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Abstract 

Automation network security becomes increasingly important due to the introduction of Ethernet-
based fieldbus protocols and cryptographic algorithms play a vital important role in these protocols. 
Choosing the most suitable cryptographic algorithms under consideration of security and 
performance according to different application cases is essential. In this thesis, we first present a 
comprehensive survey of most commonly used cryptographic algorithms which can be applied in 
automation networks and then identify our candidates based on existing literature and related works 
for further evaluation in ARM platform for industrial purpose. Finally, according to our evaluation 
results, we choose suitable algorithms for different applications: for symmetric algorithms, Twofish is 
recommended for best performance and eXtended Tiny Encryption Algorithm (XTEA) and Corrected 
Block Tiny Encryption Algorithm (XXTEA) are recommended for the least footprint; for Message 
Authentication Code (MAC) algorithms, UMAC is strongly recommended for excellent speed; for 
asymmetric algorithms, Elliptic Curve Cryptography (ECC) has much better performance than RSA at 
the same security level in our platform.  
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1 INTRODUCTION 

1.1 Automation Network Security 

Automation technology is a synthesized technology involving control theory, information 
theory, system engineering, computer technology, etc. Industrial automation, which may 
refer to process automation or factory automation, is the most important part of automation 
applications.  

 

Industrial automation network is built into a hierarchical structure. It consists of a number of 
different components at different hierarchy levels. For instance, it may include application 
specific devices, such as sensors, at the bottom, and plant LANs at the top [51]. Figure 1.1 
illustrates network architecture of a process automation system. Different from other 
architectures, the process automation system in Figure 1.1 is isolated from the outside due 
to the security consideration. Since there is no connection to the outside, no security attack 
from outside can threaten the automation system.  It shows that security is a vital important 
issue in designing an automation network [50].  

 

Figure 1.1 Example of Network Architecture for a Process Automation System [50] 

However, not all automation systems are designed to be a closed network. There may be 
requirements for an automation system to communicate with the outside, such as remote 
control service.  Thus, the inside automation network is exposed to adversaries from the 
outside who are able to launch different security attacks against the inside network 



    Page 

  6/88 
 

according to different automation systems. The common method to protect the entrance is 
to setup a security zone between inside and outside networks, such as a firewall, to filter the 
incoming and outgoing data.  

 

Automation network security issues are not only provided by network architecture, but also 
from communication protocols. A number of different network protocols are used at different 
hierarchy levels. Common used protocols at the higher level of automation networks are 
Object Linking and Embedding for Process Control (OPC), Manufacturing Message 
Specification (MMS), IEC 61850 and Inter Control Centre Protocol (ICCP) [51]. This thesis 
focuses more on the security at lower level. At lower field network level, different protocols 
are designed according to different physical linking methods. Field buses are employed in 
traditional field networks, which offer no security features against any security attack. 
Ethernet and TCP/IP protocols are used in the newly generated Ethernet-based field buses. 
A number of protocols are specified in IEC standards series, for more details see [50] [51]. 
Compared with traditional field networks, such networks are more vulnerable to security 
attacks, so security services should be provided. Nowadays, wireless systems are 
commonly used at device level. Due to the radio connection, automation systems are even 
more vulnerable to security attacks than the former one. Security is greatly considered and 
well addressed in the wireless sensor network protocols, such as WirelessHART [117] and 
ISA 100 [118]. Power line is another method to construct field networks. A number of 
standards specify the way to transmit data on power lines. For more details see [51].  

  

1.2 Research Problem 

Nowadays, since Ethernet-based field buses are increasingly used in automation systems, 
more and more attentions are paid to the security of Ethernet-based fieldbus protocols. 
However, most protocols were designed before with fewer concerns about security. For 
instance, PROFINET IO, one of the Ethernet-based fieldbus protocols, has no explicit 
security countermeasures in the protocol, so a number of possible attacks can be launched 
against PROFINET IO nodes to get unauthorized access. [50] has shown the concept of 
security modules to provide security in PROFINET IO without violating the standards, but 
cryptographic algorithms to provide confidentiality or message authentication are still not 
specified. Another problem is that at the lower field bus level, application specific devices 
are most embedded devices has less CPU processing power and memory than desktop 
computers. Therefore, cryptographic algorithms should be carefully chosen with these 
considerations.  

  

1.3 Research Approach 

In order to choose the most appropriate cryptographic algorithms for automation fieldbus 
networks balanced both in security and performance, a survey of cryptographic algorithms 
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based on existing literature and authoritative recommendations is necessary. This survey 
involves most widely used cryptographic algorithms including symmetric algorithms, 
asymmetric algorithms and MAC algorithms. Then several candidates from each catalog will 
be chosen for further evaluating and assessing based on the comparison of security and 
performance between each other. The software implementations of all candidates are 
written in pure C language based on existing open source projects or cryptographic libraries. 
Finally, existing automation equipment is used as benchmarking platform to evaluate the 
performance of all candidates and followed by our analysis. The goal of this thesis is to 
propose suggestions of cryptographic algorithms suitable for automation field networks.  

 

1.4 Thesis Contributions 

The main contributions of this thesis are: 

1. A comprehensive survey of most commonly used cryptographic algorithms including 
symmetric algorithms, asymmetric algorithms and MAC algorithms with security and 
performance analysis.  

2. Evaluation of candidate algorithms using software implementation and a comparison 
with the performance of all candidates. 

3. Propose suggestions of suitable cryptographic algorithms in our specific platform 
according to different applications: for symmetric encryption, Twofish is recommended 
for the best performance and XTEA or XXTEA for the least footprint; for MAC algorithms, 
UMAC is recommended for the best performance, CMAC for applications with AES 
already implemented; for asymmetric algorithms, ECC is recommended compared to 
RSA. 

 

1.5 Thesis Outline 

This report has the following structure. 

Chapter 1 Introduction describes the purpose and scope for this thesis. 

Chapter 2 This chapter introduces the basic concept of security, security attacks, 
cryptography and network security. It gives a brief understanding to readers who are not 
familiar with this domain.  

Chapter 3 In this chapter, a comprehensive survey of cryptographic algorithms including 
symmetric algorithms, asymmetric algorithms and MAC algorithms is presented. The 
candidates are selected based on the security and performance analysis. 

Chapter 4 This chapter introduces our benchmarking platform, the source of software 
implementation of all algorithms, the cipher parameters we chose in our evaluations and the 
methods we use to measure the performance.  
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Chapter 5 This chapter presents the evaluation results of all algorithms. Analysis and 
suggestions are given according to the comparison of performance. 

Chapter 6 This chapter presents the conclusions and future works after this thesis.  
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2 SECURITY AND NETWORK SECURITY 

2.1 Security 

In ancient wars, keeping information unknown from enemies is one of the essential parts to the 
victory. As rapid development of communication and network technology, what we said, we 
wrote and we behaved are always under the threat of being monitored, eavesdropped, 
modified and analyzed by any adversary1. From [3], several types of adversaries and their 
goals are listed in Table 2.1.  Therefore, the security of information is considered to be more 
and more important.   

Table 2.1 Examples of people who cause security problems and why [3] 

Adversary Goals 

Student To have fun snooping on people’s e-mail 

Cracker To test out someone’s security system; steal data 

Sales rep To claim to represent all of Europe, not just Andorra 

Businessman To discover a competitor’s strategic marketing plan 

Ex-employee To get revenge for being fired 

Accountant To embezzle money from a company 

Stockbroker To deny a promise made to a customer by e-mail 

Con man To steal credit card numbers for sale 

Spy To learn an enemy’s military or industrial secrets 

Terrorist To steal germ warfare secrets 

Security mainly concerns confidentiality, integrity and availability [2].To understand security 
in communication and networking, knowledge of related issues, such as cryptography and 
network security is necessary. This part, we introduce several important issues related to 
information security as the preliminary knowledge of the thesis. 

 

2.2 Objectives 

Not only keeping information unknown from adversary is required, the objective of security 
also refers to other issues. A summary of some information security objectives, shown in 
Table 2.2, is given in [60].  During a transaction, all parties involved should make sure that 
certain security objectives have been achieved. 

                                                           
1 An adversary in this thesis means a person or orgnization who intends to  obtain crucial or sensitive 

information from a system or make the system out of working via illegal ways, such as eavesdroping, 
hijacking, denial of service atacks ect. 
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Table 2.2: Some information security objectives. [60] 

Security 

Objectives 

Explanations 

Privacy or 
confidentiality 

Keeping information secret from all but those who are authorized to 
see it. 

Data integrity Ensuring information has not been altered by unauthorized or 
unknown means. 

Entity authentication 

or identification 

Corroboration of the identity of an entity (e.g., a person, a computer 
terminal, a credit card, etc.). 

Message 

authentication 

Corroborating the source of information; also known as data origin 
authentication. 

Signature A means to bind information to an entity 

Authorization Conveyance, to another entity, of official sanction to do or be 
something. 

Validation A means to provide timeliness of authorization to use or manipulate 
information or resources. 

Access control Restricting access to resources to privileged entities. 

Certification Endorsement of information by a trusted entity. 

Timestamping Recording the time of creation or existence of information. 

Witnessing Verifying the creation or existence of information by an entity other 
than the creator. 

Receipt Acknowledgement that information has been received. 

Confirmation Acknowledgement that services has been provided. 

Ownership A means to provide an entity with the legal right to use or transfer a 
resource to others. 

Anonymity Concealing the identity of an entity involved in some process. 

Non-repudiation Preventing the denial of previous commitments or actions. 

Revocation Retraction of certification or authorization. 

2.3 Security Attack 

At present, the main factors causing insecure problems are due to the flaws in the design of 
algorithms, protocols, systems and database. An adversary is able to take advantage of any 
flaw to launch different types of attack.  In [105], security attacks can be classified into 
passive attacks and active attacks. An "active attack" means an adversary trying to affect 
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their operations or alter system resources. A "passive attack" means an adversary trying to 
spy information from the system but does not affect system resources. 

2.3.1.1 Active attack 

An active attack can be launched to modify a data stream or create a fake data stream. It 
can be categorized into four types: replay, masquerade, modification of messages and 
denial of service. [4]  

 

A masquerade takes place when one entry pretends to be another authorized or legitimate 
entry in order to get access to restricted resource or infiltrate the system. It is also known as 
a spoofing attack. A reply attack means that an adversary captures a data unit and 
retransmits it to produce an unauthorized effect. Modification of messages usually involves 
altering, delaying or recording a legitimate message to produce an unauthorized effect. The 
denial of service attacks come in a variety of forms. There are three main forms of denial of 
service attack: consumption of scare resource, alteration of configuration information and 
physical destruction of network components. It aims to decrease the availability of the 
system.  

 

Attacks are actually quite difficult to be prevented, since there are a lot of potential 
vulnerabilities in the design of software and network. Fortunately, according to the 
properties of active attacks, it is possible to detect them and recover information from any 
disruption or delays caused by them. 

2.3.1.2 Passive attack 

Passive attack takes place when an adversary eavesdrops, monitors the transmissions 
between two communication entries to obtain useful information. There are two types of 
passive attacks: release of message contents and traffic analysis [4].  

 

The release of message contents is referred that an adversary can learn the contents of 
information between two entries when they are communicating, such as a telephone 
conversation or an electronic mail message. Traffic analysis is much more difficult than the 
release of message contents. In order to prevent any adversary from knowing the 
information, two entries may mask the contents of messages or other information traffic. 
Therefore, if an adversary captures a message from then, he has no idea what the message 
means without knowing the way to extract the message. However, a smart adversary might 
still be able to observe the pattern of the message. For instance, an adversary could still 
observe the frequency and the length of messages being exchanged. This leaked 
information might be helpful for the adversary to guess the nature of the communication 
which was taking place [4].  
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Passive attacks present the opposite characteristics of active attacks. Since passive attacks 
do not affect system resources at all, it is very difficult to detect them. One of the most 
effective way to prevent passive attacks is to encrypt messages. However, it will obviously 
increase the complexity of communications to some extent. 

 

2.4 Cryptography 

As mentioned above, one way to prevent passive attacks is to use encryption scheme to 
protect information. Encryption/decryption scheme is related to cryptographic algorithms. 
The definition of cryptography is given in the book [60]: “Cryptography is the study of 
mathematical techniques related to aspects of information security such as confidentiality, 
data integrity, entity authentication, and data origin authentication.”  

 

Cryptography has a very long history. It can be traced to 4000 years ago from its initial and 
limited use by the Egyptians. Kings and generals communicated with their armies using 
some simple and basic masking methods to prevent the enemy from knowing sensitive 
military information. One of the earliest cryptosystems is called shift ciphers, often attributed 
to Julius Caesar. Encryption is simply shifting each letter in the text by certain places in the 
alphabet. Decryption is accomplished by shifting letters back. This cryptosystem had been 
used for centuries. Even as late as 1915, the Caesar cipher was still in use [5]. Later in the 
sixteenth century, a variation of the shift cipher, named Vigenère cipher, was invented. Even 
into the twentieth century, this cryptosystem was widely considered to be secure. However, 
in the 1920s, Friedmen finally developed additional methods to break Vigenère and its 
related cipher.  

 

Although those classical cryptosystems are too weak to be broken by computers today, they 
give very good illustrations of several of the important ideas of cryptology. Modern 
cryptography today draws heavily upon mathematics, computer science and cleverness, but 
it still uses many same basic principles as classical cryptosystems, such as transposition, 
substitution, padding or block division. The huge difference is that the proliferation of 
computers in the mid 20th century called for the demand to protect information in digital 
form. Also with the help of super computers, modern cryptographic algorithms should be 
design as complex as possible against all kinds of cryptanalytic attacks.  

 

In modern cryptosystems, there are a number of a number of basic cryptographic primitives 
used to provide information security. These can mainly be divided into three catalogs: 
symmetric-key primitives, public-key primitives and unkeyed primitives. Figure 2.1 provides 
a schematic listing of the primitives considered and how they relate [60]. More details are 
discussed as follows. 
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Figure 2.1: A taxonomy of cryptographic primitives. [60] 

2.4.1 Basic Concept 

Before introducing more details of cryptographic algorithms, some basic terminology and 
concepts are necessary.  

 

1) Encryption domains 

A denotes a finite set named the alphabet of definition. For instance, A = {0, 1}, the binary 
alphabet, is a frequently used alphabet of definition.  
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M denotes a set named the message space. M consists of strings of symbols from an 
alphabet of definition. Elements in M are called plaintext.  

 

C denotes a set named the ciphertext space. C also consists of strings of symbols from an 
alphabet of definition. Elements in C are called ciphertext.  

 

2) Encryption and decryption transformations 

K denotes a set named the key space. Each element e ∈ K is called a key. Each e uniquely 
determines a bijection from M to C, defined as an encryption function Ee. Conversely, an 
element d ∈ K also uniquely determines a bijection from C to M, defined as a decryption 
function. The keys e and d, sometimes denoted by (e; d), are referred to as a key pair. Note 
that e and d could be the same.  

 

An encryption scheme is constructed with a message space M, a ciphertext space C, a key 
space K, a set of encryption transformations {Ee: e ∈ K}, and a corresponding set of 
decryption transformations {Dd: d ∈ K}. [60] 
 

3) Communication participants 

An entry is referred to a party who sends, receives or manipulates information. A sender is a 
legitimate entry who transmits information. A receiver is an entry to whom the corresponding 
sender intends to transmit information. An adversary is an entry who tries to defeat security 
strategy and obtain the information transmitted between a sender and a receiver.  

 

4) Achieving confidentiality 

In order to achieve confidentiality, an encryption scheme should be used as follows. As 
described in the book [60], the sender and the receiver should firstly choose or exchange a 
key pair (e, d) in a secure way. If the sender wishes to send a message m ∈ M, he 
computes c = Ee(m) and transmits it to the receiver. When receiving c, the receiver 
computes m = Dd(c). Finally, the original message m is recovered, since for each e ∈ K, 
there is a unique d ∈ K such that Dd  = Ee-1; that is Dd (Ee (m)) = m for all m ∈ M.   

 

5) Cryptology and cryptanalysis 

The three names, cryptography, cryptology and cryptanalysis, are often used 
interchangeably. Cryptology is the all-inclusive term for the study of communication over 
nonsecure channels [1]. The process of designing systems to do this is called cryptography. 
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Cryptanalysis deals with breaking cryptographic techniques or information security services. 
Another word cryptosystem is referred to a set of cryptographic primitives used to provide 
information security services [60].  

 

2.4.2 Symmetric Encryption 

Symmetric cryptography uses one private key for both encryption and decryption. That is for 
the sets of encryption and decryption transformations {Ee: e ∈ K} and {Dd: d ∈ K}, e = d. 
Other terms used in the literature are single-key, one-key, private key, and conventional 
encryption [60]. All of the classical (pre - 1970) cryptosystems are symmetric. 

 

A further division of symmetric cryptosystems is block ciphers and stream ciphers. To use 
block cipher, the plaintext should be divided into an identical fixed length. Then each block 
of the plaintext is encrypted respectively.  Different from block ciphers, stream ciphers work 
on individual plaintext digits with a time-varying transformation. 

 

To apply a block cipher to encrypt a plaintext with an arbitrary length, there are several 
different of modes of operation. A mode of operation is a technique to enhance the effect of 
a cryptographic algorithm or to adapt the algorithm for an application, such as applying a 
block cipher to a sequence of data blocks or a data stream [4]. Five commonly used modes 
of operation are defined by NIST, which are listed in the Table 2.3. 

Table 2.3: Block Cipher Modes of Operation [4] 

Mode Description Typical Application 

Electronic 

Codebook 

(ECB) 

Each block of 64 plaintext bits is encoded 

independently using the same key. 

• Secure transmission of single 

values (e.g., an encryption 

key) 

Cipher Block 

Chaining 

(CBC) 

The input to the encryption algorithm is the 

XOR of the next 64 bits of plaintext and the 

preceding 64 bits of ciphertext. 

• General-purpose block-

oriented transmission 

• Authentication 

Cipher 

Feedback 

(CFB) 

Input is processed j bits at a time. Preceding 

ciphertext is used as input to the encryption 

algorithm to produce pseudorandom output, 

which is XORed with plaintext to produce 

next unit of ciphertext. 

• General-purpose stream-

oriented transmission 

• Authentication 

Output 

Feedback 

Similar to CFB, except that the input to the 

encryption algorithm is the preceding DES 

• Stream-oriented transmission 

over noisy channel (e.g., 
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(OFB) output. satellite communication) 

Counter 

(CTR) 

Each block of plaintext is XORed with an 

encrypted counter. The counter is 

incremented for each subsequent block. 

• General-purpose block-

oriented transmission 

• Useful for high-speed 

requirements 

 

Symmetric cryptography algorithms are typically fast and suitable for processing large 
amount of data. The main disadvantage of symmetric algorithms is that sender and receiver 
have to agree on a same private key in a secure manner prior to their communications.  

 

Symmetric cryptography can provide not only confidentiality, but also a degree of 
authentication, since data encrypted with one private key cipher cannot be decrypted with 
any other keys. Therefore, as long as the symmetric key cipher is kept secret by the two 
parties using it to encrypt communications, each party can be sure that is communicating 
with the other as long as the decrypted messages continue to make sense. 

 

2.4.3 Asymmetric Encryption 

Asymmetric cryptography is also referred to public-key cryptography. Different from 
symmetric encryption, a pair of keys is required during asymmetric encryption, public key 
and private key. That is for the sets of encryption and decryption transformations {Ee: e ∈ K} 
and {Dd: d ∈ K}, e ≠ d.  The asymmetric encryption and decryption are described as follows. 

 

An entry Alice has a pair of keys, e and d. Assume that e is Alice’s public key and d is 
Alice’s private key. In a secure system, it is a computationally infeasible task of computing d 
given e. We define an encryption transformation Ee using public key e and a decryption 
transformation Dd using private key d. Another entry Bob wants to send a message m to 
Alice.  First, Bob should obtain an authentic copy of Alice’s public key. Then he encrypts the 
message m applying the encryption transformation Ee to obtain the ciphertext c = Ee(m) and 
send c to Alice. For decryption, Alice uses the decryption transformation Dd to recover the 
original message: m = Dd(c).  

 

As the definition of public-key encryption, the public key need not be kept secret. Therefore, 
any entry can obtain a copy of Alice’s public key. Any ciphertext encrypted using Alice’s 
public key can only be decrypted by Alice. The reason why Bob should get an authentic 
copy of Alice’s public key is that if the public key is not authentic, but transmitted through an 
unsecure channel, this public key may be manipulated by an adversary. Then Alice will be 
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able to decrypt the cipher to obtain the original message. One way to obtain an authentic 
copy of public keys is through Certification Authority (CA).  

 

Each wide used asymmetric cryptography algorithm is based on one of the intractability of 
certain mathematical problems. There are several famous intractable mathematical 
problems, such as integer factorization problem and discrete logarithm problem. Each of 
them has one or several typical and widely used cryptography algorithms or standards. For 
instance, the most famous public-key algorithm RSA is based on integer factorization and 
one of the most widely used public-key algorithms ECC is based on discrete logarithm 
problem.  

 

One of the most widely used applications of public-key algorithms is key exchange or key 
negotiation for symmetric encryptions. Since for symmetric cryptosystems, a sender and a 
receiver may be hundreds of kilometers apart and have not agreed on a same secure key to 
use. With public-key algorithms, this problem can be solved amazingly. Another application 
of public-key algorithms is to achieve authentication. As mentioned above, any message 
encrypted with Alice’s public key, only Alice with her private key can decrypt this ciphertext, 
which can guarantee Alice’s identity.  

 

When comparing symmetric encryption with asymmetric encryption, one of the most 
distinguished differences is the complexity. Since big number operation is involved in the 
calculation of public-key encryption and extremely long key is required to achieve a certain 
level of security, all public-key algorithms are much slower by an order of magnitude than 
symmetric-key algorithms. Other differences are listed in [60], shown in the Table 2.4. 

Table 2.4: Differences between symmetric and asymmetric encryption [60] 

Differences Symmetric Encryption Asymmetric Encryption 

An extensive history Long Short 

Data throughput Fast Slow 

Key length Relatively short Long 

Generating pseudorandom number Yes No 

Key management Poor Strong 

Digital signature Inefficient Efficient 
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2.4.4 Hash and MAC Algorithms 

One of the basic components of many cryptographic algorithms is hash function, often 
informally called a one-way hash function. The definition of hash function is described in the 
book [60]: “A hash function is a computationally efficient function mapping binary strings of 
arbitrary length to binary strings of some fixed length, called hash-values.” More properties 
of hash function which should be satisfied are: 

� Consider h as a hash function. Given a message m, then the message digest h (m) can 
be computed efficient and fast. 

� Hash function h must be a one-way function. That is, Given another message digest y, 
it is computationally infeasible to find an m’ with h(m’) = y. 

� Hash function h must be collision-free. That is, it is computationally infeasible to find two 
messages m1 and m2 with h (m1) = h (m2). 

 

As the definition, hash function implies an unkeyed hash function. At the highest level, hash 
functions may be divided into two catalogs: unkeyed hash functions and keyed hash 
functions. In [60], it gives a simplified classification, illustrated in Figure 2.2.  

 

Figure 2.2: Simplified classification of cryptographic hash functions and applications. [60] 

 

In the Figure2.2, MDCs represent modification detection codes. It is a subclass of unkeyed 
hash functions. It can provide data integrity assurances, since even 1 bit in the input 
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message changes; the whole output will be totally different. Therefore, to verify the integrity 
of an input message, the receiver can compute the message digest using the same hash 
function as the sender and compare it with the original message digest provided by the 
sender. If they are equal, it is confident that the message is not altered during the 
transmission.  MACs represent message authentication codes. Different from MDCs, MACs 
have two different parameters, a message input and a secret key. The secret key is only 
shared by the sender and the receiver. Therefore, MACs cannot only provide message 
integrity, but also authentication, assuring the source of the message. 

 

Another application of hash function is digital signature. Since the length of a digital 
signature is at least as long as the document being signed, it is much more efficient to sign 
the hash value of the document rather than the whole document [1]. Through this way, both 
time and space are saved. However, one important thing should be mentioned that the hash 
function for the digital signature must be carefully design, especially strong collision-free. 
Otherwise two messages m1 and m2 will have the same hash value, which leads to the 
same digital signature value. 

 

2.4.5 Cryptanalytic attacks 

Previously, we have mentioned several methods of security attacks. However, there are 
several types of attacks aiming to break encryption schemes, in order to recover plaintext 
from ciphertext, or even more drastically, named cryptanalytic attacks.  

 

There are four basic types of cryptanalytic attacks that an adversary might be able to use. 
The differences between these attacks are the amounts of information the adversary can 
obtain when trying to determine the key. 

� Ciphertext only: The adversary only has a copy of a ciphertext. This is the most 
unsatisfactory case for the adversary to deduce the key of a cryptosystem. 

� Known plaintext: The adversary has a copy of a ciphertext and its corresponding 
plaintext.  

� Chosen plaintext: The adversary is able to choose any plaintext and obtain the 
corresponding ciphertext and trying to use the resulting ciphertext to deduce the secret 
key of the cryptosystem. 

� Chosen ciphertext: The adversary is able to choose any ciphertext and obtain the 
corresponding plaintext and trying to use the result to deduce the secret key of the 
cryptosystem. 

Most of these types of cryptanalytic attacks also apply to digital signature schemes and 
message authentication codes. 
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One of the most famous assumptions in modern cryptography is Kerckhoffs’s principle [1]. 
This important principle refers that the security of a cryptosystem should not be based on 
the obscurity of the algorithms used, but only based on the secret key. It means that the 
adversary may have knowledge of the algorithms, but if he has not any idea of the secret 
key, the whole cryptosystem is still considered to be secure enough. 

 

2.5 Communication and Network Security 

Previously, we have introduced many basic cryptographic tools, from symmetric algorithms 
to hash functions. However, only with these tools, we are far from making our 
communication secure enough. Cryptographic algorithms should be applied based on a 
certain security protocol or mechanism. A faulty designed security protocol or mechanism 
with serious flaws, even with the most secure cryptographic algorithm, can be easily broken 
by an adversary without any cryptanalytic attack. For instance, for a poor design secure 
protocol, an adversary may simply parse a data packet and apply a reply attack to obtain 
the important information without knowing the secret key. Therefore, a well designed 
security protocol or mechanism is vital important.  

 

This part we will introduce several important and widely-used security protocols and 
mechanism to carry out secure transactions over unsecure channels.  

 

2.5.1 Kerberos 

Originally, Kerberos in the Greek and Roman mythology is a many-headed dog guarding the 
entrance of Hades. Now Kerberos is referred to a trusted third party used for authentication 
and authorization originally as a part of Project Athena at MIT in early 80s last century.  

 

One of the significant features and design objectives of Kerberos is Single Sign On (SSO), 
which means that a user only needs to sign in once for credentials and then obtain a 
Kerberos ticket-granting ticket (TGT) and with TGT the user gains access to all systems.  
Other design objectives of Kerberos are: i) secure: An eavesdropper should not be able to 
impersonate a user; ii) Modular and distributed architecture: servers can back up each other 
for reliable and the system is able to support a large number of clients and servers for 
scalable [4]. Kerberos is very is suited for large environments, two reasons are: i) No 
individual computers have to do authentication; ii) Application servers only have to share a 
secret with the Kerberos server. 
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Kerberos performs both authentication and authorization. An entire authentication or 
authorization progress of a Kerberos system is quite complicated. For more details of 
authentication see the book [4].  There are two versions of Kerberos in common use. 
Version 4 implementations still exist, using symmetric algorithm DES for encryption. Version 
5 corrects some of the security deficiencies of version 4 and has been issued as a proposed 
Internet Standard [106]. In version 5, new symmetric algorithm AES is supported. 

 

2.5.2 SSL/TLS 

Secure Sockets Layer (SSL) was developed by Netscape in order to perform http 
communications securely. The version 3 was released in 1995 and is the preferred version 
today. Transport Layer Security (TLS) is a slight modification of SSL version 3 and was 
released by IETF in 1999. The latest version as of today is TLS 1.2. [1] 

 

SSL is designed to make use of TCP to provide a secure and reliable end-to-end service. 
Therefore, SSL can be used to secure all TCP connections. SSL is two layers of protocols, 
rather than a single security protocol. It is illustrated in Figure 2.3.  

 

Figure 2.3: SSL Protocol Stack [4] 

From the figure, SSL consists of two main components. The first component is SSL Record 
Protocol, which is responsible for compressing and encrypting data and serves for various 
higher-layer protocols. It provides both confidentiality and message integrity. A collection of 
three higher-layer protocols, SSL Handshake Protocol, SSL Change Cipher Spec Protocol, 
and SSL Alert Protocol, is the second component of SSL. This component is responsible for 
setting up and maintaining the parameters used by SSL record protocol [1]. Among these 
protocols, SSL Handshake Protocol is the most complex one. It is not only used for 
authentication between a server and client, but also for negotiation of encryption and MAC 
algorithms and secret keys to be used to protect data sent in an SSL record. The 
Handshake Protocol is used before any application data is transmitted [4]. For more details 
of SSL/TLS see [1] [4].  
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2.5.3 IPSec 

Different from SSL/TLS, IPSec can encrypt and/or authenticate all traffic at IP level, not TCP 
level. Therefore, all distributed applications, including remote logon, client/server, e-mail, file 
transfer, web access, and so on, can be secured.  

 

The IPSec specification is quite complicated, consisting of a number of documents. Among 
all these documents, the most important ones are [107], [108], [109] and [110], which are 
issued in November of 1998. 

 

Two protocols with different headers in IPSec can be used to provide security. One is an 
authentication protocol with Authentication Header (AH), the other is a combined 
encryption/authentication protocol with Encapsulating Security Payload (ESP). For ESP, 
there are two cases: with and without the authentication option. These two protocols can 
provide different services, which is illustrated in Table 2.5.  

Table 2.5: IPSec Services [4] 

 

 

IPSec also has two modes: Transport Mode and Tunnel Mode. Transport mode provides 
protection for upper-layer protocols. Tunnel mode provides protection to the entire IP 
packet. With tunnel mode, a number of hosts on networks behind firewalls may engage in 
secure communications without implementing IPSec [4]. 

 

According to the properties of IPSec, there are several outstanding benefits of IPSec: i) 
Since IPSec is applied at IP level, it is totally transparent to all above applications. All upper 
layer software on a user or server system will not be affected. ii) IPSec can be transparent 
to end users. iii) IPSec can provide security for individual users if needed. [4] 
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2.5.4 Virtual Private Networks 

If an international company has many branches locating in different places in the world, for 
information security, it is necessary to connect every computer through an underlying local 
or wide-area network to setup a network which is isolated from other networks. Traffic 
separation can be obtained in several ways: a) Physical separation using different hardware; 
b) Temporal separation  (separation  in time); c) Logical separation, for example, by 
software  as with VLAN; d) Cryptographic  separation. The most secure and reliable way is 
the last one and the solution is Virtual Private Networks (VPN).  

 

Two basic technologies make VPN possible: encryption and tunneling. For confidentiality, 
VPN encrypts output data and encapsulating it into another packet, such as IP-in-IP 
encapsulation, for transmission. When this encrypted packet reaches the end of the tunnel, 
the router responsible for receiving will parse the packet, decrypts the data and forward the 
inner data packet.  

 

There are three basic types of VPN systems: Host-to-Host VPN, Remote Access VPN and 
Site-to-Site VPN. For Remote Access VPN, a user needs to connect to a VPN gateway, 
which authenticates and gives access to authorized resources in the site. For Site-to-Site 
VPN, a VPN gateway is also involved. The sending VPN gateway will encrypt all outgoing 
messages and the receiving VPN gateway will do the decryption. Since tunneling 
technology is used, it is totally transparent to all users, which is a main advantage of VPN. 
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3 SURVEY OF CRYPTOGRAPHIC ALGORITHMS 

This chapter is a survey that covers most of the wide-used cryptographic algorithms, 
including symmetric ciphers, asymmetric ciphers and MAC algorithms. For each kind of 
algorithm, we first give a brief introduction about its basic information and then analyze its 
security and performance.  All the analysis is based on related works that have been done  
before by other researchers. In order to make our survey more convincing and help us to 
find the most suitable algorithms, we studied as many algorithms as we are able to. For 
performance analysis, the best method is to implement them in target devices and evaluate 
the results.  However, due to the limitation of time, we cannot implement all studied 
cryptographic algorithms. Therefore, based on related works, we pick up candidates within 
much smaller subset for further implementation in our target devices. At this end, according 
to the analysis, we choose three candidates from symmetric algorithms and MAC algorithms, 
two candidates from asymmetric algorithms, for the software implementation in ARM 
platform.  

 

3.1 Symmetric Algorithms 

We have previously introduced that symmetric algorithms use only one secret key for both 
encryption and decryption. Symmetric algorithms are typically fast and suitable for 
processing large amount of data. There are a number of widely used symmetric algorithms, 
which is listed and briefly described and analyzed as follows.  

 

3.1.1 Introduction 

3.1.1.1 Data Encryption Standard (DES) / 3DES / DES-X/ DESL: 

DES is a block cipher, one form of symmetric cryptography algorithms, which was designed 
by IBM and selected by the National Bureau of Standards (NBS) in the early 70’ies. It has 
been the standard encryption algorithm for civilian applications for more than 25 years. It 
has been considered completely insecure due to the short key length. 

 

Since the key length of DES is too short, an improvement to enhance security is to encrypt 
data using DES more than once. However, double DES encryption (2DES) is also 
considered insecure due to the meet-in-the-middle attack. Triple DES (3DES) is considered 
to be temporarily secure enough and still widely used recently.  

 

DES-X is another variant on the DES block cipher intended to increase the complexity of a 
brute force attack using a technique called key whitening. Another reason for DES-X is that 
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the speed of 3DES is unacceptable in many situations. Therefore, there is a need for an 
efficient way to strengthen DES.  

 

DESL (DES Lightweight extension) is a new extension to DES and was suggested by A. 
Poschmann et al. in 2006 as a new alternative for ultra-low-cost encryption. To decrease 
chip size requirements it uses only one S-Box repeated eight times. It therefore requires 
38% fewer transistors than the smallest DES implementation [99]. 

 

3.1.1.2 Blowfish / Twofish: 

Blowfish was designed by Bruce Schneier in 1993 [103]. Blowfish is still considered to be 
secure, since there is no effective cryptanalysis found. It also provides a decent encryption 
performance in software implementation. However, Bruce Schneier himself recommended 
using the more advanced version - Twofish instead. 

 

Twofish is another block cipher published in 1998 by Counterpane Labs. It was one of the 
five Advanced Encryption Standard (AES) finalists. However, it was not selected by NIST as 
AES, since the winner of AES (Rijndael) is considered to have better performance than 
other finalists in both hardware and software in average. Twofish allows a wide range of 
tradeoffs between size and speed. It is also designed to be efficient on a wide range of 
platforms. Although it was not selected as AES, it may still be the suitable choice in our case 
due to the different platform. 

 

3.1.1.3 Tiny Encryption Algorithm (TEA)/ XTEA / XXTEA 

The TEA is a block cipher presented in 1994 [104]. The aim of TEA is to minimize memory 
footprint and maximize speed. It is a Feistel type cipher that uses operations from mixed 
(orthogonal) algebraic groups. There are two variants of TEA - extended TEA (XTEA) and 
Corrected Block TEA (XXTEA), which were designed to correct weaknesses in the original 
TEA. 

 

3.1.1.4 Rijndael Algorithm (AES): 

Rijndael was selected the winner of AES by NIST in 2000 [1]. It is based on a design 
principle known as a Substitution permutation network. It is fast in both software and 
hardware. Unlike its predecessor DES, Rijndael does not use a Feistel network. 

 

3.1.1.5 Skipjack Algorithm: 
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Skipjack was developed by the U.S. National Security Agency (NSA). It is one of the 
simplest and fastest block cipher algorithms, which is very important for embedded systems. 
Skipjack or a variant of Skipjack is now used in TinySec , SenSec and MiniSec in Wireless 
Sensor Networks [45] [44] [46]. 

 

3.1.1.6 Scalable Encryption Algorithm (SEA): 

The Scalable Encryption Algorithm was proposed by Franccois-Xavier Standaert et al. and 
is designed for processors with a limited instruction set. The proposed design is parametric 
in the text, key and processor size, provably secure against linear/differential cryptanalysis, 
allows efficient combination of encryption/decryption and “on-the-fly" key derivation. Target 
applications for such routines include any context requiring low-cost encryption and/or 
authentication [101].  

 

3.1.1.7 HIGHT Algorithm: 

HIGHT is another block cipher proposed by Deukjo Hong et al. and provides low-resource 
hardware implementation, which is proper to ubiquitous computing device such as a sensor 
in Wireless Sensor Network (WSN) or a RFID tag. HIGHT does not only consist of simple 
operations to be ultra-light but also has enough security as a good encryption algorithm 
[100].  

 

3.1.1.8 Other Symmetric Cryptographic Algorithms: 

Besides the algorithms mentioned above, there are still a number of other symmetric 
algorithms. However, we cannot include all symmetric algorithms in our survey due to the 
time limitation. We will skip the rest and the reasons will be given as follows: 

 

FEAL is no longer considered in our survey, since the inventor of FEAL, Akihiro Shimizu and 
Shoji Miyaguchi from NTT, noticed that Camellia is strongly recommended to replace FEAL 
in new applications in the future for efficiency and security. 

 

SAFER++128 is not included, since according to [6] there some concerns about certain 
structural properties of SAFER++128 and the low security margin of SAFER++128. 

 

MARS is not included. The reason is its high algorithmic complexity, which results in high 
RAM and ROM usage [7]. 
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Serpent is not included, since it consistently performs poorly in software encryption and 
decryption due to its large security margins [7]. Therefore, in the competition of AES, 
supporter of Serpent prioritized security over performance. 

 

SHACAL-2 is a new 256-bit hash function-based block cipher recommended by NESSIE, 
but has not been studied by NIST or CRYPTREC. Also 256-bit is a little too long as a 
symmetric algorithm for embedded applications. 

 

Although IDEA, RC5, RC6, MISTY1, KASUMI and Camellia are also considered to be fast, 
efficient and secure algorithms, as their authors announced, they are all patented. And IDEA 
has very unbalanced performance of encryption and decryption. For more details see [102]. 
If these algorithms are used for commercial purpose, some extra fee needs to be paid to 
authors or certain organizations. Some of them are only free to use in certain projects, such 
as OpenSSL. From the related work [96], these algorithms cannot provide outstanding and 
better performance than unpatented algorithms and the cost is always a vital and important 
issue. Therefore, they are not considered in our study.  

 

Remaining symmetric algorithms are not included due to the time limitation. 

 

3.1.2 Security and Performance Analysis 

3.1.2.1 Security Analysis 

Security of cryptographic algorithms should be considered with high priority. However, the 
security of cryptographic algorithms is very difficult to measure. Some basic information 
related to security, such as key length and number of rounds, is shown in Table 3.1. 

Table 3.1: Details of Symmetric Cryptographic Algorithms 

Algorithm Name Key Size (bit) Block Size (bit) Structure Round 

DES 56 64 Balanced Feistel 

network 

16 

3DES 168, 112 or 56  64 Feistel network 48 DES-quivalent 

rounds 

DES-X 184 64 Feistel network 16 

Blowfish 32–448 bits in 

steps of 8 bits; 

default 128 bits 

64 Feistel network 16 
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Twofish 128, 192 or 256 

bits 

128 Feistel network 16 

TEA, XTEA 128 64 Feistel network variable; 

recommended 64 

Feistel rounds (32 

cycles) 

XXTEA 128 arbitrary, at least 

two words (64) 

Unbalanced 

Feistel Network 

depends on the 

block size; 

~52+6*words (6-

32 full cycles) 

AES (Rijndael) 128, 192 or 256 128 Substitution-

permutation 

network 

10, 12 or 14 

(depending on key 

size) 

Skipjack 80 bits 64 unbalanced 

Feistel network 

32 

HIGHT 128 64 Feistel Network 32 

Note: DESL has several modes, values change depending on working mode 

SEA has various key size, round depending on parameters 

 

The security of a cryptographic algorithm is related to how difficult it is for adversary to find 
out the secret key. The most naïve and the simplest way to determine the secret key is a 
brute force attack. Therefore, the key length is related to how much time an adversary will 
spend on searching the entire keyspace. However, longer keys cannot guarantee more 
difficulty for an adversary to determine the key, since the design of the algorithm also plays 
a critical role in security. Key length is a reference to analysis security of an algorithm, but it 
is far from enough. Respective security analysis is discussed as follows. 

 

1) DES/3DES/DES-X/DESL: 

DES is considered entirely insecure since the key length is too short. The key size is only 56 
bits, so the key space size = 256 ≈ 7 * 1016. In January 2000, distributed.net organized idle 
CPU time of 100,000 computers to search 250G [key/sec]. DES is cracked in 22 hours with 
a brute force attack. 

 

3DES is considered much more secure than DES due to the longer key size. However, 
according to [54], the meet-in-the-middle attack on 3DES can reduce its “efficient” key 
length to 112. 
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The key size of DESX is increased to 56 + 2×64 = 184 bits. However, the efficient key size 
is only increased to 56 + 64 – 1 – lb(M) = 119 – lb(M) ≈ 119 bits, where M is the number of 
known plaintext/ciphertext pairs the adversary can obtain, and lb denotes the binary 
logarithm. According to the research done by Kaliski and Robshaw, DESX actually improves 
security against differential and linear cryptanalysis, increasing the required number of 
known or chosen plaintext s to be in excess of 260 [55]. Also it has been proven, in a strong 
sense, to add much strength against exhaustive key search. 

 

DESL can be used in simple mode, with only 56 bit key size. This implementation is only 
relevant for the application where short-term security is needed, or where the values 
protected are relatively low [99]. If a higher security level is needed, the key-whitening can 
be used.  In [99], designer declares that DESL can be resistant to Differential Cryptanalysis 
and Davis Murphy Attack, Linear Cryptanalysis, and if key whitening is used, then against 
brute force attack. However, since it is new, no current attack is found on DESL. 

 

2) Blowfish/Twofish: 

There is no effective cryptanalysis on the full-round version of Blowfish known publicly as of 
2009. In 1996, Serge Vaudenay found a known-plaintext attack requiring 28r+1 known 
plaintexts to break, where r is the number of rounds. Moreover, he also found a class of 
weak keys that can be detected and broken by the same attack with only 24r+1 known 
plaintexts. This attack cannot be used against the regular Blowfish; it assumes knowledge of 
the key-dependent S-boxes. Vincent Rijmen, in his Ph.D. thesis, introduced a second-order 
differential attack that can break four rounds and no more. There is no known way to break 
the full 16 rounds, apart from a brute-force search [59].  

 

Up to now, Twofish is still considered to be secure enough. One famous cryptanalysis on 
Twofish block cipher published by Shiho Moriai and Yiqun Lisa Yin in 2000 is a truncated 
differential cryptanalysis of 12- and 16-round version [97]. The paper claimed that a 16-
round truncated differential with probability of about 2-57.3 is discovered. They claimed a 
good pair of truncated differentials can be found only with roughly 251 chosen plaintexts. 
However, Twofish is still far from being broken.  

 

3) Tiny Encryption Algorithm (TEA)/ XTEA / XXTEA: 

There are several weaknesses in TEA. However, most notably it suffers from equivalent 
keys—each key is equivalent to three others, which means the effective key size is only 126 
bits. [63] Therefore, TEA is a definitely not a smart choice as a cryptographic hash function.  
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Revisions of TEA, XTEA and XXTEA are designed due to this problem. As of 2004, the best 
attack reported on XTEA is a related-key differential attack on 27 out of 64 rounds of XTEA, 
requiring 220.5 chosen plaintexts and a time complexity of 2115.15. XXTEA is considered to be 
secure enough. However, recently on May 4, 2010, a chosen plaintext attack for XXTEA 
using about 259 queries and negligible work was announced in [8].  

 

4) AES (Rijndael): 

Unlike most other block ciphers, AES has a very neat algebraic description [56]. In 2002, a 
theoretical attack, termed the "XSL attack", was announced by Nicolas Courtois and Josef 
Pieprzyk, purporting to show a weakness in the AES algorithm due to its simple description 
[57]. Since then, other papers have shown that the attack as originally presented is 
unworkable.  

 

On July 1, 2009, Bruce Schneier presented a related-key attack on the 192-bit and 256-bit 
versions of AES discovered by Alex Biryukov and Dmitry Khovratovich; the related key 
attack on the 256-bit version of AES exploits AES' somewhat simple key schedule and has 
a complexity of 2119 [52]. This is a follow-up to an attack discovered earlier in 2009 by Alex 
Biryukov, Dmitry Khovratovich, and Ivica Nikolic, with a complexity of 296 for one out of 
every 235 keys. 

 

The first attack against a reduced 8-round version of AES-128 was published in November 
2009. This known-key distinguishing attack is an improvement of the rebound or the start-
from-the-middle attacks for AES-like permutations, which view two consecutive rounds of 
permutation as the application of a so-called Super-Box. It works on the 8-round version of 
AES-128, with a computation complexity of 248, and a memory complexity of 232 [53].  

 

Although, many attack methods on AES appear these years, AES is still considered to be a 
very secure algorithm, and in June 2003, the US Government announced that AES may be 
used to protect classified information.  

 

5) Skipjack Algorithm: 

The best and most efficient cryptanalysis of Skipjack is announced by Biham, Shamir and 
Biryukov's attack. They used a new cryptanalytic technique, based on impossible 
differentials to show that Skipjack reduced from 32 to 31 rounds can be broken by an attack 
which is faster than exhaustive search. Truncated differentials and later a complementation 
slide attack were published against all 32 rounds of Skipjack cipher. However, Reichardt 
and Wagner showed that there are no meaningful truncated differentials for Skipjack with 
full 32 rounds, providing heuristic evidence that Skipjack may be secure against truncated 
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differential distinguishing attacks [9]. In [96], author concluded that Skipjack with full 32 
rounds is secure enough as of today, with a security margin of 2013. 

 

6) SEA Algorithm: 

SEA is designed to be resistant to known attacks: Linear and differential cryptanalysis, 
extensions of linear and differential cryptanalysis, a dedicated attack against a modified 
version, square attacks, truncated and impossible differentials, interpolation attacks, slide 
attacks, related-key attacks, and algebraic attacks [101]. Since it is a new algorithm, no 
practical attack is found on SEA currently. 

 

7) HIGHT Algorithm: 

In [100], the authors claim that HIGHT is secure enough for cryptographic applications. It 
can be resistant to a number of different cryptanalytic attacks, such as differential 
cryptanalysis, linear cryptanalysis, truncated differential cryptanalysis, impossible differential 
cryptanalysis, saturation attack, boomerang attack, interpolation, higher order differential 
attack, slide attacks, related-key attacks, and algebraic attacks [100]. However, in [10], 
authors analyzed the resistance of HIGHT against impossible differential attacks by 
mounting new 26-round impossible differential and 31-round related-key impossible 
differential attacks where the former requires time complexity of 2119.53 reduced round 
HIGHT evaluations and proved it is slightly better than exhaustive search.  

 

3.1.2.2 Performance Analysis 

As we mentioned before, performance analysis in this part is based on related work. It gives 
us basic information how these algorithms perform. In the end, it helps us to reduce our 
candidates to a smaller subset.  

 

1) Performance Comparison of DES, 3DES, Blowfish and AES. 

Although, as we introduced previously that DES is considered to be entirely insecure and 
Blowfish is the previous version of Twofish, it is still necessary for us to know how well these 
algorithms perform. [64] has given more prospective about the performance of these 
compared algorithms. They conducted it on two different machines: P-II 266 MHz and P-4 
2.4 GHz and implemented them in Java. The final results showed that Blowfish has a very 
good performance compared to other algorithms. Also it showed that AES has a better 
performance than 3DES and DES. Amazingly it shows also that 3DES has almost 1/3 
throughput of DES, or in other words it needs 3 times more time than DES to process the 
same amount of data. For more details see [64]. 
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2) Performance Comparison of Skipjack, AES, Twofish, RC5, RC6, MISTY1, KASUMI, 
Camellia [96]. 

Although, RC5, RC6, MISTY1, KASUMI, Camellia are not in our list, it is still helpful to have 
brief idea of their performance. In [96], the authors gave a comprehensive comparison of all 
these block cipher based on WSN. For more details see [96]. They presented a ranking of 
these ciphers based on code size, data memory, en/decryption efficiency and key setup 
efficiency. 

According to their evaluation result, Skipjack, either size-optimized or speed-optimized, is on 
the top in every test issue. Rijndael has median performance among all competitors. 
Compared with Rijndael, Twofish is better with respect to footprint. All the rest, RC5, RC6, 
MISTY1, KASUMI and Camellia did not provide more attractive and overwhelming 
performance than Rijndael, Skipjack and Twofish. Since these algorithms are patented, we 
will not consider them in our study. 

 

3) Performance Comparison of DES, AES, DES-X, DESL, HIGHT, TEA, XTEA [98]. 

In [98], authors implemented these algorithms for the 8-bit AVR architecture, which is a 
modified Harvard architecture. They took MICA Motes, which is a platform for testing query 
processing techniques over ad-hoc sensor networks, as an adequate target platform and 
used an ATmega128 or ATmega128L microcontroller as CPU. The ATmega128 (L) is 
equipped with 128 kbytes of Flash memory and 4 kbytes of SRAM. They implemented them 
in AVR-Assembly language by themselves, except for the AES, which is an implementation 
of the Chair for Communication Security at the Ruhr University of Bochum, and SEA, which 
is an existing implementation in assembly language available. For more details see [98]. 
Finally, they came to a conclusion of throughput of encryption and decryption of these 
algorithms, which is shown in Figure 3.1.  

 

Figure 3.1: Throughput of encryption and decryption of algorithms [98] 

From these results, it is obvious that AES has the highest throughput of encryption and 
decryption. The total throughputs of TEA, XTEA, SEA, DESL, DES and DES-X are very 
close to each other. 

 



    Page 

  33/88 
 

3.1.3 Candidates 

As described above, our survey list of symmetric algorithms includes: DES, 3DES, DES-X, 
DES-L, Blowfish/Twofish, TEA/XTEA/XXTEA, Rijndael, Skipjack, SEA, and HIGHT. Finally, 
we select Rijndael, Skipjack, XTEA, XXTEA and Twofish as our candidates for further 
software implementation. The reasons of algorithm selected are given as follows.  

 

Rijndael is selected as our candidate, since it is the Advanced Encryption Standard selected 
by NIST after extensive security and performance evaluation and adopted as a U.S. Federal 
Information Processing Standard. It is also recommended by NESSIE as one of the 128 bits 
block ciphers [6].  

 

Skipjack is selected as our candidate, since it is used as a default block cipher in TinySec 
[44] and MiniSec [46]. TinySec is an optional part of TinyOS, which is the de facto operating 
system for Wireless Sensor Networks, while MiniSec is a secure network layer protocol for 
Wireless Sensor Networks. SenSec, another cryptographic layer for Wireless Sensor 
Networks, [45] uses a variant of Skipjack, named Skipjack-X. Skipjack-X enhances the key 
length of original Skipjack to be resistant to brute force attacks. All these imply that Skipjack 
may be a good choice for embedded applications. 

 

XTEA and XXTEA are selected as our candidates. The most attractive property of XTEA 
and XXTEA is their extremely simple implementation in software. As described above, 
XTEA also has decent performance. We add XXTEA as a candidate since it provides more 
security than XTEA, although the latest attack on XXTEA shows it does not provide 
intensive entire 128 bits security. We still would like to evaluate the performance on our 
platform.  

 

Twofish is also selected as one of our candidates. Although Twofish did not win the 
competition of AES, it is still considered to be efficient on a wide range of platforms. Sano et 
al. in [47] implemented five AES finalists in a Z80 core with Toshiba’s arithmetic 
coprocessor. According to their results, Twofish is in the second place of performance, very 
closed to Rijndael, which is the first. Rijndael can provide good performance in average, but 
it is proven that Rijndael can perform better than Twofish in every platform. We would like to 
evaluate the difference between them in our platform.  

 

All the rest are not selected as our candidates. The reason is briefly shown as follows. 

 

DES is not a good candidate, since its key length is too short to be resistant to brute force 
attack. Although it is efficient in both software and hardware implementation, it cannot prove 
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convincing security. 3DES is not selected as a candidate, since its performance is 
unacceptable. As analysis above, 3DES has only 1/3 throughput of DES, which cannot 
satisfy the performance requirement. DES-X is not selected. DES-X is DES compatible. The 
main motivation for DES-X is to improve on the resistance of DES to exhaustive key search 
attacks. It is a good choice for old platforms which already have DES in use. For new 
applications, it is better to use other block ciphers. DES-L, SEA and HIGHT are not selected 
as our final candidates, since they are brand new. They are not recently widely studied by 
researchers to show they are secure enough. Therefore, very rare applications use these 
algorithms as their block cipher schemes. For our practical application in industrial networks, 
it is recommended to apply well studied and widely used block ciphers.  

 

3.2 MAC Algorithms 

Protecting the integrity of data is of utmost importance for industrial automation networks. In 
many cases not the confidentiality of the data, but its authenticity and integrity are vital 
important. Therefore, we need to study hash algorithms to guarantee the data integrity. 
Previously we have mentioned that hash functions can be catalogued into two types: 
unkeyed hash functions and keyed hash functions. Of the numerous categories in such a 
functional classification, two types of hash functions are considered: modification detection 
codes (MDCs) and message authentication codes (MACs). 

 

For industrial automation networks, not only integrity, but also authentication is another 
important issue. As we introduced before, MAC has two parameters, a message input and a 
secret key, shared by the sender and the receiver. According to this property, MAC cannot 
only provide message integrity, but also authentication. Therefore, MAC is more suitable for 
our case rather than MDC.  

 

Normally, MAC can be constructed in several different ways. There are two basic and widely 
used methods. One is MAC based on block cipher. The simplest way is CBC-MAC; the 
other is based on cryptographic hash functions. The later one can also be classified into two 
types. One is using traditional hash function to build MAC, such as HMAC-MD5 or HMAC- 
SHA1. The other is more advanced method, which is using universal hash function to 
construct MAC, such as UMAC. We will discuss them in details below. 

3.2.1 Introduction 

3.2.1.1 Block cipher based MAC 

There are several MAC algorithms based on block cipher. The details are listed below: 

1) CBC-MAC 
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The most commonly used MAC algorithm based on a block cipher makes use of cipher-
block-chaining. A common way to create a MAC is CBC-MAC to encrypt the (padded) 
message with a block cipher in CBC mode using a fixed IV (e.g. 0). The last ciphertext block 
is the MAC. (All intermediate blocks discarded.) There are several variations of CBC- MAC: 

� Prepend message with the length of message in bytes before MAC computation;  

� Truncate the computed MAC if block size is larger than desired MAC size.  

 

2) OMAC/CMAC and several variant of CBC-MAC 

There are several variants of CBC-MAC and OMAC is one of them. OMAC is short for one-
key MAC. OMAC allows and is secure for messages of any bit length (while the CBC MAC 
is only secure on messages of one fixed length, and the length must be a multiple of the 
block length). Officially there are two OMAC algorithms (OMAC1 and OMAC2). OMAC1 is 
equivalent to CMAC. NIST Special Publication 800-38B Recommendation for Block Cipher 
Modes of Operation: the CMAC Mode for Authentication has been finalized on May 18, 
2005 [87].  

 

Other variants of CBC-MAC are:  

a) EMAC: The Encrypted MAC (EMAC), also known as double MAC (DMAC), is a popular 
variant of the CBC-MAC developed by the RACE project. It is derived from the CBC function 
by additionally encrypting the output with an independent permutation and secure without 
any restriction on the message space [12]. The EMAC is also is one of the message 
authentication codes recommended by NESSIE [6].  

 

b) XCBC: The XCBC scheme was originally proposed by Black and Rogaway in 2000, with 
the objective of providing a provably secure CBC-MAC scheme which minimizes the 
number of block cipher encryptions and decryptions [14].  

 

c) RMAC: It was proposed by Jaulmes, Joux and Valette, which is an extension of EMAC. 
The block cipher algorithms currently approved to be used in RMAC are the AES and triple-
DES.  

 

d) TMAC: stands for two-key MAC. It is a refinement of XCBC shown by Black and 
Rogaway. It was proposed by Kurosawa and Iwata with the goal of reducing the number of 
required keys from three to two [90]. 
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e) PMAC: PMAC stands for Parallelizable MAC. It was created by Phillip Rogaway in 2002. 
PMAC is a simple and fully parallelizable block-cipher mode of operation for message 
authentication. It is deterministic, resembles a standard mode of operation (and not a 
Carter-Wegman MAC), works for strings of any bit length, and employs a single block-cipher 
key [85]. 

 

3.2.1.2 Hash function based MAC 

MAC can be constructed with traditional iterative hash functions (different from new 
universal hash function). Two famous MAC algorithms are constructed based on hash 
functions, HMAC and TTMAC.  

 

TTMAC, also known as Two-Track-MAC, was proposed by K.U.Leuven, Belgium and debis 
AG. It is based on a slightly modified version of the HASH function RIPEMD-160 taking 
advantage of the two trails used in its compression function [6]. It is in comparison with the 
MDx-MAC based on RIPEMD-160, much more efficient on short messages and percentage-
wise slightly more efficient on long messages [18]. NESSIE recommended it as one of the 
secure and efficient MAC algorithms.  

 

HMAC is one of the most successful constructions of MAC. It was first published in 1996 by 
Mihir Bellare, Ran Canetti, and Hugo Krawczyk. HMAC is a variant of NMAC, though NMAC 
is rarely used today. It does not require the direct loading of the key into the chaining 
variable of the compression function, but only calls to a hash function. Actually, it is a 
practical advantage to build MAC through this mechanism, due to the wide availability of 
free library code for hash functions. Since any iterative hash function can be used in the 
calculation of HMAC and the security and performance of HMAC is closely related to the 
inbuilt hash function, it is necessary for us to study traditional hash functions. Here we only 
list several widely used hash function families. 

 

1) MD5 

Message-Digest algorithm 5 (MD5) is a widely used cryptographic hash function with a 128-
bit hash value and specified in [111]. MD5 was designed by Ron Rivest in 1991, improved 
for its previous version MD4. Although MD5 is slightly slower than MD4, it is proven to be 
more secure. However, MD5 is found not to be collision resistant [19].  

 

2) SHA-1 / SHA -2 

The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. National 
Institute for Standards and Technology (NIST) for certain U.S. federal government 
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applications. SHA-1 is also one of the most widely used of hash functions, and is used in 
several widely-used security applications and protocols, such as Digital Signature Stand 
(DSS). 

 

The SHA–2 family includes 224, 256, 384 and 512-bit variants. For more details of SHA-2 
see [93]. SHA-256 is used to authenticate Debian Linux software packages and in the DKIM 
message signing standard; SHA-512 is part of a system to authenticate archival video from 
the International Criminal Tribunal of the Rwandan genocide. SHA-256 and SHA-512 are 
proposed for use in DNSSEC. 

 

3) HAVAL 

HAVAL was proposed by Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992. It 
compresses a message of arbitrary length into a digest of 128, 160, 192, 224 or 256 bits. In 
addition, HAVAL has a parameter that controls the numbers of passes a message block (of 
1024 bits) is processed. 

 

4) RIPEMD - 160 

RIPEMD-160 is a hash function based on MD4, taking into account knowledge gained in the 
analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-160 compression function maps 
21-word input to5-word output. Each input block is processed in parallel by distinct versions 
of the compression function. The 160-bit outputs of the separate lines are combined to give 
a single160-bit output. For more details see [95]. There also exist 128, 256 and 320-bit 
versions of this algorithm, called RIPEMD-128, RIPEMD-256, and RIPEMD-320. 

 

5) WHIRLPOOL 

WHIRLPOOL is a cryptographic hash function, which is designed by Vincent Rijmen and 
Paulo S. L. M. Barreto. It operates on messages with the length less than 2256 bits, and 
produces a 512-bit long message digest. There are three versions of WHIRLPOOL. The 
final version was adopted by the International Organization for Standardization (ISO) in the 
ISO/IEC 10118-3:2004 standard [20]. 

 

6) SHA -3 

The competition of SHA3 is still ongoing. Now it is on Round 2 and there are 14 candidates. 
Final result will be present in 2012. For more details see the web page of SHA3 competition 
at NIST. 
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3.2.1.3 Carter-Wegman MAC 

Both block cipher based MAC and hash function based MAC are widely used, but nowadays 
it is widely considered that the state-of-the-art MAC algorithms are based on universal hash 
function. Universal hash functions, first introduced by Carter and Wegman, provide a unique 
solution to the aforementioned security problems. Roughly speaking, universal hash 
functions are collections of hash functions that map messages into short output strings such 
that the collision probability of any given pair of messages is small. A universal hash 
function family can be used to build an unconditionally secure MAC [81]. Recently there are 
two famous MAC algorithms based on strongly universal hash function and AES, named 
Poly1305-AES and UMAC. 

 

1) Poly1305 - AES 

Poly1305-AES is one of the state-of-the-art message-authentication codes suitable for a 
wide variety of applications. Poly1305-AES computes a 16-byte authenticator of a variable-
length message, using a 16-byte AES key, a 16-byte additional key, and a 16-byte nonce. 
The security of Poly1305-AES is very close to the security of AES. There are several useful 
features of Poly1305-AES, such as extremely high speed, cipher replaceability and etc [91]. 

 

2) UMAC 

Black et. al. describe a new provably secure message authentication code, called UMAC.  
UMAC is the fastest message authentication code that has been reported on in the 
cryptographic literature. First described in 1999, UMAC has undergone significant revisions 
since its introduction. Large algorithmic changes were made in 2000 to make UMAC faster 
on short messages. Small algorithmic changes were made in 2004 and a number of UMAC 
options were eliminated for simplicity [81] [83].  

 

3.2.2 Security and Performance Analysis 

3.2.2.1 Block Cipher Based MAC 

1) CBC-MAC 

In [21], Bellare, Kilian, and Rogaway have already proven that CBC-MAC construction is 
secure if the underlying block cipher is secure. However, in the end of [21], they 
emphasized a restriction of the use of CBC-MAC. The restriction is CBC-MAC does not 
handle variable-length inputs. If an adversary knows two legitimate message-tag pairs, it is 
extremely easy for him to generate a new legitimate message-tag. Other disadvantages are 
mandatory serial evaluation and no added resistance to key-search attacks [84]. 
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However, there are still several advantages of CBC – MAC, which are arbitrary message 
lengths, efficiency, simplicity and familiarity, no re-keying and proven security. CBC-MAC is 
very efficient in some cases if block cipher is already used, since it is not necessary to build 
additional hash functions. However, it is considered that the speed of CBC-MAC is slower 
than HMAC in most cases. 

 

2)  Variants of CBC-MAC: 

� EMAC: In [12], Erez Petrank and Charles Rackoff have proven that EMAC is secure. 
They mentioned that if there is an attack against it, then an attack with comparable 
parameters can also be set on the underlying block cipher. It means that the security of 
EMAC is proven on the assumption that the underlying block cipher is pseudo-random. 
For performance, Erez Petrank and Charles Rackoff also proved that there is almost no 
additional cost for EMAC on that of using CBC MAC to provide a secure solution for 
authenticating variable-length messages. Also in [6], NESSIE analyzed that the 
performance and key-agility of EMAC are reasonable. They mentioned that since the 
block length is smaller compared to the schemes based on a hash function, then EMAC 
is preferable for short messages.  

 

� XCBC: XCBC is initiated by the important lemma in the literature. With this lemma, we 
can generate two computationally different pseudorandom permutations out of one 
secret pseudorandom permutation and we can prove the proposed construction is 
secure. However, in [24] the author introduced forgery attacks and key recovery attacks 
on XCBC. Another disadvantage of XCBC is that three keys are involved in the 
calculation of XCBC. 

 

� RMAC: In [16] [22], researchers have analyzed the security of RMAC. In [22], NESSIE 
mentioned that the main advantage of the randomised variant RMAC is that it offers 
improved resistance against attacks that are based on internal collisions. On the other 
hand RMAC needs stronger assumptions for its security proof; for instance, the 
underlying block cipher must be secure against related-key attacks. As the same 
meaning, in [16], authors present a serious attack against RMAC using 3DES. They 
also present generic attacks against RMAC using any block cipher but with certain 
parameters. This attack is able to find one of the two keys in the system faster than by 
an exhaustive search. Also in [23], the author introduced trivial key recovery attack on 
the RMAC with about 2n computations.  

 

� TMAC: TMAC is a refinement of XCBC. In XCBC, three keys with total length (k + 2n) 
bits are used, where k is the key length of the underlying block cipher and n is its block 
length. In TMAC, total key length reduces to (k + n ) bits, since TMAC just changes the 
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third key K3 in XCBC with K2×x. The proposers of TMAC proved that it is a variable 
length pseudorandom function with fixed length by assuming that the underlying block 
cipher is a pseudorandom permutation. However, in [23] [24] [25], all authors present 
key recover attacks against TMAC, they also gave the suggestion to improve the 
security of TMAC. For performance, inventor of TMAC declared several advantages of 
TMAC, such as efficiency, since TMAC uses max block cipher calls, no re-keying, 
backwards compatibility and simplicity. 

 

� PMAC: The inventor of PMAC announced in [85] that PMAC is proven to be secure, as 
long as the underlying block ciphers meet a standard cryptographic assumption. 
However, in [25], authors present forgery and Key Recovery Attacks on PMAC and 
mentioned that PMAC have no significant advantage in comparison with other well-
established MAC schemes. For performance, the inventor introduced in [85] that key 
setup of PMAC is very cheap: one block-cipher call and, if desired, a few XORs and 
conditional (128-bit) shifts; PMAC has a small footprint, even a memory-minimal 
implementation doesn't give up much speed. The biggest advantage of PMAC is the 
high efficiency in parallel environment. However, in a serial environment, PMAC is 
about as efficient as CBC MAC. In [86], the author shows that PMAC-AES128 is even 
8% slower than CBCMAC-AES128 in a serial environment. 

 

� CMAC: CMAC is one of the versions of OMAC. Different from XCBC and TMAC, only 
one key is needed in CMAC. The saving of the key length makes the security proof of 
CMAC substantially harder than those of XCBC and TMAC [89]. Proposer of CMAC 
proved that OMAC is secure, where the security analysis is in the concrete-security 
paradigm. In [24], Mitchell presents a key recover attack against CMAC. However, just 
soon after that, the proposer of CMAC immediately announced that Mitchell’s result was 
incorrect [26]. After analysis of [24], they announced that Mitchell’s claims do not give 
any information except for trivial and expected attacks, do not break the security bound 
of CMAC and do not find any “significant weakness” in CMAC. Therefore, CMAC is still 
secure until now.  

 

� Comparison of RMAC, EMAC, XCBC, TMAC and CMAC [88]: In [88], Tetsu Iwata 
presented an entire comparison of these MAC algorithms. He showed that for security, 
EMAC, XCBC, TMAC and CMAC are better than RMAC. There is no significant 
difference among EMAC, XCBC, TMAC and CMAC in security. For key length, he 
showed CMAC gives the best performance, since CMAC is still as secure as EMAC, 
XCBC, and TMAC despite  its optimal key length. After comparison in number of key 
schedulings, number of block cipher invocations and number of block cipher invocations 
during the pre-processing time, he made conclusion that CMAC gives the best 
performance and trade of in efficiency. 
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3.2.2.2 Hash Function Based MAC 

1) MAC Algorithms: 

� TTMAC: TTMAC stands for Two-Traces MAC algorithm. TTMAC is one of the 
recommended MAC algorithms by NESSIE. For security, since TTMAC is based on 
RIPEND-160, it takes advantage of the structure of RIPEND, which consists of two 
parallel trails. Since two trails are used, the proposer of TTMAC showed that there is 
impossible for an adversary to do a bijective operation, where he can choose the 
bijective. Another technology they used to guarantee the transformation of TTMAC to 
be a one-way function is that a feedback is used to counter a straightforward inverse 
operation. They also proved that TTMAC is resistant to general attacks, such as key 
searching, guessing the MAC and internal collision. NESSIE also analyzed the security 
of TTMAC. NESSIE declared that TTMAC has the highest security level of the MAC 
primitives considered by NESSIE [6]. They also mentioned that the security can be 
proven on the assumption that the underlying compression function is pseudo-random. 
However, the decision made by NESSIE was published in 2003. In 2004, the 
researcher Wang Xiaoyun had found the collision in RIPEND [94]. Although there are 
still no attacks published against TTMAC, we still suspect the security of TTMAC. For 
performance, NESSIE listed two advantages of TTMAC: especially efficient in the case 
of short messages and having optimal key-agility [6].  

 

� HMAC: In [17], Bellare et al. gave a theoretical support for the security of HMAC. HMAC 
can be considered to be a particular case of NMAC, so the security of HMAC is closely 
related to the security of NMAC. According to the analysis of NMAC and the difference 
between NMAC and HMAC, he proved that the security of HMAC is based on the 
security of “built-in” compressing function. He also mentioned that two particular 
parameters, opad and ipad, are very important, since they provide computational 
independence between the two derived keys [17]. To the end, he proved that only one 
key used in HMAC does not provide less security than using two independent keys 
against exhaustive key searching attacks. NESSIE also proved the security of HMAC in 
[22]. In [34], authors presented distinguishing and forgery attacks against HMAC when 
HMAC employs hash functions that have slow difference propagations. For 
performance, how fast HMAC can achieve is essentially related to the performance of 
the underlying hash function [17]. However, one disadvantage of HMAC is that it is not 
very efficient short messages. For instance, when the length of an original message is 
less than one block length, HMAC still calls the built-in hash function for twice, which is 
significant inefficient.  

 

2) Hash Functions: 
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Since the security and performance of HMAC are closely related to hash functions in use, 
we evaluate several commonly used hash functions. 

� MD5: In 2004, collisions are found by researcher Wang Xiaoyun which makes MD5 no 
longer secure [19]. Years after that more and more attacks on MD5 were proposedd. 
MD5 now is weaker than weak. The recommendation of NIST is not to use HMAC-MD5 
as MAC any more. 

 

� SHA-1 / SHA-2: The hash-value of SHA-1 is 160 bits and five 32-bit chaining variables 
are used. SHA-1 was considered robust enough against brute-force attacks. However, 
in 2005, Chinese cryptographer Xiaoyun Wang found collision-finding attacks that 
require only 263 operations, rather than the 280 operations of the birthday attack. Such 
an attack is feasible for a very well-funded adversary. Therefore, in March 2006, the 
Policy on hash functions was published: “Federal agencies should stop using SHA-1 for 
digital signatures, digital time stamping and other applications that require collision 
resistance as soon as practical, and must use the SHA-2 family of hash functions for 
these applications after 2010.” However, we should notice that this attack on SHA-1 is 
more harmful to digital signature, but for MAC, this attack may make less sense. 
However, in [35], the authors presented distinguishing, forgery, and partial key recovery 
attacks on HMAC using collisions a reduced version of SHA-1.  Therefore, for security 
consideration, new applications based on HMAC concerning security more than 
performance, HMAC-SHA2 should be considered instead of HMAC-SHA1. 
 
Although collisions were found in SHA-1, SHA-2 family is not affected. Until now, no 
efficient attacks on full SHA-2 family are proposed, but still several security analysis on 
SHA-2 were published. Yoshida and Biryukov showed at SAC 2005 a pseudo-collision 
for a simplified variant of SHA-256 (up to 34 steps). In [27], Somitra and Palash 
proposed improved attacks against 22, 23 and 24-step SHA-2 family using a local 
collision given by Sanadhya and Sarkar (SS) at ACISP ’08. However, these attacks do 
not affect full SHA-2 family. Therefore, SHA-2 is still considered to be secure. For 
performance, in [6], NESSIE wrote that the performance of SHA-2 family is acceptable, 
SHA-512 and SHA-384 being a big faster than Whirlpool on most platforms. SHA-256 is 
about twice faster on most platforms.  

 

� HAVAL: Collisions were found in HAVAL in [19]. In 2006, cryptographer Wang Xiaoyun 
again gave the full key-recovery attacks on the HMAC/NMAC instantiated with 3 and 4-
Pass HAVAL [28], which made HMAC-HAVAL totally insecure and it should not be used 
any longer. 

 

� RIPEND-160: In 2004, collisions were found in RIPEND by cryptographer Wang 
Xiaoyun [19]. And in 2007, in [28], the authors showed the first cryptanalytic attacks on 
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the last three rounds of RIPEMD-128. Since RIPEND-160 is an improved version of 
RIPEND and RIPEND-128, to our knowledge, there is no efficient attack against 
RIPEND-160 until now. For performance, in [95], it is shown that RIPEND-160 
implemented both in 80x86 assembly language and C language and optimized for the 
Pentium processor is still slower than SHA-1.  

 

� WHIRLPOOL: The proposer of WHIRLPOOL declared it is secure. He claimed 
WHIRLPOOL is resistant to differential attacks and attacks against the internal block 
cipher [31]. NESSIE also claimed WHIRLPOOL is a collision-resistant hash function. 
They claimed that the best known attack on WHIRLPOOL finds non-random properties 
when the compression function is reduced to six rounds or less (out of ten) [6]. However, 
in [32], authors presented a distinguishing attack on the full compression function of 
Whirlpool by improving the rebound attack on reduced Whirlpool with two techniques. 
For performance, WHIRLPOOL is not that fast. NESSIE also claimed that on most 
platforms it is a bit slower than SHA-512. 

  

3.2.2.3 Cater – Wegman MAC 

1) Poly1305-AES:  

In [91], the proposer of Poly1305-AES proved the security of it. He claimed that the security 
of Poly1305-AES is very close to the security of AES. He proved that it can guarantee that 
the only way to break Poly1305-AES is to break AES, which is very secure. Even if an 
adversary is able to get all the authenticated messages, to check whether or not the 
receiver accepts a forgery and to affect the sender’s choice of messages, Poly1305-AES is 
still very secure. However, the user of Poly1305-AES should be responsible to keep the 
secret key unpredictable and never use the same nonce for two different messages. 
Otherwise, Poly1305-AES cannot guarantee its security any longer.  

 

For performance, the proposer declared in [91] that Poly1305-AES can achieve an 
extremely high speed, for example, fewer than 3.1L + 780 Athlon cycles for an L-byte 
message and 1000 keys can be handled simultaneously without cache misses. There is a 
comparison of Poly127-AES, which is a former version of Poly1305-AES, and SHA1, shown 
in the next part. 

  

2) UMAC:  

The security of UMAC is based on the security of its underlying cryptographic functions: the 
key-derivation function (KDF) and the pad-derivation function (PDF).  These functions use a 
block cipher. The default block cipher is AES, which is considered to be secure. Another 
important property of UMAC is using UHASH function as the core technology. The UHASH 
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function does not depend on cryptographic assumption, which means the strength of 
UHASH is guaranteed regardless of advances in cryptanalysis [33]. The analysis in [33] also 
shows that UMAC is very secure, resistant against several types of cryptographic attacks, 
such as reply attacks or side-channel attacks.  

 

For performance, in [92], a comparison of UMAC performance and Poly127 and SHA1 is 
given. The performances were measured on 2.7GHz Pentium 4 running Red Hat Linux. The 
SHA-1 speeds were acquired by using the command "openssl speed sha1". Since 
theoretically the speed of HMAC-SHA1 should never be faster than SHA-1, SHA-1 can be 
used as a reference. The result shows that UMAC32, UMAC64 and UMAC96 are all much 
faster than HMAC-SHA1. Hash127-AES, also called Poly127-AES, a former version of 
Poly1305-AES, has a similar performance of UMAC, since they are both based on strong 
universal hash functions. In [36], the performance of UMAC is also measured by NESSIE. 
They claimed that for message authentication, UMAC is very fast on the PCs, slow on the 
Sun. However, for key setup stage, UMAC is exceedingly slow.  

 

3.2.3 Candidates 

As described above, there are three types of MAC algorithms in our survey list. For block 
cipher based MAC, there are original CBC-MAC, EMAC, XCBC, RMAC, TMAC, PMAC, 
CMAC (OMAC); for hash function based MAC, there are TTMAC and HMAC; for Carter-
Wegman MAC, there are Poly1305-AES and UMAC. Since HMAC can adopt any hash 
functions, we have studied several hash functions, they are MD5, SHA-1, SHA-256, HAVAL, 
RIPEND-160, WHIRLPOOL. It is necessary to evaluate all these three types of MAC 
algorithms. We choose CMAC from block cipher based MAC algorithms, HMAC- SHA1 and 
HMAC-SHA2 from hash function based MAC algorithms and UMAC from Carter-Wegman 
MAC algorithms. The reasons of our choice are given as follows. 

 

We select CMAC as a candidate, since it is NIST Special Publication 800-38B 
Recommendation for Block Cipher Modes of Operation in 2005. As we pointed out, the 
comparison between CMAC, EMAC, XCBC, RMAC and TMAC done by Tetsu Iwata in [88] 
shows that CMAC is the most efficient block cipher based MAC among them. Therefore, we 
select CMAC as our candidate from block cipher based MAC instead of EMAC. Another 
PMAC is proven to be very efficient in parallel environment, but in our case we cannot 
obtain any advantage from it.  

 

We select HMAC-SHA1 and HMAC-SHA256 as our candidates. HMAC-SHA1 is widely 
applied in a number of projects and security protocols today, such as IPSec and TLS. We 
add HMAC-SHA256, one member of SHA-2 family, as one candidate due to the security 
consideration. Although there is no efficient attack proposed on HMAC-SHA1, the security 
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of HMAC-SHA1 is still suspected, since as we introduced before that partial key recovers 
attacks on the reduced version of HMAC-SHA1 was proposed [35]. Therefore, NIST also 
recommended using HMAC- SHA256 for security consideration. We do not select MD5 and 
HAVAL as hash functions, since HMAC-MD5 and HMAC-HAVAL are almost broken. We do 
not select RIPEND-160, since the reduced version of RIPEND-160 is also insecure as we 
analyzed before. It is unnecessary for us to choose RIPEND-160, since we have already 
selected SHA-1. We do not select WHIRLPOOL hash function, since the message digest of 
WHIRLPOOL is 512 bits long, which may perform very slow in our platform. According to 
the results from NESSIE, HMAC-WHIRLPOOL is slightly slower than HMAC-SHA512, even 
HMAC-SHA384 [6]. Although security is vital important in our application, yet we still need to 
consider the performance of MAC algorithms.  

 

We choose UMAC as one of our candidates, since UMAC is considered to be state-of-the-
art MAC algorithm. UMAC is analyzed by NESSIE that it is by far the fastest of the MAC 
primitives [6]. Although Poly1305-AES is also based on universal hash functions and 
considered to be very efficient, we only need to choose one of them as our candidate 

 

3.3 Asymmetric Algorithms 

Previously, we have introduced that asymmetric algorithms require a pair of keys for 
encryption and decryption. Each entity can only keep its private key secret and make its 
public key known to every other entry. Asymmetric algorithms can be used to exchange key 
or key negotiation for symmetric encryption and achieve authentication, such as digital 
signature. Each widely used asymmetric cryptography algorithm is based on one of the 
intractability of certain mathematical problems. There are several famous intractable 
mathematical problems, such as integer factorization problem and discrete logarithm 
problem. Each of them has one or several typical and widely used cryptography algorithms 
or standards. Here we only include some of them according to related works in our survey 
and skip the rest. 

 

3.3.1 Introduction 

3.3.1.1 RSA Public-key Algorithm 

The RSA encryption algorithm is named after Rivest, Shamir and Adleman. It is the most 
widely used public-key cryptosystem. It is based on the intractability of the integer 
factorization and may be used to provide both secrecy and digital signatures. 

3.3.1.2 Rabin Public-key Algorithm 

Rabin public-key algorithm was first introduced by Michael O. Rabin in 1979. Similar to RSA, 
Rabin is also based on the factorization problem of large numbers. It was the first example 
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of a provably secure public key encryption scheme – the problem faced by a passive 
adversary of recovering plaintext from some given ciphertext is computationally equivalent 
to factoring. The disadvantage of Rabin cryptosystem is also quite obvious that each output 
of the Rabin function can be generated by any of four possible inputs, which means that if 
each output is a ciphertext, extra complexity is required on decryption to identify which of 
the four possible inputs was the true plaintext. 

3.3.1.3 ElGamal Algorithm 

The ElGamal public-key encryption is based on the Diffie-Hellman key agreement. Its 
security is based on the intractability of the discrete logarithm problem and the Diffie-
Hellman problem. It was described by Taher Elgamal in 1985. Two kinds of ElGamal public-
key algorithms are widely used, basic ElGamal and generalized ElGamal. 

3.3.1.4 Elliptic curve cryptography (ECC) 

Elliptic curve was first introduced by Miller and Koblitz in the mid-1980s into cryptography 
and then Lenstra showed how to use it to factor integers [1]. Nowadays, ECC has more 
attentions from people due to much smaller key size than RSA with the same level of 
security. It results in faster computation, less memory footprint and power consumption, 
which is quite useful for embedded systems and mobile devices. ECC includes many 
different types of primitives, such as Elliptic Curve Digital Signature Algorithm (ECDSA) for 
signatures and Elliptic Curve Diffie-Hellman (ECDH) for key agreement. 

3.3.1.5 NTRU Algorithm 

NTRU cryptosystem was proposed by Joseph H. Silverman, Jeffrey Hoffstein and Jill Pipher 
at Brown University. The encryption of NTRU is using a mixing system based on polynomial 
algebra and reduction modulo two numbers. These two numbers cannot be prime numbers. 
The decryption of NTRU is using an unmixing system based on elementary probability 
theory. The advantages of NTRU system are easy key generation, fast 
encryption/decryption speed and decent memory requirement [37].  

3.3.1.6 Hyperelliptic Curve Cryptography (HECC) 

Hyperelliptic Curves is first suggested by Koblitz in 1988. It is based on using the jacobian of 
a hyperelliptic curve defined over a finite field. One of the most obvious advantages of 
HECC is that the operand size for HECC is at least a factor of two smaller than the one of 
ECC, which makes HECC more attractive than ECC in resource constrained platforms.  

3.3.1.7 Other Important Public Key Algorithms. 

McEliece Algorithm: McEliece Algorithm was developed in 1978 by Robert McEliece and is 
based on error-correcting codes. McEliece Algorithm is considered extremely secure. Even 
Quantum computers do not seem to give any significant improvements in attacking code-
based systems, beyond the generic improvements possible with Grover's algorithm [77]. 
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However, it is not included in our survey, since the drawback of this algorithm is also quite 
obvious that its public key is also extremely large, which is not suitable for embedded and 
resource constrained applications.  

 

Knapsack algorithm: Knapsack public-key encryption schemes are based on the subset 
sum problem. There are many variations of Knapsack algorithms, but Knapsack most, 
including the original - the Merkle-Hellman knapsack encryption scheme, have been 
demonstrated to be insecure [60].  Only the Chor-Rivest knapsack scheme is considered as 
a notable exception. However, a major drawback of the Chor-Rivest scheme is also that the 
public key is fairly large, which is also impractical in embedded systems. Therefore, it is not 
included in our survey. 

 

All the rest of asymmetric algorithms will not be included in our list due to the time limitation. 

 

3.3.2 Security and Performance Analysis 

3.3.2.1 RSA Public-key Algorithm 

1) Security: 

The adversary who wants to attack RSA cryptosystem is facing the RSA problem (RSAP) 
and integer factoring problem. Today one can factor N with approximately 650 bits using 
thousands of cooperating computers and sophisticated algorithms. Therefore, the 
recommended key size should be 1024-2046 bits depending on the security level of 
applications.  

 

There are several security threats depending on the usage of RSA for encryption. There are 
[60]: 
i) Small encryption exponent e. 
ii) Forward Search Attack 
iii) Small Decryption Exponent 
iv) Multiplicative Properties 
v) Timing Attack 
vi) Common Modulus Attack 

A number of cryptanalysis and attacks were presented against RSA. For instance, Martin 
presented a new attack RSA–CRT employing Montgomery exponentiation even with the 
lack of the chosen plaintext condition [40].  

2) Performance: 

Since RSA is based on arithmetic modulo of large numbers, the speed of a RSA system 
depends on the large number calculation speed. RSA is much slower than other symmetric 
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algorithms [67] .The traditional method for encryption and decryption is considered to be 
very inefficient. A lot of related works to enhance the speed of RSA system have been 
proposed these years. Some common methods are listed as follows to improve the 
encryption and decryption efficiency of RSA [67]. 
i) RSA with CRT 
ii) Batch RSA 
iii) MultiPrime RSA 
iv) MultiPower RSA 
v) Rebalanced RSA 
vi) RPrime RSA 

 

a) SW performance on common PC 

According to [68], the author has done the performance comparison of all above variants. 
His measurements were done conducted on an AMD Athlon; Win XP and Linux platform, 
with 256 MB of RAM and using C language with GNU MP [58] (library GMP). For more 
details see [68]. The result shows that RSA is rather slow, even with enhancement and 
running on stationary common PC. 

b) SW performance on embedded system; 

As shown above, both computation and memory footprint are unacceptable to embedded 
system, since the CPU speed and the size of memory are much smaller and limited in 
embedded system. Although some implementations of RSA have been done in DSP or 
SoC, the author in [71] shows that ECC algorithm has much better performance in 
embedded system than RSA does.  

3.3.2.2 Rabin Public-key Algorithm 

1) Security 

For a passive adversary who wants to recover the plaintext from the corresponding 
ciphertext in Rabin cryptosystem, he will face the SQROOT problem [60]. This problem is 
that factoring n and computing square roots modulo n are computationally equivalent. 
Therefore, assuming that factoring n is computationally intractable, Rabin cryptosystem is 
considered a provably secure public key encryption scheme to a passive adversary.  

 

However, Rabin cryptosystem is very vulnerable to a chosen ciphertext attack. For more 
details see [60]. Therefore, it is not adviced to use Rabin cryptosystem in an original way. 
Usually, adding appropriate redundancy prior to encryption would prevent the system from a 
chosen ciphertext attack. 

 

2) Performance 
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According to [11], Rabin encryption is an extremely fast operation as it only involves a single 
modular squaring. By comparison, RSA encryption with e =3 takes one modular 
multiplication and one modular squaring. Rabin decryption is much slower than encryption, 
but comparable in speed to RSA decryption. The reason for slow decryption in Rabin 
cryptosystem is that each output of the Rabin decryption function generates the correct 
result in addition to three false ones. In order to identify the correct one out of four, extra 
complexity is required. 

 

3.3.2.3 ElGamal Algorithm 

1) Security 

The difficulty of breaking the ElGamal cryptosystem is equivalent to solving the Diffie-
Hellman problem [60]. Actually, ElGamal encryption can be simply considered as 
comprising a Diffie-Hellman key exchange to determine a session key and encrypting the 
message by multiplication with that session key. Therefore, the security of the ElGamal 
cryptosystem is based on the discrete logarithm problem.  

 

Given the latest progress on the discrete logarithm problem [60], a 512-bit modulus p 
provides only marginal security from concerted attack. As of 1996, a modulus p of at least 
768 bits is recommended. For long-term security, 1024-bit or larger modulus should be 
used. 

 

2) Performance 

Encryption under ElGamal requires two exponentiations; however, these exponentiations 
are independent of the message and can be computed ahead of time if need be. Decryption 
only requires one exponentiation. But as author in [76] pointed out, the computation of 
ElGamal is still more intensive (in terms of processor time) than RSA. Therefore, for 
embedded systems, ElGamal is not the best choice. 

 

3.3.2.4 Elliptic curve cryptography (ECC) 

1) Security 

ECC is based on the algebraic structure of elliptic curves over finite fields. It is assumed that 
finding the discrete logarithm of an elliptic curve element is computationally unfeasible. It is 
well known for its small key size and computational efficiency, while preserving the same 
security level as the standard methods, such as RSA. Therefore, it has been incorporated 
into two important public-key cryptography standards, FIPS 186-2 [NIST00] and IEEE-
P1363 [IEEE1363-00]. According to these two standards, ECC can be used over prime 
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fields GF (p) and binary fields GF (2m). In order to prevent known attack on ECC, a series of 
recommended curves with well-studied properties can be found in these standards [70].  

 

To our knowledge, there is still no efficient attack proposed on the discrete logarithm 
problem for elliptic curves. However, there are still some attack methods, which may be 
security threats against ECC. The pohlig – Hellman attack may work in some situations. The 
Baby Step, Giant Step attack still works on ECC, but it requires too much memory to be 
practical in most situations [1].  In [73] [74], authors listed other potential attacks against 
ECC. 

 

2) Performance  

As described before, ECC can be basically used in either a prime field GF (p) or a binary 
field GF (2m), although other related work also has done in binary composite fields and 
prime extension fields. Here we just skip these two fields. Gura et al. claimed in [71] that 
binary polynomial field arithmetic is insufficiently supported by current microprocessors and 
would thus lead to lower performance. In [75], Michael Brown et al. proved it by software 
implementation over both prime and binary field and made a comparison of performance in 
both two fields on a Pentium II 400MHz workstation. Their result shows that for software 
implementation, ECC used over prime field has better performance than over binary fields 
for software implementation.  

 

In order to prove ECC is an efficient and well performed public-key algorithm, a number of 
comparisons with other public-key algorithms have been done by many researchers. Gura 
in [71] et al. compared the performance of ECC with RSA in an embedded system, Atmel 
ATmega128 at 8MHz and CC1010 at 14.75MHz in assemble code. In order to make the 
result more convincing, they implemented both algorithms in an optimized way. For RSA, 
they used Chinese Remainder Theorem (CRT), Montgomery Multiplication and optimized 
squaring to accelerate the speed of the RSA computation. For ECC, they also used some 
techniques, such as Curve-Specific Optimizations, to accelerate ECC. According to their 
results, ECC has better performance in both computation time and memory footprint [71]. 
Jens-Peter Kaps in his doctor dissertation [81] compared the performance of ECC with 
Rabin in hardware implementation. His result showed that at the same security level, Rabin 
has the same memory footprint as ECC, but for encryption, Rabin has better performance 
than ECC. However, he did not compare the performance in decryption, which is the 
weakness for Rabin cryptosystem. 

 

3.3.2.5 NTRU Algorithm 

1) Security 
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Different from other asymmetric algorithms, the security of NTRU algorithm is based on the 
interaction of the polynomial mixing system and the difficulty of finding the shortest vectors 
in lattices. Joseph et al. also proved the security of NTRU cryptosystem. They claimed the 
NTRU cryptosystem is secure, unless there is a new breakthrough in lattice reduction. They 
also proved that it is resistant to brute force attacks, meets-in-the-middle attacks, multiple 
transmission attacks and lattice based attacks. An exhaustive list of papers related to the 
security of NTRU can be found in [86].  

 

2) Performance 

NTRU encryption is considered to be highly efficient and particularly suitable for embedded 
systems, while providing a level of security comparable to that of other established 
schemes, in particular RSA. In [81], author even compared NTRU with ECC in low power 
devices with hardware implementation. For more details see [81]. The result shows that 
NTRU is 1.5 times faster than ECC and only has 1/7 memory footprint than ECC at the 
same level of security in hardware implementation. The comparison in software 
implementation is shown in the website of NTRU Cryptosystems, Inc. They declare that in 
the Palm platform, NTRU still has better performance than ECC.  

 

3.3.2.6 Hyperelliptic Curve Cryptography (HECC) 

1) Security 

An adversary who wants to attack HECC cryptosystems is also facing the Discrete 
Logarithm Problem (DLP). Against Hyperelliptic Curve Discrete Logarithm Problem 
(HEDLP), two types of attacks are quite more efficient than transitional ones, known as 
index-calculus attacks and Weil descent attacks [39]. The genus of hyperelliptic curve can 
affect the security of a HECC cryptosystem seriously. In [43], Pierrick Gaudry et al. 
described their breaking of a HECC cryptosystem based on a curve of genus 6 and proved 
that index-calculus attacks is faster than the Rho method for genus greater than 4. 
Therefore, most of HECC implementations only use binary fields and curves of genus 2 or 3 
and certain hyperelliptic curves should be definitely avoided. 

 

2) Performance 

If an appropriate hyperelliptic curve is chosen, the operand size for HECC is much smaller 
than the one of ECC. For instance, if genus is chosen as 2, lower bound for HECC is around 
80 bits, while for ECC at the security level, the key size is at least 160 bits. In [78] and [79], 
authors have implemented HECC in embedded systems using several types of 
microprocessor. The results show that optimized HECC has better performance than ECC. 
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3.3.3 Candidates 

Up to now, we have introduced and analyzed asymmetric algorithms including RSA, Rabin, 
ElGamal, ECC, NTRU and HECC. Finally, we choose RSA and ECC as our candidates for 
further evaluation. The reasons are explained as follows. 

 

We choose RSA as a candidate, since RSA is the most widely used public-key algorithms 
for decades. It is recommended by NESSIE for both asymmetric encryption schemes and 
digital signature [6]. Although we have described RSA for its inefficiency and low 
performance, we would like to evaluate the speed of RSA in our platform.  

 

We choose ECC as the other candidate. ECC has been well studied and applied to a 
number of projects for years. All the facts show that ECC can provide enough security and 
more efficient than RSA. In 2005, the U.S. National Security Agency (NSA) announced that 
Suite B includes ECDH and ECDSA as for key exchange, digital signatures.  NESSIE also 
recommended ECC as asymmetric encryption scheme and digital signature algorithm. We 
would like to compare how much faster ECC can perform compared to RSA in our platform.  

 

We do not select Rabin algorithm, since its unbalance with respect to performance for 
encryption and decryption. Although according to our analysis above, for encryption, Rabin 
algorithm may perform even better than ECC, Rabin is quite inefficient for decryption due to 
its inherent property. We do not select ElGamal algorithm, since the computation of 
ElGamal is even more intensive than RSA. That we do not select NTRU as our candidate is 
not because of the performance, but the patent. Actually, according to analysis above, 
NTUR performs even better than ECC. Since it is patented, we cannot find any source code 
from any open source project. Therefore, we are not able to evaluate it in our platform. We 
do not choose HECC, since the use of HECC is still of pure academic interest. The research 
on HECC is still ongoing.  
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4 BENCHMARKING ON ARM PLATFORM 

4.1 Introduction to ARM Platform 

ARM (Advanced RISC Machines) is a world-leading provider of embedded microprocessors. 
It offers a very wide range of microprocessors based on ARM architecture, which is famous 
as high performance, small implementation size, low cost and low power consumption.  The 
reason for these properties is due to the architectural simplicity of ARM core. Except 
microprocessors, ARM also provides a series of ARM core technologies, architecture 
extensions and system-on-chip schemes.  

 

ARM architecture includes a number of key features of RISC [48]:  

� Large uniform register file; 

� Load/store architecture: data-processing operations not directly on memory contents, 
but only on register contents; 

� Simple addressing modes: all addresses being determined from instruction fields and 
register contents only; 

� Uniform 16 × 32-bit register file. 

ARM CPU core includes a series of types, such as ARM7, ARM7TDMI (Thumb), 
ARM9TDMI and so on. Here we use the STM32F103ZE development board from IAR 
System as our evaluation platform. STM32F103ZE is a 32-bit ARM Cortex-M3 
Microcontroller from ST. ARM Cortex-M3 is a high-performance and industry-leading RISC 
core with maximum 72 MHz frequency and 1.25 DMIPS/MHz (Dhrystone 2.1) performances 
at 0 wait state memory access for highly deterministic real-time applications.   

 

STM32F103ZE has 256 to 512 Kbytes of Flash memory, up to 64 Kbytes of SRAM, flexible 
static memory controller with 4 Chip Select. It supports Compact Flash, SRAM, PSRAM, 
NOR and NAND memories. It supports three low-power modes, sleep mode, stop mode and 
standby mode to achieve the best compromise between low power consumption, short 
startup time and available wakeup sources. It has up to 112 fast I/O ports and up to 11 
timers. It can provide a low-cost platform that meets the needs of MCU implementation, with 
a reduced pin count and low-power consumption, while delivering outstanding 
computational performance and an advanced system response to interrupts. Therefore, it 
suitable for a wide range of applications: 

� Motor drive and application control 

� Medical and handheld equipment 

� PC peripherals gaming and GPS platforms 

� Industrial applications, PLC, inverters, printers, and scanners 
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� Alarm systems,  video intercom, and HVAC 

 

4.2 Methodology and Consideration 

For evaluation, we will introduce the implementation tools we use, the software 
implementation sources, the cipher parameters we choose and the methods we used to 
measure processing time and footprint of each algorithm.  

 

4.2.1 Implementation Tools and Settings 

We use IAR Embedded Workbench IDE 5.50 as our evaluation tool. The IAR Embedded 
Workbench IDE is a powerful integrated development environment. It seamlessly integrates 
the highly optimizing IAR C/C++ Compiler, the IAR assembler, the versatile IAR ILINK 
Linker including accompanying tools and the IAR C-SPY Debugger.  

 

We use the most of default project settings of IAR Embedded Workbench, except 
optimization settings. In IAR Embedded Workbench, there are several optimization levels: 
None, Low, Medium and High.  For High level of optimization, there are also three options: 
Size, Speed and Balance. On different level of optimizations, there are several 
transformations: Common subexpression elimination, Loop unrolling, Function inlining, 
Code motion, Type-based alias analysis, Static variable clustering and Instruction 
scheduling. In our evaluation, we choose high level of optimization and enable all the 
transformations for optimizations.  

 

STM32F103ZE supports maximum 72 MHz frequency. In our evaluation we set this 
maximum frequency. For stack and heap, we set 0x4000 for stack size and 0x8000 for heap 
size.  

 

4.2.2 Implementation Sources 

In our evaluation, we use only pure C software implementations, but not assemble language 
or hardware implementations. In order to achieve reasonable performance of each algorithm 
and give a fair comparison, we adapt existing source code of each algorithm from the 
inventor of the algorithms or famous open source projects. We will explain where the 
implementation of each algorithm is adapted and briefly introduce several open source 
projects.  

 

1) Symmetric algorithms 
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The implementation of AES is from OpenSSL. Openssl project is an open source project. It 
includes implementation of the Secure Sockets Layer and Transport Layer Security 
protocols as well as a cryptography library. A number of basic cryptographic functions and 
utility functions are included in its core library implemented in C programming language. We 
adapted the latest version 1.0.0 released on March 29, 2010. AES from OpenSSL is 
optimized and fully accelerated with 10 tables. We used all default configurations of 
algorithms from OpenSSL. For instance, we keep Macro definition FULL_UNROLL 
undefined in order to enable some loop unrolling. 

 

The implementations of Skipjack are adapted from FreeBSD and TinySec. Here we use two 
implementations from two different sources, since implementations from these two sources 
are quite different. We want to check the difference of performance using these two source 
codes. The reason we choose the source, TinySec, is that it is an optional part of TinyOS, 
which is the de facto operating system for WSN. Implementation of Skipjack from TinySec is 
written in NesC language. We transplant the algorithm into C language without changing 
anything. FreeBSD is a free operating system widely used in servers, desktops and 
embedded devices. Implementation of Skipjack is a part of FreeBSD kernel opencrypto 
code.  

 

The implementation of XTEA and XXTEA are entirely from the inventor of these algorithms. 
When he proposed these two algorithms, he also provided C language implementations. We 
do not change anything of XTEA and slightly change a bit of XXTEA without affecting its 
performance. 

 

The implementation of Twofish is also from its inventor Bruce Schneier. Bruce Schneier 
provided two versions of implementations of Twofish. One is reference C implementation; 
the other is optimized C implementation. Our code is adapted from optimized version 
without changing anything.  

 

2) MAC algorithms 

The implementation of CMAC is from [112]. [112] has already provided the C language 
implementation of CMAC, only without AES functions. Therefore, we apply AES core 
functions from OpenSSL which is used above.  

 

The implementation of HMAC is from [113]. The implementation of HMAC in C language is 
given as an appendix of [113]. The hash functions SHA-1 is adapted from PolarSSL. 
PolarSSL is a light-weight open source cryptographic library using C programming language. 
It is very easy for us to include cryptographic capabilities in our embedded applications with 
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as little hassle as possible. For the hash function SHA-256, we once again choose two 
different sources. One is also from PolarSSL; the other is from [49].  

 

The implementation of UMAC is adapted from [33]. UMAC has several versions. It was first 
described in 1999. Great changes were made in 2000 in order to improve its performance 
fro short messages. The final version was released in 2004 with only slight changes for 
simplicity. We choose the 2000 version in our evaluation, since this version has already 
included every part including block cipher part.  

 

3) Asymmetric algorithms: 

The implementation of RSA and ECC are both from LibTomCrypt. LibTomCrypt is a portable 
ISO C cryptographic library meant to be a tool set for cryptographers who are designing 
cryptosystems. Quite different from symmetric and MAC algorithms, asymmetric algorithms 
involve big number operations. Therefore, besides LibTomCrypt, we also use LibTomMath 
as our big number library. LibTomMath is a library of source code which provides a series of 
efficient and carefully written functions for manipulating large integer numbers. It was written 
in portable ISO C source code so that it will build on any platform with a conforming C 
compiler. Another option is OpenSSL. It also includes these two implementations. However, 
the implementations of RSA and ECC from OpenSSL are platform depended and the 
documentation of source code is rather poor. Therefore, we gave up OpenSSL and choose 
LibTomCrypt and LibTomMath. 

 

4.2.3 Cipher Parameters 

Here we will illustrate the parameters we chose for each algorithm. 

1) Symmetric algorithms 

The parameters of symmetric algorithms are listed in Table 4.1 

Table 4.1: Parameters for Symmetric Algorithms (Bytes) 

Parameters AES Skipjack XTEA XXTEA Twofish 

Block 
Length 

16 8 8 Arbitrary(16) 16 

Key Length 16 10 16 16 16 

Rounds 10 32 32 19(according 
to block size) 

16 

 

2) MAC algorithms 
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For MAC algorithms, except for secret key length, no specific parameters are needed. The 
key length we used is 16 bits long. 

 

3) Asymmetric algorithms 

For RSA encryption, we use the encryption scheme RSAES-OAEP. RSAES-OAEP is to 
combine RSA algorithm with the Optimal Asymmetric Encryption Padding (OAEP) method. 
OAEP is invented by Mihir Bellare and Phillip Rogaway [115]. When RSAES-OAEP is 
applied, plaintext should first be encoded with OAEP and then encrypted with RSA. Since 
textbook RSA algorithm is not secure, more precisely not CCA2 secure, RSA should never 
be used directly. After applying OAEP, the plaintext is first padded in a in a randomized way 
which greatly enhances the security of RSA encryption. 

 

For RSA digital signature, there are several methods for padding. In our evaluation, we use 
RSA-PSS as our signature scheme. The reason we choose RSA-PSS instead of traditional 
PKCS #1 v1.5 is that the connection of PKCS #1 v1.5 signatures to the RSA problem has 
never been proven, while RSA-PSS, in contrast, has such a proof if one models its hash 
functions as "random oracles" as is commonly done. 

 

Another important parameter for RSA is the public exponents. In our evaluation, we choose 
this public exponents e = 65537, which is a common value for RSA algorithm. 

 

For both ECDH and ECDSA, we choose the elliptic curve secp160r1 in our evaluation. The 
curve”secp160r1” was standardized by Standards for Efficient Cryptography (SEC2). It has 
two advantages that can be used to speed up prime field arithmetic reduction and to speed 
up curve arithmetic double and add. Because its underlying prime field is based on a 
pseudo Mersenne prime the reduction in the prime field can be done by several shifts and 
adds which is much faster than any other known algorithm on constrained devices. 

 

4.2.4 Methods for Measurement  

In our evaluation, two main key features of all algorithms we will evaluate are memory and 
processing time consumption performance. The methods to measure these two values are 
introduced as follows. 

 

4.2.4.1.1 Memory 

To measure the footprint of each algorithm, there are two methods. One is to set IAR 
Embedded Benchmark IDE to generate a list file for each C file when compiling the project. 
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In the end of each list file, the usage of memory is shown into three types: code memory, 
const code memory and date memory. Code memory represents the size of executive 
program in the memory. Const code memory represents the footprint of the initialized const 
values. The data memory represents the size of RAM this C program file use. We can 
directly read all this information from a list file. Another method is to set IAR Embedded 
Benchmark IDE to generate a map file as one of the output files when compiling the project. 
Different from a list file, a map file will show the total footprint of the whole project. The 
name of each memory type is different from the name in list file. There are also three types 
of memory in a map file: read-only code memory, read-only data memory and read-write 
data memory, which are corresponding to code memory, const code memory and data 
memory in a list file. We have checked that they have same meanings.  

 

The first method is more convenient than the second one, since each footprint of each 
algorithm can be directly read out through list files. If several algorithms are implemented in 
one project, some extra work is needed when the second method is used. That is we shall 
read the map file before one algorithm is added into the project and read the map file once 
again after it is added. By subtracting two memory sizes, we can get the footprint of this 
algorithm. However, the second method is more accurate than the first one. Since when 
compiling a project, not all codes in one C file are included. Even when one algorithm 
includes several C files, the footprint of this algorithm is not just simply obtained by adding 
all memory from involved list files. Through the second method, we can get more accurate 
result, since we can directly see when adding one more algorithm, how much of more 
memory is needed. Therefore, in our evaluation, we apply the second method to measure 
the footprint. 

 

4.2.4.1.2 Performance 

To measure the processing time of an algorithm, there are also two methods. One is to use 
profiling tools provided by IAR Embedded Benchmark IDE. When entering the debug mode, 
we can open profiling windows. Before running the program, we need to activate the tool. 
After the whole program runs to the end or is stopped by a breakpoint, we can obtain CPU 
cycles for each function in the project. If one function is called several times, accumulated 
CPU cycles can also be obtained. The other method to measure performance is to use a 
timer of the system. There are 11 timers provided by STM32F103ZE. After analysis, we 
consider that the timer systick is the most suitable one. The timer systick is a 24 bit timer 
built into the ARM core. It is simple and suitable for generating a tick for an operating 
system or for measuring delays. The units of measurement by this method are not CPU 
cycles, but ticks. The systick clock source in STM32F103ZE can be specified to two 
frequencies, 9 MHz and 72 MHz. In order to guarantee an accurate measurement, we 
measured Systick timer with an oscilloscope to verify the implement, which shows this 
method is also correct. 
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The advantage of the first method is simple. No extra codes and timers for measurement 
are needed. The performance of functions can be obtained at once. Therefore, it is very 
easy to find out which parts are the bottlenecks of the performance in this project. The two 
main disadvantages of this method are: first, it is impossible to measure the CPU cycles 
between two specific lines of the codes in a project, since the measurement is based on 
functions, only on progress; second, when a project is huge, a number of functions are 
involved, it is impossible to use this method, since IDE will announce you that no more 
breakpoints can be set, which means that extra resources are used for this method.  

 

Finally, we choose the systick timer to measure the program performance. The reason is 
that we can measure the processing time between any two lines in the project, regardless of 
other uninteresting parts. Another reason is that our benchmarking project is huge, it is 
impossible for us to apply the first method due to the lack of system resources. We consider 
that specifying 9 MHz as the source clock is enough for accuracy. We write extra code for 
measurement using this timer. We read out the timer values before and after the test point. 
By subtracting two timer values, we can calculate the time consumption. One important 
thing when using the systick timer is that the counter will swap around when the timer 
decreases to zero. We also take this into account in our measurement. 
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5 RESULTS AND ANALYSIS 

In this part, we will present the results of our evaluation. The results include two main parts: 
memory and time consumption. The methods for measuring both of two were introduced 
before. We performed our measurement according to different algorithms and running 
modes. All comparisons are shown below, followed by our analysis of the results. 

 

5.1 Symmetric Algorithms 

5.1.1 Memory 

To measure footprint of all algorithms, we use the simplest mode, ECB mode, for encryption 
and decryption, since for ECB mode no Initialization vector (IV) is needed and no extra 
memory is needed which gives us more exact results. We applied both size and speed high 
optimization options for compiling. The results of two optimizations are shown in Table 4.2 
and Table 4.3.  

Table 4.2: Footprint using Size High Optimization (byte) 

Memory 

Type 

AES Skipjack(TinySec/ 

FreeBSD) 

XTEA XXTEA Twofish 

Read-only  
Code 
Memory 

3172 2262/ 3832 524 1174 7594 

Read-only  
Data 
Memory 

8600 508 / 470 180 2004 685 

Read-write 
Data 
Memory 

0 0/0 0 0 4628 

 

Table 4.3: Footprint using Speed High Optimization (byte) 

Memory 

Type 

AES Skipjack(TinySec/ 

FreeBSD) 

XTEA XXTEA Twofish 

Read-only  
Code 
Memory 

3494 2456/ 3782 612 1238 10134 

Read-only  
Data 
Memory 

8602 508/ 474 180 2230 650 
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Read-write 
Data 
Memory 

0 0/0 0 0 4628 

 

Figure 4.1 Footprint using Size High Optimization 

 

Figure 4.2 Footprint using Speed High Optimization 

 

5.1.2 Performance 

To evaluate the algorithms, we define the range of the plaintext length, from 8 bytes to 1024 
bytes. First, we will evaluate the performance of key setup stage using both size high 
optimization and speed high optimization. The result is shown in Table 4.4 and 4.5, followed 
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by Figure 4.3 and 4.4 illustrating this result. Then, we evaluate the time consumption for 
encrypting different length of plaintext using both size high optimization and speed high 
optimization, which are listed in Table 4.6, 4.7 and plotted in Figure 4.5, 4.6. As we 
mentioned above, the timer Systick we used is set to 9 MHz. In Table 4.6 and Table 4.7, we 
give two types of values: tick numbers and time consumption values.  

Table 4.4: Size Optimized Key Setup Performance (systick/ms) of Symmetric Algorithms 

Memory 

Type 

AES 

(tick/ms) 

Skipjack(Tiny 

Sec) 

(tick/ms) 

Skipjack( FreeBSD) 

(tick/ms) 

XTEA 

(tick/

ms) 

XXTEA 

(tick/ms) 

Twofish 

(tick/ms

) 

Encrypt 
Key 
Setup 

144/0.016 57/0.006 5774/0.642 0 0 24/0.00
3 

Decrypt 
Key 
Setup 

506/0.057 57/0.006 5774/0.642 0 0 24/0.00
3 

 

Table 4.5: Speed Optimized Key Setup Performance (systick/ms) of Symmetric Algorithms 

Cipher AES Skipjack(TinySec) Skipjack( FreeBSD) XTEA XXTEA Twofish 

Encrypt 
Key 
Setup 

127/0.014 51/0.005 6091/0.535 0 0 24/0.003 

Decrypt 
Key 
Setup 

526/0.057 51/0.005 6091/0.535 0 0 24/0.003 

 

Table 4.6: Size Optimized Encryption Performance (systick/ms) of Symmetric Algorithms 

Message 

Length 

(byte) 

AES 

(tick/ms) 

Skipjack(Tiny

Sec) 

(tick/ms) 

Skipjack( Free

BSD) 

(tick/ms) 

XTEA 

(tick/ms) 

XXTEA 

(tick/ms) 

Twofish 

(tick/ms) 

8 287/0.032 301/0.034 136/0.015 238/0.027 378/0.041 250/0.028 

16 282/0.032 588/0.066 257/0.029 461/0.051 378/0.041 250/0.028 

32 552/0.062 1161/0.130 501/0.056 908/0.101 742/0.081 456/0.051 

64 1094/0.122 2308/0.259 988/0.110 1801/0.20
1 

1471/0.160 867/0.096 



    Page 

  63/88 
 

128 2176/0.243 4599/0.516 1962/0.218 3589/0.40
0 

2929/0.319 1689/0.18
8 

256 4339/0.484 9183/1.031 3910/0.435 7162/0.79
9 

5843/0.637 3334/0.37
1 

512 8668/0.966 18351/2.061 7806/0.869 14310/1.5
96 

11674/1.27
2 

6624/0.73
6 

1024 17324/1.93
4 

36688/4.121 15598/1.737 28607/3.1
91 

23334/2.54
3 

13205/1.4
67 

 

Table 4.7: Speed Optimized Encryption Performance (systick/ms) of Symmetric Algorithms 

Message 

Length 

(byte) 

AES 

(tick/ms) 

Skipjack(Tiny

Sec) 

(tick/ms) 

Skipjack( 

FreeBSD) 

(tick/ms) 

XTEA 

(tick/ms) 

XXTEA 

(tick/ms) 

Twofish 

(tick/ms) 

8 294/0.031 281/0.031 125/0.138 157/0.017 373/0.040 216/0.024 

16 289/0.032 553/0.061 240/0.026 303/0.033 372/0.040 216/0.024 

32 568/0.063 1095/0.121 471/0.052 594/0.064 732/0.079 390/0.043 

64 1129/0.125 2181/0.242 932/0.103 1177/0.128 1454/0.157 741/0.082 

128 2250/0.248 4352/0.483 1853/0.20
4 

2343/0.253 2900/0.312 1440/0.160 

256 4492/0.496 8694/0.965 3698/0.40
7 

4675/0.505 5788/0.623 2839/0.315 

512 8976/0.991 17378/1.931 7385/0.81
4 

9339/0.626 11566/1.245 5637/1.009 

1024 17944/1.98
1 

34745/3.860 14762/1.6
28 

18668/2.01
7 

23123/2.489 11233/1.248 
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Figure 4.3 Size Optimized Encryption Performance of Symmetric Algorithms (systicks) 

 

 

Figure 4.4 Speed Optimized Encryption Performance of Symmetric Algorithms (systicks) 

 

As we introduced above, for symmetric encryption, there are several operating modes. 
Therefore, we apply these different modes to AES algorithm to encrypt different lengths of 
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plaintext, which will give us information that how the operating mode affects performance in 
our platform. The result is shown in Table 4.8 and plotted in Figure 4.5. 

 

Table 4.8: Four Operating Mode Performance of AES (Size/Speed Optimization) 

Message 

Length (byte) 

ECB (tick) CBC (tick) OFB (tick) CFB (tick) CTR (tick) 

8 287/290 323/315 300/301 304/305 308/310 

16 283/285 340/313 320/319 325/325 332/331 

32 554/560 656/605 629/629 639/640 651/652 

64 1095/1112 1289/1190 1247/1248 1268/1268 1290/1292 

128 2179/2214 2556/2359 2482/2487 2522/2525 2566/2575 

256 4347/4420 5087/4698 4953/4965 5034/5039 5121/5139 

 

 

Figure 4.5 Size Optimized Operating Mode Performance of AES 
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Figure 4.6 Speed Optimized Operating Mode Performance of AES 

 

5.1.3 Analysis and Conclusion 

According to tables above, it shows that size and speed optimization do make sense to 
several algorithms, but not all. For instance, the performance of XTEA using speed 
optimization is greatly improved compared to using size optimization. Taking a converse 
example, the size of Skipjack adapted from FreeBSD using speed optimization is even 
smaller than that using size optimization. Conversely, the speed performance of AES using 
size optimization is even better than that using speed optimization. It illustrates that the 
effect of optimization is related to the implementation of algorithms. The size optimization 
will not always improve the size occupation of the code and perform worse than the speed 
optimization and vice versa. 

 

Taking footprint into account, XTEA and XXTEA take the least memory of all compared 
algorithms due to the extremely simple implementation. Therefore, XTEA and XXTEA are 
the most suitable algorithms when the memory of the system is strictly constrained. Skipjack 
algorithm requires medium size of memory among all algorithms. The footprint of AES and 
Twofish are quite close, but in different types. The code size of AES is smaller than Twofish. 
Since a great number of constant tables are used in AES, AES takes much more const code 
memory. Although the const memory for Twofish is extremely small, it requires much larger 
RAM than any other algorithms. Thus, both AES and Twofish are inappropriate choices for 
memory constrained applications. 
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When comparing the performance, we need to consider two stages. The first is key setup 
stage. The key setup stage is necessary for AES, Skipjack and Twofish. It means that if we 
need to apply one of these algorithms, we have to expand the cipher key into the encryption 
or decryption key schedule. For Skipjack and Twofish, the encryption and decryption key 
setup procedures are the same, but for AES, they are different. According to the result, the 
decryption key setup of AES is much slower than encryption key setup. There is no key 
setup stage for XTEA and XXTEA, which shows the simplicity of these two algorithms once 
again.  

 

The most meaningful part of this evaluation of symmetric algorithms is to compare the 
encryption or decryption performance of all algorithms. Since the difference of performance 
between encryption and decryption of symmetric algorithm is not obvious, we only consider 
the encryption part in our comparisons. From the tables above, it is surprisingly that Twofish 
has the best performance of all in our platform. It proves that AES may perform the best in 
average, but when considering a particular platform, extra evaluation is necessary. Although 
the size of XTEA and XXTEA is very small, the performances of these two algorithms are 
worse than AES most of the time. The performances of Skipjack from TinySec and 
FreeBSD are extremely different. However, according to Figure 4.4, XTEA using speed 
optimization has very similar performance compared with AES. Skipjack from TinySec 
performs worst of all algorithms, but one from FreeBSD performs much better, even better 
than AES. The reason for this may be due to the transpformation from NesC to pure C. 
Skipjack from TinySec may perform efficiently in TinyOS platform, but not in our platform. It 
proves that the performance of an algorithm is greatly related to the way of implementation.  

 

As we introduced before, the operating mode of symmetric ciphers is also an important 
factor. According to Table 4.8, ECB is the fastest operating mode among all. However, on 
the other hand, ECB is also the weakest mode in security. No applications should be 
implemented using ECB mode .From the results, the performance of CBC, OFB, CFB and 
CTR are quite similar to each other. When using size optimization, OFB mode has slightly 
better performance than other three advanced modes, which means a slightly more energy-
efficient. Since there is no obvious difference between these operation modes, we shall 
choose encryption mode according to different applications. As we introduced before, both 
OFB and CFB modes can be used in stream-oriented transmission, since both of them can 
turn a block cipher into a stream cipher. CTR mode has more or less the same properties as 
OFB and CFB, but plaintext can be encrypted in parallel when using CTR mode. Therefore, 
it is suitable for operations on a multi-processor device. CBC mode is the most widely used 
mode, although it has several drawbacks. For instance, encryption using CBC cannot be 
parallelized. However, [114] proves that CBC mode is more secure than other modes due to 
less information leakage when IV is repeated.  
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Therefore, our conclusion is that in our platform, when the memory resources are not 
strained, Twofish is the top choice among all candidates. However, if memory occupation is 
necessary to be taken into account, we may consider XTEA and XXTEA depending on the 
security level and performance requirement. For operating mode, CBC, CTR, OFB and CFB 
have quite similar performances. Choose operating mode should be based on other 
requirements of applications instead of encryption speed. For instance, if encryption should 
be handled in parallel, CTR should be considered prior to other modes. One thing is 
important that XXTEA does not need any operating mode due to its natural property. 

 

5.2 MAC Algorithms 

5.2.1 Memory 

MAC algorithms usually consist of two algorithms. For instance, CMAC-AES consists of 
CMAC algorithm and AES algorithm and HMAC-SHA1 consists of HMAC algorithm and 
SHA-1 algorithm. Therefore, the footprint of each MAC algorithm consists of two algorithms. 
The memory can be read out from map files as we introduced before. The results are listed 
in Table 4.9 and Table 4.10 and plotted in Figure 4.6 and 4.7 using both size and speed 
high optimizations. 

Table 4.9: Footprint of MAC Algorithm using Speed High Optimization (byte) 

Memory 

Type 

CMAC-

AES 

HMAC-SHA1 HMAC-

SHA256(Polar) 

HMAC-

SHA256 

UMAC 

Read-only  
Code 
Memory 

3058 4676 9080 1104 4336 

Read-only  
Data 
Memory 

4194 84 84 311 4520 

Read-write 
Data 
Memory 

16 0 0 288 33444 

 

Table 4.10: Footprint of MAC Algorithm using Size High Optimization (byte) 

Memory 

Type 

CMAC-

AES 

HMAC-SHA1 HMAC-

SHA256(Polar) 

HMAC-

SHA256 

UMAC 

Read-only  
Code 
Memory 

2080 4458 9486 902 3698 
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Read-only  
Data 
Memory 

4196 86 86 313 4522 

Read-write 
Data 
Memory 

16 0 0 288 33444 

 

 

Figure 4.7 Footprint of MAC Algorithm using Speed High Optimization 
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Figure 4.8 Footprint of MAC Algorithm using Size High Optimization 

5.2.2 Performance 

Same as the evaluation of symmetric algorithm, we also define the range of plaintext from 8 
bytes to 1024 bytes. We choose a key length of 16 bytes in our evaluation. The results are 
listed in Table 4.11 and 4.12 and plotted in Figure 4.8 and 4.9.   

Table 4.11: Speed Optimized Encryption Performance (systick/ms) of MAC Algorithms 

Plaintex

t 

Legnth 

(byte) 

CMAC-AES 

(tick/ms) 

HMAC-

SHA1 

(tick/ms) 

HMAC-

SHA256(Po

lar) 

(tick/ms) 

HMAC-

SHA256 

(tick/ms) 

UMAC 

(tick/ms) 

UMAC 

Key 

Setup 

(tick/ms) 

8 985/0.109 1141/0.127 2245/0.250 3118/0.350 409/0.045 30556/3.3
89 

16 946/0.105 1140/0.127 2244/0.250 3118/0.350 407/0.045 

32 1365/0.151 1139/0.127 2243/0.250 3118/0.350 401/0.044 

64 2199/0.244 1362/0.151 2735/0.304 3846/0.431 445/0.049 

128 3868/0.429 1586/0.176 3231/0.359 4552/0.511 534/0.059 

256 7206/0.801 2038/0.226 4223/0.469 5965/0.670 711/0.079 

512 13882/1.543 2940/0.327 6206/0.689 8791/0.989 1064/0.11
8 

1024 27234/3.028 4743/0.527 10171/1.13
0 

14445/1.625 1773/0.19
7 

Table 4.12: Size Optimized Encryption Performance (systick/ms) of MAC Algorithms 

Plaintex

t Legnth 

(tick/ms) 

CMAC-

AES 

(tick/ms) 

HMAC-

SHA1 

(tick/ms) 

HMAC-

SHA256(Pol

ar) 

(tick/ms) 

HMAC-

SHA256 

(tick/ms) 

UMAC 

(tick/ms) 

UMAC 

Key 

Setup 

(tick/ms

) 

8 1061/0.118 1238/0.138 2236/0.249 3735/0.416 635/0.070 48749/5
.415 

16 1023/0.113 1235/0.138 2234/0.249 3734/0.416 633/0.071 

32 1457/0.162 1235/0.138 2234/0.249 3733/0.416 626/0.070 

64 2326/0.259 1476/0.165 2719/0.303 4610/0.513 670/0.075 

128 4064/0.451 1720/0.192 3207/0.357 5461/0.607 759/0.084 

256 7540/0.838 2205/0.246 4182/0.466 7163/0.797 937/0.104 
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512 14492/1.61
0 

3179/0.354 6132/0.682 10565/1.175 1290/0.144 

1024 28396/3.15
6 

5125/0.570 10032/1.112 17373/1.931 1999/0.222 

 

 

 

Figure 4.9 Speed Optimized Encryption Performance of MAC Algorithms (systick) 
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Figure 4.10 Size Optimized Encryption Performance of MAC Algorithms (systick) 

 

5.2.3 Analysis and Conclusion 

First, we consider about the footprint of each MAC algorithm. From the results, it is obvious 
that HMAC-SHA256 from [49] takes least memory, even less than HMAC-SHA1 adapted 
from PolarSSL. The footprint of HMAC-SHA256 from PolarSSL is about twice larger than 
HMAC-SHA1. The memory needed by CMAC-AES is medium, a bit larger than HMAC-
SHA1, but smaller than HMAC-SHA256 from PolarSSL. UMAC requireds a huge memory, 
in all three types, especially RAM. It means that UMAC is not suitable for memory 
constrained devices. 

 

Then, we analyze the performance of all MAC algorithms. From Table 4.11, 4.12 and Figure 
4.8, 4.9, UMAC has outstanding performance from short messages to long messages 
among all algorithms. Even processing 1024 byte message, the time consumption of UMAC 
is still less than 0.3 ms. However, the disadvantage of UMAC is also quite obvious, which is 
the key setup stage. UMAC is the only MAC algorithm among all requiring key setup. This 
stage for UMAC is extremely slow. Even using speed high optimization, the time 
consumption is still more than 3 ms. This means that if the secret key is changed frequently, 
UMAC could be extremely inefficient. The performance of UMAC also explains why the 
footprint is huge, when comparing with others. CMAC-AES has also excellent performance 
with short messages. When the message length is shorter than 32 bytes, it is faster than 
other MAC algorithms, except UMAC. However, when a message length is longer than 32 
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bytes, the time consumption of CMAC-AES increases rapidly. The performance of HMAC-
SHA1 is decent for both short and long messages. When authenticating a 1024-byte 
message, it takes only around 0.5 ms for HMAC-SHA1.  HMAC-SHA256 from PolarSSL is 
about twice slower than HMAC-SHA1 due to the twice longer message digest, which is a 
quite reasonable result. However, the performance of HMAC-SHA256 from [49] is about 
triple worse than HMAC-SHA1. The reason is that in HMAC-SHA256 from [49] uses much 
fewer tables than one from PolarSSL. Therefore, the footprint of HMAC-SHA256 from [49] 
decreases significantly, on the price of performance.  

 

According to the evaluation and analysis, we come to the conclusion that if the memory 
usage of an algorithm is not extremely important and the secret key of MAC algorithm is not 
changed frequently, then UMAC is the best candidate due to its outstanding performance for 
both short and long messages. If a system already has used AES algorithm as symmetric 
encryption scheme and transmission messages are not long, then CMAC-AES is also 
decent choice. In other cases, HMAC-SHA1 and HMAC-SHA256 can be selected according 
to the security level and performance requirement.  

 

5.3 Asymmetric Algorithms 

5.3.1 Memory 

For asymmetric algorithms, a big number library is needed. Therefore, the total footprint of 
asymmetric does not only include algorithm itself, but also include the big number library. 
Since a number of files are involved, we read the footprint from the map file. One important 
thing is that when we use speed or balance high optimization, the encryption/ decryption 
and digital signature results are incorrect due to some over optimizations done by IAR built 
in compiler. Therefore, we only consider size high optimization in this part. The results of the 
footprints are shown in Table 4.13 and Figure 4.10. 

Table 4.13: Footprint of Symmetric Algorithm using Size High Optimization (byte) 

Memory Type RSA-OAEP RSA-PSS ECDH ECDSA 

Read-only  
Code Memory 

24320 34444 38068 35254 

Read-only  
Data Memory 

4017 9585 10977 9671 

Read-write 
Data Memory 

30200 30200 30200 26872 
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Figure 4.11 Footprint of Symmetric Algorithm using Size High Optimization 

5.3.2 Performance 

First, we compare the performance of the key setup stage for both RSA and ECC. In order 
to give a fair comparison, we choose the key lengths of both algorithms at the same security 
level. Therefore, we select ECC-160 corresponding to RSA 1024 and ECC-224 
corresponding to RSA 2048. The results are shown in Table 4.14. 

Table 4.14 Size Optimized Key Setup Performance of Asymmetric Algorithms (systicks/second) 

Key Length ECC (tick/ms) RSA (tick/ms) 

ECC-160 & RSA 1024 1253018 / 0.139 195373522 / 21.708  

ECC-224 & RSA 2048 2284462 / 0.253 1719568935 / 191.063  

 

Then, we evaluate the performance of encryption using ECC and RSA with different key 
lengths. Usually, asymmetric algorithms are used to encrypt secret keys for symmetric 
algorithms. Therefore, we choose our message length to be 128 bits. The results are shown 
in Table 4.15. 

Table 4.15: Size Optimized Encryption Performance of Asymmetric Algorithms (systicks/second) 

Message 

Length 

(bytes) 

ECC-160 ECC-224 RSA-1024 RSA-2048 

Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. 

16 2438680 1269608 4541174 2301344 249575 2974389 871752 17744285 
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/ 0.271 / 0.141 / 0.505 / 0.256 / 0.028 / 0.330 / 0.097 / 1.972 

 

Figure 4.12 Size Optimized Enc/Dec Performance of Asymmetric Algorithms 

Finally, we evaluate the performance of digital signature using ECC and RSA with different 
key lengths. Since for digital signature, only message digest is signed, instead of the whole 
message, we choose the message digest length to be 128 bits long. The results are shown 
in Table 4.16. 

Table 4.16: Size Optimized Digital Signature Performance of Asymmetric Algorithms 

(systicks/second) 

Message 

Length 

(bytes) 

ECC-160 

(tick/ms) 

ECC-224 

(tick/ms) 

RSA-1024 

(tick/ms) 

RSA-2048 

(tick/ms) 

Sign. Verify. Sign. Verify. Sign. Verify. Sign. Verify. 

16 1267449 
/ 0.141 

1769618 
/ 0.197 

2306929 
/ 0.256 

3210459 
/ 0.357 

2969447 
/ 0.330 

248543 
/ 0.028 

17738811 
/ 1.971 

867325 
/ 0.096 
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Figure 4.13 Size Optimized Digital Signature Performance of Asymmetric Algorithms 

 

 

5.3.3 Analysis and Conclusion 

From the results, we can see that the footprint and the performance are quite different from 
symmetric and MAC algorithms. Both RSA and ECC take a huge amount of memory, in 
both read-only code memory and read-write data memory. The cost of read-only data 
memory is still quite a lot, between 5000 – 10000 bytes. Therefore, both the software 
implementation using C of RSA and ECC asymmetric algorithms are not suitable for the 
memory constrained devices. Maybe more reasonable options are software implementation 
using assemble language or hardware implementation for these devices.  

 

The huge difference of performance of these two asymmetric algorithms is the key setup 
stage. From Table 4.14, we can see that the time consumption of RSA key setup is 
extremely larger than ECC. For RSA 2048, it takes more than 3 minutes to finish the key 
setup stage, which is definitely unacceptable for any applications. Conversely, the 
performance of ECC key setup is quite decent. Both ECC-160 and ECC-224 only need less 
than 300ms.  

 

When considering encryption and digital signature, the difference between RSA and ECC is 
that the performance of RSA is unbalanced. For instance, it takes RSA-2048 nearly 2 
second to sign a message, but it only takes less than 0.1 second to verify it. For ECC, it has 
decent and balanced performance for encryption and decryption, signature and verification. 
The time consumption is between 0.15 – 0.5 seconds. The performance of ECC-160 is 
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twice better than ECC-224 due to the twice security level. For RSA, the performance of 
RSA-2048 is almost six times worse than RSA-1024, which means that RSA is not 
appropriate for the high security level applications in embedded systems.  

 

From the results above, we conclude that compared with RSA, ECC is much more suitable 
for embedded applications. ECC has decent performance in encryption scheme and digital 
signature. The performance of ECC can be improved by other implementations, such as 
hardware implementation acceleration. 
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6 CONCLUSION AND FUTURE WORK 

6.1 Summary and Conclusion 

Security is becoming one of critical factors in modern automation networks due to the 
introduction of Ethernet-based field buses. Countermeasures against security attacks are 
different according to hierarchical levels of automation systems. In this thesis, we focus on 
the security at lower field bus level. As we described before, Ethernet-based fieldbus 
protocols were designed with more concerns about safety rather than security. 
Cryptographic algorithms, which are critical parts in security, are not specified in many 
fieldbus protocols. Different cryptographic algorithms provide different objectives, such as 
confidentiality, integrity and authentication. The security and efficiency also vary a lot 
according to different algorithms. The goal of this thesis is to benchmark cryptographic 
algorithms for confidentiality, integrity and authentication in our specific platform. This 
includes symmetric algorithms, MAC algorithms and asymmetric algorithms.  

 

In this thesis, we first briefly introduced several important concepts of security and 
cryptography, which are helpful to understand this thesis. Then, we presented a 
comprehensive survey of cryptographic algorithms. The goal of this survey is to select 
several candidates from different types of algorithms for further benchmarking due to the 
time limitation. In order to make our survey more convincing and find out the most suitable 
candidates for our evaluation, we studied most of widely used cryptographic algorithms 
which are considered to have outstanding performance and already applied in a number of 
security projects, standards or protocols. Based on the analysis both in security and 
performance, we chose AES, Skipjack, XTEA, XXTEA and Twofish from symmetric 
algorithms; CMAC, HMAC-SHA1, HMAC-SHA256 and UMAC from MAC algorithms; ECC 
and RSA from asymmetric algorithms.  

 

We evaluate all candidates in our platform STM32F103ZE development board from IAR 
System using pure software implementation. In order to make our evaluation more accurate, 
we carefully choose the methods to measure footprint and time consumption. All software 
implementations are optimized version adapted from open source projects or security 
libraries. Finally, we presented the results of our evaluation and gave comparisons of 
footprint and performance of all candidates. From the results, we notice that it is impossible 
to select one most suitable algorithm for all situations. Different algorithms have different 
advantages and disadvantages. For symmetric algorithms, our surprising result is that 
Twofish has better performance than AES both in the speed of secret key setup and 
encryption. XTEA and XXTEA have extremely small footprint than any other algorithm. 
XTEA even has similar performance as AES, although the security of XTEA is much weaker 
than AES. Therefore, in our platform, Twofish is highly recommended when the 
performance of algorithms is prior to footprint. XTEA or XXTEA is recommended in 
applications where memory is strictly constrained and security is not. Since the performance 
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of symmetric encryption using four operating modes are quite similar to each other except 
ECB, the selection of encryption mode should be based on application requirements, such 
as processing in parallel or security, rather than encryption speed. For MAC algorithms, 
UMAC is an obvious state-of-the-art algorithm. It has outstanding performance for both short 
and long messages compared to other MAC algorithms. The disadvantages of UMAC are 
the key setup stage and the footprint. CMAC-AES is very efficient for short messages, but 
extremely inefficient for long messages. Therefore, our suggestion is that CMAC-AES 
algorithm can be applied when messages are less than 64 bytes and AES is already 
implemented in the systems. UMAC is highly recommended for new applications except for 
memory constrained devices. For asymmetric algorithms, both RSA and ECC perform much 
slower than symmetric and MAC algorithms. ECC has acceptable performance in key 
generation, encryption and digital signature compared to RSA. Therefore, when an 
asymmetric algorithm is required in a new application, ECC should be chosen prior to RSA 
at the same security level. 

 

6.2 Future Work 

In this thesis, evaluation and comparison of cryptographic algorithms are based on software 
implementation using pure C programming. Several patented algorithms and newly 
proposed algorithms which are also considered to have excellent performance, such as 
Camellia, NTUR, HECC, are not included in our evaluation. Future work can include these 
algorithms in evaluation to compare with our results. Except for pure C program software 
implementation, cryptographic algorithms can also be implemented via other methods to 
improve performance, such as hardware implementation. It is also interesting to evaluate to 
what extent the performance of these cryptographic algorithms can be improved using these 
two implementation methods.  
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