granted use of the bus. A granted bus master starts an 

AMBA AHB transfer by driving the address and control signals. These signals provide 

information on the address, direction, and width of the transfer, as well as an indication 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 10 

 

if the transfer forms part of a burst (e.g. incrementing bursts, which do not wrap at 

address boundaries; wrapping bursts, which wrap at particular address boundaries) [14].  
 

When the data has to be transferred from the master to the slave, a write data bus is 

used. Contrarily, whenever data is moved from a slave to the master, a read data bus is 

utilized. All the transfers consist of an address and control cycle, and one or more cycles 

for the data [14]. 

 

The slave can show the status of the transfer using the response signals in the hresp[1:0] 

vector. The possible responses are: okay, error, retry, and split. Okay is used to indicate 

that the transfer is progressing normally and the hready
2
 signal goes high when the 

transfer has completed successfully. The error response indicates if a there was an error 

on the transfer and that it has been unsuccessful. The last two responses retry and split 

say that the transfer cannot complete immediately but the bus master should continue to 

attempt the transfer [14]. 

 

The AHB transfers can be classified into one out of four different types indicated by 

htrans[1:0]: idle (002), busy (012), nonseq (102), seq (112). The idle type indicates that 

no data transfer is required; busy indicates that the bus master is continuing with a burst 

of transfers, but the next transfer cannot take place immediately; nonseq indicates the 

first transfer of a burst or a single transfer; the remaining transfers in a burst are seq and 

the address is related to the previous transfer [14]. 

 

In the AMBA AHB protocol, burst operations are defined and the signal hburst[2:0] in 

the bus gives information about the burst: single transfers (single 0002), incrementing 

bursts of unspecified length (incr 0012), 4-beat wrapping burst (wrap4 0102), 4-beat 

incrementing burst (incr4 0112), 8-beat wrapping burst (wrap8 1002), 8-beat 

incrementing burst (incr8 1012), 16-beat wrapping burst (wrap16 1102), 16-beat 

incrementing burst (incr16 1112) [14]. 

 

4.1.3.  APB 

The APB is optimized for minimal power consumption and reduced interface 

complexity. It appears as a local secondary bus that is encapsulated as a single AHB 

slave device. The APB Bridge appears as a slave module which handles the bus 

handshake and control signal retiming on behalf of the local peripheral bus. To interface 

to any peripherals which are low bandwidth and do not require the high performance of 

a pipelined bus interface, the AMBA APB should be used. Usually, an AMBA APB 

implementation contains a single APB Bridge which is required to convert AHB 

transfers into a suitable format for the slave devices on the APB. The bridge provides 

latching of all address, data and control signals. The APB Bridge is the only bus master 

on the AMBA APB. Furthermore, the APB Bridge is also a slave on the higher level 

system bus [14]. 

 

4.1.4.   APB Transfers 

The APB bus might be used either for a read or a write transfer. During a write transfer,  

the address, write data signal, write signal, and the select signal change at the same time  

                                                 
2
 The data in a transfer can be extended using the hready signal. When it is low, this signal causes wait 

states to be inserted into the transfer and allows extra time for the slave to provide or sample data [14]. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 11 

 

after the rising edge of the clock. The first clock cycle of the transfer is called the setup 

cycle. After the following clock edge the enable signal penable is asserted (i.e. the 

enable cycle is taking place. The address, data, and control signals all remain valid 

throughout this cycle; the transfer completes at the end of the enable cycle). The 

penable enable signal, will be de-asserted at the end of the transfer. The select signal 

will be pulled down as well, unless the transfer is to be immediately followed by 

another transfer to the same peripheral. In order to reduce power consumption, the 

address and the write signals will not change after a transfer until the next access occurs 

[14]. 

 

For a read transfer, the timing of the address, write, select, and strobe signals are just the 

same as for a write transfer. Nonetheless, in the case of a read transfer, the APB slave 

should provide the data during the enable cycle and the data is sampled on the rising 

edge of the clock at the end of the enable cycle [14]. 

 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 12 

 

5. The Two Process Design Method 

In this section, the Two Process Design Method is briefly explained. Afterwards, there 

is a comparison between the previously mentioned method and the traditional dataflow 

style. 

 

The Two Process Design Method is used at Gaisler Research because it greatly 

simplifies the synthesis and design of complex embedded systems using a hardware 

description language (HDL) [15] [16]. The systems designed at Gaisler use this method, 

thus the AC97 core was designed using it as well. Basically, the method consists of a 

combinational process and a sequential process. In the former, all the combinational 

logic takes place whereas in the latter, all the registers are updated at the rising edge of 

the clock signal (i.e. the sole signal in the process sensitivity list). In this way, the 

output of the combinational process is the input of the sequential one, and also the 

output of the sequential process is the input of the combinational one. This idea is best 

expressed in the Figure 7. 

 
 

Figure 7: Generic two process circuit. Courtesy of Gaisler Research [15]. 
 

It is important to mention that this method is only applicable to synchronous and single 

clock designs. The goals of the method are: provide uniform algorithm encoding, 

increase abstraction level, improve readability, clearly identify sequential logic, simplify 

debugging, improve simulation speed, and provide one model for both synthesis and 

simulation. To achieve these goals, it is necessary to use three simple means: using 

record types in all port and signal declarations; using only two processes per entity; and 

using high level sequential statements to code the algorithm [15]. 

 

5.1.  Comparison with the Dataflow Method 

Not all the VHDL designs are done using the Two Process Design Method described before. 

The most commonly used design method for synthesizable VHDL models is called the dataflow 
style. The dataflow style arose from the old school hardware design where the engineers 

were used to a schematic entry as the design method. Later on, when VHDL started to 

be used as a design tool, the dataflow design style was similar to the schematics [17]. 

The low complexity of the designs at that time (e.g. less than 50 k gates in the early 

1990’s [15]), partly due to restrictions of the synthesis tools, made the dataflow style 

acceptable when coding VHDL [17].  

 

This old method consists of many concurrent VHDL statement and small processes 

connected together through signals that in turn build components with a specific 

functionality. Designs that use the dataflow method become difficult to understand and 

analyze when the number of concurrent statements increases. The complexity in 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 13 

 

understanding the code is due to the fact that concurrent statements and processes are 

not executed in the order they are written [17]. 

 
Table 7: Dataflow VS Two Process Comparison [15]. 

 Two Process Method Dataflow Coding 

Adding Ports 
 Add field in interface record 

type. 

 Add port in entity declaration. 

 Add port to sensitivity list (input). 

  Add port in component declaration. 

 Add signal to port map of component. 

 Add definition of signal in parent. 

Adding 

Registers 
 Add field in register record 

type. 

 Add two signal declarations (d & q). 

  Add q-signal in sensitivity list. 

 Add driving signal in comb. process. 

 Add driving statement in seq. process. 

Debugging 

 Put a breakpoint on first line 

of combination process and 

step forward. 

 New signal values visible in 

local variable v. 

 Analyze how the signal(s) of interest are 

generated. 

 Put a breakpoint on each process or 

concurrent statement in the path. 

 New signal value not immediately visible. 

Tracing 

 Trace the r-signal (state) 

 Automatic propagation of 

added or deleted record 

elements. 

 Find all signals that are used to implement 

registers. 

 Trace all found signals 

 Re-iterate after each added or deleted signal 

 
Table 7 illustrates the usefulness of the Two Process Method with the standard dataflow 

design style by comparing common development tasks. From Table 7, it can be noted 

that common development tasks are done with less editing or manual procedures, 

thereby improving efficiency and reducing coding errors [15]. 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 14 

 

6. The Design of the AC97 Core 

This Section starts with the taken design choices; then, there is a brief explanation of the 

functionality of the AC97 IP core in a system level perspective; the next section 

describes the design of the AC Link, its correct timing module, and the interface 

between the APB Bridge and the previous two entities. The second stage of the design 

deals with the introduction of the DMA and FIFO to the core, and its correct interface 

with the AHB bus. 

 

6.1.  Design Choices 

The whole design was made in VHDL using the ModelSim environment suite and 

following the Two Process Design Method.  

 

The design process was divided in two phases. The first phase aimed to communicate 

the processor with the AC97 IP core through the APB bus, so the core could transmit o 

the CODEC commands given by the processor. The second phase aimed to 

communicate the processor with the AC97 IP core through the AHB bus (and still keep 

the communication with the APB bus) to fetch stored data in memory. The first stage 

was designed and simulated in ModelSim, and then verified in hardware before moving 

forward to the second stage. 

 

Designing the core in two stages gave more fluency to the project, since it was easier to 

verify a simple communication between the core and the processor by first using the 

APB bus before adding more complexity to the design and start using the AHB bus 

(which in turn, the communication will require to design a DMA Engine). By verifying 

the first stage in hardware it also was easier to remove bugs from the design. However, 

taking the decision of designing the core in two stages has the implication of doing the 

verification twice, which requires more time. But in this way, it is certain that the first 

stage of the design is working properly. 

 

If the project would have been carried out in a single stage, probably the design would 

have been finished before (verified in simulation), but it is likely that it would not have 

been verified completely in hardware. Meaning that perhaps simple communication 

between the core and the processor would not have been achieved.   

 

Furthermore, the design was broken down into many different entities to have order in 

the code and also to perform specific tasks in the entities. For example, the Clocks 

entity was used for the CODEC reset and to get the rising and falling edges from the Bit 

Clock; in the AC Link entity the parallel data is being serialized and the synchronization 

signal is sent out with its correct timing; the Interface entity stores the commands in 

FIFOs and communicates with the APB bus; a main entity was included to make the 

design portable and compact within the entire system. 

 

In the same train of thought, the entities have different inputs and outputs (record types 

for communication inside the core and with the system bus). It was thought that by 

having entities in charge of a specific collection of signals, the design could be 

visualized more clearly.  

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 15 

 

6.2.  The Functionality of the AC97 IP Core in the LEON3-Based System 

A brief overview of the functionality of the AC97 controller within the LEON3-based 

system is explained herein. The core stays idle until it is selected and enabled by the 

APB Bridge, either for a read or a write transfer. Whenever the LEON3 processor wants 

to write a command to the core (e.g. turn up the volume on the loudspeakers), the 

information is sent through the AHB bus, passing through the APB Bridge, and finally 

reaching the AC97 core (please refer to Figure 1). The command is then transmitted 

from the core to the CODEC via the AC link.  

 

After a read or write completion, the AC97 core remains idle until the processor 

requests another task to be performed by the core. For instance, if an audio file has to be 

fetched from memory, this instruction is sent by the processor in the same way as if it 

were a regular command. Afterwards, the core realizes that it should use the DMA 

engine to get this data from memory.  

 

The data transfer is done by 4-beat burst transfers through the AHB bus and stored 

temporarily in a core’s FIFO. Immediately after the data is available in the before 

mentioned FIFO, it is streamed out of the core to the AC97 CODEC, so the audio data 

can be listened in the loudspeakers, which in turn are driven by the CODEC’s DAC. 

 

6.3.  First Stage 

Figure 8 clearly illustrates the Top Module interconnection of the AC97 IP core at its 

first stage. The thin lines are single bit signals whereas the thick lines are record types 

(apbi and apbo are further explained in Section 6.3.4; inl_link and outl_link are further 

explained in Section 6.3.2). 

 

 
 

Figure 8: AC97 IP core at its first stage. 

 

6.3.1.  The Clocks Entity 

The clock that drives the AC Link is coming from the CODEC, as it was previously 

explained in Section 3.1. This clock is slower than the clock that drives the entire 

system. Nonetheless, there must be synchronization between these two clocks; 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

AC97

Codec

AC 97 IP Core

codec rst

Sync
sync 0

sync 1

Clocks

sync 

data in

clk

inl_link

outl_link

clks_in

apbi

apbo
AHB/APB

Bridge

ahbi

ahbo

A
H

B
  

  
 B

U
S



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 16 

 

otherwise communication will never be achieved. Furthermore, both the rising and 

falling edges are needed in the AC97 core. According to the AC97 specification, the 

output data (controller to CODEC) is sampled on the rising edges of the Bit Clock and 

the input data (CODEC to controller) is sampled on the falling edges of the Bit Clock. 

However, to have different edges on a design might result in not synthesizable code, 

since most synthesis tools do not support dual edge behavior (i.e. falling edge and rising 

edge) [18].  

 

 
 

Figure 9: Clocks entity. 

 

In order to obtain the rising and falling edges from the slower clock, an entity was 

designed (highlighted with dark blue in Figure 9 and named as Clocks). Obviously, the 

edges of the slower clock still have to be synchronized with the system clock. The entity 

has the Bit Clock as an input, and it is sampled with the system clock. From this entity, 

two signals are obtained and are used as the rising and falling edge clocks for the AC 

Link. The rising edge will be the trigger to update the outputs of the AC97 core, but the 

system clock will be the input signal in the sequential process. The falling edge was not 

actually used in the design of this core, since the purpose of this Master’s project was to 

send only data from the controller to the CODEC and not the other way around. 

 

 
Figure 10: Rising and falling edges synchronized with the system clock. 

 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

AC97

Codec

AC 97 IP Core

codec rst

Sync
sync 0

sync 1

Clocks

sync 

data in

clk

inl_link

outl_link

clks_in

apbi

apbo
AHB/APB

Bridge

ahbi

ahbo

A
H

B
  

  
 B

U
S

BIT_CLK

Rising edge

Falling edge

System clock

Time



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 17 

 

As it can be observed in Figure 10, the system clock and Bit Clock are not 

synchronized. In the design, an entity is in charge of obtaining the rising and falling 

edges from the Bit Clock and have them synchronized with the system clock. It is 

important to realize that the falling edge clock is just the rising edge clock but 180° out 

of phase, which means that no real falling edge was used in the design. 
 

The way the acquisition of the rising and falling edges was implemented, was 

serializing four flip-flops (refer to Figure 11). The input of them was the Bit Clock and 

they were sampled with the faster system clock. However, the Bit Clock had first to be 

passed through an anti-meta-stable stage. This also was done by serializing flip-flops 

(only two in this case). If data is sampled without any synchronization phase, the value 

of the sampled data would be uncertain (i.e. either 0 or 1). Thus, the output of the first 

flip-flop in the anti-meta-stable stage will go meta-stable, but the next flip-flop does not 

look at the data until a clock period later, which gives time to the previous flip-flop to 

stabilize the data. Now, the data passed through the next flip-flops will be stable data 

that is safe to sample. 

 

 
 

Figure 11: Implementing the rising and falling edges. 

 

In this way, whenever the system clock samples two consecutive zeros and then two 

consecutive ones, the edge will be rising. Contrarily, in the case that the system clock 

samples two consecutive ones and then two consecutive zeroes, the edge will be falling. 

Table 8 resumes these combinations. 

 
Table 8: Combinations for the rising and falling edges. 

Q0 Q1 Q2 Q3 Edge  

0 0 1 1 Rising 

1 1 0 0 Falling 

 

It is very possible that the system clock could not sample exactly two consecutive zeros 

and two consecutive ones (or vice versa). Thus, in any other case the edges will be set to 

zero and the counter for the warm reset will be reinitialized. 

 

Additionally there will be a delay of four system clock cycles before either rising or 

falling edges are detected. However, this is not critical because it will only happen when 

the system is powered up or after a reset. Furthermore, the delay is in terms of the 

system clock and not with respect to the Bit Clock. 

 

The case 00002 is a special one because if that happens, it means that there is not a 

present clock.  If this is the case for at least 1µs (according the AC97 specification), a 

warm reset has to be asserted to the CODEC (please refer to Section 3.1.1 AC link for 

the details on the different kinds of CODEC reset). In different cases besides 00002 and 

the two previously explained in Table 8, the warm reset counter will be reinitialized and 

the states of the last edges will be set to zero. 

System 

clock

0 1 2 3
D Q D Q D Q D Q

Rising edge

or 

Falling edge

BIT_CLK

ANTI-METASTABLE

STAGE

D QD Q



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 18 

 

zeferring to Figure 9, the output of the Clocks entity to goes into the AC Link is named 

clks_in. This port uses the record type clks_in_type. Table 9 explains such record type. 
 

Table 9: clks_in_type signals. 

Signal Name Function 

r_clk 

This signal is the rising edge of Bit Clock and is sent by the Clocks 

entity to the AC Link. It is used in the AC Link to trigger the 

outputs to the CODEC. 

f_clk 
This signal is the falling edge of Bit Clock. However, it is not 

currently used in the design. 

codec_rst   

This signal contains the cold reset asserted by the Clocks entity. The 

cold reset is used in the AC Link to control the synchronization 

signal, sent to the CODEC. 

 

6.3.2.  The AC Link Entity 

 
The connection between this entity and the Interface entity is done by using the input 

inl_link and the output outl_link (refer to Figure 12). These signals use the record types 

aclink_inl_type and aclink_outl_type, respectively. Table 10 explains the content of the 

input record type and Table 11 explains the content of the output record type. 
 

Table 10: aclink_inl_type signals. 

Signal Name Function 

valid_if 
This signal tells the AC Link when a valid command has been 

written to the Interface. 

ready_if 
This signal tells the AC Link when to start streaming out the 

command to the CODEC. 

equal   
This signal tells the AC Link when the number of sent out 

commands  is equal to the written commands in the Interface.  

adres_if [31:0]
 3
 

The address in the command is sent from the Interface to the AC 

Link in this vector. 

data_if [31:0]
 4
 

The data in the command is sent from the Interface to the AC Link 

in this vector. 
 

Table 11: aclink_outl_type signals. 

Signal Name Function 

cmd_rqst This signal asks the Interface for a command. 

Ack 
This signal tells the Interface when the AC Link started to send data 

to the CODEC. 

donecopy [7:0]   
This signal tells the Interface how many frames have been sent out 

to the CODEC. 

                                                 
3 Only the 7 LSBs of the address vector are used because the CODEC has 128 registers. 
4 Only the 16 LSBs of the data vector are used because only 16 bits of data can be 

written into the CODEC’s registers. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 19 

 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

AC97

Codec

AC 97 IP Core

codec rst

Sync
sync 0

sync 1

Clocks

sync 

data in

clk

inl_link

outl_link

clks_in

apbi

apbo
AHB/APB

Bridge

ahbi

ahbo

A
H

B
  

  
 B

U
S

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: AC Link entity. 

 

The AC Link (highlighted with dark blue in Figure 12 and named as AC Link) is a 

master of the Interface between the APB bus and the core. The main role of this entity is 

to convert the incoming parallel data to serial data, so the CODEC can receive these 

data according to the AC97 specifications. In addition it is also in charge of sending the 

synchronization signal to the CODEC. Figure 13 explains in a flow chart how the AC 

Link works. 

 

The flow chart in Figure 13 starts in upper right corner, where the reset conditional is. If 

reset is equal to zero, the signals and outputs are set to their initial values. Right after 

the reset has been asserted the hardware is waiting for the rising edge of the Bit Clock. 

Until this edge is detected, the AC Link will not do anything.  

 

Basically, there are six conditions that might be executed in parallel. However, some of 

them depend on the result of previous operations or input signals from the Interface 

entity. Whether they are mutually exclusive or not is further explained in this same 

section. In Figure 13, the left-most conditional asserts the request signal if there has not 

been written a valid command in the Interface and it keeps on sending the asserted 

request signal until a valid signal is sent back to it. 

 

Working from left to right, the next condition in the flow chart of Figure 13 is used to 

prepare the slots when they contain a command, when they have PCM data, or when 

both a command and PCM data are present in the frame. The AC link prepares the 

frame’s slots with the bits needed in the tag phase of the protocol, and includes the 

address and the data accordingly, as it will be further explained in Section 6.3.3. 

 

The next condition is used to check if the equal signal is low and the CODEC reset is 1. 

The equal signal means that the number of written commands in the Interface is equal to 

the number of sent out frames. If the codec reset is 0 it means that a cold reset has been 

sent to the CODEC and the AC Link cannot send frames to it. If the equal signal is 0 

and a cold reset has not been sent to the CODEC (e.g. CODEC reset signal is 1), it is 

possible that the AC Link can send the synchronization signal to the CODEC and send 

an acknowledgment signal to the Interface; else, the synchronization signal is not sent. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 20 

 

The next conditional in Figure 13 explains when to send the data to the CODEC. 

Whenever the ready signal comes asserted from the Interface and the synchronization 

has been sent to the CODEC, the AC Link will start to send out data to the CODEC. 

After the last bit (i.e. the 256
th

 bit) or a complete frame has been sent out, a done signal 

is asserted in this same condition that will be further used to increase the counter that 

keeps on track of the sent frames. 

 

 
Figure 13: AC Link flow chart. 

 

Outside the previous condition, the counter for the bits is checked against the maximum 

count (255). If the value has been reached, the counter has to be reset. It was chosen to 

reset the counter in this way instead of letting it wrap around itself after it had reached 

the maximum count to avoid not sending the last bit in the frame. For this purpose, the 

counter has 9 bits instead of 8 bits. 

  

The last condition in Figure 13 is used to increase the frames counter. If the done signal 

is 1 (previously explained in this same flow chart) and the equal signal (checked in the 

Interface entity) is 0, the counter for the sent out frames has to be increased by one. This 

count is received and checked by the Interface. If the number of sent out frames is equal 

to the number of written commands, the equal signal is asserted; otherwise it will not be 

asserted. 

 

6.3.3. Serializing the Parallel Data 

The way the output data is transmitted is by calling a function that serializes the 

incoming 32-bits data vector. The function receives the vector which is used as a 

counter for the synchronization signal and returns a single bit for the data output to the 

CODEC. When the slot’s count is between 0 and 15 (16 bits), the first slot is streamed 

Prepare the slots

with the PCM

values.

done = 1done = 0

rqst = 0

pcm_val=1 

and

eq_pcm=0?

yes

no

cmd_val=1?

yes

no
sync=1 

and

ready=1?

yes

no

no
eq=0 and

codec_rst=1?

yes

cmd_val=1?

yes

no

Prepare the slots

with the 

command

values.

rqst = 1

Send the

sync.

signal.

Do not 

send the

sync.

signal.

count=255?

yes

no

Send 

data.

Do not 

data.

count=255?

yes

no

Reset

counter.

done=1 

and

eq=0?

yes

no

Increase the

frames counter.

rising 

edge of

bit clock?

yes

no IDLE

Initialize signals and  outputtsRESET=0?no yes

Update outpts.

pcm_val=1 

and

eq_pcm=0

and

cmd_val=1?

yes

no

Prepare the slots with the 

command and the PCM values.



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 21 

 

out; when the count is between 16 and 35 (20 bits), the second slot is sent out. This goes 

on until the count reaches 255, so the 13 slots have been transmitted. All the slots are 

transmitted in a MSB justified fashion (i.e. most significant bit goes first).  

 

In this implementation, only the slots 0 up to 4 are used, as it was explained in Section 

3.1.3. All slots are 20 bits wide, but in the first slot only the 16 MSBs are transmitted, in 

order to simplify and not have to deal with different vector sizes.  
 

The transmission is done by logically shifting to the left (sll function in VHDL) the 

previously loaded slots. They are shifted depending on the slot’s bit count. For instance, 

in the first slot, if the counter is 0, the vector will be shifted 0 times; if the counter is 12, 

the vector will be shifted 12 times. The slots are indexed from 0 to 19 and not 19 down 

to 0, in order to always shift the least significant bit and use the same operation for even 

different sized slots and keep the code simpler. In this way, the bit 0 in every vector slot 

is the bit that will be transmitted to the output.  
 

Table 12: Values in slots while sending a command. 

Slot 0 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Not applicable 1 1 1 Zeros 

Slot 1 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 0 Address Zeros 

Slot 2 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Data Zeros 
 

If the core has to send a command, the slots are loaded according to Table 12. Slot 0 is 

loaded with 0xE000 assuming the frame is valid (bit 15), slots 1 and 2 are valid (bits 14 

and 13, respectively), and writing the correct CODEC ID in bits 1 and 0 (in this case 00 

for the Analog Devices CODEC). Bits 12 to 2 are loaded with zeros since PCM data 

will not be sent yet, and bit 2 is reserved (e.g. filled in with a 0). Slot 1 is loaded as 

shown in Table 12 because a value will be written into the CODEC (bit 19 set to 0), the 

register address of the operation is specified in bits 18:12, and bits 11:0 are reserved (i.e. 

filled with zeros). Slot 2 is loaded as shown in Table 12 since it is a write operation 

(otherwise, the whole slot would be filled with zeros) and bits 3:4 should be filled in 

with zeros. 

 

When the core sends PCM data to the CODEC, the slots will change according to Table 

13. Slot 0 is loaded with 0x9800 assuming the frame is valid (bit 15), slot 1 (bit 14) and 

slot 2 (bit 13) are not valid since the CODEC’s registers will not be targeted, PCM data 

on the left channel is valid (bit 12), PCM data on the right channel is valid (bit 11), and 

writing the correct CODEC ID in bits 1 and 0 (in this case 00 for the Analog Devices 

CODEC). Bits 10 to 2 are loaded with zeros and bit 2 is reserved (e.g. filled in with a 0). 

Correspondingly, slots 1 and 2 are loaded with different values if PCM data is sent 

instead of a command.  

 

Referring to Table 13, slot 1 is loaded with 0x0 because nothing will be read from the 

CODEC (bit 19 set to 0), no register address will be targeted (bits 18:12), and bits 11:0 

are reserved (i.e. filled with zeros). Referring to Table 13, slot 2 is loaded with 0x0 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 22 

 

because no register address will be targeted. Thus, there is no need to send a value. Bits 

3:4 should be filled in with zeros.  

 

Since PCM data has to be sent to the CODEC, slots 3 and 4 are loaded in a different 

way compared to writing into the CODEC’s registers. In Table 13, bits 19:4 from slot 3 

are loaded with the 16 MSBs of the 32 bits PCM input and these data is sent to the left 

channel. In the same vein, bits 19:4 from slot 4 are loaded with the 16 LSBs of the 32 

bits PCM input and these data is sent to the right channel. 
 

Table 13: Values slots while sending PCM data. 

Slot 0 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Not applicable 1 0 0 1 1 Zeros 

Slot 1 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Zeros 

Slot 2 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Zeros 

Slot 3 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 16 MSBs of the 32 bits PCM input. Zeros 

Slot 4 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 16 LSBs of the 32 bits PCM input. Zeros 

 

Nonetheless, it is possible to send both a command and PCM data in the same frame. If 

this has to be done, the slots are loaded differently. Table 14 explains how slot 0 is 

loaded in this case. 

 
Table 14: Values slots while sending PCM data and a command. 

Slot 0 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Not applicable Ones  Zeros 

Slot 1 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 0 Address Zeros 

Slot 2 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value Data Zeros 

Slot 3 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 16 MSBs of the 32 bits PCM input. Zeros 

Slot 4 

Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 16 LSBs of the 32 bits PCM input. Zeros 

 

Referring to Table14, slot 0 is loaded with 0xF800 assuming the frame is valid (bit 15), 

control address in slot 1 (bit 14) and control data in slot 2 (bit 13) are valid, PCM data 

on the left channel is valid (bit 12), PCM data on the right channel is valid (bit 11), and 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 23 

 

writing the correct CODEC ID in bits 1 and 0 (in this case 00 for the Analog Devices 

CODEC). Bits 10 to 2 are loaded with zeros and bit 2 is reserved (e.g. filled in with a 0). 

In this case slot 1 and slot 2 are charged in the same way as in Table 12; slot 3 and slot 4 

are filled with the values used in Table 13. 

 

6.3.4. The Link/Clocks Entity 

 
There was a need to include the Clocks and the AC Link entities into a single higher 

level unit to make the design more conveyable and compact, because in this way, all the 

needed hardware to send the frames to the CODEC will be enclosed in one single entity 

(i.e. the AC Link entity to serialize the parallel input data and send the synchronization 

signal with its right timing; the Clocks entity to obtain the rising edge from the Bit 

Clock). This entity is named Link/Clocks entity. The highlighted square in light blue in 

Figure 8 indicates where in the core this takes place. 

 

Moreover, in the Link/Clocks entity it will be decided when the synchronization signal 

will be treated as a warm reset or for synchronization purposes. This decision takes 

places in the dark blue square in Figure 8, which is a simple OR operation. On any 

occasion the Bit Clock is present, the synchronization signal will be used for 

synchronization purposes between the AC Link and the CODEC, and whenever the Bit 

Clock is not present during 2 µs the synchronization signal will be used as a warm reset 

to the CODEC.  

 

Thus, this simple decision takes places in this entity instead of doing so in the Top 

Module, which is instantiated in the leon3mp.vhd file without doing any operations.   

 

6.3.5.  The AHB/APB Bridge 

 
The AHB/APB Bridge entity was reused from the GRLIB library. It is an AMBA AHB 

slave interface which connects the AHB bus with any given peripheral. This bridge also 

acts as an APB master from the APB slave (i.e. the AC97 core). 

 

 
 

Figure 14: AHB/APB Bridge. 

6.3.6.  The Interface Entity 

 
In Figure 14, the AHB/APB Bridge has incoming and outgoing signals. As a matter of 

fact, they are a collection of signals grouped into different buses. An input of the bridge 

coming from the AHB bus is a signal called ahbi (refer to Figure 14), which uses the 

record type ahb_slv_in_type. An output of the bridge is called ahbo in Figure 14 and it 

goes back to the AHB bus and uses the record type ahb_slv_out_type.  

APB Slave

(AC97 Core)

ahbo
AHB Slave

Interface

(AHB/APB bridge)

apbiapbo

ahbi

AHB     BUS



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 24 

 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

AC97

Codec

AC 97 IP Core

codec rst

Sync
sync 0

sync 1

Clocks

sync 

data in

clk

inl_link

outl_link

clks_in

apbi

apbo
AHB/APB

Bridge

ahbi

ahbo

A
H

B
  

   
B

U
S

The bridge’s output to the AC97 core is named apbo in Figure 8 and uses the record 

type apb_slv_out_type. On the other hand, the bridge’s input called apbi in Figure 8 

comes from the AC97 core and uses the record type apb_slv_in_type. The relevant 

signals for the AC97 core that are coming from the apb_slv_in_type are shown in Table 

15: 
 

Table 15: apb_slv_in_type signals for the AC97 core [14]. 

Signal Name Function 

Psel 
Indicates that the slave device is selected and a data transfer is 

required. 

penable  Used to indicate the second cycle of an APB transfer. 

paddr [31:0]   APB address bus; driven by the peripheral bus bridge unit. 

pwrite  When high, indicates an APB write access; when low, a read access. 

pwdata [31:0] 
The write data bus is driven by the peripheral bus bridge unit during 

write cycles. 

 

The relevant signals for the AC97 core that are coming from the apb_slv_out_type are 

explained in Table 16: 

 
Table 16: apb_slv_out_type signals for the AC97 core [7] [14]. 

Signal Name Function 

prdata [31:0] The read data bus is driven by the selected slave during read cycles. 

Pconfig 
Contains information such as vendor ID, device ID, APB address, 

APB address mask. 

pindex  Indicates the APB slave index. 

pirq [31:0] Interrupt line driven by the core. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Interface entity. 

 

The interface between the APB Bridge and the AC Link works as a slave from the 

latter. Thus, the master requests data from the slave all the time. If there is new data to 

be written into the Interface, the core has to be selected and enabled on the APB bus, 

and the write signal has to be asserted. In order to use the AHB/APB Bridge, the GRLIB 

library and AMBA package had to be added into the Interface entity (see Appendix 

A.6): 
 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 25 

 

The flow chart in Figure 16 describes how the Interface entity works. 

 

Figure 16: Interface entity flow chart. 

 

The flow chart in Figure 16 starts from the top, where the reset conditional is. If reset is 

equal to zero, the signals and outputs are set to their initial values. After the reset has 

been asserted, the Interface entity stays idle until the core is selected and enabled.  

 

These events are represented as conditionals in Figure 16. From left to right in this 

figure, the first conditional describes when a command has to be written into the core. 

In order for this to happen, the APB slave (i.e. the core) has to be selected, enabled, and 

the write signal has to be asserted. If so, the address and the data are stored in different 

FIFOs, and a writes counter is incremented by one (it counts how many writes have 

occurred). If this condition is not met, the Interface entity stays idle and none of the 

other conditionals can happen. 

 

The next conditional from left to right in Figure 16, depicts when the number of sent out 

frames by the AC Link to the CODEC is equal to the number of written commands to 

the Interface. If this happens, the eq flag is asserted and the valid flag (val in the figure) 

is set to zero; if this does not happen, the eq flag is de-asserted and the next conditional 

cannot happen.  

 

Following the previous conditional in Figure 16, there is another condition in the 

Interface. It checks when to assert the val flag and when to send the data and address to 

the AC Link. This occurs when the request input from the AC Link (rqst in Figure 16) 

is 1 and the writes counter is greater than zero and the eq flag is 0. If this does not 

happen, the Interface stays idle and the next conditional cannot happen. 

 

The last conditional in Figure 16 checks when to send the ready signal to the AC Link, 

which indicates that the AC Link should stream out the command to the CODEC. The 

ready signal is asserted if the valid signal is 1 and the request from the AC Link is 0 and 

number of sent out 

frames is equal to the 

number of written 

commands?

rqst=1 and

written commands > 0 and 

eq=0?

val=1 

and rqst=0 and

ack=1?

• Save the data in its FIFO

• Save the address in its FIFO

• Increment the number of 

writes counter

• eq = 1

• val = 0
• val = 1

• Send the data and address 

to the AC link.

ready = 1ready = 0eq = 0

penable=1 

and psel=1 and

pwrite=1?

yes

no

yes

no

yes

no

yes

no

Update outpts .

IDLE

Initialize signals and  outputtsRESET=0?no yes



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 26 

 

if the incoming acknowledge signal (which indicates that a command has been received 

by the AC Link) is 1. Else, it will be set to zero. 

 

At any time that the processor wants to read from the core, no extra logic is needed. The 

data will not collide with data coming from other slaves because it will not be outputted 

unless the core is selected by the AHB/APB Bridge. Hence, the read registers will be 

always available.  

 

6.3.7.   Plugging- in the Core into the System 

To plug-in the core into the LEON3-based system in order to simulate the whole 

environment and verify the core’s functionality, some files had to be modified. First of 

all, the core information was added to the devices.vhd and the config.vhd files. 

This modification is explained in Excerpts 1 and 2: 

 
package devices is 
constant GAISLER_AC97 : amba_device_type := 16#08C#; 
constant gaisler_device_table : 

device_table_type:=(GAISLER_AC97=>"AC97 Controller "); 

 

Excerpt 1: Adding the AC97 core into Gaisler Research device ID’s in the devices.vhd file. 

 

package config is 

constant CFG_AC97_ENABLE : integer := 1; 

end; 

 

Excerpt 2: Adding the AC97 core into the LEON3 design in the config.vhd file. 

 

Secondly, the Interface entity includes the configuration information for this purpose, 

since this entity will interface the core with the APB bus. This is done in Excerpt 3:  
 
entity apb_ac97_if is 
generic (  pindex :     integer := 10; 

       paddr  :     integer := 10; 
       pmask  :     integer := 16#FFF#; 
       vendorid  : in  integer := 16#01#; 

       deviceid  : in  integer := 16#08C#; 
       version   : in  integer := 0);         

end; 
 

architecture apb_ac97_if_arch of apb_ac97_if is 

constant pconfig:apb_config_type:= 

(0=>ahb_device_reg(VENDOR_GAISLER,GAISLER_AC97,0,0,0), 

 1=>apb_iobar(paddr, pmask)); 

end; 

 

Excerpt 3: Generics declaration and configuration for the GRLIB. 

 

6.3.8.   AC97 Top Module 

This is the highest level design’s entity and where the whole of it was enclosed. In this 

way, all the lower level entities are bounded into this convenient unit. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 27 

 

 

 
 

Figure 17: AC97 Top Module. 

 

The Top Module design had to be instantiated in the leon3mp.vhd file so it could be 

encompassed into the whole embedded system. The way this was done is illustrated in 

the Excerpt 4. 
 

ac97: if (CFG_AC97_ENABLE = 1) generate 

ac97: ac97top generic map  
(pindex=>10,paddr=>10,pmask=>16#FFF#)   
port map (clk => clkm, rst => rstn, 

ac97top_inl              => apbi, 

ac97top_inr.data_in      => audio_sdata_in, 

ac97top_inr.bit_clk      => audio_bit_clk, 
ac97top_outl             => apbo(10), 
ac97top_outr.sync        => audio_sync, 

ac97top_outr.data_out    => audio_sdata_out, 

           ac97top_outr.reset_codec => flash_audio_reset_b); 

end generate ac97; 

 

Excerpt 4: AC97 (1
st
 stage of the design) component instantiation in the leon3mp.vhd file. 

 

6.4.  Second Stage 

The second stage of the design is explained in here. First, the DMA to AHB in Figure 

18 is explained, followed by a description of the DMA Controller (DMAC in Figure 

18); there is a higher level  entity which includes the previous two entities and it is 

named as DMA Engine (light blue square around DMAC and DMA to AHB in Figure 

18), which is detailed after the DMAC. Some modifications had to be made to the AC 

Link entity, to the Interface entity, and to the Top Module. All of these are included in 

this section as well. 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

AC97

Codec

AC 97 IP Core

codec rst

Sync
sync 0

sync 1
sync 

data in

Clocks

clk

inl_link

outl_link

clks_in

apbi

apbo
AHB/APB

Bridge

ahbi

ahbo

A
H

B
  

  
 B

U
S



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 28 

 

 

 
 

Figure 18: AC97 IP core at its second stage. 

 

6.4.1.  The DMA to AHB Entity 

The DMA to AHB is an entity that was already designed at Gaisler Research. Hence, it 

was reused and included in the A97 core (in Figure 18, it is highlighted with dark blue 

and named as DMA to AHB). It gives communication between the AHB bus and the 

core itself, by acting as a master interface to the AHB bus. The DMA to AHB entity 

requests access to the bus. Subsequently, the bus gives the address to the entity (the 

entity starts fetching data from this address). 

 

Figure 18 depicts the DMA to AHB in dark blue and how it is connected to the DMA 

Controller (DMAC in Figure 18) and to the AHB bus. It has four record types: 

ahb_mst_in_type and ahb_mst_out_type (ahbi and ahbo respectively in Figure 18), 

which are used to achieve communication with the AHB bus; dma_in_type and 

dma_out_type are used to connect with the DMAC (dmain and dmaout respectively in 

Figure 18). 

 

Table 17 explains the signals in the record type ahb_mst_in_type, used to achieve 

communication between the AHB bus and the DMA to AHB entity. 

rst clk

bit clk

data out

AC 

Link

rst

Interface

rst clk

apbi

apbo AC97

Codec

AHB/APB

Bridge

AC 97 

IP Core

codec rst

Sync
sync 0

sync 1

Clocks

sync 

data in

clk

DMAC
DMA

to

AHB

ahbi

ahbo

ahbi

ahbo

dmain

dmaout

A
H

B
  

  
 B

U
S

inl_link

outl_link

dmac_in

dmac_out

rst clk

rst

clk

if_out if_in

clks_in



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 29 

 

Table 17: ahb_mst_in_type signals [14]. 

Signal Name Function 

hgrant 

This signal indicates that the bus master is currently the highest priority 

master. A master gets access to the bus when both hready and hgrant 

are high. 

hresp 
The transfer response provides additional information about the 

transfer status, such as: okay, error, retry, and split. 

hready 

The data can be extended using this signal. When low, indicates that 

the transfer is to be extended and when high indicates that the transfer 

can complete. The slaves must only sample the address and control 

signals when this signal is high.  

hrdata [31:0] This is the read data bus, which is used to transfer data from bus slaves 

to the bus master during reading operations. 

 

Table 18 explains the signals in the record type ahb_mst_out_type, used to achieve 

communication between the AHB bus and the DMA to AHB entity. 
 

Table 18: ahb_mst_out_type signals [14]. 

Signal Name Function 

hbusreq 
It is a signal from the bus master to the bus arbiter, which indicates that 

the bus master requires the bus. 

hlock 

When set to one, indicates that the master requires locked access to the 

bus and no other master should be granted the bus until this signal is 

low. 

htrans [1:0] 
Indicates the type of the current transfer (nonsequential, sequential, 

idle, or busy). 

haddr [31:0] The 32-bit system address bus. 

hwrite When high, it indicates a write transfer and when low a read transfer. 

hsize [2:0] 
Indicates the size of the transfer. It could a byte (8 bits), a half word (16 

bits), or a word (32 bits). 

hburst [2:0] 

Indicates if the transfer forms part of a burst. Four, eight, and sixteen 

beat bursts are supported and the burst may be either incrementing or 

wrapping. 

hindex Indicates the master bus index. 

 

Table 19 names the signals and their function in the record type dma_in_type, which is 

used to communicate between the DMA to AHB and the DMAC entities. 

 

 

 

 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 30 

 

 

Table 19: dma_in_type signals for the AC97 core [14]. 

Signal Name Function 

reset 
When asserted, makes the data transfer to be idle. When de-

asserted, a data transfer can be started. 

address [31:0] Indicates from which address the data should be requested. 

data [31:0] Sent data to the bus. 

request Requests access to the AHB bus. 

burst Requests a burst transfer from the AHB bus. 

beat [1:0] Determines how many beats should be in the transfer. 

size [1:0] 
Indicates the size of the transfer. It could a byte (8 bits), a half word 

(16 bits), or a word (32 bits). 

store 
When set to zero is used for read operations. When set to one is set 

to write operations. 

lock 

When set to one, indicates that the master requires locked access to 

the bus and no other master should be granted the bus until this 

signal is low. 
 

Table 20 names the signals and their function in the record type dma_out_type, which is 

used to communicate between the DMA to AHB and the DMAC entities. 
 

Table 20: dma_out_type signals for the AC97 core [14]. 

Signal Name Function 

grant 
This signal indicates that the bus master is currently the highest priority 

master. 

okay Indicates that the transfer is progressing normally. 

ready 

The data can be extended using this signal. When low, indicates that 

the transfer is to be extended and when high indicates that the transfer 

can complete. The slaves must only sample the address and control 

signals when this signal is high.  

retry 
Shows the transfer has not yet completed, so the bus master should 

retry the transfer. 

fault This signal shows an error has occurred. 

data [31:0] The data to be transferred from the AHB bus. 

 

6.4.2.   The DMA Controller 
 

Figure 18 shows where the DMA Controller is placed in the design. It is highlighted 

with dark blue in the figure. 

 

The DMA Controller (DMAC) uses the DMA to AHB entity, explained previously in 

Section 6.3.1. In order to use the latter entity, the GRLIB library and other packages had 

to be added in the dmac.vhd file (refer to Appendix A.4).  
 

The DMAC manages the DMA to AHB entity with the state machine in Figure 19, and 

it also communicates with the AC Link and the Interface entities. The DMAC is 

necessary to start fetching data from memory, so these data could be passed to the AC 

Link through its output channel and then streamed from the core to the CODEC. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 31 

 

Right after the reset, the state machine stays in the state S0 (refer to Figure 19) until it 

receives the signal (from the Interface) which indicates when it should start fetching 

data from memory. When this start signal is asserted, it goes to S1. 

 

The state machine stays in S1 if the grant signal (coming from the DMA to AHB entity) 

is 0. Otherwise, it will go to S2. In state S1, the base address from where the data should 

be fetched is obtained in the first burst transfer. If it is not the first burst transfer, the 

address is got from where the previous burst stopped.  

 

 
Figure 19: DMAC finite state machine. 

 

Similarly, in S1 the burst, request, and lock signals (refer to Table 19) are asserted, 

store is set to zero, size is set to hsize32 (word sized transfers), and beat is set to hincr4 

to request 4-beat incremental bursts. It was decided to request such sized bursts because 

the AC Link does not have a very high speed. Thus, the DMAC do not need very deep 

FIFO because the data will be transferred at slow rate (compared to the fetching rate). In 

this way, the FIFO size could be reduced and still the DMAC could get advantage of the 

burst transfers. 

 

Likewise, S1 is in charge of asserting an acknowledgment signal that indicates that the 

start signal from the Interface has been received. Thus, this signal is sent by the DMAC 

and received by the Interface, causing the signal start to be de-asserted (preparing the 

state machine for the next initial burst transfer). 

 

The state machine stays in S2 if the ready signal (refer to Table 20) is 0; else, it will 

advance to S3. If it remains in S2, the validity of the data is checked. This is done if the 

data is different than 0x0. If so, the valid signal (refer to Figure 19) is asserted; it will 

mean the memory has no more valid data in it. This verification is done only the first 

time the state machine is in S2, because it is possible that it goes back again to S1 and 

from there jump to S2. Hence, checking if the data is valid is not needed anymore. 

 

Reset

S0

start = 0

start = 1

grant = 1

ready = 1

S1

ready = 1 

AND

max_fifo = 0

S3

S4

grant = 0

S2

ready = 0

ready = 1 

AND

max_fifo = 1

ready = 0

AND

max_fifo = 0

eq_pcm = 0

AND

valid = 1

eq_pcm = 0

AND

valid = 0

eq_pcm = 1  AND valid = 0

OR

eq_pcm = 1  AND valid = 1



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 32 

 

Some other operations are performed in S2. One of those is to save the first incoming 

data into the FIFO. Otherwise, it will be lost if this is done in the next state. After 

storing the data, the counter that points to the FIFO index is incremented by one. In the 

same fashion, the reset signal (refer to Table 19) is de-asserted so the burst transfer can 

be initiated subsequently. 

 

When the state machine is in S3, the rest of the data is stored in the FIFO. If the FIFO’s 

counter has reached its maximum count (0x7), the max_fifo signal (refer to Figure 19) is 

asserted, data is saved, the base address is increased by 0x10 (since it is a 4-beat burst 

transfer) so the DMAC starts fetching data from the last accessed address instead of 

getting it from the initial address, and the FIFO’s counter is no further increased. If the 

FIFO’s counter has any other count besides its maximum, the data is still saved and the 

counter is increased by one. 

 

Once in S3 there are three choices: to stay in S3 or to get out of this state with two 

possible directions (either S4 or S1). The state machine will be locked in S3 if ready is 1 

and max_fifo is 0 (refer to Figure 19). To get out of this state and move on to S4, ready 

has to be one and max_fifo has to be one also. The last choice is to go to S1 if ready is 0 

and max_fifo is 0. 

 

The last state of the machine is S4. Just like S3, it has three possible combinations. 

Either to stay in S4, go back to S1, or complete the cycle by going back to S0. If it 

happens that the state machine stays in S4 is because eq_pcm is 0 and valid is 1 (refer to 

Figure 19). If the machine jumps from S4 to S1, eq_pcm is 1 and valid is 0, or eq_pcm 

is 1 and valid is 1. The loop is completed when eq_pcm is 0 and valid is 0. If this is the 

case, the state machine goes back to S0 and is ready to empty the memory again. 

 

6.4.3.   DMAC Status Flags 

During the DMAC’s state machine operation, status flags are sent to the Interface entity 

and these are transmitted to the APB bus through pirq (explained in Table 16) in apbi 

(refer to Figure 18) to generate interruptions. 

 

Table 21 describes the DMAC status flags, when are they asserted/de-asserted, and their 

place in the pirq line. 

 
Table 21: DMAC status flags description. 

Status flag Asserted De-asserted Bit in pirq 

busy_dma S1, S2, S3 S0, S4 2 

wait_dma S0 S1 1 

done_dma S4 S0, S1, S2, S3 0 

 

The first status flag (busy_dma in Table 21) is used to indicate when the DMAC’s state 

machine is fetching data from memory. The status flag wait_dma announces that the 

state machine is in the idle state, waiting for an order from the processor to start 

fetching data. The last status flag in Table 21 is done_dma, which expresses that the 

state machine has finished the data burst transfer. The status flags were arbitrarily 

placed in bits 2 – 0 respectively in the pirq line, since these bits were not currently in 

use. 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 33 

 

6.4.4.   Data Burst Transfer Type 

As explained in Section 6.4.2, 4-beat incrementing bursts are performed by the DMA to 

AHB master. In this way, the core can fetch data from memory in an efficient way. 

Figure 20 shows the timing diagram of this kind of transfer. 

 

 
 

Figure 20: Four-beat incrementing burst. 
 

The transfer starts with an idle state (refer to Figure 20). Afterwards, the transfer 

changes to a non-sequential type indicating the start of the burst and the remaining three 

transfers are of the sequential type. Following the last sequential transfer, the ready 

signal goes low indicating the termination of the burst. Since the burst uses word (32 

bits) transfers, the addresses increase by four. It is important to note that the data will be 

available on the bus one clock cycle after the address has been requested. 

 

6.4.5.   The DMA Engine 

The DMA engine is a higher level entity that contains the DMAC and the DMA to 

AHB, so all the DMA related operations are contained in one single entity and the 

design can be more portable and compact. The DMA Engine entity is highlighted in 

light blue and it is showed in Figure 18. 

 

This entity has three input types and three output types, besides the clock and reset 

inputs. With these types, the engine can communicate with the other entities in the core 

and the AHB bus. The ahb_mst_in_type and ahb_mst_out_type are used for the AHB 

bus; the pcm_in_type and pcm_out_type are used with the AC Link entity; the 

ac97if_in_type and ac97if_out_type are used with the Interface entity. Additionally, to 

these types the engine has internal signals so the DMAC can be connected with the 

DMA to AHB entity, which are dma_in_type and dma_out_type.  

 

Table 22 explains the function of the signals in the pcm_in_type, which goes out of the 

DMAC and goes into the AC Link entity.  

 

 
 

IDLE NONSEQ

0X40

HTRANS[1:0]

HCLK

HADDR[31:0] 0X44 0X48 0X4C

HBURST[2:0] INCR4

CONTROL FOR BURST. SIZE = WORD
HWRITE

HSIZE[2:0]

HPROT[3:0]

DATA

(0X40)HRDATA[31:0]

SEQ SEQ SEQ

DATA

(0X44)

DATA

(0X48)

DATA

(0X4C)

HREADY



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 34 

 

Table 22: pcm_in_type signals. 

Signal Name Function 

valid 

The DMAC sends this signal to the AC Link when the read data from 

memory is valid. If so, the slots are loaded accordingly, the 

synchronization signal can be sent, and the data can be streamed out as 

well.   

done_link 

This signal is sent to the AC Link by the DMAC to reset the frame’s 

counter (keeps track on how many frames have been sent) and sets low 

the signal that indicates when the number of sent out frames and 

written data are equal, if done_link is asserted. 

waiting 

The DMAC send this signal to the AC Link when the DMAC’s state 

machine is in the state zero, waiting for the Interface to tell it to start 

fetching data. 

pcm [31:0] The PCM data is sent from the DMAC to the AC Link in this channel.  

 

Table 23 explains the function of the signals in the pcm_out_type, which is an output of 

the AC Link entity and is an input of the DMAC entity.  

 
Table 23: pcm_out_type signals. 

Signal Name Function 

eq_pcm 

This signal is asserted in the AC Link when the number 

of sent out frames to the CODEC has reached half the 

maximum depth of the FIFO so the DMAC can fetch 

more data. 

frame [2:0]  

This signal is sent by the AC Link and received by the 

DMAC to know which data in the FIFO should be sent 

to the AC Link. 

 

Table 24 explains the function of the signals in the ac97if_in_type, which connects the 

outputs of the DMAC entity with the inputs of the Interface entity. 

 
Table 24: ac97if_in_type signals. 

Signal Name Function 

done_link 

When this signal is asserted in the DMAC, the signal 

that indicates the start of the data fetch is de-asserted in 

the Interface entity. 

busy_dma 
This signal indicates when the DMAC’s state machine 

is fetching data from memory. 

wait_dma 

This signal indicates that the state machine is in the idle 

state, waiting for an order from the processor to start 

fetching data. 

done_dma 
This signal indicates that the state machine has finished 

the data burst transfer. 
 

Table 25 explains the function of the signals in the ac97if_out_type, which goes out of 

the Interface entity to the input of the DMAC entity. 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 35 

 

Table 25: ac97if_out_type signals. 

6.4.6.  The Modified AC Link Entity 

 
The next step after completing the DMA Engine design was to modify accordingly the 

entities designed in the first stage, aiming to correctly interface all the entities in the 

design. For this purposes, new input and output ports were introduced to the AC Link 

and to the Interface entities. 

 

Two new ports were included in the AC Link entity. The input port receiving the signals 

coming from the DMA Engine is called dmac_in and the output port sending the signals 

to the DMAC is called dmac_out (refer to Figure 18). The input uses the record type 

pcm_in_type, whilst the output uses the record type pcm_out_type. 

 

Besides these changes in the ports, the hardware in the AC Link was modified. The 

changes are surrounded with dashed lines in Figure 21. All in all, seven changes were 

required for the correct functionality of the design. Going from left to right in Figure 21, 

the red dashed rectangles represent the first change. When the slots are charged with 

their corresponding bits (refer to Section 6.3.2.1), the signal called pcm_ack in Figure 

21 is asserted if PCM data has to be flushed out of the core. When PCM data is not 

present in the slots, pcm_ack is set to zero. 

 

The next modification in the design (dashed with a blue conditional in Figure 21), was 

done to decide when the synchronization signal could to be sent. The condition to do so, 

involves the commands, the PCM data, and the cold reset. Regarding the commands, the 

acknowledgment signal between the Interface and the AC Link has to be asserted; also, 

the number of written commands into the Interface and the number of sent out frames to 

the CODEC has to be different (i.e. there are still commands to be streamed out).  

 

Concerning the PCM data, the signal that indicates if the data is valid has to be asserted 

and the DMAC’s state machine has to be in a different state than the waiting state (i.e. 

already fetching data from memory). One or the other of those two previous conditions 

has to be true along with a third one, which requires that the cold reset to the CODEC 

has to be asserted so it can receive frames from the core. 

 

A third change in the design is illustrated with a green dashed line in Figure 21. In there, 

it is decided when to send the data. The conditions from the first stage of the design 

remained, but one extra requirement was added for this action to be true: that the 

pcm_ack signal is asserted and the DMAC’s state machine is not in the waiting state. 

  

Signal Name Function 

start 

This signal is asserted in the interface entity when the 

DMA engine should start fetching data from memory 

and it also de-asserted in the interface entity when the 

done_link signal (which goes from the DMAC to the 

interface) is asserted. 

base [31:0]  

This vector is sent by the interface to the DMAC and it 

is used as the base address, from where the data will 

start to be fetched from memory by the DMA engine.  

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 36 

 

• Prepare the slots

with the PCM

values.

• pcm_ack = 1

rqst = 0

pcm_val=1 

and

eq_pcm=0?

yes

no

cmd_val=1?

yes

no
[(eq=0 and

ack=1) or

(pcm_val=1 and

wait=0)] and

(cdc_rst=1 and
eq_pcm=0)?

cmd_val=1?

yes

no

• Prepare the 

slots with the    

cmd.values.

• pcm_ack = 0

rqst = 1

Send the

sync.

signal.

Reset

counter.

done=1 

and

eq=0?

yes

no

Increase the

frames counter.

rising 

edge of

bit clock?

yes

no

IDLE Initialize signals and  outputtsRESET=0?no yes

Update outpts.

e
eq_pcm=0

and

pcm_val=1

and

cmd_val=1?

yes

no

• Prepare the slots with the 

cmd. and the PCM values.

• pcm_ack = 1

no

yes

done = 1done = 0

sync=1 

and

ready=1? or

pcm_ack=1 and

wait=0?

count=255?

yes

no

Send 

data.

Do not

send 

data.

yes

no

count=255 or

rst_ctr=1?
no

yes

Do not 

send the

sync.

signal.

start_cmd=1?

no

yes

cmd_busy=1

start_pcm=1? yes

no

cmd_busy=0

cmd_val=1? yes

no

ack=1

ready=1? yes

no

ack=0

inc_pcm=1? yes

no

• eq_pcm=0

• frames=0

done_dma=1?yes

no

frames=3? yes

no

eq_pcm=1

Figure 21: Modified AC Link entity (refer to Figure 13 for the original AC Link flow chart).

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 37 

 

Referring to Figure 21, the purple conditional is a new feature in the design. In its first 

stage, it was decided to reset the counter of the bits in the frames when it had reached 

255. However, in this second stage the counter was set back to zero if it count 255 or if 

rst_ctr is 1.  

 

The rst_ctr signal is asserted by calling a function that checks when no commands have 

to send to the CODEC, the DMAC’s state machine is the waiting state, and when the 

synchronization signal is 0. If these three conditions are not checked, the count could 

start erroneously and the frames could be sent incongruently.  

 

In the modified AC Link entity, there was a need to include a signal (refer to cmd_busy 

inside the dashed yellow rectangle in Figure 21) that indicated when either commands 

or PCM data (sending PCM data also involves sending these data along with a 

command) had to be transmitted to the CODEC. If a command is being sent, then 

start_cmd (refer to Figure 21) should be one and cmd_busy is asserted. If PCM data is 

being sent, then start_pcm should be one and cmd_busy is set to zero. 

 

To check if start_cmd was one or zero, a function was called to do so. The function was 

named start_cmd and it checked if the fifth bit of the frame is zero. If that is true, a 

command was being sent without PCM data and start_cmd was asserted; else, it was set 

to zero. 

 

In the same fashion, to check if start_pcm was one or zero, a function was called to do 

so. The function was named start_pcm and it checked if the fifth bit of the frame was 

one. If that was true, the frame included PCM data and start_pcm was asserted; else, it 

was set to zero. 

 

In Figure 21, there is a green dashed rectangle. It introduces a different way of asserting 

the acknowledgment signal in the AC Link. If there is a valid command coming from 

the Interface entity, ack is asserted. Whenever the command stops being valid and the 

ready signal is asserted in the Interface (meaning that a frame could be transmitted to 

the CODEC), ack will be set to zero.  

 

The last modification to the AC Link entity can be visualized in the orange dashed 

rectangle on the right bottom corner in Figure 21. This new condition is used in the 

design to stop the DMAC’s state machine by de-asserting the signal eq_pcm, which 

indicates that the number of streamed out frames equals the number of written data in 

the FIFO.  

 

In order to de-assert the eq_pcm signal (please refer to Figure 21) and stop the DMAC’s 

state machine, two conditions have to be fulfilled. The first one, is when the signal 

inc_pcm is not one, which is checked by calling the function inc_pcm that indicates 

when the counter of the frames containing PCM data should be increased by one. This 

function in turn, checks if  the signal cmd_busy (which is inside the yellow dashed 

rectangle of Figure 21 and was already explained) is set to zero, indicating that a frame 

containing PCM data has been transmitted. If so, then it checks when the counter of bits 

in the frame is not 255 and thus, the signal inc_pcm will be set to zero. 

 

The other condition to be met after the signal inc_pcm has been checked that is 0, so the 

DMAC’s state machine can be halted, is that the signal done_dma is equal to one 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 38 

 

• Save the data in its FIFO

• Save the address in its FIFO

• Increment the number of 

writes counter

• eq = 1

• val = 0
• val = 1

• Send the data and address 

to the AC link.

ready = 1ready = 0eq = 0

yes

no

yes

no

yes

no

yes

no
sent out frames  = 

number of written 

commands?

penable=1 

and psel=1 and

pwrite=1?

rqst=1 and

written cmds. > 0 

and eq=0?

val=1 

and rqst=0 and

ack=1?

yes

nopadr = 0x80 ?

• start_fetch = 1

• Get  the base

address for 

the DMAC

yes

no done_link = 1 ?

start_fetch = 0

Update outpts .

IDLE

Initialize signals and  outputtsRESET=0?no yes

(shown in Figure 21). This signal comes from the done_link output of the DMAC (refer 

to Table 24). When done_dma equals one, the signal eq_pcm can be set to zero and the 

DMAC’s state machine can be driven to its waiting state, ready to receive another order 

to fetch more data. Along with this de-assertion, the counter of the frames containing 

PCM data should be set to zero, so it can be ready for another transmission. 

 

Continuing with the orange rectangle, another case remains unexplained. In other 

words, when the signal inc_pcm is 1. Whenever this happens, the hardware checks if the 

PCM frames counter is equal to three (i.e. half the depth of the FIFO). If this is true, the 

signal eq_pcm will be asserted, pointing out that the DMAC’s state machine should 

keep on working.  

 

6.4.7.  The Modified Interface Entity 

Just like in the modified AC Link entity, two new ports were included in the Interface 

entity. The input port receiving the signals coming from the DMA Engine is called if_in 

and the output port sending the signals to the DMAC is called if_out (refer to Figure 

18). The input uses the record type ac97if_in_type, but the output uses the record type 

ac97if_out_type.  
 

The interface was slightly modified from the first stage of the design. One extra 

multiplexor was added to the hardware at the same level as the four previous ones. It is 

the upper most conditional marked with a dashed red line in Figure 22. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Modified Interface entity (refer to Figure 16 for the original Interface flow chart). 

 

The aforementioned multiplexor checks if the signal that indicates the start of the data 

fetch should be de-asserted. This is performed by checking if the done_link signal (refer 

to Table 24) is 1. If this is not the case, the hardware does nothing. 

 

The lower conditional marked with a dashed red line in Figure 22, representing another 

added multiplexor, was included inside the statement that checks if the core is selected, 

enabled, and if something can be written to it. What this new multiplexor performs is to



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 39 

 

assert the start_fetch signal (which is then sent to the DMAC) and get the base address 

(which is also sent to the DMAC). This is done by checking if padr is 0x80. If so, 

start_fetch is asserted and the word in pwdata is used as the base address for the DMAC 

(further used as the start-fetching-command); else the data and address are saved in the 

corresponding FIFO. 

 

Besides these modifications, the Interface entity also receives three status flags from the 

DMAC’s state machine, which indicate when it is busy, when it is waiting, and when it 

is done. All these three inputs are then transmitted to the APB bus through the pirq line 

when the AC97 core is read.  The rest of the hardware works in the same way as in the 

first stage of the design (refer to Section 6.3.5). 

 

6.4.8.   The Modified Top Module 
 

The Top Module of the design had to be modified, since a new entity was introduced 

(i.e. the DMA Engine). However,  since the DMA Engine is an entity that contains both 

the DMAC and the DMA to AHB, it was very easy to include the DMA Engine into the 

design’s top module. Only two more ports had to be added to it. Namely, ahbi and ahbo 

(refer to Figure 18), which use the record types ahb_mst_in_type and 

ahb_mst_out_type, respectively.  

 

The modified top module was instantiated in the LEON-3 based system as shown in 

Excerpt 5. 

 
ac97: if (CFG_AC97_ENABLE = 1) generate 

ac97: ac97top generic map (pindex=>10, paddr=>10, pmask=>16#FFF#)    

port map  

 (clk             => clkm,  

  rst             => rstn, 

          data_in         => AUDIO_SDATA_IN, 

          bit_clk         => AUDIO_BIT_CLK, 

          ac97top_inl     => apbi,                                        

          ac97top_outl    => apbo(10), 

          ac97dma_in      => ahbmi, 

          ac97dma_out     => ahbmo(5), 

          sync            => AUDIO_SYNC, 

               data_out        => AUDIO_SDATA_OUT,             

          codec_rst       => FLASH_AUDIO_RESET_B); 

end generate ac97; 

Excerpt 5: AC97 (2
nd

 stage of the design) component instantiation in the leon3mp.vhd file. 

 

In Excerpt 5, it can be observed that the ac97dma_out port core has assigned in the 

master bus index (i.e. hindex) the value 5. Thus, in the leon3mp.vhd file, the DDR2 

memory’s hindex was changed to 0x5, so there could be a communication between the 

AHB master (the AC97 core) and the AHB slave (the DDR2 memory).  

 

This was done because the AC97 core uses the record type ahb_mst_out_type and the 

indexes 0x0 to 0x4 were already taken. Hence, the AC97 core had to use the next index 

(i.e. 0x5) to access the DDR2 memory. 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 40 

 

7. Verification  
 

Just like in the design process, the verification was divided in the same two parts: the 

first one is the AC Link, its correct timing module, and the Interface between the APB 

Bridge and the previous two entities; the second one, is the DMA, its FIFO, the correct 

interface with the AHB bus, and the Interface with the first stage of the design. 

 

7.1.  First Stage 
 

This section describes the first stage of the verification process that basically consists of 

three steps: a stand-alone test bench, a system test bench, and post-synthesis 

verification. The Section is subdivided into four other Sections: first, there is an  

explanation of  the stand-alone test bench (first step in the verification process), where 

the first stage of the design was simulated and verified with ModelSim; afterwards, 

there is a description of the system test bench (second step in the verification), in which 

the first stage of the design was simulated along with the whole LEON3-based system; 

following the system test bench is an explanation of the synthesis procedure of the first 

stage of the design; subsequently, there is presentation on how the first stage of the 

design was verified after being synthesized and programmed into the FPGA (third and 

last step in the verification process); at the end is a discussion of the encountered 

problems during post-synthesis verification and how they were solved. 
 

7.1.1.   Stand-Alone Test Bench in ModelSim 

 

The first step in verifying the initial stage of the design, was to try out the AC97 core in 

a stand-alone test bench. Thus, on the transcript window was checked if the core was 

correctly displayed (see Excerpt 6). 

 
# apbctrl: slv10: Gaisler Research AC97 Controller          

# apbctrl: I/O ports at 0x80000A00, size 256 byte    

 

Excerpt 6: System test transcript with the introduced AC97 controller (1
st
 stage of the design). 

 

To obtain the content of Excerpt 6, the AC97 core had to be correctly instantiated in the 

test bench. This is shown in Excerpt 7. 

 
inst0 : ac97top 

port map(clk               => clk, 

         rst               => rstn, 

         bit_clk           => bit_clk, 

         ac97top_inl       => apbi, 

         data_in           => data_in,                                                         

         codec_rst         => codec_rst, 

         ac97top_outl      => apbo(pindex), 

         sync              => sync, 

         data_out          => data_out); 

 

Excerpt 7: AC97 (1
st
 stage of the design) component instantiation in the stand-alone test bench. 

 

It is important to emphasize that the controller should appear as the APB slave 10 at the 

address 0x80000A00, so it will not overlap with any other slave in the system. 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 41 

 

The stand-alone test bench was provided by the Gaisler staff. However, additional tests 

and functions (e.g. functions to read different size test vector files and to check 

whenever a test vector file is empty) were introduced to it to verify the core’s  basic 

functionality (refer to Appendix A.8 for the full VHDL code). 

 

The test bench consists of seven tests. The first test wrote commands into the core and 

were stored in it. The address and data of these commands were increased one by one. 

In this way, the address 0x0 had 0x0, the address 0x1 had 0x1, etc. The second test read 

the values previously written in the core. The third test wrote a specific command and it 

was streamed out to the CODEC. The frame was checked to verify if the sent out frame 

was equal as the expected test vector. The next four tests did the same thing as the third 

test, although with different addresses and values. To run the simulation, a do file 

containing the commands in Excerpt 8 was executed: 
 

restart -f 

view signals wave 

add wave * 

force bit_clk 0 
force bit_clk 1 17, 0 57 -repeat 80 

run -all 
 

Excerpt 8: Do file to execute the stand-alone test bench. 

 

The Bit Clock starts in 17 ns just to make it asynchronous to the system clock and verify 

that synchronization is achieved between the two clock domains. It repeats itself every 

80 ns to get 12.5 MHz, which is the closest to the required 12.288 MHz. 

 

Figure 23 shows the wave form when the entire test was successfully passed: 

 

 
 

Figure 23: Successful stand-alone test bench simulation. 

 

 
 

Figure 24: Intentionally unsuccessful stand-alone test bench simulation. 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 42 

 

When the test bench was successfully verified, the tests were intentionally modified to 

make the test bench crash by loading wrong test vectors into it. In Figure 24, the red 

arrows on top of the wave forms indicate that the results are wrong; in Figure 23 there 

are no red arrows on top of the wave forms, which indicate that the results are correct. 
 

7.1.2.   System Test Bench in ModelSim. 
 

The second step in verifying the initial stage of the design was to run a system test in 

ModelSim. Hence, the AC97 top module design was instantiated in the 

testbench.vhd file so it could be included in the whole system simulation. 

 
cpu : entity work.leon3mp 

port map (audio_bit_clk,audio_sdata_in,audio_sdata_out,audio_sync, 

flash_audio_reset_b); 

 

Excerpt 9: AC97 (1
st
 stage of the design) component instantiation in the testbench.vhd file. 

 

In order to perform the system test, a program was written in C language (please refer to 

Appendix A.10 for the program’s code) to verify the core’s functionality. The program 

wrote into the main volume register and the PC beep CODEC register to turn on the 

beep and modify the volume. The routines can be summarized in the following list: 

 

a) Turn on the main volume. 

b) Turn on the PC beep. 

c) Gradually turn down the volume in sixteen steps until the minimum volume is 

reached in the right side and in the left side at the same time. 

d) Gradually turn up the volume in sixteen steps until the maximum volume is 

reached in the right side and in the left side at the same time. 

e) Sweep the beep frequencies from 94 Hz to 12 kHz. 

f) Mute the main volume. 

To run the simulation, a couple of commands (see Excerpt 10) had to be written in the 

ModelSim environment to get the Bit Clock that goes to the AC97 core and to watch the 

wave forms: 

 
do wave_ac97_1st.do 

force audio_bit_clk 1 17, 0 57 -repeat 80 

run –all 

 

Excerpt 10: Commands to execute the system test bench. 

 

The do file in Excerpt 10 was slightly modified. The AC97 signals were added to it, so 

they could be seen during the simulation. Excerpt 11 shows how they were added to the 

do file. 
 

add wave -noupdate -format Logic /testbench/audio_bit_clk 

add wave -noupdate -format Logic /testbench/audio_sdata_in 
add wave -noupdate -format Logic /testbench/audio_sdata_out 

add wave -noupdate -format Logic /testbench/audio_sync 
add wave -noupdate -format Logic /testbench/flash_audio_reset_b 

 

Excerpt 11: Added AC97 signals to the system test bench do file. 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 43 

 

Headphone jack AC97 CODEC

With this test, the stereo capability of the CODEC should be verified and it should be 

controlled by the core. It was decided to use the PC beep to get sound out of the 

CODEC since the DMA was not introduced yet. The beep itself was generated inside 

the CODEC. The controller only wrote into the correct register but did not send audio 

data whatsoever.  
 

7.1.3.   Synthesis 

 

Once the results were verified in simulation, synthesis was performed in batch mode 

using the Synplify tool and the make synplify command. Right after the netlist 

was generated, place&route was performed by issuing the make ise-synp 

command. 

 

All the necessary VHDL files had to be added to the Makefile and the 

leon3mp.ucf file was modified as shown in Excerpt 12 to include the AC97 core 

signals during the synthesis.  
 
NET AUDIO_BIT_CLK      LOC = "AF18"; 

NET AUDIO_SDATA_IN     LOC = "AE18";     
NET AUDIO_SDATA_OUT    LOC = "AG16";     
NET AUDIO_SYNC  LOC = "AF19"; 

NET FLASH_AUDIO_RESET_B LOC = "AG17";   

 

NET AUDIO_BIT_CLK  LOC="AF18"|IOSTANDARD=LVCMOS33;  
NET AUDIO_SDATA_IN  LOC="AE18"|IOSTANDARD=LVCMOS33; 
NET AUDIO_SDATA_OUT  LOC="AG16"|IOSTANDARD=LVCMOS33;    

NET AUDIO_SYNC          LOC="AF19"|IOSTANDARD=LVCMOS33; 

NET FLASH_AUDIO_RESET_B LOC="AG17"|IOSTANDARD=LVCMOS33;   

 

Excerpt 12: Modified leon3mp.ucf file. 

 

7.1.4.   Post-Synthesis Verification 

 

The AC97 core design was downloaded to the Virtex 5 FPGA and verified in the Xilinx 

ML505 prototype board using the CODEC that is already integrated into it. Its vendor is 

Analog Devices and the model is AD1981 Audio CODEC, which supports stereo 16-bit 

audio with up to 48 kHz sampling frequency. The ML505 prototype board has several 

audio jacks: microphone, in and out analog lines, headphone, and Sony Phillips Digital 

Interface Format (SPDIF) [19]. For verification purposes, only the headphone output 

jack was used in this thesis (refer to Figure 25). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: ML505 Xilinx prototype board. Courtesy of Xilinx [19]. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 44 

 

Once the design was downloaded to the prototype board using the command   make 

ise-prog-fpga, it was verified with the same C test program as a third step for the 

verification using GRMON
5
. To access such software tool, the command             

grmon –xilusb –u was issued in the batch mode and to download the C test 

program to the FPGA, the command load systest.exe was used, followed by 

verify systest.exe to check if the program was correctly downloaded. 

 

The PC beep could actually be heard since a pair of loudspeakers was connected to the 

headphone audio jack as shown in Figure 25. Besides listening to the PC beep, the 

signal was also observed directly on the prototype board using the Agilent Technologies 

Mixed Signal Oscilloscope (MSO6054A). 

 

 
 

Figure 26: Connection between GRMON and the target board. 

 

Figure 26 illustrates how the AC97 core was debugged and monitored using GRMON. 

From the host personal computer (PC), basic read and write memory commands were 

written and sent to the core. Similarly, C programs were written and downloaded into 

the board’s DDR2 memory and then run with the purpose of a more thorough and 

automatic core verification. This tool was launched directly from the Linux terminal 

(i.e. in batch mode). No graphical user interface (GUI) was used. 

 

7.1.5.   Encountered and Solved Problems 

A number of problems were found during the post-synthesis verification, which were 

not evident in simulation. The problems that caused troubles in hardware were two. The 

first obstacle was that in order to propagate the commands (given by the host PC via the 

software tool GRMON) from the core to the CODEC, they had to be typed twice in the 

batch mode. The second one was that while running programs in the processor that 

wrote into the core repetitively, the controller stalled all of a sudden while the program 

was still running. This problem was encountered later in time. Due to these facts, a 

revision of the design had to be made. 

 

While reviewing the design with the aim to eliminate the first error, it was discovered 

that the signal (located in the Interface entity) which allowed the AC Link to stream out 

frames, was not controlled with the right timing. In other words, this enabling signal 

was set high after the synchronization signal had been sent out and set low after the data 

had been streamed over the link. So, on the first time only the synchronization signal 

was considered without taking into account the data; at the second time, once the 

enabling signal had been asserted, it was possible to send out the data along with the 

synchronization signal. This mistake was corrected by considering in the enabling 

                                                 
5
  GRMON is a software tool to debug and monitor LEON3 based embedded systems on real target 

hardware. 

RL

Host 

PC

L o u d s p e a k e r s

Target

BoardU
S

B

J
T

A
G

Interface



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 45 

 

condition (in the Interface entity) an acknowledgment signal and the synchronization 

signal, both coming from the AC Link. After doing so, it was possible to execute the 

commands on the first trial. 

 

Nonetheless, after solving this problem it was evident that there was a need to store the 

incoming commands somehow. Otherwise, they would be overwritten and some of 

them would be lost. To avoid losing information, FIFOs were introduced to save the 

incoming data and address. By using this storing mechanism, extra control between the 

AC Link and the Interface entities is implicit. Hence, this control logic was included in 

such a way that the incoming commands were stored into these FIFOs and when a 

frame was outputted, a counter that pointed to the FIFOs index was increased until the 

number of written commands would be equal to the number of streamed out frames. By 

doing so, it was certain that no commands would be missed or overwritten. 

 

Heretofore, the first encountered problem after the synthesis was solved (i.e. having to 

type the commands twice so they could propagate all the way to the CODEC) by 

sending the output data at the right time and introducing FIFOs to store the commands. 

Notwithstanding, while running C programs on the FPGA, the core was not working 

properly.  

 

After exhausting debugging, it was found that the second problem relied on the wrong 

synchronization between different clock domains (the core’s clock and the CODEC’s 

clock). Whilst executing a loaded program, the synchronization between them was lost 

forever and it could only be reestablished by re-programming the FPGA.  

 

The way in which the synchronization was achieved in the first place was by sampling 

the Bit Clock with the system clock, passing it through two flip-flops, and detect the 

rising edges and falling edges of the sampled signal, so a new clock could be obtained. 

The rising edge of this newly created clock was used in the sequential process so the 

registers in the core could be updated. However, when verifying the design in hardware 

it turned out that this implementation caused the synchronization between the CODEC 

and the core to be lost.  

 

After experiencing the problems that arose when using a different clock in the 

sequential process, it was considered to use another solution for a proper 

synchronization. It was observed that only the outputs to the CODEC have to be driven 

by the Bit Clock, while there was not a need for doing so in the sequential process. For 

this reason, as a second choice for the synchronization, it was decided to use the 

obtained rising edge by the Bit Clock (please refer to Section 6.3.1 to read through it in 

detail about how it was implemented) as a trigger for the AC Link outputs and use the 

system clock for the sequential process. 
 

7.2.  Second Stage 

 

This section describes the second stage of the verification process that basically consists 

of two steps: a stand-alone test bench and a system test bench. Synthesis was completed 

but post-synthesis verification was not feasible (in same way it was done during the first 

stage). 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 46 

 

This Section is divided in the following way: first there is a description of the stand-

alone test bench, in which the second stage of the design was simulated and verified 

with ModelSim; the next Section explains the system test bench, where the second stage 

of the design was simulated along with the whole LEON3-based system; the following 

Section explains the synthesis procedure of the second stage of the design; the last 

Section introduces how the second stage of the design could be verified after being 

synthesized and programmed into the FPGA. 

 

7.2.1.   Stand-Alone Test Bench in ModelSim 

 
For this purpose, the stand-alone test bench used during the first stage of the design was 

re-utilized but modified according to the new needs. For instance, an AHB memory was 

instantiated in the test bench file as it can be observed in Excerpt 13. 

 
ahbslv0 : at_ahb_slv 

generic map (hindex            => 1, 

             bank0addr         => 16#400#, 

             bank0mask         => 16#FFF#, 

             bank0type         => AT_AHBSLV_MEM, 

             bank0cache        => 1, 

             bank0prefetch     => 1, 

             bank0ws           => 1, 

             bank0rws          => AT_AHBSLV_FIXED_WS, 

             bank0dataload     => 0, 

             bank0datafile     => "none") 

port map (rstn=>rstn,clk=>clk,ahbsi=>ahbsi,ahbso=>ahbso(1),dbgi=>dbgi, 

dbgo=>dbgo); 

 

Excerpt 13: AHB memory instantiation in the stand-alone test bench. 

 

With the AHB memory in the stand-alone test bench, some values can be written into it 

and the AC97 core can start to fetch them using the DMA Engine. The AC97 controller 

was instantiated in the stand-alone test bench as shown in Excerpt 14. 

 
inst0 : ac97top 
port map(clk              => clk, 

         rst              => rstn, 

         bit_clk          => bit_clk, 

         ac97top_inl      => apbi,                

         ac97top_outl     => apbo(pindex),                

         ac97dma_in       => ahbmi,                

         ac97dma_out      => ahbmo(1), 

         ac97dmac_inm     => atmo,                

         debug            => deb,                           

         data_in          => data_in,                

         codec_rst        => codec_rst,                

         sync             => sync, 

         data_out         => data_out); 

 

Excerpt 14: AC97 (2
nd

 stage of the design) component instantiation in the stand-alone test bench. 

 

Once the memory and the core were included in the stand-alone test bench, it was 

possible to run tests. To do so, the same do file as in Excerpt 8 was run (i.e. same do file 

as in the first stage of the design). 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 47 

 

It was decided that three tests should be run in this test bench. The first one wrote into 

some CODEC’s registers. Afterwards, raw data was written into the memory, starting 

from address 0x40000000, since the AHB memory was placed in this area. To fetch the 

written data, the address 0x80 was written into the core with the value 0x40000000 in 

its data. This was done because, as explained in Section 6.4.5, this particular address  is 

recognized in the AC97 core as a start-fetching-command, and takes the value in the 

read data as the base address to start fetching data from memory. The previous two tests 

were repeated one more time with the intention of verifying that the core could start all 

over again after it had completed his first task.  

 

In Figure 27, the wave forms of these tests in the stand-alone test bench are shown. 

 

 
 

Figure 27: Wave form of the second stage stand-alone test bench. 

 

The first red rectangle from left to right in Figure 27 shows the commands which are 

being sent out to the CODEC. The second red rectangle illustrates the first burst of PCM 

data which was first fetched from memory and then sent to the CODEC. The third red 

rectangle in the figure shows another burst of PCM data. On top of the figure, 

surrounded by yellow squares, it can be observed that the start-fetching-command is 

being issued to the AC97 core through the APB bus, just before the stream of PCM data 

was transmitted. 

 

 
 

Figure 28: Zoom in to a specific frame of Figure 27. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 48 

 

Figure 28 shows a zoom in to a specific value in the stream of data in the previous tests.  

 

Easily recognizable data was written into the memory, so it could be quickly observed 

in the wave form if it was correctly transmitted or not. As it can be seen in Figure 28, it 

has five red rectangles. Each one of them represent different slots of the frame (from 

slot 0 up to slot 4, from left to right). In the first rectangle (slot 0) it can be noted that 

has a logic one, followed by two logic zeros, and then a wider logic one. This means 

that it has two consecutive ones. Thus, bit 0 in slot 0 is 1 (meaning that the frame is 

valid) and bits 3 and 4 are valid (slots 3 and 4, where the PCM data is, are valid).  

 

The second, third, and fourth red rectangles are full of zeros, but the fourth one is valid 

(according to bit 3 in slot 0). The last one contains logic ones in it. The value that was 

written in memory and that now is sent to the CODEC is the hexadecimal value 0x001A 

(110102), which is displayed on the last red rectangle of Figure 28. As a matter of fact, 

the slot does not end with 0x001A; instead, it does end with 0x001A0, which makes 

sense because the CODEC receives 20-bit sized slots (refer to Tables 5 and 6). If the 

slot is 16-bit, the rest of the bits are filled with zeros. 
 

7.2.2.   System Test Bench in ModelSim 

Up to this point in the verification process, the design of the AC97 core was verified in 

a stand-alone test bench. Hereinafter, it was possible to move forward with the system 

test bench. The core was instantiated in the same way as it was done in Excerpt 11, but  

a new C code program was written for this test bench. 

 

The C program basically did the same thing as in the stand-alone test bench. However, 

an array was filled in with raw data up to certain number of indexes in the array, and 

these values were transferred to the DDR2 memory in the system (please refer to 

Appendix A.11 for the complete C code). Subsequently, the start-fetching-command 

(refer to Section 6.4.5) was written into the core, by assigning the address 0x80 to a 

pointer and then getting the data from the array’s starting address. 

 
Similarly as in the stand-alone test bench, in the system test bench  the wave form of the 

simulation was observed (Figure 29). 

 

 
 

Figure 29: Wave form of the second stage system test bench. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 49 

 

The first red rectangle from left to right in Figure 29 shows the commands which are 

being sent out to the CODEC. The first yellow square in the same figure illustrates 

when these commands are being written into the core. The second red rectangle shows 

the first burst of PCM data which was first fetched from the DDR2 memory and then 

streamed out to the CODEC. The third red rectangle in the figure, shows another burst 

of PCM data. Furthermore, it can be observed below these red rectangles, three other 

yellow squares. The first one shows when the commands are being written into the 

Interface entity through the APB bus. The following two yellow squares show when the 

start-fetching-command is being issued to the AC97 core, just before the stream of PCM 

data was transmitted to the CODEC. 

 

 
 

Figure 30: Zoom in to a specific frame of Figure 29. 

Same as in the stand-alone test bench, easily recognizable data was written into the 

memory so it could be quickly observed in the wave form. By looking at Figure 30, it 

has five red rectangles and each one of them represent different slots of the frame.  

 

The fourth rectangle in Figure 30 has a logic one much wider than the others. This is 

because the data that is being transmitted is 0xFFFF and it goes low at the end of the 

frame because it contains only 16 bits and not 20 bits (if this is the case, the last four 

bits are zero and the transmitted value is 0xFFFF0).  

 

The last red rectangle in Figure 30, contains logic ones in it. The value that was written 

in memory and that now is sent to the CODEC is the hexadecimal value 0x0015 

(101012), which is displayed on the last red rectangle of Figure 30. For the same reason 

with the slot 3, the red rectangle ends with 0x00150. 
 

7.2.3.   Synthesis  

The second stage of the design was correctly synthesized with ISE. For this purpose, the 

command make ise was used in batch mode. Synplify was not used at this stage 

because it was being utilized by too many users at the same time or there was a license 

checkout. 
 

7.2.4.   Post-Synthesis Verification 

Post-synthesis verification of the second stage of the design was not carried out, since 

the time to debug the design was not feasible. However, hereafter is a description of 

what has to be done to proceed with this verification. 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 50 

 

Firstly, a file that contains PCM data has to be obtained. Certain types of .wav files do 

contain such kind of modulation scheme. Secondly, the .wav file has to be converted 

into an understandable representation for the memory in the prototype board (a srecord, 

for instance). After doing so, the srecord file has to be separated, in order to write the 

data into the memory. This is possible with a C program. The final step is to download 

the data to the memory using GRMON and then, fetch the data from memory with the 

AC97 core (using GRMON commands as well) and stream it out to the CODEC. 

 

To convert .wav files containing PCM data into srecord files (i.e. the bytes of binary 

data are encoded as a 2-character hexadecimal number. The first character represents 

the high-order 4 bits and the second one represents the low order 4 bits of the byte [20]) 

that can be downloaded into the FPGA, the command showed in Excerpt 15 was used in 

batch mode. 

 
sparc-elf-objcopy -I binary –O srec --change address 0x40000000  

~/wav_file.wav test 

 

Excerpt 15: Command to convert into srecord files. 

 

The first part of the command (sparc-elf-objcopy) is used to create a srecord 

file; the second part of it (-I binary) means that it receives a binary file and it 

creates a srecord file as an output (-O srec). --change address literally means 

that the srecord file is downloaded into the specified address (0x40000000); the 

location of the file and its name, along with its extension, appears in 

~/wav_file.wav; at the end of the command (test) the name of the converted 

srecord file is given. 

 

An example of a srecord file has the representation shown in Excerpt 16. 

 
S3 15 40000000 524946465A5F030057415645666D7420 2D 

 

Excerpt 16: Example of srecord file representation. 

 

Excerpt 16 has been modified so the srecord can be illustrated clearly. After a file has 

been converted to a srecord file, the data has no blank spaces in between. It was done 

only for illustration purposes. The first two digits represent the type of record; the next 

two characters tell the record length (in this case the record is 15 bytes long); the 

following 8 characters represent the address (which is then increased by 0x10 to save 

new data); the data is placed in the next 32 characters; the last 2 address are the 

checksum, which is the least significant byte of the one’s complement of the sum of the 

values represented by the pairs of characters making up the record length, address, and 

the code/data fields [20]. 

 

Once the srecord file was obtained, it had to be transferred to the memory in the 

prototype board. Since the srecord contains mixed data in each line (i.e. type, length, 

address, data, and checksum all mixed in one row), it had to be separated somehow so 

the memory can store the useful information. Hence, the data was compiled in a C 

program and then passed to the memory through GRMON. Nonetheless, the design 

could not be verified in the prototype board. 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 51 

 

8. Discussion 

In this section, a discussion on the changes to the original time plan is presented. 
 
The original time plan was made with the idea that all the design should be verified first 

in simulation (i.e. in the ModelSim suite) before verifying it on hardware. At some point 

of the design, it was possible to download the core into the FPGA and achieve 

communication with the processor, since the Interface with the APB bus was already 

implemented. An engineer at Gaisler suggested me that it would be a good idea to try 

the design on hardware before adding more complexity to it.  

 

It felt that the right choice was to not follow the original time plan, create a new one so 

it could fit into the new working context, and go for the hardware verification of the 

first stage of the design instead of doing everything first in simulation. In this way, the 

core’s state could be verified and bugs were removed from it.  

 

By taking this choice, more time was spent testing the first stage of the design in the 

prototype board even though the time budget was limited and less time would be spent 

verifying the second stage of the design. This choice caused delays in the new time plan 

but at the end, the core and the CODEC were correctly interfaced in the first stage of the 

design.  

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 52 

 

9. Conclusion  

The main purpose of the project is to develop an AC97 IP core and implement it in 

VHDL using the Two Process Design Methodology. The core should read and write to 

the AC97 CODEC registers, read and write accesses to the sound channel FIFOs, 

include a DMA engine to fill and empty the FIFOs without CPU use, and generate 

interrupts on various events. 

 
In the first stage of the project, it was possible to verify that the core was 

communicating with the rest of the LEON3-based system and the CODEC. 

Nonetheless, it was not possible to affirm it for the second stage of the design. 

 

During the verification of the first stage of the design the AC97 core was able to write 

into the AC97 CODEC and through GRMON it was possible to read the core’s 

registers. Furthermore, it was possible to listen to sounds coming out of the CODEC 

(i.e. sweeping different frequencies of the CODEC’s PC beep) and to control the 

volume of the loudspeakers through the AC97 core.  

 

In the second stage of the design, a DMA engine was included to fill and empty a FIFO 

without CPU use and the status of the DMAC’s state machine was sent over the 

interrupt line. Unfortunately, the second stage of the design was not verified in 

hardware using the prototype board and no real audio could be played on it. This was 

due to the fact that the time budget for this thesis was limited. A lot of time was 

invested in correctly interfacing the core to the CODEC and getting rid of the problems 

explained in Section 7.1.5. It was not feasible to wait until the completion of the whole 

system’s verification to write the thesis, since the remaining amount of time had to be 

spent either verifying the second stage of the design or writing the report. Certainly, the 

verification in hardware of the second stage of the design has to be left out as further 

work in the project. 

 

By means of assessing the thesis objectives and the obtained outcomes, the design of the 

AC97 IP core was partially verified. The first and second stages of the design were 

verified in simulation but still the second stage of the design has to be thoroughly 

verified in hardware by playing real audio on the prototype board. 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 53 

 

10.   Further work 

 
The continuation of the present project would include a thorough verification of the 

design. This means to download the second stage of the design into the prototype 

board’s FPGA and follow the given recommendations in Section 7.2.4. The AC97 core 

also has recording capabilities. Therefore, it would be interesting to develop and include 

this functionality in the present AC97 core so it could be a full-duplex design, and be 

able to record sounds coming from the outside world. 

 

 

 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 54 

 

11.   References 

[1] Brock, D. Understanding Moore's Law Four Decades of Innovation. Chemical Heritage Foundation. 2006. 

 

[2] Bohr, M. Silicon Technology for 32 nm and Beyond System-on-Chip Products. Intel Developer Forum. 2009. 

 Available at URL:  

http://download.intel.com/technology/architecture-silicon/32nm/IDF_Fall_09.pdf 

Accessed April 27, 2011. 

 

[3] Gaisler.com − Available at URL:  

http://www.gaisler.com 

Accessed April 27, 2011. 

 

[4] Audio Codec '97 Revision 2.3 Revision 1.0. Intel. April, 2002. 

 

[5] Gaisler, J. Master’s Thesis Proposal: Implementing an AC97 audio controller IP. Aeroflex Gaisler AB.  

December 5, 2010. 

 

[6] LEON3 Multiprocessing CPU Core. Aeroflex Gaisler. 2010. 

 

[7] GRLIB IP Library User's Manual. Version 1.1.0 B4100. Gaisler Research. October 1, 2010. 

 

[8] Texas A&M Universtiy. The AC97 CODEC. ECEN 449 - Microprocessor System Design.  

[9] Globalspec.com − About IP Cores. Available at URL:                         

http://www.globalspec.com/LearnMore/Industrial_Computers_Embedded_Computer_Components/

Industrial_Computing/IP_Cores 

Accessed April 23, 2011. 

 

[10] Whatis.techtarget.com − IP core (intellectual property core). Available at URL: 

http://whatis.techtarget.com/definition/0,,sid9_gci759036,00.html 

Accessed April 23, 2011. 

 

[11] Checkpoint 2 AC97 Audio. University of California at Berkeley College of Engineering Department of  

Electrical Engineering and Computer Science. EECS150 Spring 2005. 

 

[12] LM4549A AC'97 Rev 2.1 Multi-Channel Audio Codec with Sample Rate Conversion and National 3D Sound.  

National Semiconductor Corporation. May 2004. 

 

[13] LM4540 AC'97 Codec with National 3D Sound. National Semiconductor Corporation. February 1999. 

 

[14] AMBA Specification revision 2.0, 1999. ARM Limited. 

 

[15] Gaisler, J. Fault-tolerant Microprocessors for Space Applications. Gaisler Research.  

 

[16] Gaisler.com − Management. Available at:  

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=117&Itemid=38  
Accessed  May 21, 2011. 

 

[17] Hellqvist, M. Implementation of a Linux Workstation Based on the LEON Processor. Chalmers University of  

Technology. 2005. 

 

[18] Hildebrandt, R. The pseudo dual-edge d-flip-flop. Available at URL: 

http://www.ralf-hildebrandt.de/publication/pdf_dff/pde_dff.pdf  
 Accessed April 26, 2011. 

 

[19] ML505/ML506/ML507 Evaluation Platform User Guide UG347 v3.1.1. Xilinx. October 7, 2009.  

 

[20] Appendix A S-Record Format. Application note: 68EVB912B32UM/D Motorola.. 

 

[21] GRMON Debug Monitor for Leon. Aeroflex Gaisler. 2010. 

 

[22] GRMON User's Manual Version 1.1.49. Aeroflex Gaisler AB. April 2011. 

 

[23] Ashenden P.J. & Lewis, J. The Designer's Guide to VHDL, Vol. 3, Third Ed. Morgan Kauffmann. 2008. 

http://download.intel.com/technology/architecture-silicon/32nm/IDF_Fall_09.pdf


  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 1 

 

A. Appendix 

A.1.  AC Link VHDL Code 

 
library ieee; 

use ieee.std_logic_1164.all; 

 

------------------------- 

-- package delcaration 

------------------------- 

package ac97link_pack is 

 

------------------------------ 

-- inputs from clks 

------------------------------ 

type clks_in_type is record     

        r_clk     : std_logic; 

        f_clk     : std_logic; 

        codec_rst : std_logic;     

end record; 

 

------------------------------------------------------- 

-- inputs from interface 

------------------------------------------------------- 

type aclink_inl_type is record 

        ready_if        : std_logic; 

        valid_if        : std_logic; 

        equal           : std_logic; 

        start_fetch     : std_logic; 

        done_dma        : std_logic; 

        adres_if        : std_logic_vector(31 downto 0); 

        data_if         : std_logic_vector(31 downto 0);                  

end record; 

 

-------------------------------------------------------- 

-- inputs from dmac 

-------------------------------------------------------- 

type pcm_in_type is record     

        valid     : std_logic; 

        done_link : std_logic; 

        waiting   : std_logic; 

        pcm       : std_logic_vector(31 downto 0); 

end record; 

 

------------------------------------------------ 

-- outputs to interface 

------------------------------------------------ 

type aclink_outl_type is record     

        cmd_rqst : std_logic; 

        start    : std_logic; 

        ack      : std_logic; 

        donecopy : std_logic_vector(7 downto 0);    

end record; 

 

----------------------------------------------- 

-- outputs to dmac 

----------------------------------------------- 

type pcm_out_type is record 

        eq_pcm  : std_logic; 

        frame   : std_logic_vector(2 downto 0); 

end record; 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 2 

 

------------------------------------------------------ 

-- component declaration 

------------------------------------------------------ 

component ac97link_comp 

        port (clk       : in  std_logic; 

            rst       : in  std_logic;                   

              clks_in   : in  clks_in_type; 

              inl_link  : in  aclink_inl_type; 

              data_in   : in  std_logic; 

              in_pcm    : in  pcm_in_type;                    

              out_pcm   : out pcm_out_type; 

              outl_link : out aclink_outl_type;                 

              data_out  : out std_logic; 

              sync      : out std_logic); 

end component; 

end package; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

use work.ac97link_pack.all; 

 

------------------------------------------ 

-- entity 

------------------------------------------ 

entity ac97link is 

          

port (clk       : in  std_logic; 

      rst       : in  std_logic;             

      clks_in   : in  clks_in_type; 

      inl_link  : in  aclink_inl_type; 

      data_in   : in  std_logic; 

      in_pcm    : in  pcm_in_type; 

      out_pcm   : out pcm_out_type;           

      outl_link : out aclink_outl_type;          

      data_out  : out std_logic;                         

      sync      : out std_logic);                                         

end; 

 

--------------------------------------------------- 

-- architecture 

--------------------------------------------------- 

architecture ac97link_arch of ac97link is 

 

----------------------------------------------------- 

--records      

----------------------------------------------------- 

type reg_type is record 

        pcm                     : std_logic_vector(31 downto 0);     

        data_sig                : std_logic_vector(31 downto 0); 

        adres_sig               : std_logic_vector(31 downto 0); 

        comb_sync, seq_sync     : std_logic_vector(8 downto 0); 

        comb_done, seq_done     : std_logic_vector(7 downto 0);             

        frames_c, frames_s      : std_logic_vector(2 downto 0); 

        cmd_val_sig             : std_logic; 

        pcm_val                 : std_logic; 

        sync                    : std_logic; 

        sync2                   : std_logic; 

        latch2                  : std_logic;   

        ready                   : std_logic; 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 3 

 

        ack                     : std_logic; 

        done                    : std_logic;    

        equal                   : std_logic; 

        trigger                 : std_logic; 

        start_pcm               : std_logic; 

        start_cmd               : std_logic;   

        pcm_ack                 : std_logic; 

        dataout                 : std_logic; 

        cmd_busy                : std_logic; 

        inc_pcm                 : std_logic; 

        codec_rst               : std_logic; 

        eq_pcm                  : std_logic; 

        done_dma                : std_logic; 

        start_fetch             : std_logic; 

        waiting                 : std_logic; 

        rst_ctr                 : std_logic; 

end record; 

 

type slots is record 

        slot_0  : std_logic_vector(0 to 31); 

        slot_1  : std_logic_vector(0 to 31);     

        slot_2  : std_logic_vector(0 to 31); 

        slot_3  : std_logic_vector(0 to 31); 

        slot_4  : std_logic_vector(0 to 31); 

        slot_5  : std_logic_vector(0 to 31); 

        slot_6  : std_logic_vector(0 to 31); 

        slot_7  : std_logic_vector(0 to 31); 

        slot_8  : std_logic_vector(0 to 31); 

        slot_9  : std_logic_vector(0 to 31); 

        slot_10 : std_logic_vector(0 to 31); 

        slot_11 : std_logic_vector(0 to 31); 

        slot_12 : std_logic_vector(0 to 31); 

end record; 

 

signal signals  : reg_type; 

signal slotsrec : slots; 

 

--------------------------------- 

-- function to shift the slots     

--------------------------------- 

function slot_shift(countfun:reg_type; 

         slotsfun:slots)return std_logic is 

variable slotsvar   : slots := slotsfun; 

variable shiftslot  : std_logic_vector(0 to 31); 

variable outbit     : std_logic; 

variable times:integer:=conv_integer(unsigned(countfun.comb_sync-2)); 

begin              

if(countfun.comb_sync < 16)then 

shiftslot:=to_stdlogicvector(to_bitvector(slotsvar.slot_0)sll(times)); 

 

elsif(countfun.comb_sync>=16 and countfun.comb_sync<=35)then  

shiftslot:= 

to_stdlogicvector(to_bitvector(slotsvar.slot_1)sll(times-16)); 

 

elsif(countfun.comb_sync>=36 and countfun.comb_sync<=55)then  

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_2)sll(times-36)); 

 

elsif(countfun.comb_sync>=56 and countfun.comb_sync<=75)then  

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_3)sll(times-56));                                



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 4 

 

elsif(countfun.comb_sync>=76 and countfun.comb_sync<=95)then  

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_4)sll(times-76)); 

 

elsif(countfun.comb_sync>=96 and countfun.comb_sync<=115)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_5)sll(times-96)); 

 

elsif(countfun.comb_sync>=116 and countfun.comb_sync<=135)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_6)sll(times-116)); 

 

elsif(countfun.comb_sync>=136 and countfun.comb_sync<=155)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_7)sll(times-136)); 

 

elsif(countfun.comb_sync>=156 and countfun.comb_sync<=175)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_8)sll(times-156)); 

 

elsif(countfun.comb_sync>=176 and countfun.comb_sync<=195)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_9)sll(times-176)); 

 

elsif(countfun.comb_sync>=196 and countfun.comb_sync<=215)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_10)sll(times-196)); 

 

elsif(countfun.comb_sync>=216 and countfun.comb_sync<=235)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_11)sll(times-216)); 

 

elsif(countfun.comb_sync>=236 and countfun.comb_sync<=255)then 

shiftslot:=  

to_stdlogicvector(to_bitvector(slotsvar.slot_12)sll(times-236)); 

 

elsif (countfun.comb_sync > 255)  then shiftslot(0):= '0'; 

end if;                               

 

outbit := shiftslot(0);                                                                                                                                                                                                                  

return outbit; 

end slot_shift; 

 

------------------------------------------------------- 

-- ack function 

------------------------------------------------------- 

function start (countfun : reg_type) return std_logic is 

        variable strt : std_logic; 

        begin                     

          if   (countfun.comb_sync = 0) then strt := '1'; 

          else                               strt := '0'; 

          end if;                                          

        return strt; 

end start;   

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 5 

 

------------------------------------------------------- 

-- function to indicate when is done 

------------------------------------------------------- 

function done (countfun : reg_type) return std_logic is 

        variable fin : std_logic; 

        begin           

        if(countfun.cmd_busy='1' and  

           countfun.eq_pcm='0' and  

           countfun.equal='0') then 

           if (countfun.comb_sync = 255) then fin := '1'; 

           else fin := '0';                                     

           end if;                                          

        else fin := '0'; 

        end if; 

        return fin; 

end done; 

 

------------------------------------------------------- 

-- function to indicate when a pcm has been sent 

------------------------------------------------------- 

function start_pcm (countfun : reg_type) return std_logic is 

        variable flag : std_logic; 

        begin                     

          case countfun.seq_sync is 

           when "000000110" => 

             if (countfun.dataout = '1') then flag := '1'; 

             else flag := '0'; 

             end if; 

           when others => flag := '0'; 

          end case;            

        return flag; 

end start_pcm; 

 

------------------------------------------------------------- 

-- function to indicate when to increase the pcm counter 

------------------------------------------------------------- 

function inc_pcm (countfun : reg_type) return std_logic is 

        variable flag : std_logic; 

        begin                     

          if (countfun.cmd_busy = '0') then 

            if (countfun.seq_sync = "011111111") then flag := '1'; 

            else flag := '0'; 

            end if; 

          else flag := '0'; 

          end if; 

        return flag; 

end inc_pcm; 

 

------------------------------------------------------- 

-- function to indicate when a cmd has been sent 

------------------------------------------------------- 

function start_cmd (countfun : reg_type) return std_logic is 

        variable flag : std_logic; 

        begin                     

          case countfun.seq_sync is 

           when "000000110"=>if(countfun.dataout='0')then flag:='1';                     

                             else flag := '0'; end if; 

           when others => flag := '0'; 

          end case;            

        return flag; 

end start_cmd; 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 6 

 

------------------------------------------------------- 

-- function to increase the pcm counter 

------------------------------------------------------- 

function frame_count (countfun : reg_type) return std_logic_vector is 

variable frames : std_logic_vector(2 downto 0); 

variable var    : reg_type := countfun; 

begin                     

 if(countfun.inc_pcm='1')then var.frames_c:=countfun.frames_c+1; 

 frames:= var.frames_c; 

 elsif (countfun.done_dma = '1') then frames := (others => '0');             

 else frames := countfun.frames_c; 

 end if; 

return frames; 

end frame_count;   

 

------------------------------------------------------- 

-- function to increase the cmd counter 

------------------------------------------------------- 

function cmd_count (countfun : reg_type) return std_logic_vector is 

        variable cmds : std_logic_vector(7 downto 0); 

        variable var  : reg_type := countfun; 

        begin                     

        if(countfun.done='1')then var.comb_done:=countfun.comb_done+1; 

                                           cmds:=var.comb_done; 

        else cmds := countfun.comb_done; 

        end if; 

        return cmds; 

end cmd_count;   

 

-------------------------------------------------------- 

-- function to latch data out  

-------------------------------------------------------- 

function latch2 (countfun : reg_type) return std_logic is 

        variable latchfun : std_logic; 

        begin 

        if  (countfun.seq_sync <= 255) then latchfun := '1';               

        else                                latchfun := '0';               

        end if;                                                                                                                                                                                                              

        return latchfun; 

end latch2; 

 

-------------------------------------------------------- 

-- function to latch  sync signal 

-------------------------------------------------------- 

function latch1 (countfun : reg_type) return std_logic is 

        variable latchfun : std_logic; 

        variable fin      : std_logic := '1'; 

        begin 

        if  (countfun.seq_sync < 16) then latchfun := '1';               

        else                              latchfun := '0';               

        end if;                                                                                                                                                                                                                  

        return latchfun; 

end latch1; 

 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 7 

 

-------------------------------------------------------- 

--  function to reset the counter 

-------------------------------------------------------- 

function rst_ctr (countfun : reg_type) return std_logic is 

        variable flag : std_logic; 

        begin    

 if(countfun.cmd_val_sig='0' and countfun.waiting='1' and     

   countfun.sync='0')then flag := '1';                     

 else flag := '0';                            

 end if;                                                                                                                                                                                                                  

 return flag; 

end rst_ctr; 

 

----------------------------------------------------- 

-- notx function 

----------------------------------------------------- 

function notx(d : std_logic_vector) return boolean is 

        variable res : boolean; 

        begin 

        res := true; 

        -- pragma translate_off 

        res := not is_x(d); 

        -- pragma translate_on 

        return (res); 

end; 

 

begin   

--------------------------------------------------------------- 

-- combinational process  

---------------------------------------------------------------   

combinational : process(rst, signals, slotsrec)                         

 variable v   : reg_type;     

 begin                                                             

  if (rising_edge(signals.trigger)) then               

          

  -------------------------------------------------------------------- 

  -- slot preparation   

  -------------------------------------------------------------------- 

  if (signals.pcm_val = '1' and signals.eq_pcm = '0') then            

          slotsrec.slot_0   <= x"98000000"; 

          slotsrec.slot_1   <= (others => '0'); 

          slotsrec.slot_2   <= (others => '0');                                                                   

          slotsrec.slot_3   <= signals.pcm(31 downto 16) & x"0000";              

          slotsrec.slot_4   <= signals.pcm(15 downto 0)  & x"0000"; 

          slotsrec.slot_5   <= (others => '0'); 

          slotsrec.slot_6   <= (others => '0');               

          slotsrec.slot_7   <= (others => '0');               

          slotsrec.slot_8   <= (others => '0');                

          slotsrec.slot_9   <= (others => '0');                

          slotsrec.slot_10  <= (others => '0'); 

          slotsrec.slot_11  <= (others => '0');               

          slotsrec.slot_12  <= (others => '0');           

          signals.pcm_ack   <= '1';                        

               

  elsif (signals.cmd_val_sig = '1') then                  

        slotsrec.slot_0<= x"E0000000";                       

        slotsrec.slot_1<='0'& signals.adres_sig(6 downto 0)&x"000000";              

        slotsrec.slot_2<= signals.data_sig(15 downto 0) & x"0000";                       

        slotsrec.slot_3<= (others => '0');          

        slotsrec.slot_4<= (others => '0'); 

        slotsrec.slot_5<= (others => '0'); 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 8 

 

        slotsrec.slot_6   <= (others => '0'); 

        slotsrec.slot_7   <= (others => '0'); 

        slotsrec.slot_8   <= (others => '0'); 

        slotsrec.slot_9   <= (others => '0'); 

        slotsrec.slot_10  <= (others => '0'); 

        slotsrec.slot_11  <= (others => '0'); 

        slotsrec.slot_12  <= (others => '0');           

        signals.pcm_ack   <= '0';                           

           

elsif(signals.pcm_val='1' and signals.eq_pcm='0') and 

(signals.cmd_val_sig='1')then          

      slotsrec.slot_0 <= x"F8000000";                       

      slotsrec.slot_1 <='0'& signals.adres_sig(6 downto 0)& x"000000";              

      slotsrec.slot_2 <= signals.data_sig(15 downto 0) & x"0000"; 

      slotsrec.slot_3 <= signals.pcm(31 downto 16) & x"0000";              

      slotsrec.slot_4 <= signals.pcm(15 downto 0)  & x"0000"; 

      slotsrec.slot_5 <= (others => '0'); 

      slotsrec.slot_6 <= (others => '0');               

      slotsrec.slot_7 <= (others => '0');               

      slotsrec.slot_8 <= (others => '0');                

      slotsrec.slot_9 <= (others => '0');                

      slotsrec.slot_10<= (others => '0'); 

      slotsrec.slot_11<= (others => '0');               

      slotsrec.slot_12<= (others => '0'); 

      signals.pcm_ack <= '1'; 

           

else signals.pcm_ack <= '0';           

end if;              

 

------------------------------------------------------------------- 

--         send request signals 

-------------------------------------------------------------------           

if (signals.cmd_val_sig = '1') then outl_link.cmd_rqst <= '0'; 

elsif (signals.cmd_val_sig = '0') then outl_link.cmd_rqst <= '1'; 

else                                   outl_link.cmd_rqst <= '1'; 

end if;            

                          

-------------------------------------------------------------- 

--            synchronization signal           

-------------------------------------------------------------                                               

if(((signals.ack='1' and signals.equal='0')or 

    (signals.pcm_val='1' and signals.waiting='0'))and       

signals.codec_rst='1' and signals.eq_pcm='0')or(signals.sync='1')then                                         

              

 if notx(signals.comb_sync) then 

  v.comb_sync      := signals.comb_sync + 1; 

  signals.seq_sync <= v.comb_sync;                          

  signals.sync     <= latch1(signals); 

 end if; 

          

elsif(signals.equal='1' or signals.waiting='1')then signals.sync<='0';                

else signals.sync <= '0';                

end if;                                                    

          

----------------------------------------------------------- 

--    start streaming out  

-----------------------------------------------------------            

if ((signals.ready = '1' and signals.equal = '0') or  

    (signals.pcm_ack = '1' and signals.waiting = '0')) or     

    (signals.latch2 = '1') then              

 data_out <= slot_shift(signals, slotsrec); 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 9 

 

 signals.dataout        <= slot_shift(signals, slotsrec); 

 signals.latch2         <= latch2(signals); 

 signals.done           <= done(signals); 

               

elsif (signals.sync2 = '0') then                             

 signals.latch2  <= '0';                

 data_out        <= '0'; 

 signals.dataout <= '0'; 

else                                       

end if;            

                   

------------------------------------------------------- 

-- to reset the counter 

------------------------------------------------------- 

if notx(signals.seq_sync) then                 

 if (signals.seq_sync = "011111111" or signals.rst_ctr = '1') then 

     signals.seq_sync <= (others => '1');             

 else 

 end if; 

end if;               

     

--------------------------------------------------------- 

--increase the frame command counter 

-----------------------------------------------------------                                                               

if notx(signals.comb_done) then 

 if (signals.equal = '0' and signals.done = '1') then 

  v.comb_done      := signals.comb_done + 1;               

  signals.seq_done <= v.comb_done; 

 else v.comb_done      := signals.comb_done; 

      signals.seq_done <= v.comb_done; 

 end if; 

end if;                

     

------------------------------------------------------------- 

-- busy cmd 

--------------------------------------------------------------          

if (signals.start_cmd = '1') then signals.cmd_busy <= '1'; 

elsif (signals.start_pcm = '1') then signals.cmd_busy <= '0'; 

else                                      

end if; 

     

------------------------------------------------------- 

-- acknowledgment signal 

------------------------------------------------------- 

if (signals.cmd_val_sig = '1') then signals.ack <= '1'; 

 elsif (signals.ready = '1') then signals.ack <= '0'; 

else 

end if; 

 

------------------------------------------------------ 

-- to know when to stop sending pcm 

-----------------------------------------------------     

if (signals.inc_pcm = '1') then                     

 if (signals.frames_c = "011") then signals.eq_pcm <= '1';                  

 else                 

 end if;                 

else if (signals.done_dma = '1') then signals.eq_pcm<='0';   

     signals.frames_s<=(others=>'0');                                                     

     else 

     end if;                       

end if;                              



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 10 

 

 sync               <= signals.sync; 

 signals.start_cmd  <= start_cmd(signals); 

 signals.done       <= done(signals);            

 signals.inc_pcm    <= inc_pcm(signals); 

 signals.start_pcm  <= start_pcm(signals); 

 signals.frames_s   <= frame_count(signals); 

 signals.rst_ctr    <= rst_ctr(signals); 

          

 outl_link.start    <= start(signals);                                                                                              

 outl_link.donecopy <= signals.seq_done; 

 outl_link.ack      <= signals.ack; 

     

 out_pcm.frame      <= frame_count(signals); 

 out_pcm.eq_pcm     <= signals.eq_pcm; 

     

else 

end if;                         

          

--------------------------------------------- 

--             reset  

--------------------------------------------- 

if (rst = '0') then                                

 outl_link.cmd_rqst       <= '1';             

 data_out                 <= '0'; 

 signals.dataout          <= '0'; 

 sync                     <= '0'; 

 signals.sync             <= '0';     

 signals.pcm_ack          <= '0'; 

 signals.cmd_busy         <= '0'; 

 signals.ack              <= '0'; 

 signals.eq_pcm           <= '0';    

              

 signals.seq_sync         <= (others => '0');             

 signals.seq_done         <= (others => '0'); 

 signals.frames_s         <= (others => '0'); 

 

 

 slotsrec.slot_0          <= (others => '0'); 

 slotsrec.slot_1          <= (others => '0'); 

 slotsrec.slot_2          <= (others => '0'); 

 slotsrec.slot_3          <= (others => '0'); 

 slotsrec.slot_4          <= (others => '0'); 

 slotsrec.slot_5          <= (others => '0'); 

 slotsrec.slot_6          <= (others => '0'); 

 slotsrec.slot_7          <= (others => '0'); 

 slotsrec.slot_8          <= (others => '0'); 

 slotsrec.slot_9          <= (others => '0'); 

 slotsrec.slot_10         <= (others => '0'); 

 slotsrec.slot_11         <= (others => '0'); 

 slotsrec.slot_12         <= (others => '0'); 

else                                                                  

end if;          

          

end process; 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 11 

 

-------------------------------------------------------------- 

-- sequential process   

-------------------------------------------------------------- 

 

sequential : process(clk) 

         

 begin            

  

  if (rising_edge(clk)) then     

       

      signals.comb_sync   <= signals.seq_sync;            

     

      signals.cmd_val_sig <= inl_link.valid_if;   

      signals.adres_sig   <= inl_link.adres_if;           

      signals.data_sig    <= inl_link.data_if; 

      signals.ready       <= inl_link.ready_if;   

      signals.equal       <= inl_link.equal;           

      signals.start_fetch <= inl_link.start_fetch; 

     

      signals.comb_done   <= signals.seq_done;                      

      signals.sync2       <= signals.sync; 

      signals.frames_c    <= signals.frames_s; 

     

      signals.trigger     <= clks_in.r_clk;    

      signals.codec_rst   <= clks_in.codec_rst;     

 

      signals.pcm         <= in_pcm.pcm; 

      signals.pcm_val     <= in_pcm.valid;     

      signals.done_dma    <= in_pcm.done_link; 

      signals.waiting     <= in_pcm.waiting; 

     

      end if; 

 

end process;           

          

end; 

 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 12 

 

A.2.  AC97 Top Module VHDL Code 

 
library ieee; 

library grlib; 

use ieee.std_logic_1164.all; 

use work.ac97link_pack.all; 

use grlib.amba.all; 

use grlib.dma2ahb_package.all; 

use grlib.at_ahb_mst_pkg.all; 

use work.apbac97if_pack.all; 

 

 

--------------------------------------- 

-- package declaration 

--------------------------------------- 

package ac97top_pack is              

 

------------------------------------------- 

-- component declaration 

------------------------------------------- 

component ac97top 

 generic (pindex    :     integer := 10; 

          paddr     :     integer := 10; 

          pmask     :     integer := 16#FFF#; 

          vendorid  : in  integer := 0; 

          deviceid  : in  integer := 0; 

          version   : in  integer := 0);     

 

 port (rst               : in  std_logic; 

       clk               : in  std_logic;                                   

       bit_clk           : in  std_logic; 

       data_in           : in  std_logic; 

       ac97top_inl       : in  apb_slv_in_type; 

       ac97top_outl      : out apb_slv_out_type; 

       ac97dma_in        : in  ahb_mst_in_type; 

       ac97dma_out       : out ahb_mst_out_type;              

       codec_rst         : out std_logic;                               

       data_out          : out std_logic; 

       sync              : out std_logic);             

end component; 

end package; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use work.ac97link_pack.all; 

use work.ac97top_pack.all; 

use work.apbac97if_pack.all; 

 

library grlib; 

use grlib.amba.all; 

use grlib.devices.all; 

use grlib.dma2ahb_package.all; 

use grlib.at_ahb_mst_pkg.all; 

 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 13 

 

---------------------------------------- 

-- entity 

---------------------------------------- 

entity ac97top is 

 generic(pindex    :     integer := 10; 

         paddr     :     integer := 10; 

         pmask     :     integer := 16#FFF#; 

         vendorid  : in  integer := 0; 

         deviceid  : in  integer := 0; 

         version   : in  integer := 0);     

 

port (rst           : in  std_logic; 

      clk           : in  std_logic;               

      bit_clk       : in  std_logic;             

      data_in       : in  std_logic;             

      ac97top_inl   : in  apb_slv_in_type; 

      ac97top_outl  : out apb_slv_out_type; 

      ac97dma_in    : in  ahb_mst_in_type; 

      ac97dma_out   : out ahb_mst_out_type; 

      codec_rst     : out std_logic;                                  

      data_out      : out std_logic; 

      sync          : out std_logic); 

end; 

 

---------------------------------------------------------------------- 

-- architecture 

---------------------------------------------------------------------- 

architecture ac97top_arch of ac97top is 

 constant pconfig: apb_config_type:=   

                (0=>ahb_device_reg(VENDOR_GAISLER,GAISLER_AC97,0,0,0), 

                 1=>apb_iobar(paddr, pmask));                                                                                                                                         

------------------------------------------------------- 

-- interface 

------------------------------------------------------- 

component apb_ac97_if 

        port(rst             : in  std_logic;                     

             clk             : in  std_logic; 

             dmac_in         : in  ac97if_in_type; 

             dmac_out        : out ac97if_out_type;                      

             apbac97if_inl   : in  apb_slv_in_type; 

             apbac97if_inr   : in  aclink_outl_type; 

             apbac97if_outl  : out apb_slv_out_type;                

             apbac97if_outr  : out aclink_inl_type); 

end component; 

----------------------------------------------- 

-- link clks 

----------------------------------------------- 

component linkclks 

        port (rst            : in  std_logic; 

              clk            : in  std_logic;                

              bit_clk        : in  std_logic;              

              data_in        : in  std_logic; 

              inl            : in  aclink_inl_type; 

              in_pcm         : in  pcm_in_type;            

              out_pcm        : out pcm_out_type; 

              codec_rst      : out std_logic;                   

              outl           : out aclink_outl_type;              

              data_out       : out std_logic; 

              sync           : out std_logic);                                    

end component; 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 14 

 

----------------------------------------- 

-- dma engine 

----------------------------------------- 

component dma_engine 

port (rst           : in  std_logic; 

      clk           : in  std_logic; 

      ahbin         : in  ahb_mst_in_type; 

      dmacinr       : in  pcm_out_type; 

      if_in         : in  ac97if_out_type; 

      ahbout        : out ahb_mst_out_type; 

      dmacoutr      : out pcm_in_type; 

      if_out        : out ac97if_in_type); 

end component; 

 

signal dmac_in      : pcm_in_type; 

signal dmac_out     : pcm_out_type; 

signal inl_link     : aclink_inl_type; 

signal outl_link    : aclink_outl_type; 

signal dma2ahb_in   : dma_in_type; 

signal dma2ahb_out  : dma_out_type; 

signal if_in        : ac97if_in_type; 

signal if_out       : ac97if_out_type; 

 

begin 

        ---------------------------------------- 

        --port map  

        ----------------------------------------     

        apbac97if0 : apb_ac97_if 

        port map(clk             => clk, 

                 rst             => rst, 

                 dmac_in         => if_in, 

                 dmac_out        => if_out, 

                 apbac97if_inl   => ac97top_inl, 

                 apbac97if_inr   => outl_link,    

                 apbac97if_outl  => ac97top_outl,                              

                 apbac97if_outr  => inl_link);     

 

        linkclks0 : linkclks 

        port map(clk           => clk, 

                 rst           => rst,                                                              

                 bit_clk       => bit_clk, 

                 data_in       => data_in, 

                 inl           => inl_link,                                                                                      

                 outl          => outl_link,                       

                 in_pcm        => dmac_in, 

                 out_pcm       => dmac_out, 

                 codec_rst     => codec_rst,                 

                 data_out      => data_out, 

                 sync          => sync); 

                    

        dma_engine0 : dma_engine 

        port map(rst           => rst, 

                 clk           => clk, 

                 ahbin         => ac97dma_in, 

                 dmacinr       => dmac_out, 

                 if_in         => if_out, 

                 ahbout        => ac97dma_out, 

                 dmacoutr      => dmac_in, 

                 if_out        => if_in);                    

end;  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 15 

 

A.3.  Clocks VHDL Code 
 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

use work.ac97link_pack.all; 

 

------------------------------------------ 

-- entity 

------------------------------------------ 

entity clks is 

          

port (clk        : in  std_logic;             

      rst        : in  std_logic; 

      bit_clk    : in  std_logic; 

      clks_out   : out clks_in_type; 

      codec_rst  : out std_logic; 

      warm_rst   : out std_logic);                   

end; 

 

--------------------------------------------------- 

-- architecture 

--------------------------------------------------- 

architecture clks_arch of clks is 

 constant min : integer := 81; 

 

 ----------------------------------------------------- 

 -- records  

 ----------------------------------------------------- 

 type slow_clk is record     

        r_sig   : std_logic; 

        f_sig   : std_logic; 

        meta0   : std_logic; 

        meta1   : std_logic; 

        clk0    : std_logic; 

        clk1    : std_logic; 

        clk2    : std_logic; 

        clk3    : std_logic; 

        cold    : std_logic; 

        warm    : std_logic;   

        states  : std_logic_vector(3 downto 0); 

        c_cold  : std_logic_vector(6 downto 0); 

        s_cold  : std_logic_vector(6 downto 0); 

        c_warm  : std_logic_vector(7 downto 0); 

        s_warm  : std_logic_vector(7 downto 0); 

 end record;    

 

signal signals_clk  : slow_clk;    

 

----------------------------------------------------- 

--              notx function    

----------------------------------------------------- 

function notx(d : std_logic_vector) return boolean is 

variable res : boolean; 

begin 

 res := true; 

-- pragma translate_off 

 res := not is_x(d); 

-- pragma translate_on 

 return (res); 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 16 

 

end; 

  

begin   

 

--------------------------------------------------------------- 

-- combinational process      

---------------------------------------------------------------   

combinational : process(rst, signals_clk) 

   variable v : slow_clk;                        

   begin                                                                                                                                                                                                                                                                                                                                    

          

   ---------------------------------------------------- 

   -- rising or falling, and warm reset          

   ---------------------------------------------------- 

   if notx(signals_clk.states) then 

    if  (signals_clk.states = "0000") then 

                 

    ----------------------------------------------------------- 

    --                       warm rst  

    ----------------------------------------------------------- 

    if notx(signals_clk.c_warm) then 

       v.c_warm            := signals_clk.c_warm + 1;                  

       signals_clk.s_warm  <= v.c_warm;                                                                                       

       if(signals_clk.c_warm>=min*2 and signals_clk.c_warm<min*3)then                

            warm_rst <= '1';                     

       else warm_rst <= '0';                     

       end if;                                   

    end if;                        

                 

    elsif  (signals_clk.states = "0011") then 

              signals_clk.r_sig   <= '1'; 

              signals_clk.f_sig   <= '0'; 

              signals_clk.s_warm  <= (others => '1');            

          

    elsif  (signals_clk.states = "1100") then 

              signals_clk.r_sig   <= '0'; 

              signals_clk.f_sig   <= '1'; 

              signals_clk.s_warm  <= (others => '1');            

               

    else 

              signals_clk.r_sig   <= '0'; 

              signals_clk.f_sig   <= '0';                          

              signals_clk.s_warm  <= (others => '1'); 

    end if;                                                                         

   end if; 

               

   clks_out.r_clk  <= signals_clk.r_sig; 

   clks_out.f_clk  <= signals_clk.f_sig; 

          

   ------------------------------------------------ 

   --               cold rst    

   ------------------------------------------------            

   if notx(signals_clk.c_cold) then 

    if (signals_clk.cold = '1') then             

        v.c_cold            := signals_clk.c_cold + 1;             

        signals_clk.s_cold  <= v.c_cold;                 

        if (signals_clk.s_cold <= min) then 

            signals_clk.cold   <= '1'; 

            codec_rst          <= '0'; 

            clks_out.codec_rst <= '0'; 

         



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 17 

 

 

 

        else   

            signals_clk.cold   <= '0'; 

            codec_rst          <= '1'; 

            clks_out.codec_rst <= '1';     

        end if;                                                

    else                

    end if;            

   end if; 

     

   --------------------------------------------- 

   --  reset         

   --------------------------------------------- 

   if (rst = '0') then                                

    

         signals_clk.r_sig   <= '0'; 

         signals_clk.f_sig   <= '0'; 

         signals_clk.cold    <= '1'; 

         signals_clk.warm    <= '0'; 

         warm_rst            <= '0'; 

         codec_rst           <= '1'; 

         clks_out.codec_rst  <= '1'; 

         signals_clk.s_cold  <= (others => '0');                                     

         signals_clk.s_warm  <= (others => '1');                    

 

   else                                                                                       

   end if; 

          

end process; 

 

------------------------- 

-- sequential process 

-------------------------------------- 

sequential : process(clk) 

begin 

        if(rising_edge(clk)) then 

         

           signals_clk.meta0  <= bit_clk; 

           signals_clk.meta1  <= signals_clk.meta0; 

signals_clk.clk0   <= signals_clk.meta1; 

           signals_clk.clk1   <= signals_clk.clk0; 

           signals_clk.clk2   <= signals_clk.clk1;           

           signals_clk.clk3   <= signals_clk.clk2; 

           signals_clk.states <= signals_clk.clk0 & signals_clk.clk1 &  

                                 signals_clk.clk2 & signals_clk.clk3; 

           signals_clk.c_cold <= signals_clk.s_cold;             

           signals_clk.c_warm <= signals_clk.s_warm;             

         

        end if; 

 

end process; 

          

end;  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 18 

 

A.4.  DMAC VHDL Code 

 
library grlib; 

use grlib.dma2ahb_package.all; 

use grlib.at_ahb_mst_pkg.all; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

use work.ac97link_pack.all; 

use work.apbac97if_pack.all; 

 

 

------------------------------------------ 

-- entity 

------------------------------------------ 

entity dmac is 

          

port (hclk      : in  std_logic; 

      hrstn     : in  std_logic; 

      if_in     : in  ac97if_out_type; 

      if_out    : out ac97if_in_type;          

      dmacinr   : in  pcm_out_type; 

      dmacoutr  : out pcm_in_type;    

      dmacinl   : in  dma_out_type; 

      dmacoutl  : out dma_in_type);                                          

end; 

 

--------------------------------------------------- 

-- architecture 

--------------------------------------------------- 

architecture dmac_arch of dmac is 

 

----------------------------------------------------- 

-- records and signals 

----------------------------------------------------- 

type reg_type is record   

 grant         : std_logic; 

 ready         : std_logic; 

 valid         : std_logic;    

 maxfifo       : std_logic; 

 eq_pcm        : std_logic; 

 done_link     : std_logic; 

 first         : std_logic; 

 waiting       : std_logic; 

 start         : std_logic; 

 checked       : std_logic; 

 base          : std_logic_vector(31 downto 0);    

 data          : std_logic_vector(31 downto 0); 

 adres_c       : std_logic_vector(31 downto 0); 

 adres_s       : std_logic_vector(31 downto 0);    

 fifo_c        : std_logic_vector(2 downto 0); 

 fifo_s        : std_logic_vector(2 downto 0); 

 frames        : std_logic_vector(2 downto 0); 

end record; 

 

type state_type is (s0, s1, s2, s3, s4); 

type fifo_type  is array (0 to 7) of std_logic_vector(31 downto 0); 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 19 

 

signal signals    : reg_type; 

signal next_state : state_type; 

signal curr_state : state_type; 

signal fifo       : fifo_type; 

 

----------------------------------------------------- 

--         notx function    

----------------------------------------------------- 

function notx(d : std_logic_vector) return boolean is 

        variable res : boolean; 

        begin 

        res := true; 

        -- pragma translate_off 

        res := not is_x(d); 

        -- pragma translate_on 

        return (res); 

end; 

 

------------------------------------------------------------- 

-- valid data 

------------------------------------------------------------ 

function valid (countfun : reg_type) return std_logic is 

        variable flag : std_logic; 

        begin                     

        if (countfun.data = x"00000000") then flag := '0'; 

        else flag := '1'; 

        end if;                   

        return flag; 

end valid; 

 

begin   

  

--------------------------------------------------------------- 

-- combinational process 

---------------------------------------------------------------   

combinational : process(hrstn, signals, curr_state)                       

 variable v    : reg_type; 

 begin                                                                                 

 

 ------------------------------------------ 

 -- FSM 

 ------------------------------------------ 

 case curr_state is           

 when s0 => if (signals.start = '1') then next_state <= s1;          

                signals.done_link <= '0'; 

                signals.first     <= '0';                                                                               

            else next_state <= s0; 

            end if;                                                                                    

            signals.maxfifo  <= '0';        

            signals.waiting  <= '1';                    

            signals.fifo_s   <= (others => '0');                        

                                      

            dmacoutl.reset   <= '1';                     

            dmacoutr.waiting <= '1';                       

                                                                         

            if_out.wait_dma  <= '1'; 

            if_out.busy_dma  <= '0'; 

            if_out.done_dma  <= '0';                                                                                                                                                                                                                                                                           

            if_out.done_link <= '0';                     

                    

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 20 

 

when s1 => if (signals.grant = '0') then next_state <= s1;                                                                                                                                                                                                                                                                                                                                                                                      

           elsif (signals.grant = '1') then next_state <= s2; 

                      

            ------------------------------------------ 

            -- getting the correct address 

            ------------------------------------------ 

            if (signals.first = '0') then 

                 dmacoutl.address <= signals.base; 

                 signals.adres_s  <= signals.base;                                                                           

            else dmacoutl.address <= signals.adres_c;                                                                                                                                             

            end if;                                                                             

           else 

           end if; 

                   

           dmacoutl.burst   <= '1'; 

           dmacoutl.request <= '1'; 

           dmacoutl.lock    <= '1';                        

           dmacoutl.store   <= '0';                                                     

           dmacoutl.beat    <= hincr4;                    

           dmacoutl.size    <= hsize32;                                                                                                                                                    

           dmacoutr.waiting <= '0'; 

                    

           signals.waiting  <= '0'; 

                   

           if_out.wait_dma  <= '0'; 

           if_out.busy_dma  <= '1'; 

           if_out.done_dma  <= '0';                                

           if_out.done_link <= '1'; 

                   

when s2 => if (signals.ready = '1') then next_state <= s3;                          

               signals.done_link <= '0'; 

                          

               --------------------------------------------------- 

               -- saving the first data 

               --------------------------------------------------- 

               fifo(conv_integer(signals.fifo_c)) <= signals.data; 

               v.fifo_c := signals.fifo_c + 1; 

               signals.fifo_s <= v.fifo_c;                                                                   

                          

               -------------------------------------------- 

               -- check if it is valid only the first time 

               -------------------------------------------- 

               if (signals.checked = '0') then                          

                   dmacoutr.valid   <= valid(signals); 

                   signals.valid    <= valid(signals);                                                     

                   signals.checked  <= '1';                                                                         

               else 

               end if; 

                                                                                                                                       

           else next_state <= s2;                                                                                                                                          

           end if;                                                                                       

                                                                      

           if_out.busy_dma  <= '1'; 

           if_out.done_dma  <= '0';                    

 

           dmacoutl.reset   <= '0';                                                                                                                           

                                                                                                                                                                                                                                  

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 21 

 

when s3 => if (signals.fifo_c = "111") then                        

               signals.maxfifo <= '1';                                                                  

                        

               -------------------------------------------- 

               -- getting the last address 

               -------------------------------------------- 

               v.adres_c        := signals.adres_c + x"10"; 

               signals.adres_s  <= v.adres_c;                         

                        

               --------------------------------------------------- 

               -- saving the last data 

               -------------------------------------------------- 

               fifo(conv_integer(signals.fifo_c)) <= signals.data;                                                                                                                                                                                             

                    

           elsif (signals.fifo_c /= "111") then                                                    

               signals.maxfifo  <= '0';                                                                                   

                                                                                                                                                                    

               --------------------------------------------------- 

               -- saving data from 1 up to 6 

               --------------------------------------------------- 

               fifo(conv_integer(signals.fifo_c)) <= signals.data; 

               v.fifo_c            := signals.fifo_c + 1; 

               signals.fifo_s  <= v.fifo_c;                          

                                    

           else                         

           end if;                    

                    

  if(signals.ready='0' and signals.maxfifo='0')then next_state<=s1;                                                                                         

  elsif(signals.ready='0' and signals.maxfifo='1')then 

  elsif(signals.ready='1' and signals.maxfifo='0')then next_state<=s3;                     

  elsif(signals.ready='1' and signals.maxfifo='1')then next_state<=s4; 

  else 

  end if;                                                                                  

                    

  if_out.busy_dma  <= '1'; 

  if_out.done_dma  <= '0'; 

           

when s4=> if(signals.eq_pcm='0' and signals.valid='0')then  

                next_state<=s0; 

          elsif(signals.eq_pcm='0' and signals.valid='1')then  

                next_state<= s4;                       

          else next_state<=s1;  

               signals.done_link <= '1';                           

          end if;     

                   

          dmacoutl.request <= '0'; 

          dmacoutl.lock    <= '0';                         

          dmacoutl.burst   <= '0'; 

          dmacoutl.reset   <= '1'; 

                          

          if_out.busy_dma  <= '0'; 

          if_out.done_dma  <= '1';                                                                 

                                    

          signals.first        <= '1';                    

          signals.checked  <= '0';                                                                   

          signals.fifo_s   <= (others => '0'); 

                    

end case;                             

          

dmacoutr.done_link <= signals.done_link;   

dmacoutr.pcm       <= fifo(conv_integer(signals.frames));                                                                                                                  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 22 

 

  --------------------------------------------- 

  -- reset   

  --------------------------------------------- 

  if (hrstn = '0') then 

     

    next_state      <= s0;               

          

    signals.fifo_s  <= (others => '0'); 

    signals.adres_s <= (others => '0'); 

    signals.maxfifo <= '0';   

    signals.first   <= '0'; 

    signals.valid   <= '0'; 

    signals.checked <= '0';                          

          

  else 

  end if; 

         

end process;                                                                                     

 

  -------------------------------------------------------------- 

  -- sequential process 

  -------------------------------------------------------------- 

 

  sequential : process(hclk) 

   begin            

      if (rising_edge(hclk)) then 

            

           curr_state            <= next_state; 

            

           signals.grant         <= dmacinl.grant;                             

           signals.ready         <= dmacinl.ready; 

           signals.data          <= dmacinl.data; 

            

           signals.fifo_c        <= signals.fifo_s; 

           signals.adres_c   <= signals.adres_s;                 

            

           signals.frames        <= dmacinr.frame; 

           signals.eq_pcm        <= dmacinr.eq_pcm;                     

            

           signals.base          <= if_in.base; 

           signals.start         <= if_in.start;                    

               

      end if; 

  end process;                

end; 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 23 

 

A.5.  DMA Engine VHDL Code 

 
library ieee; 

library grlib; 

use ieee.std_logic_1164.all; 

use work.ac97link_pack.all; 

use grlib.amba.all; 

use grlib.dma2ahb_package.all; 

use grlib.at_pkg.all; 

use grlib.at_ahb_mst_pkg.all; 

use work.apbac97if_pack.all; 

 

---------------------------------------- 

-- entity 

---------------------------------------- 

entity dma_engine is    

 

port (rst           : in  std_logic; 

      clk           : in  std_logic; 

      ahbin         : in  ahb_mst_in_type; 

      dmacinr       : in  pcm_out_type; 

      if_in         : in  ac97if_out_type; 

      ahbout        : out ahb_mst_out_type; 

      dmacoutr      : out pcm_in_type; 

      if_out        : out ac97if_in_type); 

 

end; 

 

----------------------------------------------- 

-- architecture  

---------------------------------------------- 

architecture dma_engine_arch of dma_engine is 

                                                    

------------------------------------------------ 

-- dma 2 ahb 

------------------------------------------------ 

component dma2ahb 

 

        generic(hindex     : in integer := 5; 

                vendorid   : in integer := 0; 

                deviceid   : in integer := 0; 

                version    : in integer := 0; 

                syncrst    : in integer := 1; 

                boundary   : in integer := 1); 

    

        port(hclk    : in  std_ulogic;                    

             hresetn : in  std_ulogic;                       

             dmain   : in  dma_in_type; 

             dmaout  : out dma_out_type; 

             ahbin   : in  ahb_mst_in_type; 

             ahbout  : out ahb_mst_out_type); 

 

end component; 

 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 24 

 

-------------------------------------------------- 

-- dmac 

-------------------------------------------------- 

component dmac 

        port (hclk      : in  std_logic; 

              hrstn     : in  std_logic; 

              if_in     : in  ac97if_out_type; 

              if_out    : out ac97if_in_type;                

              dmacinr   : in  pcm_out_type; 

              dmacoutr  : out pcm_in_type;           

              dmacinl   : in  dma_out_type;              

              dmacoutl  : out dma_in_type); 

end component; 

 

--------------------------------- 

-- intermediate signals 

---------------------------------   

signal dmac_in  : dma_out_type; 

signal dmac_out : dma_in_type; 

 

begin   

  

        ---------------------------------------- 

        -- port map 

        ----------------------------------------                         

        dma2ahb0 : dma2ahb          

        port map(hclk    => clk, 

                 hresetn => rst, 

                 dmain   => dmac_out, 

                 dmaout  => dmac_in, 

                 ahbin   => ahbin, 

                 ahbout  => ahbout); 

            

        dmac0 : dmac 

        port map(hclk      => clk, 

                 hrstn     => rst, 

                 if_in     => if_in, 

                 if_out    => if_out,               

                 dmacinr   => dmacinr, 

                 dmacoutr  => dmacoutr,                   

                 dmacinl   => dmac_in,     

                 dmacoutl  => dmac_out);     

end; 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 25 

 

A.6.  Interface VHDL Code 

 
library ieee; 

use ieee.std_logic_1164.all; 

use work.ac97link_pack.all; 

 

library grlib; 

use grlib.amba.all; 

 

-------------------------- 

-- package delcaration 

-------------------------- 

package apbac97if_pack is   

 

------------------------------- 

-- inputs from dmac 

------------------------------- 

type ac97if_in_type is record             

        done_link : std_logic; 

        busy_dma  : std_logic; 

        wait_dma  : std_logic; 

        done_dma  : std_logic; 

end record; 

 

---------------------------------------------- 

-- outputs to dmac 

---------------------------------------------- 

type ac97if_out_type is record             

        start : std_logic; 

        base  : std_logic_vector(31 downto 0); 

end record; 

 

----------------------------------------------- 

-- component declaration 

----------------------------------------------- 

component apbac97if_comp 

 port (clk             : in  std_logic; 

       rst             : in  std_logic; 

       dmac_in         : in  ac97if_in_type; 

       dmac_out        : out ac97if_out_type; 

       apbac97if_inl   : in  apb_slv_in_type; 

       apbac97if_inr   : in  aclink_outl_type;               

       apbac97if_outl  : out apb_slv_out_type;                             

       apbac97if_outr  : out aclink_inl_type);            

end component; 

 

end package; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

use work.ac97link_pack.all; 

use work.apbac97if_pack.all; 

 

 

library grlib; 

use grlib.amba.all; 

use grlib.devices.all; 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 26 

 

---------------------------------------------- 

--          entity 

---------------------------------------------- 

entity apb_ac97_if is 

generic (pindex    :     integer := 10; 

         paddr     :     integer := 10; 

         pmask     :     integer := 16#FFF#; 

         vendorid  : in  integer := 16#01#; 

         deviceid  : in  integer := 16#08C#; 

         version   : in  integer := 0);                  

                                

port (clk             : in  std_logic; 

      rst             : in  std_logic; 

      dmac_in         : in  ac97if_in_type; 

      dmac_out        : out ac97if_out_type; 

      apbac97if_inl   : in  apb_slv_in_type; 

      apbac97if_inr   : in  aclink_outl_type;               

      apbac97if_outl  : out apb_slv_out_type;                             

      apbac97if_outr  : out aclink_inl_type);     

end; 

 

----------------------------------------------- 

-- architecture  

----------------------------------------------- 

architecture apb_ac97_if_arch of apb_ac97_if is 

 

------------------------------------------------ 

-- records 

------------------------------------------------ 

type apbac97if_type is record 

        valid           : std_logic;     

        cmdrqstsig      : std_logic; 

        ready           : std_logic;   

        slv_enable      : std_logic;     

        slv_write       : std_logic; 

        equal           : std_logic; 

        sync            : std_logic; 

        ack             : std_logic; 

        start_fetch     : std_logic;     

        done_link       : std_logic; 

        busy_dma        : std_logic; 

        done_dma        : std_logic; 

        wait_dma        : std_logic;             

        donecopy        : std_logic_vector(7 downto 0); 

        slv_sel         : std_logic_vector(0 to 15);     

        comb            : std_logic_vector(7 downto 0); 

        seq             : std_logic_vector(7 downto 0);                  

        slv_adres       : std_logic_vector(31 downto 0);           

        slv_data        : std_logic_vector(31 downto 0); 

end record; 

signal signals : apbac97if_type; 

 

------------------------------------------------------- 

-- configuration grlib 

------------------------------------------------------- 

constant pconfig : apb_config_type :=  

(0 => ahb_device_reg (VENDOR_GAISLER, GAISLER_AC97, 0, 0, 0), 

 1 => apb_iobar(paddr, pmask));             

                                                                                        

type register_type is array(0 to 255)of std_logic_vector(31 downto 0); 

type adres_mem is array(0 to 255)of std_logic_vector(31 downto 0); 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 27 

 

type data_mem is array(0 to 255)of std_logic_vector(31 downto 0); 

     

signal registers  : register_type; 

signal adres      : adres_mem;             

signal data       : data_mem;               

 

----------------------------------------------------- 

---------              notx function               

----------------------------------------------------- 

function notx(d : std_logic_vector) return boolean is 

 variable res : boolean; 

 begin 

  res := true; 

  -- pragma translate_off 

  res := not is_x(d); 

  -- pragma translate_on 

 return (res); 

end;            

 

begin 

  ------------------------------------- 

  -----  combinational process --------                                                       

  ------------------------------------- 

  combinational : process(rst, signals) 

    variable count  : integer; 

    variable v      : apbac97if_type;           

    variable temp   : std_logic_vector(31 downto 0);          

    variable temp2  : std_logic_vector(31 downto 0); 

    variable temp3  : std_logic_vector(31 downto 0); 

   

  begin                                                                

  --------------------------------------------------------- 

  -- write into the registers 

  ---------------------------------------------------------             

  if(signals.slv_write and signals.slv_sel(pindex) and    

     signals.slv_enable) = '1' then             

 

   if notx(signals.slv_adres) or notx(signals.seq) then 

     temp := signals.slv_data; 

     registers(conv_integer(signals.slv_adres(7 downto 0))) <= temp;                                           

               

     ---------------------------------------------------------------- 

     -- start the data fetching from memory and get the base address 

     ----------------------------------------------------------------               

     if (signals.slv_adres(7 downto 0) = x"80") then 

         dmac_out.start              <= '1'; 

         apbac97if_outr.start_fetch  <= '1'; 

         signals.start_fetch         <= '1';                                  

         dmac_out.base               <= signals.slv_data;                                 

                   

     ---------------------------------------------------------- 

     -- storing the values inside the memory  

     ----------------------------------------------------------               

     else 

         count              := conv_integer(signals.seq); 

         v.comb             := signals.comb + 1; 

         signals.seq        <= v.comb; 

         adres(conv_integer(signals.seq)) <= signals.slv_adres; 

         data(conv_integer(signals.seq))<=x"0000"&  

                                        signals.slv_data(15 downto 0);                                                                     

     end if;                             



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 28 

 

   end if;                                            

  else              

  end if;             

           

  --------------------------------- 

  -- stop fetching data 

  --------------------------------- 

  if (signals.done_link = '1') then   

      dmac_out.start              <= '0';             

      signals.start_fetch         <= '0';             

      apbac97if_outr.start_fetch  <= '0';                                  

  else 

  end if;                               

             

  -------------------------------------------------------------- 

  -- check if somehting new has been written 

  -------------------------------------------------------------             

  if notx(signals.donecopy) or notx(signals.seq)then 

   if (signals.donecopy = signals.seq) then signals.equal <= '1';                                             

   else signals.equal <= '0';                

   end if; 

   apbac97if_outr.equal <= signals.equal;                   

  end if;                                                                                                 

                   

  ---------------------------------- 

  -- asserting valid signal 

  ----------------------------------             

  if notx(signals.donecopy) then 

   if (signals.cmdrqstsig = '1' and count > 0 and  

       signals.equal = '0' and signals.start_fetch ='0') then                                

        signals.valid <= '1'; 

              

        -------------------------------------------------------------- 

        --             sending the adres/data to the link         

        --------------------------------------------------------------                                                 

        temp2 := adres(conv_integer(signals.donecopy)); 

        apbac97if_outr.adres_if <= '0' & temp2(31 downto 1);                                                                

        temp3 := data(conv_integer(signals.donecopy));    

        apbac97if_outr.data_if  <= temp3;    

                                                               

   else 

   end if;                                                

  end if;                        

                         

  ----------------------------------------------------- 

  --- asserting ready signal/de-asserting valid signal 

  -----------------------------------------------------           

  if (signals.ack = '1' and signals.sync = '1') then                      

              signals.ready <= '1';                                  

              signals.valid <= '0';               

  else 

              signals.ready <= '0'; 

  end if;                                                       

           

   

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 29 

 

  --------------------------------------------- 

  -- reset 

  if (rst = '0') then 

          count                       := 0;                     

          signals.valid               <= '0'; 

          signals.equal               <= '0'; 

          dmac_out.start              <= '0'; 

          signals.start_fetch         <= '0';   

          apbac97if_outr.start_fetch  <= '0';                      

          apbac97if_outr.adres_if     <= (others => '0'); 

          apbac97if_outr.data_if      <= (others => '0');               

          apbac97if_outl.prdata       <= (others => '0'); 

          signals.seq                 <= (others => '0'); 

          adres                       <= (others => (others => '0'));            

          data                        <= (others => (others => '0')); 

          registers                   <= (others => (others => '0'));                             

  else 

  end if;                                                                                   

  -------------------------------------------------------- 

  --read from the registers 

  if notx(signals.slv_adres) then                                                                         

  ---------------------------------------------- 

  -- dma status bits 

  apbac97if_outl.pirq(2) <= signals.busy_dma; 

  apbac97if_outl.pirq(1) <= signals.done_dma; 

  apbac97if_outl.pirq(0) <= signals.wait_dma; 

  ----------------------------------------------         

  apbac97if_outl.prdata(15 downto 0) <=    

  registers(conv_integer(signals.slv_adres(7 downto 0)))(15 downto 0); 

  end if;                             

  apbac97if_outl.pconfig  <= pconfig; 

  apbac97if_outl.pindex   <= pindex;   

  apbac97if_outr.valid_if <= signals.valid; 

  apbac97if_outr.ready_if <= signals.ready; 

  apbac97if_outr.done_dma <= signals.done_dma;     

end process;            

------------------------------------------ 

-- sequential process 

sequential : process(clk) 

begin 

     if (rising_edge(clk)) then 

          signals.slv_sel     <= apbac97if_inl.psel;               

          signals.slv_enable  <= apbac97if_inl.penable; 

          signals.slv_adres   <= apbac97if_inl.paddr;              

          signals.slv_write   <= apbac97if_inl.pwrite;                         

          signals.slv_data    <= apbac97if_inl.pwdata;                 

          signals.comb        <= signals.seq;                     

          signals.cmdrqstsig  <= apbac97if_inr.cmd_rqst;                    

          signals.donecopy    <= apbac97if_inr.donecopy; 

          signals.sync        <= apbac97if_inr.start;   

          signals.ack         <= apbac97if_inr.ack;                             

          signals.done_dma    <= dmac_in.done_dma;           

          signals.busy_dma    <= dmac_in.busy_dma; 

          signals.wait_dma    <= dmac_in.wait_dma;    

          signals.done_link   <= dmac_in.done_link;           

     else              

     end if; 

end process; 

end; 

 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 30 

 

A.7.  Link Clocks VHDL Code 

 
library ieee; 

use ieee.std_logic_1164.all; 

use work.ac97link_pack.all; 

 

---------------------------------------- 

-- entity 

---------------------------------------- 

entity linkclks is    

port (clk       : in  std_logic; 

      rst       : in  std_logic; 

      bit_clk   : in  std_logic;              

      data_in   : in  std_logic; 

      inl       : in  aclink_inl_type; 

      in_pcm    : in  pcm_in_type; 

      out_pcm   : out pcm_out_type;              

      codec_rst : out std_logic;                   

      outl      : out aclink_outl_type;           

      data_out  : out std_logic; 

      sync      : out std_logic);            

end; 

 

----------------------------------------- 

-- architecture 

----------------------------------------- 

architecture linkclks_arch of linkclks is 

                                                    

-------------------------------------------- 

-- components to use 

--------------------------------------------   

component ac97link 

        port (clk       : in  std_logic; 

              rst       : in  std_logic; 

              clks_in   : in  clks_in_type; 

              inl_link  : in  aclink_inl_type; 

              data_in   : in  std_logic; 

              in_pcm    : in  pcm_in_type; 

              out_pcm   : out pcm_out_type; 

              outl_link : out aclink_outl_type;             

              data_out  : out std_logic; 

              sync      : out std_logic);                        

end component; 

 

component clks 

        port (clk        : in  std_logic;             

              rst        : in  std_logic; 

              bit_clk    : in  std_logic; 

              clks_out   : out clks_in_type; 

              codec_rst  : out std_logic; 

              warm_rst   : out std_logic);                         

end component; 

 

--------------------------------- 

-- intermediate signals 

--------------------------------- 

signal clks_in_out  : clks_in_type; 

signal warmrst      : std_logic; 

signal syncsig      : std_logic; 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 31 

 

begin   

        ---------------------------------------- 

        -- port map 

        ----------------------------------------                         

        clks0 : clks 

        port map(clk       => clk, 

                 rst       => rst, 

                 bit_clk   => bit_clk, 

                 clks_out  => clks_in_out, 

                 codec_rst => codec_rst, 

                 warm_rst  => warmrst); 

                     

        ac97link0 : ac97link 

        port map(clk       => clk, 

                 rst       => rst, 

                 clks_in   => clks_in_out, 

                 inl_link  => inl, 

                 data_in   => data_in, 

                 in_pcm    => in_pcm, 

                 out_pcm   => out_pcm, 

                 outl_link => outl,                 

                 data_out  => data_out, 

                 sync      => syncsig);              

                 

        sync <= syncsig or warmrst; 

  

end; 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 32 

 

A.8.  Stand-Alone Test bench VHDL Code for the First Stage of the Design 

 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use std.textio.all; 

 

library gaisler; 

library grlib; 

use grlib.stdlib.conv_std_logic_vector; 

use grlib.stdlib.conv_integer; 

use grlib.stdlib.conv_std_logic; 

use grlib.stdlib.tost; 

use grlib.stdlib."+"; 

use grlib.testlib.print; 

use grlib.amba.all; 

use grlib.at_pkg.all; 

use grlib.at_ahb_mst_pkg.all; 

use work.ac97link_pack.all; 

use work.apbac97if_pack.all; 

 

------------------------------- 

-- entity 

entity ac97_tb is 

----------------------------------------------------------- 

-- generics 

generic(sysperiod_g     : integer := 20; --systemperiod in ns 

        apbaddr_g       : integer := 16#800#; 

        pindex          : integer := 0; 

        paddr           : integer := 0; 

        pmask           : integer := 16#FFF#; 

        console         : integer := 0; 

        pirq            : integer := 0; 

        parity          : integer := 1; 

        flow            : integer := 1; 

        fifosize        : integer range 1 to 32 := 32; 

        abits           : integer := 8);          

end entity ac97_tb; 

------------------------------------------- 

-- architecture 

architecture behavioural of ac97_tb is 

------------------------------------------- 

-- component 

component ac97top 

port (rst               : in  std_logic; 

      clk               : in  std_logic;               

      bit_clk           : in  std_logic;             

      data_in           : in  std_logic;             

      ac97top_inl       : in  apb_slv_in_type; 

      codec_rst         : out std_logic;                

      ac97top_outl      : out apb_slv_out_type; 

      data_out          : out std_logic; 

      sync              : out std_logic); 

end component;     

 

-- Tests 

constant do_basic_read_test   : boolean := true; 

constant do_basic_write_test  : boolean := true;   

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 33 

 

constant vmode        : boolean := false; 

constant sysperiod_c  : time := sysperiod_g * 1 ns; 

constant datareg_c    : std_logic_vector(31 downto 0):=uartaddr_c; 

constant statusreg_c  : std_logic_vector(31 downto 0):=uartaddr_c+4; 

constant ctrlreg_c    : std_logic_vector(31 downto 0):=uartaddr_c+8; 

constant scalerreg_c  : std_logic_vector(31 downto 0):=uartaddr_c+12; 

constant fifodbgreg_c : std_logic_vector(31 downto 0):=uartaddr_c+16; 

constant uartaddr_c   : std_logic_vector(31 downto 0):=  

apbaddr_c+(conv_std_logic_vector(paddr,12) and 

conv_std_logic_vector(pmask,12)); 

 

constant apbaddr_c    : std_logic_vector(31 downto 0):= 

conv_std_logic_vector(apbaddr_g, 12) & x"00000"; 

 

constant size : integer := 127;  

constant frame : integer := 255;   

 

type bit_array  is array (size downto 0) of std_logic;     

type bit32_array is array (size downto 0) of  

std_logic_vector(31 downto 0); 

type reg_values is array (frame downto 0) of  

std_logic_vector(31 downto 0); 

type frame_array  is array (frame downto 0) of std_logic; 

 

signal rstn              : std_ulogic := '0'; 

signal clk               : std_ulogic := '1';                          

signal apbi              : apb_slv_in_type; 

signal apbo              : apb_slv_out_vector:=(others => apb_none); 

signal ahbmi             : ahb_mst_in_type; 

signal ahbmo             : ahb_mst_out_vector:=(others => ahbm_none); 

signal ahbsi             : ahb_slv_in_type; 

signal ahbso             : ahb_slv_out_vector:=(others => ahbs_none); 

signal atmi              : at_ahb_mst_in_type; 

signal atmo              : at_ahb_mst_out_type; 

signal enablemon         : std_ulogic; 

signal irqdetected       : std_ulogic; 

signal clearirq          : std_ulogic; 

signal bit_clk           : std_logic; 

signal data_in           : std_logic; 

signal codec_rst         : std_logic; 

signal data_out          : std_logic; 

signal sync              : std_logic; 

signal data_to_write_2   : bit32_array := (others => (others => '0')); 

signal frame_1           : frame_array := (others => '0'); 

signal frame_2           : frame_array := (others => '0'); 

signal frame_3           : frame_array := (others => '0');   

signal frame_4           : frame_array := (others => '0');   

signal frame_5           : frame_array := (others => '0'); 

signal i                 : integer := 0; 

 

 

 

 

 

 

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 34 

 

--------------------------------------------- 

--   functions 

--------------------------------------------- 

function bin (mychar : character) return std_logic is 

 variable bin : std_logic; 

 begin 

 case mychar is 

             when '0'        => bin := '0'; 

             when '1'        => bin := '1'; 

             when 'x'        => bin := '0' 

when others => assert (false) report "no binary character read" 

severity failure; 

end case; 

return bin; 

end bin; 

------------------------------------------------------------  

function load_bit (filename : string) return bit_array is 

 file objectfile : text open read_mode is filename; 

 variable memory : bit_array; 

 variable l      : line; 

 variable i      : integer := 0; 

 variable mychar : character; 

 begin 

  while not endfile(objectfile) loop readline(objectfile, l);             

   read(l, mychar); 

   memory(i) := bin(mychar);             

   i := i + 1; 

  end loop; 

 return memory; 

end load_bit; 

-------------------------------------------------------------- 

function load_frame (filename : string) return frame_array is 

 file objectfile : text open read_mode is filename; 

 variable memory : frame_array; 

 variable l      : line; 

 variable i      : integer := 0; 

 variable mychar : character; 

 begin 

  while not endfile(objectfile) loop readline(objectfile, l);             

   read(l, mychar); 

   memory(i) := bin(mychar);             

   i := i + 1; 

  end loop; 

 return memory; 

end load_frame;   

---------------------------------------------------------------    

function load_regvals (filename : string) return reg_values is 

 file objectfile : text open read_mode is filename; 

 variable memory : reg_values; 

 variable l      : line; 

 variable index  : natural := 0; 

 variable mychar : character; 

 begin 

  while not endfile(objectfile) loop readline(objectfile, l); 

   for i in 31 downto 0 loop 

    read(l, mychar); 

    memory(index)(i) := bin(mychar); 

   end loop;index := index + 1; 

  end loop; 

 return memory;                 

end load_regvals;           



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 35 

 

-------------------------------------------------------------- 

function load_32bit (filename : string) return bit32_array is 

 file objectfile : text open read_mode is filename; 

 variable memory : bit32_array; 

 variable l      : line; 

 variable index  : natural := 0; 

 variable mychar : character; 

 begin 

  while not endfile(objectfile) loop readline(objectfile, l); 

   for i in 31 downto 0 loop 

    read(l, mychar); 

    memory(index)(i) := bin(mychar); 

   end loop; 

   index := index + 1; 

  end loop; 

  return memory; 

end load_32bit; 

 

begin 

--------------------------------------- 

-- clk generation 

--------------------------------------- 

clk <= not clk after (sysperiod_c/2);   

rstn <= '0', '1' after 300 ns; 

 

--------------------------------------------------------------- 

-- AMBA infrastructure 

--------------------------------------------------------------- 

ahb0 : at_ahb_ctrl             -- AHB arbiter/multiplexer 

generic map (defmast     => 0, 

             split       => 1, 

             enebterm    => 1, 

             ebprob      => 1, 

             rrobin      => 1, 

             ioaddr      => 16#FFF#, 

             hmstdisable => 16#4000#, 

             ioen        => 1, 

             nahbm       => 3, 

             nahbs       => 2, 

             hslvdisable => 16#600#, 

             enbusmon    => 0, 

             assertwarn  => 1, 

             asserterr   => 1)                     

port map (rstn, clk, ahbmi, ahbmo, ahbsi, ahbso); 

 

apb0 : apbctrl                    -- AHB/APB bridge 

generic map (hindex      => 0, 

             haddr       => apbaddr_g, 

             enbusmon    => 0, 

             asserterr   => 1, 

             assertwarn  => 1, 

             pslvdisable => 1, 

             nslaves     => 1) 

port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo); 

 

dma1 :  at_ahb_mst 

generic map(hindex    => 0, 

            vendorid  => 0, 

            deviceid  => 0, 

            version   => 0) 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 36 

 

 

port map(hclk    => clk, -- AMBA AHB system signals 

         hresetn => rstn,                 

         atmi    => atmi, -- Direct Memory Access Interface 

         atmo    => atmo,                 

         ahbi    => ahbmi, -- AMBA AHB Master Interface 

         ahbo    => ahbmo(0)); 

 

----------------------------- 

-- Component instantiation 

------------------------------- 

inst0 : ac97top 

port map(clk           => clk, 

         rst           => rstn, 

         bit_clk       => bit_clk, 

         ac97top_inl   => apbi, 

         data_in       => data_in,                                                         

         codec_rst     => codec_rst, 

         ac97top_outl  => apbo(pindex), 

         sync          => sync, 

         data_out      => data_out); 

 

--------------------------------------------- 

--   initialize test vectors 

--------------------------------------------- 

init: process(i) 

      begin 

       if i = 0 then             

        data_to_write_2 <=  load_32bit(string'("data_to_write_2.tv")); 

        frame_1         <= load_frame(string'("frame_1.tv"));                                               

        frame_2         <= load_frame(string'("frame_2.tv")); 

        frame_3         <= load_frame(string'("frame_3.tv")); 

        frame_4         <= load_frame(string'("frame_4.tv")); 

        frame_5         <= load_frame(string'("frame_5.tv")); 

       end if; 

end process; 

 

--------------------------------------------------------------------- 

-- process to read or write 

---------------------------------------------------------------------- 

test_p : process is 

        variable tp            : boolean; 

        variable tpcounter     : integer; 

        variable d             : std_logic_vector(31 downto 0); 

        variable c             : std_logic_vector(31 downto 0); 

        variable e             : std_logic; 

        variable time0         : time; 

        variable time1         : time; 

        variable dummy         : boolean; 

 

begin 

        print("testbench start"); 

        at_init(atmi); 

        wait until rstn = '1'; 

            

 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 37 

 

--------------------------------------------------------------------- 

--                   test 1  

---------------------------------------------------------------------     

if do_basic_write_test then print("test1:writing "& time'image(now)); 

 for i in 0 to 32 loop 

  d := conv_std_logic_vector(i*4, 32);             

  at_write_32(address           => apbaddr_c  + i*4, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);             

  print("written data at address "& tost(apbaddr_c+i*4)&" is "&     

  tost(d));                         

 end loop; 

end if; 

            

---------------------------------------------------------------------- 

--                   test 2          

----------------------------------------------------------------------     

if do_basic_read_test then  

 print("test 2: reading the written values...." & time'image(now));     

 for i in 0 to size loop 

  at_read_32(address           => apbaddr_c + i, 

             waitcycles        => 0, 

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput      => vmode, 

             data              => d, 

             atmi              => atmi, 

             atmo              => atmo); 

  print("read data at address " & tost(apbaddr_c + i) & " is " &  

  tost(d));             

  assert(apbo(0).prdata = data_to_write_2(i)) 

  report "error:wrong result vector at test 2 and vector" &  

  integer'image(i) 

  severity error;           

 end loop;               

end if;               

wait for 7500 ns; 

 

---------------------------------------------------------------------- 

--                   test 3                           

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("test 3: writing the FIRST valid command at addres: " &      

 tost(apbaddr_c) & "..." & time'image(now));               

 d := x"00000400"; 

 for i in 0 to (frame) loop 

  at_write_32(address           => apbaddr_c, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 38 

 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);                       

           

  if (i > 5) then               

   assert(data_out = frame_1(i - 5)) 

   report "error: wrong result vector at test 3 and vector " &  

   integer'image(i - 5) 

   severity error; 

  end if;                                                                                                     

 end loop; 

end if;                               

                             

---------------------------------------------------------------------- 

--                   test 4                           

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("test 4: writing the SECOND valid command at address: " &  

 tost(apbaddr_c + 4) & "..." & time'image(now));                                   

 d := x"00000808"; 

 for i in 0 to (frame) loop 

  at_write_32(address           => apbaddr_c + 4, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);            

  if (i > 6) then 

   assert(data_out = frame_2(i - 6)) 

   report "error: wrong result vector at test 4 and vector " &  

   integer'image(i - 6) 

   severity error; 

  end if;                                

 end loop;                       

end if;             

    

---------------------------------------------------------------------- 

--                   test 5                           

----------------------------------------------------------------------          

if do_basic_write_test then  

 print("test 5: writing the THIRD valid command at address: " &   

 tost(apbaddr_c + 8) & "..." & time'image(now));                                   

 d := x"00000808"; 

 for i in 0 to (frame) loop            

  at_write_32(address           => apbaddr_c + 8, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);           

  if (i > 7) then 

   assert(data_out = frame_3(i - 7)) 

   report "error: wrong result vector at test 5 and vector " &  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 39 

 

   integer'image(i - 7) 

   severity error; 

  end if;                                 

 end loop;                       

end if;                   

           

---------------------------------------------------------------------- 

--                   test 6                           

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("test 6: writing the FOURTH valid command at address: " &   

 tost(apbaddr_c + 20) & "..." & time'image(now));                                   

 d := x"00008000"; 

 for i in 0 to (frame) loop             

  at_write_32(address           => apbaddr_c + 20, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo); 

  if (i > 8) then 

   assert(data_out = frame_4(i - 8)) 

   report "error: wrong result vector at test 6 and vector " &  

   integer'image(i - 8) 

   severity error; 

  end if;                                   

 end loop;                     

end if;        

---------------------------------------------------------------------- 

--                   test 7               

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("test 7: writing the FIFTH valid command at address: " &   

 tost(apbaddr_c + 48) & "..." & time'image(now));                                   

 d := x"00000808"; 

 for i in 0 to (frame) loop                          

  at_write_32(address           => apbaddr_c + 48, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);                         

  if (i > 9) then 

   assert(data_out = frame_5(i - 9)) 

   report "error: wrong result vector at test 7 and vector " &  

   integer'image(i - 9) 

   severity error; 

  end if;         

 end loop;                                             

end if;                  

assert false report "testbench ended!" severity failure;               

end process;     

end architecture; 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 40 

 

A.9.  Stand-Alone Test bench VHDL Code for the Second Stage of the Design 

 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use std.textio.all; 

 

library gaisler; 

library grlib; 

use grlib.stdlib.conv_std_logic_vector; 

use grlib.stdlib.conv_integer; 

use grlib.stdlib.conv_std_logic; 

use grlib.stdlib.tost; 

use grlib.stdlib."+"; 

use grlib.testlib.print; 

use grlib.amba.all; 

use grlib.at_pkg.all; 

use grlib.at_ahb_mst_pkg.all; 

use grlib.at_ahb_slv_pkg.all; 

use grlib.dma2ahb_package.all; 

use work.ac97link_pack.all; 

use work.dmac_pack.all; 

 

------------------------ 

-- entity 

entity ac97_tb is 

generic(sysperiod_g : integer := 20; --systemperiod in ns 

        apbaddr_g   : integer := 16#800#; 

        pindex      : integer := 0; 

        paddr       : integer := 0; 

        pmask       : integer := 16#FFF#; 

        console     : integer := 0; 

        pirq        : integer := 0; 

        parity      : integer := 1; 

        flow        : integer := 1; 

        fifosize    : integer range 1 to 32 := 32; 

        abits       : integer := 8);          

end entity ac97_tb; 

---------------------------------------- 

-- architecture 

architecture behavioural of ac97_tb is 

----------------------------------------- 

-- component 

component ac97top 

port (rst               : in  std_logic; 

      clk               : in  std_logic;               

      bit_clk           : in  std_logic;             

      data_in           : in  std_logic;             

      ac97top_inl   : in  apb_slv_in_type; 

      ac97top_outl  : out apb_slv_out_type; 

      ac97dma_in        : in  ahb_mst_in_type; 

      ac97dma_out   : out ahb_mst_out_type; 

      ac97dmac_inm  : in  at_ahb_mst_out_type;           

      debug             : out dmac_debug_type; 

      codec_rst         : out std_logic;                                  

      data_out          : out std_logic; 

      sync              : out std_logic);                  

end component;           

 

 

constant do_basic_read_test   : boolean := true; 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 41 

 

constant do_basic_write_test  : boolean := true;   

 

constant vmode        : boolean := false; 

constant sysperiod_c  : time := sysperiod_g * 1 ns; 

constant datareg_c    : std_logic_vector(31 downto 0):=uartaddr_c; 

constant statusreg_c  : std_logic_vector(31 downto 0):=uartaddr_c+4; 

constant ctrlreg_c    : std_logic_vector(31 downto 0):=uartaddr_c+8; 

constant scalerreg_c  : std_logic_vector(31 downto 0):=uartaddr_c+12; 

constant fifodbgreg_c : std_logic_vector(31 downto 0):=uartaddr_c+16; 

 

constant uartaddr_c   : std_logic_vector(31 downto 0):=  

apbaddr_c+(conv_std_logic_vector(paddr,12) and 

conv_std_logic_vector(pmask,12)); 

 

constant apbaddr_c    : std_logic_vector(31 downto 0):= 

conv_std_logic_vector(apbaddr_g, 12) & x"00000"; 

 

signal rstn              : std_ulogic := '0'; 

signal clk               : std_ulogic := '1';                         

signal apbi              : apb_slv_in_type; 

signal apbo              : apb_slv_out_vector :=(others => apb_none); 

signal ahbmi             : ahb_mst_in_type; 

signal ahbmo             : ahb_mst_out_vector :=(others => ahbm_none); 

signal ahbsi             : ahb_slv_in_type; 

signal ahbso             : ahb_slv_out_vector :=(others => ahbs_none); 

signal atmi              : at_ahb_mst_in_type; 

signal atmo              : at_ahb_mst_out_type; 

signal dbgi              : at_slv_dbg_in_type; 

signal dbgo              : at_slv_dbg_out_type; 

 

signal enablemon         : std_ulogic; 

signal irqdetected       : std_ulogic; 

signal clearirq          : std_ulogic; 

 

signal deb            : dmac_debug_type; 

signal bit_clk        : std_logic; 

signal data_in        : std_logic; 

signal codec_rst      : std_logic; 

signal data_out       : std_logic; 

signal sync           : std_logic;   

 

begin 

-------------------------------------- 

-- Component instantiation 

-------------------------------------- 

inst0 : ac97top 

port map(clk          => clk, 

         rst          => rstn, 

         bit_clk      => bit_clk, 

         ac97top_inl  => apbi,                

         ac97top_outl => apbo(pindex),                

         ac97dma_in   => ahbmi,                

         ac97dma_out  => ahbmo(1), 

         ac97dmac_inm => atmo,                

         debug        => deb,                           

         data_in      => data_in,                

         codec_rst    => codec_rst,                

         sync         => sync, 

         data_out     => data_out);                                      

             

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 42 

 

-------------------------------------- 

-- clk generation 

-------------------------------------- 

clk <= not clk after (sysperiod_c/2);   

rstn <= '0', '1' after 300 ns; 

 

----------------------------------------------------------- 

-- AMBA infrastructure 

----------------------------------------------------------- 

ahb0 : at_ahb_ctrl             -- AHB arbiter/multiplexer 

generic map (defmast     => 0, 

             split       => 1, 

             enebterm    => 1, 

             ebprob      => 1, 

             rrobin      => 1, 

             ioaddr      => 16#FFF#, 

             hmstdisable => 16#4000#, 

             ioen        => 1, 

             nahbm       => 3, 

             nahbs       => 2, 

             hslvdisable => 16#600#, 

             enbusmon    => 0, 

             assertwarn  => 1, 

              asserterr  => 1)                     

port map (rstn, clk, ahbmi, ahbmo, ahbsi, ahbso); 

 

apb0 : apbctrl                    -- AHB/APB bridge 

generic map (hindex      => 0, 

             haddr       => apbaddr_g, 

             enbusmon    => 0, 

             asserterr   => 1, 

             assertwarn  => 1, 

             pslvdisable => 1, 

             nslaves     => 1) 

port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo); 

 

dma1 :  at_ahb_mst 

generic map(hindex    => 0, 

            vendorid  => 0, 

            deviceid  => 0, 

            version   => 0) 

 

port map(hclk    => clk, -- AMBA AHB system signals 

         hresetn => rstn,                 

         atmi    => atmi, -- Direct Memory Access Interface 

         atmo    => atmo,                 

         ahbi    => ahbmi, -- AMBA AHB Master Interface 

         ahbo    => ahbmo(0)); 

 

--------------------------------------------------------------------                                          

-- AHB memory 

ahbslv0 : at_ahb_slv 

generic map (hindex            => 1, 

             -- Bank 0 configuration; 

             bank0addr         => 16#400#, 

             bank0mask         => 16#FFF#, 

             bank0type         => AT_AHBSLV_MEM, 

             bank0cache        => 1, 

             bank0prefetch     => 1, 

             bank0ws           => 1, 

             bank0rws          => AT_AHBSLV_FIXED_WS, 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 43 

 

             bank0dataload => 0, 

             bank0datafile => "none") 

 

port map (rstn => rstn, clk => clk, ahbsi => ahbsi, ahbso => ahbso(1), 

             dbgi => dbgi, dbgo => dbgo); 

 

----------------------------------------------------------------- 

-- process to read or write 

----------------------------------------------------------------- 

test_p : process is 

        variable tp            : boolean; 

        variable tpcounter     : integer; 

        variable d             : std_logic_vector(31 downto 0); 

        variable c             : std_logic_vector(31 downto 0); 

        variable e             : std_logic; 

        variable time0         : time; 

        variable time1         : time; 

        variable dummy         : boolean; 

 

begin 

        print("testbench start"); 

        at_init(atmi); 

        wait until rstn = '1';     

          

-------------------------------------------------------------------- 

if do_basic_write_test then  

 print("volume 2... " & tost(apbaddr_c + 48) & "..." &   

 time'image(now));               

 d := x"00000099"; 

 at_write_32(address           => apbaddr_c + 48, 

             data              => d, 

             waitcycles        => 0,          

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput      => vmode, 

             errorresp         => dummy, 

             atmi              => atmi, 

             atmo              => atmo);                                                                                                                                     

end if;           

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("volume 2... " & tost(apbaddr_c + 12) & "..." &  

 time'image(now));               

 d := x"00000001"; 

 at_write_32(address           => apbaddr_c + 12, 

             data              => d, 

             waitcycles        => 0,          

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput      => vmode, 

             errorresp         => dummy, 

             atmi              => atmi, 

             atmo              => atmo);                                                                                                                                     

end if; 

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 44 

 

 

---------------------------------------------------------------------- 

if do_basic_write_test then  

 print("volume 2... " & tost(apbaddr_c + 4) & "..." &  

 time'image(now));               

 d := x"000000f0"; 

 at_write_32(address           => apbaddr_c + 4, 

             data              => d, 

             waitcycles        => 0,          

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput      => vmode, 

             errorresp         => dummy, 

             atmi              => atmi, 

             atmo              => atmo);                                                                                                                                     

end if; 

wait for 100000 ns;                                         

----------------------------------------------------------------------          

-- writing into the memory 

----------------------------------------------------------------------            

if do_basic_write_test then  

 print("test 1: writing...." & time'image(now)); 

 for i in 0 to 35 loop -- 262143 

  d := conv_std_logic_vector(26 + i, 32);             

  at_write_32(address           => x"40000000" + i*4, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput  => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);             

  print("written data at address " & tost(x"40000000" + i*4) & " is "  

  & tost(d));              

 end loop; 

end if; 

wait for 1500 ns;                                       

----------------------------------------------------------------------     

if do_basic_write_test then  

 print("start fetching... " & tost(x"80") & "..." & time'image(now));               

 d := x"40000000";   

 at_write_32(address           => apbaddr_c + x"80", 

             data              => d, 

             waitcycles        => 0,          

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput      => vmode, 

             errorresp         => dummy, 

             atmi              => atmi, 

             atmo              => atmo);                                                                                                                                     

end if; 

wait for 1000000 ns;    

 

 

 

 

 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 45 

 

 

 

 

---------------------------------------------------------------------          

-- writing into the memory 

---------------------------------------------------------------------            

if do_basic_write_test then  

 print("test 2: writing...." & time'image(now)); 

 for i in 0 to 25 loop 

  d := conv_std_logic_vector(46 + i, 32);             

  at_write_32(address           => x"40008000" + i*4, 

              data              => d, 

              waitcycles        => 0,          

              lock              => false, 

              hprot             => "0011", 

              back2back         => true, 

              screenoutput      => vmode, 

              errorresp         => dummy, 

              atmi              => atmi, 

              atmo              => atmo);             

  print("written data at address " & tost(x"40000000" + i*4) & " is "  

  & tost(d));              

 end loop; 

end if; 

wait for 1500 ns;                                       

 

----------------------------------------------------------------------     

if do_basic_write_test then  

 print("start fetching... " & tost(x"80") & "..." & time'image(now));               

 d := x"40008000";   

 at_write_32(address           => apbaddr_c + x"80", 

             data              => d, 

             waitcycles        => 0,          

             lock              => false, 

             hprot             => "0011", 

             back2back         => true, 

             screenoutput  => vmode, 

             errorresp         => dummy, 

             atmi              => atmi, 

            atmo              => atmo);                                                                                                                                     

end if;                

 

wait for 1000000 ns;   

assert false report "testbench ended!" severity failure;    

 

end process;     

 

end architecture; 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 46 

 

A.10.   System Test C Code for The First Stage of The Design 

 
#include <stdio.h> 

 
int main(void){ 

 
  int i, aux, aux2, j, piv; 

  printf("\nTESTING: AC97 Controller \n");             
   

  volatile unsigned int *reg0 = (unsigned int*)0x80000A00; 
  *reg0 = 0x0; 
  printf("reset.... \n");     

   
  volatile unsigned int *reg1 = (unsigned int*)0x80000A08; 

  *reg1 = 0x0; 
  printf("headphone volume.... \n");      

 
  volatile unsigned int *reg2 = (unsigned int*)0x80000A30; 

  *reg2 = 0x0; 
  printf("pcm out volume.... \n");   
   

  volatile unsigned int *reg3 = (unsigned int*)0x80000A54; 
  *reg3 = 0xf0f; 

  printf("PC Beep.... \n");   
      
  volatile unsigned int *reg4 = (unsigned int*)0x80000A58; 

  *reg4 = 0x800; 
  printf("PC Beep.... \n");            

   
  volatile unsigned int *reg5 = (unsigned int*)0x80000AC0; 
  *reg5 = 0x0; 

  printf("PC Beep.... \n"); 
                                       

  aux = 0x80000A08;                                                
    
  printf("\n"); 

  for (j = 0; j <= 3855; j = j + 257) { 
    volatile unsigned int *reg = (unsigned int*)(aux); 

    *reg = j;                      
    printf("volume DOWN... = %x \n", *reg);          
  }              

  printf("\n"); 
   

  for (j = 3855; j >= 0; j = j - 257){ 
    volatile unsigned int *reg = (unsigned int*)(aux); 
    *reg = j; 

    printf("volume UP... = %x \n", *reg); 
  } 

  printf("\n");     
   
  volatile unsigned int *reg = (unsigned int*)(aux); 

  *reg = 0x0;                      
  printf("\nMAX volume...\n\n");      

 

  aux2 = 0x80000A58; 
  for (j = 40092; j >= 32; j = j - 257){ 

    volatile unsigned int *reg = (unsigned int*)(aux2); 
    *reg = j; 

    printf("sweeping frequencies... = %x \n", *reg); 
  }                   
  printf("\n"); 



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 47 

 

   

  for (i = 0; i <= 2; i++){                                      

    for (j = 0; j <= 3871; j = j + 257) { 

    volatile unsigned int *reg = (unsigned int*)(aux2); 
    *reg = j;                      
    printf("sweeping frequencies... = %x \n", *reg);          

 }          
 printf("\n");            

      
 for (j = 3871; j >= 0; j = j - 257) { 

    volatile unsigned int *reg = (unsigned int*)(aux2); 
    *reg = j;                      
    printf("sweeping frequencies... = %x \n", *reg);          

 }          
 printf("\n"); 

  } 
   
  *reg = 0xFFFF; 

  printf("\nPC beep OFF \n");        
  printf("\nAC97 Controller TEST finished!!! \n");       

  return 0; 
} 

  



  CHALMERS, Computer Science and Engineering, Master’s Thesis 2011 48 

 

A.11.   System Test C Code for The Second Stage of The Design 

 
#include <stdio.h> 

 

static unsigned int array[] = {}; 

 

int main(void){ 

  

        int i, j; 

        printf("\nTESTING: AC97 Controller \n\n");          

                 

        //----------- INITIALIZING AUDIO REGISTERS -------------- 

        volatile unsigned int *reg0 = (unsigned int*)0x80000A00; 

        *reg0 = 0x0; 

        printf("Reset.... \n");     

            

        volatile unsigned int *reg1 = (unsigned int*)0x80000A08; 

        *reg1 = 0x0;     

        printf("Headphone Volume ON.... \n");             

    

        volatile unsigned int *reg2 = (unsigned int*)0x80000A30;          

        *reg2 = 0x0;          

        printf("PCM Out Volume ON.... \n"); 

                        

        for (i = 0; i < 3; i++){ printf(" waiting... \n"); }          

     

        //------- WRITING RAW DATA INTO MEMORY ------------------- 

         

        for (i = 0; i < 12; i++){ array[i] = 0xFFFF0000 + i; } 

    

        volatile unsigned int *ptr0 = (unsigned int*)0x80000A80; 

        *ptr0 = (unsigned int)array;     

        printf("Start Fetching Data at Address: %x \n", array);          

     

        for (i = 0; i < 24; i++){ printf(" waiting... \n"); }                 

     

        //--------- WRITING RAW DATA INTO MEMORY ------------------ 

         

        for (i = 0; i < 24; i++){ array[i] = 0xFFFF0000 + i; } 

             

        volatile unsigned int *ptr1 = (unsigned int*)0x80000A80; 

        *ptr1 = (unsigned int)array;     

        printf("Start Fetching Data at Address: %x \n", array);          

             

        for (i = 0; i < 48; i++){ printf(" waiting... \n"); } 

     

        printf("\nAC97 Controller TEST finished!!! \n\n");              

        return 0; 

 

} 

 
 


