
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Acceleration and Deceleration Detection and 
Baseline Estimation 
 
Master of Science Thesis in the Master Degree Programme Biomedical Engineering 

 

SUSANNE ANDERSSON 
Department of Signals and Systems 
Division of Biomedical Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Göteborg, Sweden, 2011 
Report No. EX037/2011  



 
 

  



 
 

REPORT NO. EX037/2011 

 
 

 

 

Acceleration and Deceleration Detection  
and Baseline Estimation 

Master’s Thesis in the Master’s programme Biomedical Engineering 

SUSANNE ANDERSSON 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Department of Signals and Systems 
Division of Biomedical Engineering 

CHALMERS UNIVERSITY OF TECHNOLOGY 
Göteborg, Sweden 2011 



 
 

Acceleration and Deceleration Detection and Baseline Estimation 
Master’s Thesis in the Master’s programme Biomedical Engineering 
SUSANNE ANDERSSON 
 
© SUSANNE ANDERSSON, 2011 

 
Report No. EX037/2011 
Department of Signals and Systems 
Division of Biomedical Engineering 
Chalmers University of Technology 
SE-412 96 Göteborg 
Sweden  
Telephone: + 46 (0)31-772 1000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cover: 
Registration of fetal heart rate and uterine contractions (Neoventa Medical AB 2008).  
 
Department of Signals and Systems  
Göteborg, Sweden, 2011 



  

 

 
 

Acceleration and Deceleration Detection and Baseline Estimation 
Master’s Thesis in the Master’s programme Biomedical Engineering 
SUSANNE ANDERSSON 
Department of Signals and Systems 
Division of Biomedical Engineering 
Chalmers University of Technology 
 

ABSTRACT 
CTG monitoring of the fetal heart rate and uterine contractions during pregnancy and delivery 
provide information on the physiological condition of the fetus needed to identify hypoxia. 
Interpretation, however, requires experience and important patterns might be missed or 
misinterpreted due to stress, exhaustion or distraction. Interpretation has also been reported 
subjective with poor reproducibility. Computerized analysis of the fetal heart rate could help 
overcome these issues and provide fully reproducible analysis.  

The aim of this thesis is to evaluate algorithms for automated detection of fetal heart rate 
accelerations and decelerations and estimating the basal heart rate, for fetal monitoring during 
labor.  

Algorithms have been developed and the performance has been compared to the opinions of 
clinical experts and to other competing algorithms. 

Disagreement between clinical experts is considerably high for both acceleration and 
deceleration detection, but the observers are fairly consistent in estimating the basal heart rate. 

The developed algorithms all perform better than the competing algorithms and the 
performance is within or close to the uncertainty between the clinical experts.  
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Antepartum Time before labor 

Bradycardia Basal heart rate below 110 bpm 

Electrocardiogram, ECG Recording of the electrical activity of the heart 

Hypoxia   Inadequate supply of oxygen 

Inter-observer agreement Measure of agreement when different individuals 
perform the same task 

Intra-observer agreement Measure of agreement when the same task is performed 
at different occasions by the same individual 

Intrapartum Time during labor 
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1. Introduction  
Cardiotocography (CTG) refers to monitoring the fetal heart rate and the uterine contractions 
during late pregnancy and delivery (Neoventa Medical AB, 2008). Interpretation of the fetal 
heart rate levels, changes and correlation to the uterine contractions will provide the 
experienced clinician with the information on the physiological condition of the fetus needed 
to identify hypoxia and take actions before permanent brain damage or death occurs 
(Ingemarsson 2006). 

Correct interpretation requires experience and important patterns in the trace might be missed 
or misinterpreted due to stress, exhaustion or distraction. Interpretation of the fetal heart rate 
trace has also been reported subjective with poor reproducibility (Beaulieu 1982, Bernardes 
1997, Ayres-de-Campos 1999, Devane 2005, Chauhan 2008, Westerhuis 2009). 

The indistinctness of how to assess the fetal heart rate trace led the National Institute of Child 
Health and Human Development to define guidelines for the interpretation (Macones 2008). 
Parameters essential for this thesis are fetal heart rate baseline, accelerations and 
decelerations. Baseline, expressed in beats per minute (bpm), is defined as the approximate 
mean fetal heart rate during at least ten minutes of stable segments, excluding accelerations 
and decelerations.  Acceleration is defined as an increase in heart rate from the baseline, 
lasting for at least 15 seconds, with a peak of at least 15 bpm above the baseline. 
Equivalently, a deceleration is defined as a decrease in heart rate from the baseline for at least 
15 seconds, during which at least one sample is 15 bpm below baseline. See figure 1. 

 

 

Figure 1. Fetal heart rate trace containing one acceleration and one deceleration. 

 

STAN S31, manufactured by Neoventa Medical, is a system for intrapartum fetal monitoring 
combining the traditional CTG with ST-analysis of the fetal electrocardiogram (ECG). The 
apparatus generates alarms at hypoxia related abnormalities in the ST segment of the ECG 
pattern, corresponding to the heart muscles adjusting to lack of oxygen.  

STAN S31 measures the heart rate using ultrasound transducers before the membranes are 
ruptured, and then using an electrode on the fetal scalp. The ECG is obtained from the scalp 
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electrode using a reference on the mother’s thigh.  Automated estimation of the baseline or 
detection of accelerations and decelerations is not available in STAN S31 today. It would 
however be a valuable complement to the ST analysis since ST changes should always be 
assessed  in  relation  to  the  CTG.  Automated  heart  rate  analysis  would  assist  the  staff  in  
interpreting the trace in stressful situations. 

The Dawes/Redman criteria (Dawes 1982) are a set of algorithms developed for antepartum 
CTG  analysis,  aiming  to  help  predict  fetal  outcome.  The  trace  is  assessed  as  normal  or  
pathological based on these criteria. It is widely clinically implemented and there has been a 
demand for implementation of these criteria or similar analysis in STAN. SisPorto (Ayres-de-
Campos 2000) is another system for automated fetal heart rate analysis, antepartum and 
intrapartum, also clinically implemented. For this thesis, its estimation of basal heart rate has 
been of specific interest. 

1.1 Aim and objectives 
The aim of this thesis is to evaluate the possibility of implementing algorithms for automated 
detection of accelerations and decelerations, and estimating the basal heart rate, into a system 
for fetal monitoring during labor. These algorithms should perform within the uncertainty 
between clinical experts, or with higher accuracy.  

The objectives are to:  

§ gather expert opinions on cardiotocographic events to be used as reference data 
§ evaluate inter-observer agreement between clinical experts for uncertainty of the 

reference data 
§ develop algorithms for automated detection of accelerations and decelerations and 

estimation of basal heart rate, for heart rate signals obtained from either ultrasound or 
fetal scalp electrode  

§ compare the performance of these with competing algorithms in clinical use  

The Dawes/Redman criteria utilize, among others, the parameters of interest for this thesis: 
estimated basal heart rate, accelerations and decelerations. Hence, performance of the 
algorithms is compared to that of those described by Dawes et al. For basal heart rate 
estimation, the algorithm described by Ayres-de-Campos et al. is also implemented and 
tested. 

1.2 Delimitations 
Since the purpose of this thesis is only to detect the patterns from a given heart rate signal, no 
profound research have been carried out regarding the actual physiological background of 
basal heart rate or accelerations and decelerations occurring.  

Numerous algorithms for automated cardiotocographic analysis have been proposed over the 
years (Dawes 1982, Skinner 1999, Ayres-de-Campos 2000, Taylor 2000, Jimenez 2002, 
Warrick 2005), and all could not possibly be evaluated. Discussion with employees at 
Neoventa Medical familiar with the subject led to limitation to only the competing algorithms 
of highest interest for the company. 
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Clinical evaluation of the cardiotocograms is time consuming. For the scope of this thesis, 
involving two clinical experts for evaluation of the registrations was considered the realistic 
alternative.  For  the  same  reason  the  amount  of  registrations  observed  had  to  be  limited  
accordingly.  



4 
 

2. Methods 
Algorithms for baseline estimation, as well as acceleration and deceleration detection, have 
been implemented both by recreating previously published work, and by developing improved 
algorithms. All algorithms were implemented and evaluated using Matlab. The algorithms 
described by Dawes et al. have been implemented reusing Matlab code from a previous work 
(Lätt Nyboe 2011). The algorithms have proven to imitate the original Dawes/Redman 
algorithms well. 

Evaluation of the algorithm performance requires estimates of which outcomes that are valid 
and which are not. Because of the interdependence of the baseline definition and the 
acceleration and deceleration definitions there is no absolute standard for this verification. It 
is subjective, and which cardiotocographic events are present have to be determined based on 
opinions of experienced clinicians. Two midwifes assisted in interpreting fetal heart rate 
traces. The traces were randomly selected intrapartum recordings with duration between 16 
minutes to ten hours and 18 minutes. Observer 1, Annika Mårtendal interpreted all of the 
traces and acted as gold standard when testing and verifying the validity of the algorithm 
outcomes. Hence, the algorithms have been built to match the opinions of this observer. 
Observer 2, Ulla-Stina Wilson, independently interpreted only the traces that would later be 
used during validation, aiming to provide the possible uncertainty between the two experts. 
The performance by any algorithm against the opinions of observer 1 cannot be required more 
accurate than the performance by observer 2 against the opinions of observer 1. 

The number of traces for which observer 1 and observer 2 marked the occurrences of 
accelerations and decelerations, as well as estimating the basal heart rates, is seen in figure 2.   

 

Figure 2. Number of CTG traces evaluated by observer 1 and observer 2. 

 

 

 

Acceleration detection
50 traces

Test

40 traces

Observer 1

Validation

10 traces

Observer 1 
Observer 2

Deceleration detection
31 traces

Test

21 traces

Observer 1

Validation

10 traces

Observer 1 
Observer 2

Basal heart rate estimation
100 traces

Test

50 traces

Observer 1

Validation

50 traces

Observer 1 
Observer 2
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The performance of the algorithms for acceleration detection and deceleration detection were 
tested against the opinions of observer 1. For this evaluation, the statistical measures 
sensitivity and positive predictive value were used. These are, in the case of acceleration 
detection defined as 

 

sensitivity = 	
number	of	true	detected	accelerations

number	of	actual	accelerations  

 

positive	predictive	value = 	
number	of	true	detected	accelerations

total	number	of	detections 	

 
 

The sensitivity and positive predictive value are analogously defined also for evaluation of the 
deceleration detection performance. 

Testing of the algorithms was performed repeatedly. One or two parameters were varied with 
the purpose of finding the setting where performances, in terms of sensitivity and positive 
predictive value, best matched the inter-observer accuracy. Validation was then performed 
using the parameters which best matched the accuracy in terms of positive predictive value. 
The sensitivity of the proposed algorithms against the opinions of observer 1 could then be 
compared to the sensitivity of observer 2 against the opinions of observer 1. 

The following sections describe preprocessing of the fetal heart rate signal and development 
of algorithms for running baseline estimation, acceleration detection, deceleration detection 
and basal heart rate estimation.  

2.1 Preprocessing 
The fetal heart rate signal on which all processing is performed is obtained by measuring the 
time interval between each cardiac event, referred to as RR-intervals. See figure 3. It is 
recalculated to beats per minute, bpm, before further processing.  

 
 

 

 
Figure 3. Fetal heart rate is obtained by measuring the time interval between each  

QRS complex of the electrocardiogram (Sundström 2006). 
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The fetal heart rate is a noisy signal, containing artifacts. A method for preprocessing of the 
signal, proposed by Ayres-de-Campos et al. (2000) was utilized for artifact removal. 
Differences between two adjacent samples of 25 bpm or more were detected, and linear 
interpolation was applied between the first of the two samples and the first sample of the next 
stable fetal heart rate segment.  A stable segment was defined as five adjacent samples which 
do not differ more than ten bpm, see figure 4. If, in rare cases, short segments of actual heart 
rate variations are removed by this algorithm, it does not significantly affect estimation of the 
events of interest for this thesis. 

 

 
 Figure 4. The effect of artifact removal. 

 

For simplified processing and faster analysis, the signal was reduced by resampling it at finite 
time intervals. This was realized by, for each interval, replacing the heart rate samples in the 
original signal by one sample containing the average of the fetal heart rates. 

Different sampling periods have been proposed. Dawes et al. (1981) average the signal every 
3.75 seconds, which they consider the largest interval possible without seriously distorting the 
signal. Accelerations and decelerations are however often described using multiples of five 
seconds, causing problems when averaging the signal over 3.75 second intervals. For this 
reason,  Mantel  et  al.  (1990)  averages  every  2.5  seconds,  solving  the  problem of  not  finding  
these  patterns  in  exact  time.   Ayres  de  Campos  et  al.  (2000)  chooses  not  to  resample  the  
signal, but instead replacing each sample with a computed average over five adjacent samples, 
resulting in varying averaging periods depending on the current heart rate. For a heart rate of 
150 bpm this corresponds to two seconds. 

For  this  thesis  a  sampling  duration  of  1.25  seconds,  0.8  Hz,  was  chosen,  see  figure  5.  This  
compromise yields acceptable processing time but also adequate signal quality not seriously 
distorting the acceleration and deceleration flanks. With this sampling period, consecutive 
samples can also constitute multiples of five seconds. 
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Figure 5. The effect of averaging the heart rate signal over 1.25s periods. 

 

Some signals contain segments of poor quality, sometimes loosing signal, sometimes 
presenting disturbances which do not correspond to actual heart beats. These are typically 
traces obtained by ultrasound. After the averaging, periods of signal loss were identified, and 
segments shorter than 15 seconds in between these were removed, see figure 6. This 
minimum duration was chosen because detection of the events of interest for this thesis 
requires a minimum of 15 seconds. 

 

 
Figure 6. The effect of removing short sequences appearing in segments of lost signal. 
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2.2 Running baseline estimation 
Accelerations and decelerations are defined as deviations from a running baseline. The 
running baseline however, is defined as the average fetal heart rate, accelerations and 
decelerations being excluded. Different methods of estimating the baseline has been 
suggested (Dawes 1982, Mantel 1990, Ayres-de-Campos 2000). This section describes the 
development of two algorithms for baseline estimation. Accelerations and decelerations 
would later be detected as deviations from these running baselines. The clinically 
implemented algorithm for baseline estimation developed by Dawes et al. is also described. 

2.2.1 Algorithm by Dawes et al. 
The  algorithm  described  by  Dawes  et  al.  (1982)   low  pass  filters  the  heart  rate  signal,  
averaged over 3.75s periods, excluding RR-intervals that differ more than 60 ms from a 
calculated value P. The filtered signal is then considered the running baseline. 

The value P is obtained from the histogram of all RR-intervals of a trace in the range 300 ms, 
corresponding to 200 bpm, to 600 ms, corresponding to 100 bpm, with the resolution of one 
ms. The histogram is scanned from right to left, and the local peak P is chosen as the first 
value fulfilling the following criteria: 

§ 12.5% of the total area lies to the right of the peak 
§ The peak value exceeds the next five values to be scanned 
§ At  least  0.5%  of  the  total  signal  is  represented  by  this  value,  or  the  value  does  not  

differ more than 30 ms from the global peak of the histogram  

If no local peak fulfills the criteria, the global peak of the histogram is chosen.  

Figure  7  shows  an  example  of  such  a  histogram,  and  the  resulting  P  value.  The  heart  rate  
corresponding to P is found at the lower segment of the basal heart rate. 

 

 

Figure 7. Histogram analysis during running baseline estimation according to Dawes et al. 
The grey circle indicates the local peak P. 
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Dawes et al. initiate the analysis after ten minutes, and if the Dawes/Redman criteria are not 
met, it continues to recalculate the baseline every two minutes until 60 minutes have passed, 
always considering the whole heart rate trace.  

2.2.2 Modification	of	the	algorithm	by	Dawes	et	al.	
Mantel et al. (1990) implemented the procedure for estimating the running baseline described 
by Dawes et al. for the study of relations between fetal heart rate and fetal movements. The 
calculated baseline did not correspond to their visual assessment. Hence an improved 
algorithm was proposed. This improved algorithm was shown to cause less elevations of the 
baseline in segments of repeated accelerations or large swings of the fetal heart rate. It also 
showed an improved performance at the beginning of traces. Here, the algorithm described by 
Dawes et al. fails if the heart rate is declining or inclining, due to that the starting point is an 
average of the first 64 samples, or four minutes.  

Mantel et al. samples an average of the signal each 2.5 seconds, and then use the peak P the 
same way as Dawes et al. However, after the low pass filtration is completed, the sampled 
fetal heart rate signal is matched against the filtered version, which could be considered a 
temporary baseline, and the segments of the signal which deviate too much from this baseline 
is  replaced  with  the  filtered  version.  This  results  in  a  heart  rate  signal  from  which  the  
extremes have been trimmed off. The filtration and trimming is repeated four times, removing 
smaller deviations after each iteration. One last filtration generates the final running baseline. 
This iterative approach addresses the issue of the baseline being the fetal heart rate when 
accelerations and decelerations are excluded, while it needs to be defined prior to detecting 
these events.  

The algorithm described by Mantel et al. operates on two-hour long offline registrations, 
which is also different from the original algorithm. 

2.2.3 Algorithm	1		
For this thesis, the purpose was to find an algorithm that continues observations for several 
hours,  theoretically  for  infinite  time.  Hence,  it  would  not  have  been  suitable  to  consider  the  
entire signal as in the algorithms proposed by Dawes et al. and Mantel et al. The solution was 
to apply the baseline estimation on a sliding window, which causes a delay but still is useful, 
and the resulting algorithm, inspired by Mantel  et  al.,  is  labeled algorithm 1. The size of the 
window was set to 20 minutes, since 20 minutes is considered minimum for CTG assessment 
(Neoventa Medical AB 2008). 

Low pass filtering suppresses high frequency components, such as the short time fluctuations, 
giving a smooth signal. Accelerations and decelerations do however contain very low 
frequency components on which the filter has little effect, causing the calculated baseline to 
follow  the  large  deviations  from  baseline.  Therefore,  Mantel  et  al,  as  well  as  Dawes  et  al,  
exclude all RR-interval deviations of 60 ms or more from P during baseline estimation. This 
value is calculated based on the histogram of the entire heart rate signal being analyzed. 
Directly implemented into the 20 minute window, and tested on the traces collected for this 
thesis, P was not always perfectly chosen. Partly because using a small window, P becomes 
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more locally estimated and therefore follow elevations in the heart rate trace to a greater 
extent, but also because the algorithms described by Dawes et al. and Mantel et al. was both 
developed for use on antepartum traces, and hence not prepared for the frequent, heavy 
decelerations seen in the intrapartum traces. 

The filter used in algorithm 1 is a smoothing filter with forward and backward propagation. A 
pliable enough baseline, which still do not follow accelerations and decelerations entirely, 
were established through trial and error. The signal B is processed at each sample i according 
to  

Bi  =  0.975Bi-1    +  0.025Bi in forward propagation 
Bi  =  0.975Bi+1  +  0.025Bi in backward propagation 

where each sample corresponds to a 1.25 second long interval. 

P is used to determine an initial value for the filtration in the algorithm described by Mantel et 
al. A pretended heart rate for the time prior to the actual start of the signal is calculated by 
starting with the value P, scanning the signal in backward direction, and gradually adjusting 
the starting value as a function of the signal contributions.  

The same approach was adopted for algorithm 1, starting with the value B0 = P, the signal was 
scanned in backward direction and the starting value B0 was  updated  at  each  sample  i  
according to 

B0  =  0.975B0    +  0.025Bi 

The choice of B0 = P prior to the initial value estimation will have minimal influence on the 
final B0.  

For this thesis, P was not considered as useful as it was for Mantel et al. because of the large 
influence of local events of the signal. However, since it was already calculated to aid in 
estimating  a  starting  value,  the  criteria  of  deviations  from  P  was  not  removed  entirely  but  
instead modified to only exclude the extremely large decelerations, causing most damage on 
the  filtered  signal.  Experiments  led  to  a  limitation  where  heart  rates  exceeding  P  ±  50  bpm 
were excluded. 

Replacement of segments in the heart rate signal, performed after each iteration of filtering, 
was done on sequences which deviated too much from the filtered signal, which can be 
considered a temporary baseline. These segments were replaced by the filtered version from 
the point where the deviation from the baseline started, to the return to baseline. Thresholds 
for  which  deviations  to  remove  are  seen  in  tables  1  and  2.  Mantel  et  al.  chose  to  preserve  
more deviating heart rate signal below the temporary baseline than what is proposed in this 
thesis.  They  justify  this  as  a  compensation  for  selecting  P,  which  was  used  for  limiting  the  
operation range of the filter, in the lower segment of the baseline. Directly implemented into 
algorithm 1, where P is used differently and on intrapartum traces, the thresholds proposed by 
Mantel et al. caused the baseline to follow deep or frequent decelerations. Hence different 
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variations of these thresholds were tested. The ones proposed in table 2 performed best on the 
given intrapartum traces, and was chosen for algorithm 1. 

 
 

Upper and lower limits by Mantel et al. 
Iteration Upper limit [bpm] Lower limit [bpm] 

1 20 20 
2 15 20 
3 10 20 
4 5 20 

 

Table 1. Detection levels for accelerative and decelerative parts, proposed by Mantel et al. 

 
 

Upper and lower limits by author 
Iteration Upper limit [bpm] Lower limit [bpm] 

1 20 20 
2 15 15 
3 10 10 
4 5 10 

 

Table 2. Detection levels for accelerative and decelerative parts, proposed for algorithm 1. 

 

Figure 8 presents an example of the temporary baseline updated after each iteration of 
filtration and replacement of the accelerative and decelerative segments in the heart rate trace. 
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Figure 8. Four iterations of filtration and trimming followed by one last filtration. 
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The  window  used  to  mimic  real  time  was  set  to  20  minutes.  Initial  experiments  were  
performed calculating the baseline corresponding to a specific sample based on the previous 
20 minutes. This resulted in a delayed baseline, which also followed accelerations and 
decelerations rather than replacing these segments with preliminary baseline. It was necessary 
to study some future values. The window was changed to 15 minutes of previous and five 
minutes of future values. Hence, the proposed algorithm causes a delay in analysis of five 
minutes.  

The resulting running baseline is a smooth signal which does not change much between 
adjacent samples. For speed of analysis the baseline is not updated for each new sample. 
Instead, a new calculation is performed each minute. It estimates the baseline based on the 
heart rates within the whole 20 minute window, however only stores 1 minute of the resulting 
baseline.  

Figure 9 shows an example of the issues arising during periods of frequent decelerations, 
where contributions from lower deceleration heart rates are just as dominant as the baseline 
heart rates sought. This is typical for the late intrapartum traces.  

 

 

 

 

Figure 9. Both graphs correspond to the same trace. Notice the difference in time scale.  
The running baseline is affected by contributions from deep and frequent decelerations. 
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2.2.4 Algorithm 2 
The previously proposed algorithm encounters obstacles when segments of frequent 
decelerations occur. Therefore, an alternative approach to estimate a running baseline has 
been developed with the main purpose of overcoming these issues. Rather than using 
smoothing filters for estimating the baseline, the histogram of the heart rate signal is studied. 

For each new sample of the heart rate signal a histogram is calculated. The histogram 
represents the fetal heart rates present within the 20 minute window, of 15 previous and five 
future minutes. The heart rates are weighted into the histogram according to the weight 
function w(t) seen below and in figure 10. This causes current heart rate to have higher effect 
on the histogram than previous or future heart rates.  

	

(ݐ)ݓ = ቐ
݁௔(௧)ିହ, ݐ ∈ {0, 15}, (ݐ)ܽ ∈ {0, 5}	
	݁௕(௧)ିଶ, ݐ ∈ {15, (ݐ)ܾ							,{20 ∈ {2, 0.1}
																																						݁ݏ݅ݓݎℎ݁ݐ݋																			,0	

 

 

After the histogram has been calculated it is scanned to find the ten bpm wide window which 
carries the most of the heart rate signal, see figure 11, to find a plausible estimate for the 
baseline.  The  mean  value  of  the  contributions  within  this  window  is  chosen  as  baseline  for  
this particular sample. 

The choice of weight function is based on empirical studies, and the parameters were adjusted 
to obtain the best algorithm performance. Using no weight function, or a flatter one, results in 
a flatter, less pliable baseline. A sharper weight function, or a shorter window, results in a 
baseline more prone to shifting during accelerations and decelerations, which was what was 
aimed to avoid using this method. As concluded when developing algorithm 1, estimating the 
running baseline based only on previous heart rate values causes a delayed baseline, hence the 
15 + five minute window was again chosen. 

 

 

Figure 10. Function used to weight fetal heart rate contributions into the histogram. 



15 
 

 

Figure 11. Weighted histogram analysis for algorithm 2.  
The ten bpm wide window carrying most of the signal was 149 – 158 bpm, and the  

mean value of the contributions within that span was calculated to 153.50 bpm. 
 

The resulting running baseline from applying this method is seen in figure 12. Finding the 
most contributing heart rates, rather than using a smoothing filter, gives a sharper baseline 
which is not centered between deceleration minimums and true baseline level, as the baseline 
estimated using algorithm 1. This gives a running baseline which handles sections of frequent 
decelerations better, but which in general looks sharp and quite flat. The figure displays the 
same trace as the one shown in figure 9, for algorithm 1. 

 

 
Figure 12. Both graphs correspond to the same trace. Notice the difference in time scale. 

The baseline is not as affected by contributions from deep and frequent decelerations, as the 
baseline calculated by algorithm 1. 
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2.3 Acceleration detection 
Assuming that the running baseline has been perfectly estimated, all accelerations should 
easily be detected using the definition described in the introduction.  

The running baseline was however not perfectly estimated. Algorithm 2 gives a running 
baseline which might not be considered pliable enough, and algorithm 1 gives a baseline 
which does not handle turbulent areas well. Since algorithm 2 detects these critical sections, 
studying the histogram used in this algorithm was considered a way to measure the reliability 
of any calculated baseline.  In the case of accelerations, one would rather want to fail to detect 
some than over detect false accelerations. For this reason the calculated baseline could be 
assessed as unreliable for certain segments using the histogram analysis from algorithm 2, and 
accelerations should not be sought in these segments. If most of the signal values are found 
within  the  ten  bpm  wide  window  the  baseline  would  be  considered  reliable,  however  if  the  
histogram is  a  flat  shape  and  not  much of  the  total  signal  is  found within  the  ten  bpm wide  
window, the baseline would be considered unreliable, hence no accelerations are detected in 
that segment. 

This approach can be applied to any baseline algorithm for acceleration detection. It was 
implemented on both algorithm 1 and algorithm 2. The amount of signal found in the ten bpm 
wide window was expressed as a percentage of the total histogram, and the traces for testing 
were run through the two algorithms, varying this parameter with the purpose of finding the 
acceleration detection performance which best matched the one between the expert observers. 

2.4 Deceleration detection 
The approach of rejecting segments of unreliable baseline, tested for acceleration detection, 
was  not  relevant  for  deceleration  detection  since  most  of  the  disregarded  baseline  segment  
were neglected because of decelerations. Instead, to find the performances which best 
matched the one between the expert observers, the test traces for deceleration detection were 
run through the algorithms varying the different minimum required time duration of 
decelerations, and the minimum required excursion from the baseline. 

2.5 Basal heart rate 
While the running baseline used for detecting accelerations and decelerations follow the trace 
influenced by minor elevations, the basal heart rate is expressed as only one value rounded to 
multiples of five. Basal heart rate is expressed in bpm and values between 110 bpm and 160 
bpm are considered normal (Macones 2008).  

This section describes two proposed algorithms for basal heart rate estimation. The clinically 
implemented algorithms for baseline estimation developed by Dawes et al. and Ayres-de-
Campos et al. respectively are also described.  

During development the algorithms for basal heart rate estimation were applied to the 20 
minutes long traces for which observer 1 determined a basal heart rate. 
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2.5.1 Algorithms by Dawes et al. and Ayres-de-Campos et al. 
Dawes et al. (1982) define the basal heart rate as the average fetal heart rate during episodes 
of low variation. Low variation is defined by a maximum excursion from the baseline of less 
than 30 ms for five out of six consecutive one-minute segments. If the trace does not contain 
any episodes of low variation, the local peak value P, calculated during baseline estimation in 
section 2.2.1, is selected as basal heart rate. 

The algorithm developed by Ayres-de-Campos et al. (2000) is based on histogram analysis. It 
selects a few highly represented heart rates from the signal. Based on these and short term 
variability analysis a basal heart rate is determined from the lowest heart rate within 
physiological limits where a stable segment is found. The algorithm is complex and its flow 
chart can be found in appendix F. 

2.5.2 Algorithm A 
The algorithm is based on histogram analysis of the fetal heart rate trace. All heart rates are 
rounded to multiples of five into a histogram. The mode of the histogram is then chosen as the 
basal heart rate. In the example shown in figure 13, with corresponding histogram in figure 
14, the mode 145 bpm was chosen as the basal heart rate. Observer 1 however, estimated the 
basal heart rate as 150 bpm. 

 

Figure 13. Fetal heart rate trace on which algorithm A has been applied. The algorithm 
estimated the basal heart rate as 145 bpm. Observer 1 however estimated it as 150 bpm.  

 

 

Figure 14. Corresponding histogram analysis of fetal heart rate trace, used for algorithm A. 
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2.5.3 Algorithm B 
This algorithm is a modification of algorithm A. Basal heart rate should by definition only be 
sought  in  stable  segments.  The  algorithm  therefore,  prior  to  histogram  analysis,  removes  
segments from the fetal heart rate signal which are not considered stable segments. The same 
criterion for identifying stable segments is used as during preprocessing of the heart rate 
signal, five subsequent samples not differing more than ten bpm. With this approach, much of 
the accelerations and decelerations are removed from the signal. 

All heart rates are rounded to multiples of five into a histogram. The mode of the histogram is 
then chosen as the basal heart rate. 

Figure 15 shows a heart rate trace on which algorithm B has been applied. It is the same heart 
rate trace as shown for algorithm A. The dark lines represent the stable segments on which 
histogram analysis has been performed.  Figure 16 shows the histogram. In this example, the 
mode 150 bpm was chosen as the basal heart rate. This matches the estimation made by 
observer 1. 

 

Figure 15. Fetal heart rate trace on which algorithm B has been applied.  
Dark lines represent the stable segments on which histogram analysis was performed. 
The estimated basal heart rate, 150 bpm, matches the estimation made by observer 1. 

 

 

Figure 16. Corresponding histogram analysis of fetal heart rate trace, used for algorithm B. 
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2.5.4 Undefined by expert observer 
Observer 1 marked the basal heart rate as ‘undefined’ in ten of the 50 test traces. Ideally, an 
algorithm for basal heart rate estimation would do the same. Experiments were carried out 
aiming to find correlations between these traces. Possible correlations were sought in the 
signal  loss,  defined  as  the  fraction  of  resampled  intervals  which  did  not  contain  a  heart  rate  
value after the preprocessing, i.e. they either did not contain a value prior to preprocessing, or 
the RR-intervals were considered as artifacts and removed. Figure 17 shows the signal loss 
expressed in percentage of the total signal.  

 

Figure 17. Signal loss in the test traces for which observer 1 estimated  
a basal heart rate, compared to those which were marked ‘undefined’. 

 
The signal loss parameter can clearly be used to identify some of the traces where the basal 
heart rates were assessed as undefined. Based on this set of data a threshold for allowed signal 
loss was set to 65%, which captured three of the traces. The criterion was applied to both 
algorithm A and algorithm B. 
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3. Results  
This  section  presents  the  results  from  the  inter-observer  agreement  study,  testing  of  the  
developed algorithms, as well as validation of the developed algorithms. 

3.1 Acceleration detection 

3.1.1 Observer uncertainty 
Both observer 1 and observer 2 marked the time intervals for which accelerations occur for 
the validation traces. The performance of observer 2 against observer 1 on the validation data 
is seen in table 3.  

The program written to evaluate sensitivity and positive predictive value for acceleration and 
deceleration detection in this thesis regards an event as correctly detected when overlap is 
found in time intervals marked by both observer 1 and the algorithm or observer 2. 

 

Observer uncertainty:   acceleration detection 
Sensitivity  0.852 

Positive predictive value  0.377 

 
Table 3. Acceleration detection by observer 2, against observer 1. 

 

3.1.2 Testing 
The test traces were run through the two proposed algorithms for acceleration detection, as 
well as the algorithm described by Dawes et al. for performance comparison, against the 
opinions of observer 1. The parameter defining the baseline as not valid was varied with the 
purpose of finding the best performance to match the accuracy of the observers, see figure 18.  
The right part of the graph shows results from when all baseline is accepted. Results towards 
the left correspond to rejecting large segments of the baseline, including all larger 
accelerations as they provide wide distribution in the histogram. Notice that the performance 
by observer 2 correspond to the results from running the set of traces for validation, not the 
ones for training. One cannot know for certain that the test data and validation data yields the 
same results, although it is desired. 

The Dawes/Redman criteria define acceleration as lasting for a minimum of ten seconds 
instead of 15 seconds used for the other algorithms. This results in an increased detection rate, 
at the expense of low positive predictive value. 
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Figure 18. Acceleration detection based on baseline estimation according to algorithm 1, 
algorithm 2 and the algorithm by Dawes et al. The baseline rejecting parameter is varied. 

Performances are evaluated against opinions of observer 1. 
The square indicates the performance of observer 2. 

 

The positive predictive value or the sensitivity never reached 1 when altering this parameter.  
The sensitivity never did so because all portions of the baseline were considered valid and the 
algorithms cannot perform better than this. The positive predictive value never did so because 
some detected accelerations did not coincide with an acceleration marked by the observer. 
This might be explained as either poor baseline estimation or poor adaption of the definition 
of acceleration by the observer.  

Defining which baseline segments to reject is a matter of deciding whether one seeks to detect 
all accelerations, and thereby greatly over detect, or failing to detect a large group of 
accelerations, however with high certainty of the ones detected. By performing validation on 
the parameters resulting in performance in the same positive predictive value area as observer 
2, the performance could be compared fairly by studying the corresponding sensitivity. 
Hence, the parameters resulting in positive predictive value 0.39 (algorithm 1) and 0.38 
(algorithm  2)  was  chosen  to  match  0.38  (observer  2).  This  was  realized  by  allowing  a  
minimum of 40% of the total histogram within the ten bpm wide window. 
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3.1.3 Validation 
The traces for validation were run through the two proposed algorithms, with the baseline 
rejecting parameters adjusted as described. See figure 19. Here, the performance by observer 
2 indicated in the graph correspond to the same data set as for the algorithms. Ideally 
performance on the validation data would be exactly the same as on the test data. These 
results show that the algorithms follow the expected curves obtained from testing, however 
with lower sensitivity than expected, and that observer 2 better matches the opinions of 
observer 1 than the algorithms do in terms of sensitivity. 

 
 

 

Figure 19. Validation of acceleration detection based on baseline estimation  
according to algorithm 1 and algorithm 2.  

Performances are evaluated against opinions of observer 1. 
The square indicates the performance of observer 2. 
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3.2 Deceleration detection 

3.2.1 Observer uncertainty 
Both observer 1 and observer 2 marked the time intervals for which decelerations occur for 
the validation traces. The performance of observer 2 against observer 1 on the validation data 
is seen in table 4.  

 
 

Observer uncertainty:   deceleration detection 
Sensitivity   0.253 

Positive predictive value  0.975 

 
Table 4. Deceleration detection by observer 2, against observer 1. 

 
 

3.2.2 Testing 
The traces for testing were run through the two proposed algorithms for deceleration 
detection, using varying definitions of what duration and depth defines a deceleration. The 
performances against the opinions of observer 1 are shown in figure 20. The algorithm 
described by Dawes et al. was tested for performance comparison, however only using their 
intended definition of a deceleration, which is a 30 second long deviation below the baseline, 
with a minimum excursion of 20 bpm, or a 60 second long deviation below the baseline, with 
a minimum excursion of ten bpm. Hence, this algorithm is only represented once in the graph. 
Notice that the performance by observer 2 indicated in the graph corresponds to the results 
from running the set of traces for validation, not the ones for training. 

The right part of the graph shows results from allowing short decelerations. Results towards 
the left correspond to only detecting the very deep ones. 
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Figure 20. Deceleration detection based on baseline estimation according to algorithm 1  
and algorithm 2, for five, ten and 15 seconds duration required for deceleration detection. 

 The minimum excursion from baseline required for deceleration detection is varied. 
Performances are evaluated against opinions of observer 1. 

The square indicates the performance of observer 2 
The circle indicates the performance of the algorithm by Dawes et al. 

 

Testing of the developed algorithms shows that defining the depth of a deceleration as five, 
ten or 15 bpm below the baseline does not affect the sensitivity significantly. These minimum 
excursions from the baseline are represented in the graph as the three indicators at the extreme 
right of each curve. This justifies that the clinical experts did define decelerations only with 
an excursion from baseline of 15 bpm or more. The parameter does however have a great 
impact on the positive predictive value since false decelerations are more frequently detected 
when the detection limits are lowered. Hence, defining the minimum excursion from the 
baseline of a deceleration as five bpm or ten bpm is not recommended. Setting this parameter 
to 20 bpm yields nearly the same positive predictive value as obtained from the algorithm 
described by Dawes et al. When decelerations are defined as deeper than this the duration no 
longer matters for the detection. At this depth, there were no decelerations marked by 
observer 1 shorter than 15 seconds. 

Sensitivity or positive predictive value never reached 1 when altering these parameters. 
Deceleration detection on five seconds long deviations of only five bpm from the baseline still 
did not yield full sensitivity against observer 1. This indicates disagreement in the running 
baseline estimation. 
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The inter-observer performance is found in a region of high positive predictive value and 
quite low sensitivity. It is a probable assumption that mainly deep decelerations have been 
detected. It makes no difference if validation is performed on five, ten or 15 seconds duration, 
since these yield the same results. Deceleration detection of 15 seconds long deviations were 
however chosen for validation, because of accordance with guideline definition. 

Validation was performed using the parameters which resulted in positive predictive value 
0.953 (algorithm 1) and 0.967 (algorithm 2), in order to match 0.975 (observer 2). This was 
realized by detecting 15 seconds long segments, with minimum excursion of 40 bpm 
(algorithm 1) and 50 bpm (algorithm 2) below the baseline. 

3.2.3 Validation 
The traces for validation were run through the two proposed algorithms, with the depth and 
duration parameters adjusted as described, see figure 21. Here, the performance by observer 2 
indicated in the graph correspond to the same data set as for the algorithms. The results show 
that both algorithms follow the expected curves obtained from testing, and that they imitate 
observer 1 with higher accuracy than observer 2 does. 

 

 

Figure 21. Validation of deceleration detection based on baseline estimation  
according to algorithm 1 and algorithm 2.  

Performances are evaluated against opinions of observer 1. 
The square indicates the performance of observer 2.  
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3.3 Basal heart rate 

3.3.1 Observer uncertainty 
Both observer 1 and observer 2 estimated the basal heart rate for the validation traces. The 
performance of observer 2 against observer 1 on the validation data is seen in table 5. 

 
Observer uncertainty:   basal heart rate estimation 

Difference [bpm] Occurences [%] 
    0 72 
    5 10 
    10 2 
>  10     2 

Undefined only 
by observer 1 0 

Undefined only 
by observer 2 16 

Table 5. Basal heart rate estimation by observer 2, against observer 1. 

 

3.3.2 Testing 
The traces for testing were run through the proposed algorithms for basal heart rate 
estimation. The performances against the opinions of observer 1 are shown in figure 22. The 
algorithms described by Dawes et al. and Ayres-De-Campos et al. were tested for 
performance comparison.  

The two observers, as well as the proposed algorithms, round the basal heart rates to multiples 
of  five.  The  algorithms described  by  Dawes  et  al.  and  Ayres-De-Campos  et  al.  however  do  
not.  For  a  fair  comparison,  the  results  from  these  two  algorithms  have  been  rounded  to  the  
nearest multiple of five. 

 

Figure 22. Performance against observer 1 for basal heart rate estimation. 
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The results indicate that excluding unstable segments from the heart rate signal prior to 
estimating the basal heart rate using histogram analysis result in higher accuracy. Hence, 
algorithm B was chosen for validation. 

3.3.3 Validation 
The traces for validation were run through the proposed algorithm. The performance against 
observer 1 for both the algorithm and observer 2 is shown in figure 23.  The results show that 
the algorithm correctly estimates the same amount of basal heart rates as observer 2 does, and 
that the error is never more than five bpm. However, the algorithm misclassifies more basal 
heart rates than observer 2 does. Observer 2 assessed 8 of the 50 basal heart rates as undefined 
which observer 1 did not. In the cases where observer 2 did define the basal heart rate, the 
estimations were a very good match against observer 1. 

 

 

Figure 23. Performance against observer1 for validation of algorithm B. 
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4. Discussion 
Identifying fetal hypoxia is a question of correctly interpreting the levels and changes in the 
fetal heart rate. Indistinct definition of the cardiotocographic events makes this subjective and 
it has repeatedly been proven poorly reproducible. A great number of previous studies have 
reported both on poor inter-observer agreement, where interpretation of tracings have shown 
to differ between clinicians,  as well as poor intra-observer agreement, where interpretation by 
the same clinician at two different occasions differ (Beaulieu 1982, Bernardes 1997, Ayres-
de-Campos 1999, Devane 2005, Chauhan 2008, Westerhuis 2009). 

Most of the conducted studies deal with the agreement when classifying the CTG as a whole, 
as more or less reassuring. Hence, they provide no exact information on agreement on 
baseline estimation, accelerations or decelerations.  Results from these studies cannot be 
compared directly because of inconsistent conditions such as classification categories, number 
of expert observers, number of cardiotocograms observed and statistical methods used for 
representing the results. However, inter-observer agreement when classifying overall CTG 
tracings have been proven poor by Beaulieu (1982), Ayres-de-Campos (1999), Chauhan 
(2008) and Westerhuis (2009) and intra-observer agreement have been reported poor by 
Westerhuis (2009). Agreement is generally higher for the tracings classified as normal 
(Ayres-de-Campos 1999, Chauhan 2008, Westerhuis 2009), and also for antepartum rather 
than intrapartum tracings (Ayres-de-Campos 99). These two are probably related, since 
intrapartum tracings contain more periodic changes in the fetal heart rate resulting from 
uterine contractions. 

Results reported from studies where the agreement of baseline heart rate, baseline variability, 
accelerations and decelerations are compared separately suggest low inter-observer agreement 
for all variables assessed (Trimbos 1978, Lotgering 1982, Bernardes 1997). All three find 
baseline heart rate to be the most reproducible, and baseline variability to be the least. 
Trimbos (1978) found the agreement to be lower for accelerations than decelerations, while 
on the contrary, Bernardes (1997) found the agreement to be acceptable for accelerations only 
when the variability was good, but poor otherwise, and always poor for detection of 
decelerations.  

The inter-observer analysis presented in this thesis is in accordance with previous studies, 
showing considerable disagreement. The lack of observer agreement when analyzing the CTG 
impairs the credibility of individual visual interpretation, hence questioning decision-making 
solely based on visual analysis of the fetal heart rate trace. Systematic computer analysis of 
the CTG is mostlikely the only way to overcome these issues and achieve fully reproducible 
analysis. 

Teaching a computer system how to assess a CTG is however difficult since there is no 
absolute indicator of fetal hypoxia. The cardiotocographic events indicating this have to be 
defined based on a nearly consistent agreement by experienced clinicians. Such a consensus is 
obviously difficult to reach. Definitions have been suggested (Macones 2008), however the 
interdependence of the baseline definition and the acceleration and deceleration definitions 
makes direct implementation impossible. 
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Different methods for estimating a running baseline for acceleration and deceleration 
detection have been suggested. In this thesis, the one most commonly clinically implemented, 
developed by Dawes et al. (1982) has been compared to two algorithms suggested by the 
author. Algorithm 1 gives a running baseline which is smooth and pliable. Algorithm 2 gives 
a shaper baseline which handles frequent and large decelerations better.  

4.1 Acceleration and deceleration detection  
Detection of accelerations and decelerations was implemented into both algorithms by 
identifying deviations from the running baselines. The two developed algorithms showed very 
similar results for acceleration detection during the testing phase. Algorithm 2 however, 
performed with higher sensitivity against the opinions of observer 1 during validation, for 
nearly the same positive predictive value. None of the algorithms detected the accelerations 
marked by observer 1 with the same accuracy in terms of sensitivity as observer 2 did.  One 
could apply the same approach to the acceleration detection as was done for deceleration 
detection, i.e. testing which duration and minimum excursion from the baseline result in best 
performance. This might increase accuracy against the inter-observer performance slightly. 
However, increasing sensitivity probably affect the positive predictive value negatively, 
detecting more false accelerations. 

The algorithm described by Dawes et al. succeeded to match the sensitivity of the opinions of 
observer 1 as observer 2 did, however with very poor positive predictive value. The reason 
why the detection rate is higher for this algorithm is because it defines an acceleration as 
lasting for a minimum of ten seconds instead of 15 seconds used by the other algorithms. 

Algorithm 2 showed slightly better performance against the opinions of observer 1 than 
algorithm 1 did for deceleration detection during the testing phase. However algorithm 1 
performed better during validation. Both algorithms performed well over all, detecting the 
decelerations marked by observer 1 with higher accuracy than observer 2 did, both in terms of 
sensitivity  and  positive  predictive  value.  The  algorithm  described  by  Dawes  et  al.  failed  on  
both aspects. The poor performance of this algorithm might be explained by different causes, 
one being that the running baseline was developed for antepartum traces, not handling 
frequent decelerations well. The long averaging period of 3.75 seconds might also imply 
missed decelerations. A true deceleration might, by this algorithm, be interpreted as a few 
seconds shorter in duration than it really is. The long averaging period might also imply a risk 
of not distinguishing between two closely adjacent decelerations.   

The definition for deceleration depth applied during validation, 40 bpm for algorithm 1 and 50 
bpm for algorithm 2, is extreme. It was chosen to match the inter-observer positive predictive 
value  of  observer  2  against  the  opinions  of  observer  1,  however  the  results  from  validation  
showed better performance by the two algorithms than what was expected from testing. It 
implies  that  we  might  get  an  accuracy  close  to  that  of  observer  2  in  terms  of  positive  
predictive value by allowing smaller decelerations, probably giving much better sensitivity.  
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One explanation for the large difference in performance between acceleration detection and 
deceleration detection might be that most decelerations were very deep, in contrast to the 
accelerations which were often close to the definition of a 15 bpm excursion from the 
baseline, making the accuracy of baseline estimation more crucial.  

4.1.1 Alternative methods  
Unsuccessful efforts were made to find methods to detect accelerations not solely based on 
duration and excursion from the running baseline. 

An  algorithm  was  devolved  to  detect  possible  candidate  sequences,  which  on  the  test  data  
would cause a sensitivity of 1, but a positive predictive value of only 0.16. This was realized 
by detecting the sequences using very kind definitions in terms of time duration and excursion 
from the running baseline. Each candidate sequence would then undergo further experiments 
to be assessed as acceleration or not acceleration. This was realized using a machine learning 
technique called binary support vector machines, which assigns unseen data to one of two 
possible classes based on its characteristics, comparing them to previous observations of 
training sequences which the machine has learned on (Warrick 2010). 

Each possible candidate sequence is described as a vector of numerical parameters, the so 
called ‘features’ of the sequence.  These features would describe morphological, statistical, 
time or frequency domain characteristics, and they should be chosen such that they maximize 
the difference between the sequences which are true accelerations and those which are false 
accelerations. The program is trained with such sequences and also informed of the outcome, 
i.e. if they have been identified as acceleration or not by observer 1. It distributes these into a 
space where a boundary is found between the two classes, see an example in figure 24. This 
training is only performed once, after that the binary support vector machine can assign any 
given data expressed as a feature vector to one of the two classes.  

 

 

 
 

Figure 24. Classification of three dimensional data (i.e. described by  
three different features characteristics) into two classes (Axelberg 2007). 
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Unfortunately, defining a good set of features was difficult for this application. No tested 
combination of individual characteristics separated the true accelerations from the false 
accelerations. Around 30 different features, and different combinations of these, were tested. 
Examples of these were: 

§ Time duration for which the heart rate exceed various levels  
§ Size of the excursion from baseline  
§ Standard deviation 
§ Entropy 
§ Rise time and recovery time 
§ Gradient at onset and recovery 
§ Matching of the sequence against desired functions  
§ Characteristics based on wavelet analysis  
§ Coefficients from discrete cosine transform, as proposed by Warrick et al (2005)  

The best results were found to be obtained using features related to time duration of the 
sequence and the size of its excursion from the running baseline, which makes this detour 
quite uncalled for. Testing showed sensitivity of 0.52 and a positive predictive value of 0.30 
which is worse performance than both algorithm 1 and algorithm 2, and about the same as the 
performance of the algorithm described by Dawes et al. 

During discussion with the expert observers around this time it was revealed that their 
assessment of accelerations and decelerations were indeed based solely on fitting a running 
baseline, and then identifying the events based on the definitions. Their believes are that there 
are no other parameters involved, hence this method was not further evaluated. 

4.1.2 Impact of observer uncertainty 
The interagreement study in this thesis, for acceleration detection, reported that observer 2 
matched the opinions of observer 1 with a positive predictive value of only 0.377, and a 
sensitivity of 0.852. However, if the opposite comparison is made, observer 1 matches the 
opinions of observer 2 with a positive predictive value of 0.852 and a sensitivity of 0.377.  

Because observer 2 only assessed the CTG traces to be used for validation, and not the ones 
used for development and testing, the algorithms for acceleration and deceleration detection 
were developed to match the opinions of observer 1.  However,  it  might be of interest  to see 
how well the developed algorithms actually perform against observer 2. 

Figure 25 shows that results from experimental validation against the opinions of observer 2 
instead of observer 1 gives much better performance by the algorithms, even though they have 
been developed aiming to match the opinions of observer 1. The results show higher 
sensitivity than the inter-observer performance, for nearly the same positive predictive value. 
Presumably, the performance could have been even better if test data from observer 2, which 
was not available, was used during development, and of course if the parameters chosen for 
validation was based on a comparison against observer 2 instead of observer 1. 
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Figure 25. Experimental validation of acceleration detection based on  
baseline estimation according to algorithm 1 and algorithm 2.  

Performances are evaluated against opinions of observer 2. 
The square indicates the performance of observer 1. 

 

The results from this experiment emphasize the deficiencies of developing algorithms for 
automated CTG analysis based solely on the opinions of one expert.  

4.2 Basal heart rate 
The results from validating algorithm B for basal heart rate estimation, against the opinions of 
observer 1, showed higher accuracy than what was expected from testing. This was probably 
due to the fact that observer 1 only defined two basal heart rates out of 50 as undefined in the 
validation set, compared to ten of 50 in the testing set. This was in favor for the algorithm, 
which was not developed to handle all of these traces satisfactory. 

The criterion implemented allowing at most 65% signal loss when estimating a basal heart 
rate appeared to be unapplied during the validation phase. Figure 26 shows the calculated 
signal loss on all traces for validation. The signal loss was over all significantly lower than for 
the traces applied during algorithm development and testing, see figure 17.  Hence, the filter 
was never applied and no conclusion can be drawn to whether or not this was an appropriate 
threshold value.  
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Figure 26. Signal loss in the validation traces for which observer 1 estimated  
a basal heart rate, compared to those which were marked ‘undefined’. 

Experiments were carried out aiming to find further correlations between the traces for testing 
which observer 1 marked as undefined, however none of the results led to implementation. 
One approach could be to study the amount of signal removed as unstable segments prior to 
basal heart rate estimation. Figure 27 shows the percentage of excluded, unstable, segments 
for each of the heart rate traces. The results suggest that there might be a correlation between 
high amount of unstable segments and observer 1 assessing the basal heart rate as undefined, 
however no exclusive consistency was found. 

 

Figure 27. Amount of signal classified as unstable segment, in the test traces for which 
observer 1 estimated a basal heart rate, compared to those which were marked ‘undefined’. 
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Another approach might be to study the amount of heart rate signal that the chosen basal heart 
rate represents. Figure 28 shows the percentage of representation by this value in the 
histogram from which the basal heart rate was found. The results suggest that there might be a 
correlation between a flatter histogram and observer 1 assessing the basal heart rate as 
undefined, however no exclusive consistency was found. 

 

Figure 28. Basal heart rate representation in the histogram, in the test traces for which 
observer 1 estimated a basal heart rate, compared to those which were marked ‘undefined’. 

These experiments indicate that methods of identifying the traces to be marked as undefined 
might be possible to find. A combination of several approaches could be used to assess these 
traces. For instance, one idea is that traces showing high signal loss might only be approved if 
the percentage of chosen basal heart rate found in the heart rate signal is very good. It seems 
reasonable, however it would make no difference on the set of traces used for training in this 
thesis, hence the signal loss criteria was the only one implemented. 

The algorithms for basal heart rate estimation were tested on 20-minute segments. However, 
we would want them to function in settings where observation continues for several hours. An 
implemented algorithm would have to reevaluate the basal heart rate and change its level 
when the heart rate has differed from the basal heart rate for a long time. 

It is a probable assumption that all of the compared algorithms for basal heart rate estimation 
would perform better on traces lasting longer than 20 minutes, since contributions from 
accelerations, decelerations or other unstable segments would not represent as much of the 
total  signal.  Figure 29 shows an example of a trace which was misclassified by algorithm B 
due  to  a  long  elevation  from  the  true  basal  heart  rate.  A  longer  recording  time  would  most  
likely solve this problem. 
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Figure 29. Basal heart rate misclassified. Solid line represent basal heart rate estimated  
by algorithm B. Dotted line represent basal heart rate estimated by observer 1. 

 

The system developed by Dawes et al. (1982) calculates a first estimation of the basal heart 
rate after only ten minutes, however if the Dawes/Redman criteria are not met it continues to 
do so every 2 minutes, until an hour has passed, updating the old value. The calculation is 
always based on the whole trace. Equivalently, the system by Ayres-de-Campos et al. (2000) 
begin after ten minutes, and update the basal heart rate every five minutes, based on the whole 
trace.  In  this  thesis  the  algorithms  by  Dawes  et  al.  and  Ayres-de-Campos  et  al.  have  been  
implemented on 20 minute long heart rate traces. This was considered fair since they both 
start their evaluation after only ten minutes. When evaluating their system however, Ayres-
de-Campos et al. (2004) ran the algorithm on traces with a duration of 40-60 minutes, once 
for the trace as a whole. The results from that study are of course better than what it would 
have been if it were performed on ten minute traces. Their results are over all questionable 
since the observers assessing the traces were given instructions on how to evaluate basal heart 
rate according to the definitions used when developing the algorithm, and that they met to 
reach a consensus in the cases where disagreement had shown to differ more than three bpm. 

The  algorithm  developed  in  this  thesis  to  mimic  Ayres-de-Campos  et  al.  is  close  but  not  a  
perfect match to the original in terms of the resampling of an average of the signal. The 
version of that algorithm implemented in this thesis uses the preprocessing proposed, 
resampling an average of the signal every 1.25 seconds. Originally however, Ayres-de-
Campos et al. choose not to resample the signal, but instead replace each sample with a 
computed average over five adjacent samples. This result in varying averaging periods 
depending on the current heart rate but for its purpose, histogram analysis, it was considered a 
good match. The histogram should not be remarkably affected. The short term variation which 
was used as a part of this algorithm was calculated prior to resampling of the signal, hence it 
causes no differences between the original and the version implemented in this thesis. 

The algorithm described by Ayres-de-Campos et al. selects a few highly represented heart 
rates from the histogram, and then decide the basal heart  rate based on the variability of the 
entire signal. The approach developed in this thesis instead selects only stable segments of the 
heart rate signal, and then depend blindly on the histogram analysis. Overall, the two 
algorithms  perform  very  similar.  If  the  criteria  for  signal  loss  had  been  applied  to  the  
algorithm by Ayres-de-Campos et al. they would have performed roughly the same. The 
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algorithm described by Dawes et al. however, performs much worse. The reason for this is 
understandable since it calculates the mean value of the stable segments, instead of the mode. 
This theoretically means that the calculated value may not even be present in the signal at all. 
The same approach was tested at an early stage of this project, however on the entire signal, 
with similar results. 

4.3 Gathering of expert observer opinions 
Clinical expert evaluation of the cardiotocograms was time consuming. For the scope of this 
thesis, employing two clinical experts to evaluate the registrations was initially considered the 
realistic alternative. Inter-observer variability was however reported higher than expected, 
which implied difficulties defining the absolute performance of the developed algorithms. The 
algorithms described by Dawes et al., which are widely used clinically, perform poor against 
observer 1 on these heart rate traces. It cannot be fully concluded whether the observer data is 
extraordinary, or if the algorithms are inadequate. However, the developed algorithms did 
perform better than the competing algorithms, and within or close to the uncertainty between 
the clinical experts. 

Ideally this study would have been carried out on a larger group of clinical experts, leaving 
more room for classifying rare opinions as less significant, and more commonly shared 
opinions as more convincing. With only the sparse information from two observers, there is 
no statistical significance and more reliable results than those obtained are not possible. 

Both observers have assured that they did evaluate the fetal heart rate traces according to the 
same definitions of acceleration, deceleration and basal heart rate. They believe that the low 
inter-observer agreement observed for acceleration detection is caused solely by an 
uncertainty of where to fit the baseline.  

The conditions under which the cardiotocograms were assessed by the observers inevitably 
differed from the typical clinical setting. Evaluation was performed studying the registrations 
with the same computer software used clinically. They were however studied offline, 
implying  two  major  factors  to  their  advantage.  Firstly,  there  was  almost  unlimited  time  for  
analysis. The observers could take their time and pause the evaluation whenever they needed 
to due to distractions. Secondly, unlike a real time setting, the observers were given the whole 
registration at  once,  facilitating evaluation of each event by the possibility to study not only 
previous but also future heart rates. It is not likely that the unusual conditions under which the 
cardiotocograms were assessed caused poorer judgment. It is more likely that it had a positive 
effect on the validity of the evaluation. 

Ideally validation of an algorithm would give the same results as obtained in the testing stage, 
proving that the algorithms have been developed to operate on any general data. Validation of 
acceleration detection, deceleration detection as well as basal heart rate estimation show that 
there is a difference between results obtained from test data and validation data in this thesis. 
It is plausible to believe that the observed differences are a result of the small number of 
cardiotocograms used, and that a larger study would strengthen the certainty of any results. 

  



37 
 

4.4 Clinical impact of the results 
Accelerations are considered the most important indication of fetal wellbeing (Ingemarsson 
2006). It indicates a well functioning cardiovascular system, a functioning autonomic nervous 
system and a functioning central nervous system.  

The STAN S31 system from Neoventa Medical currently alarms for abnormalities in the ST 
segment of the ECG pattern, and it will shortly also alarm for low heart rate variability. 
Inevitably, these hypoxia related alarms are sometimes false positives.  Simultaneous 
detection of accelerations, indicating fetal wellbeing, could assist in suppressing some of 
these false alarms. It does not require each acceleration to be identified, however it does 
require a high positive predictive value, which have not been reported in this thesis. 

Deceleration is a term of wide signification. In order to find clinical significance for these, 
they  need  to  be  classified.  The  type  of  deceleration  is  distinguished  based  on  its  waveform  
and duration (Neoventa Medical AB 2008). Uniform decelerations have a soft start and 
ending, giving a rounder look. Variable decelerations have a more abrupt decrease of heart 
rate and are often deeper. Uniform decelerations are further classified as early or late, 
depending on the relation in time to uterine contraction. Variable decelerations are further 
classified  as  complicated  or  not  complicated  as  a  function  of  depth  and  duration.  Some  
decelerations, like the early uniform and the smallest variable, are normal and hence of no 
interest to detect, while others might indicate hypoxia and are of greater interest. 

Therefore, the work performed in this thesis is not of interest for direct implementation. The 
correlation between the decelerations and the uterine activity needs to be analyzed and the 
exact start time and duration needs to be more accurate, in order to detect the late uniform and 
the variable decelerations.  

The program written to evaluate sensitivity and positive predictive value for acceleration and 
deceleration detection in this thesis was rather kind, forgiving an event as correctly detected 
even if the algorithm only marked parts of the event marked by the observer. It should ideally 
be more sensitive to exact start time and duration, especially in the case of decelerations if one 
wishes to classify these.  

The algorithm proposed for estimating basal heart rate was tested and validated on quite few 
cardiotocograms,  showing  spread  results.  Validation  showed  that  it  estimates  correct  or  at  
most five bpm wrong, suggesting that it would perform fairly good at indicating bradycardia 
and tachycardia. It does however not know when to assess the basal heart rate as undefined, 
which is an important drawback which needs to be solved prior to implementation. 
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5. Conclusions 
Evaluating the inter-observer agreement between clinical experts showed that disagreement is 
considerably high for both acceleration detection and deceleration detection. This also implies 
great uncertainty of the performance of the proposed algorithms for identifying these patterns. 

The clinical experts were fairly consistent in estimating the basal heart rate. Disagreement 
was mainly due to one of the observers stating the basal heart rate as undefined. 

The algorithms described by Dawes et al. for acceleration detection, deceleration detection 
and basal heart rate estimation all perform poor against the opinions of observer 1. The 
algorithms developed for this thesis all perform better. The algorithm for basal heart rate 
estimation described by Ayres-de-Campos et al. perform better than the one described by 
Dawes et al., however worse than the observer and the algorithm proposed in this thesis. 

The performances of the developed algorithms are within or close to the level of uncertainty 
between the clinical experts. Acceleration detection proved to be the most difficult, possibly 
because accelerations in general are smaller than decelerations, and hence more dependent on 
proper estimation of the running baseline. 

Results from validation differed from testing, most likely as a result  of the small  number of 
cardiotocograms used. For future work, it is recommended that a larger study is carried out, 
both in terms of number of cardiotocograms observed and the number of expert observers. 

Because of the large uncertainties related to this study, none of the developed algorithms are 
subject for implementation in STAN S31 today. Further studies presenting stronger statistical 
significance are needed.  
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Appendix	A	–	Algorithm	1	with	acceleration	detection	
The algorithm uses the resampled (1250 ms) fetal heart rate signal, “fhr”,  as input 
 
starttider = NaN;    % Will store start times for accelerations 
sluttider = NaN;     % Will store end times for accelerations 
 
fhrBas=zeros(1,length(fhr));              % Will become the running baseline 
gjort =0; 
 
accTid = 0;                              
found = 0;                               
ampCriteria = 0;                         
accStart=0;                              
 
% Decide window size and interval time for which the baseline is decided  
hoger = 5*(60000/samplingstid);            
vanster = min(15*(60000/samplingstid), length(fhr)-hoger-1);  
intervall = 1*(60000/samplingstid);        
  
% Create weight function 
a = linspace(0, 5, vanster); 
b = linspace(2, 1/10, hoger+1); 
c = exp(a)/exp(5); 
d = exp(b)/exp(2); 
vikt = [c, d(2:end)]; 
  
forekomst = zeros(1, 300);                               % Create empty histogram 
  
for i = vanster : length(fhr)-2                          % Scan the signal, start at 15 minutes   
    if rem(i, intervall) == 0 || i==vanster               % Each minute: calculate new baseline     
 
% If i = 15 minutes, decide the baseline for 0 - 16 minutes         
        if i == vanster     
            fhrBasTemp = bas(fhr(1:vanster + 1 + hoger));   
            fhrBas(1:vanster+intervall) = fhrBasTemp(1:vanster+intervall);  
             
            % Control, for each sample, if the calculated baseline is considered reliable  
            for h = 1:vanster-1  
                viktTemp = vikt(end-hoger-h : end);      %  Shortened weigth function 
                for j = 1: h+hoger                        %  Create histogram 
                    heartrate = round(fhr(j)); 
                    forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
                end 
                      
                % Find the 10bpm long window of the histogram which contains most of the signal 
                summa = 0; maxFonster = 0; 
                for k = 1 : length(forekomst) - 10 
                    for m = 0:9                          
                        summa = summa + forekomst(k+m);  
                    end           
                    if summa > maxFonster                
                        maxFonster = summa;              
                    end 
                    summa = 0; 
                end        
             
                % If the 10bpm long window does not contain enough signal, set baseline to NaN 
                if maxFonster/sum(forekomst) < 0.4 
                    fhrBas(h)= NaN; 



 
 

                end 
                forekomst = zeros(1, 300); 
            end     
          
% If 15 minutes  <  i  <  fhr(length) – 5 minutes, decide the baseline 1 minute at a time 
        elseif i > vanster && i <= length(fhr)-hoger 
            fhrBasTemp = bas(fhr(i-vanster:i+hoger)); 
            fhrBas(i:i+intervall) = fhrBasTemp(end-hoger:end-hoger+intervall);  
             
            % Control, for each sample, if the calculated baseline is considered reliable 
            for h = i:i+intervall-1 
                if h >= length(fhr)-hoger-1 
                    viktTemp = vikt(1 : vanster+length(fhr)-h-1); %  Shortened weigth function, if h > hoger-1 
                    for j = 1: vanster+length(fhr)-h-1             %  Create histogram 
                        heartrate = round(fhr(h-vanster+j)); 
                        forekomst(heartrate) = forekomst(heartrate) + viktTemp(j); 
                    end 
                else 
                    for j = 1: vanster+hoger                      %  Create histogram 
                        heartrate = round(fhr(h-vanster+j)); 
                        forekomst(heartrate) = forekomst(heartrate) + vikt(j); 
                    end 
                end 
                 
                % Find the 10bpm long window of the histogram which contains most of the signal 
                summa = 0; maxFonster = 0; 
                for k = 1 : length(forekomst) - 10   
                    for m = 0:9 
                        summa = summa + forekomst(k+m); 
                    end 
                    if summa > maxFonster               
                        maxFonster = summa;      
                    end 
                    summa = 0; 
                end 
                   
                % If the 10bpm long window does not contain enough signal, set baseline to NaN 
                if maxFonster/sum(forekomst) < 0.4 
                    fhrBas(h)= NaN; 
                end 
             
                forekomst = zeros(1, 300); 
            end 
         
% If  i  >  fhr(length) – 5 minutes, decide the baseline for the last 5 minutes (this will never happen in real time)   
      elseif i > length(fhr)-hoger         
            if gjort == 0 
                fhrBasTemp = bas(fhr(i-vanster:end));    
                fhrBas(end-hoger:end) = fhrBasTemp(end-hoger:end);  
                gjort = 1 
            end 
         
            % Control, for each sample, if the calculated baseline is considered reliable 
            for h = i: length(fhr)                 
                viktTemp = vikt(1 : vanster+length(fhr)-h);        %  Shortened weigth function 
                for j = 1 : vanster+length(fhr)-h                   %  Create histogram 
                    heartrate = round(fhr(h-vanster+j)); 
                    forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
                end 
                      



 
 

                % Find the 10bpm long window of the histogram which contains most of the signal 
                summa = 0;maxFonster = 0; 
                for k = 1 : length(forekomst) - 10              
                    for m = 0:9                                     
                        summa = summa + forekomst(k+m);             
                    end 
                    if summa > maxFonster                           
                        maxFonster = summa;                         
                    end 
                    summa = 0; 
                end 
  
                % If the 10bpm long window does not contain enough signal, set baseline to NaN 
                if maxFonster/sum(forekomst) < 0.4 
                    fhrBas(h)= NaN; 
                end 
                forekomst = zeros(1, 300); 
            end 
        end 
    end 
 
% Identify accelerations 
     If i = 15 minutes, loop through time from start to 15 minutes        
     if i == vanster 
         for j = 4 : vanster                                     
             % (see below first...) Continue counting time since potential start 
             if accTid > 0 
                 accTid = accTid + 1; 
             end 
             
             % Potential acceleration starts when baseline is passed (above) 

if accTid == 0 && fhr(j+1) > fhr(j) && fhr(j+2)> fhr(j+1) && fhr(j)> fhrBas(j)-1 && 
interpolerade(j)==1 

                 accTid = 1;                                  
             end 
     
             % Has at least one sample exceeded baseline + 15 bpm? 
             if fhr(j) > fhrBas(j) + 15                       
                 ampCriteria = 1;                             
             end 
             
             % During potential acceleration: Baseline is passed (below) 
             if  fhr(j) < fhrBas(j) && fhr(j)<fhr(j-1) && accTid~=1 
                 if found ==1                                 % If within a confirmed acceleration...                                      
                     accSlut = j;                              % ... this is the end time     
                     signalbortfall = signalLoss(interpolerade(accStart: accSlut)); 
                     if signalbortfall < 0.3           % because fhr was interpolated to have values at all times 
                         starttider(end+1) = accStart; 
                         sluttider(end+1) = accSlut; 
                        end 
                    end 
                    % Since we are no longer within a potential or confirmed acceleration: 
                    accTid = 0;                        
                    ampCriteria = 0;                            
                    found = 0; 
                end 
                      
             % If all criteria passed: An acceleration is confirmed 
             if accTid > (15000/samplingstid) && ampCriteria == 1 && found == 0  
                 found = 1;                                                      



 
 

                 accStart = j-(accTid-1);                                        % This is the start time 
             end 
                 
             % Abort acceleration detection if no baseline exists during 5 seconds 

if isfinite(fhrBas(j)) == 0 && isfinite(fhrBas(j-1)) == 0 && isfinite(fhrBas(j-2)) == 0 && 
isfinite(fhrBas(j-3)) == 0 

                    accTid = 0;                                  
                    ampCriteria = 0;                             
                    found = 0;                              
             end 
             end 
             
    % If i  > 15 minutes: continue acceleration detection in real time 
     else           
         % (see below first...) Continue counting time since potential start 
         if accTid > 0                                        
                 accTid = accTid + 1 
         end 
             
         % Potential acceleration starts when baseline is passed (above) 
 if accTid == 0 && fhr(i+1) > fhr(i) && fhr(i+2)> fhr(i+1) && fhr(i)> fhrBas(i)-1 && interpolerade(i)==1 
             accTid = 1;                                      
        end 
     
         % Has at least one sample exceeded baseline + 15 bpm? 
         if fhr(i) > fhrBas(i) + 15                           
             ampCriteria = 1;                                 
         end 
                                   
         % During potential acceleration: Baseline is passed (below) 
         if fhr(i) < fhrBas(i) && fhr(i)<fhr(i-1) && accTid~=1 
             if found ==1        % If within a confirmed acceleration...                                                                         
                 accSlut = i;                                    % ... this is the end time     
                 signalbortfall = signalLoss(interpolerade(accStart: accSlut));                    
                 if signalbortfall < 0.3                                     % because fhr was interpolated to have values at all times 
                     starttider(end+1) = accStart; 
                     sluttider(end+1) = accSlut; 
                end 
            end 
            % Since we are no longer within a potential or confirmed acceleration: 
            accTid = 0;                                      
            ampCriteria = 0;                                 
            found = 0;                                       
        end 
         
        % If all criteria passed: An acceleration is confirmed 
        if accTid > (15000/samplingstid) && ampCriteria == 1 && found == 0  
            found = 1;                                                      
            accStart = i-(accTid-1);                                     % This is the start time    
        end 
             
        % Abort acceleration detection if no baseline exists during 5 seconds 

if isfinite(fhrBas(i)) == 0 && isfinite(fhrBas(i-1)) == 0 && isfinite(fhrBas(i-2)) == 0 && isfinite(fhrBas(i-
3)) == 0 

                accTid = 0;                                  
                ampCriteria = 0;                             
                found = 0;                                   
        end 
    end 
end  



 
 

Function	Bas.m		
function [fhrBas] = bas(fhr)  

fhrBas =  fhr;                       % Will become baseline 
fhr_hist = 60000./fhr;                        % Copy (in ms) for histogram anlysis 

% Remove values below 300 and above 600ms, (200-100bpm) prior to histogram analysis 
for i = 1:length(fhr)                                   
    if ((fhr_hist(i)) > 600 || (fhr_hist(i)) < 300)  
            fhr_hist(i) = NaN; 
    end 
end 

[forekomst,heartrate] = hist(fhr_hist, 300:600);    % Create a histogram for each ms between 300 and 600 

% Find position where 1/8 of the histogram area lies to the right 
borja_leta = find(cumsum(forekomst) > 0.875*sum(forekomst),1) -1;   

% Find heart rate corresponding to the histogram mode 
mest = heartrate(find(max(forekomst) == forekomst, 1));   
 
peak = mest;     % Will be P if no local peak passes the criteria 

% Find P 
for i=0:borja_leta-5              % Inleder i ovan nämna punkt 

% If occurrence in this value is higher than the next five to be scanned, and the occurrence is at least 0.5% of the 
total histogram or the occurrence is within 30ms from the histogram mode 
if forekomst(borja_leta-i) > forekomst(borja_leta-i-1) && forekomst(borja_leta-i) > forekomst(borja_leta-i-2) 
&& forekomst(borja_leta-i) > forekomst(borja_leta-i-3) && forekomst(borja_leta-i) > forekomst(borja_leta-i-4) 
&& forekomst(borja_leta-i) > forekomst(borja_leta-i-5) && (forekomst(borja_leta-i) > 0.005*sum(forekomst) || 
abs((299+borja_leta-1)-mest) <= 30) 
        peak = 299 + borja_leta-i; 
      break 
    end     
end 

peak = 60000./peak;    % Convert from ms to bpm 

 

% Iteration 1: Baseline filter 
fhrBas = basFilter2(fhrBas, peak;       

% Iteration 2: Trim sequences deviating 20 bpm above, or 20 bpm below temporary running baseline 
over = 20; 
under = 20; 

fhrBas = basTrimma(fhr, fhrBas, over, under);    
fhrBas = basFilter(fhrBas, peak);             

% Iteration 3: Trim sequences deviating 15 bpm above, or 15 bpm below temporary running baseline 
over = 15; 
under = 15; 



 
 

fhrBas = basTrimma(fhr, fhrBas, over, under);    
fhrBas = basFilter(fhrBas, peak);              

% Iteration 4: Trim sequences deviating 10 bpm above, or 10 bpm below temporary running baseline 
over = 10; 
under = 10; 

fhrBas = basTrimma(fhr, fhrBas, over, under);    
fhrBas = basFilter(fhrBas, peak);          

% Iteration 5: Trim sequences deviating 5 bpm above, or 10 bpm below temporary running baseline 
over = 5; 
under = 10; 

fhrBas = basTrimma(fhr, fhrBas, over, under);    
fhrBas = basFilter(fhrBas, peak);          

end 

 

Function	basFilter.m	
function [fhrBas] = basFilter(fhrBas, peak) 

% Sets an invented value prior to start  
B0 = peak; 
for i = length(fhrBas) : -1 : 1 
    if abs(fhrBas(i) - peak) <= 50              % For values within limits of P 
        B0 = 0.975*B0 + 0.025*fhrBas(i);   
    end 
end 

% Forward filtering 
for i = 1 : length(fhrBas) 
    if abs(fhrBas(i) - peak) <= 50                           % For values within limits of P 
        if i==1 
            fhrBas(i) = 0.975*B0 + 0.025*fhrBas(i);          
        else 
            fhrBas(i) = 0.975*fhrBas(i-1) + 0.025*fhrBas(i);    
        end 
    else    % If not within limits of P: copy previous value 
        if i==1 
            fhrBas(1) = B0;                                 
        else 
        fhrBas(i) = fhrBas(i-1);                          
        end 
    end 
end 

% Backward filtering                                      
for i = length(fhrBas)-1 : -1 : 1    
    fhrBas(i) = 0.975*fhrBas(i+1) + 0.025*fhrBas(i); 
end 

end



 
 

Function	basTrimma.m 

function [fhrBas] = basTrimma(fhr, fhrBas, over, under) 

fhrNy = fhr;    % A copy of the signal, on which sequences 
will be replaced with temporary baseline  

% Replace large deviations above the temporary running baseline 
inutiPotSekvens = 0; 
inutiSekvens = 0; 

for i = 1:length(fhr) 
% If baseline is passed (above) 
    if fhr(i) > fhrBas(i) && inutiPotSekvens == 0    
        potStart = i;                                % Position is a possible start for replacement  
        inutiPotSekvens = 1; 
    end 

% If upper limit is passed 
    if fhr(i) > fhrBas(i) + over 
        start = potStart;   % Position was a definite start for replacement 
        inutiSekvens = 1; 
   end 

% During sequence: If baseline is passed (below), or if registration ends  
    if fhr(i) < fhrBas(i) && inutiSekvens == 1 || i ==length(fhr) && inutiSekvens == 1 
        for j = start:i-1 
            fhrNy(j) = fhrBas(j);                     % Replace sequence with running baseline 
        end 
        inutiSekvens = 0; 
    end  

% During no sequence: If baseline is passed (below) 
    if fhr(i) < fhrBas(i) && inutiSekvens == 0       
        inutiPotSekvens = 0;                        
    end 
end 

 

% Replace large deviations below the temporary running baseline 
inutiPotSekvens = 0; 
inutiSekvens = 0; 

for i = 1:length(fhr) 
% If baseline is passed (above) 
    if fhr(i) < fhrBas(i) && inutiPotSekvens == 0   
        potStart = i;                                 % Position is a possible start for replacement 
        inutiPotSekvens = 1; 
    end 

% If lower limit is passed  
if fhr(i) < fhrBas(i) - under                     
        start = potStart;   % Position was a definite start for replacement 



 
 

        inutiSekvens = 1; 
end 

% During sequence: If baseline is passed (above), or if registration ends 
    if fhr(i) > fhrBas(i) && inutiSekvens == 1 || i ==length(fhr) && inutiSekvens == 1 
        for j = start:i-1 
            fhrNy(j) = fhrBas(j);                     % Replace sequence with running baseline 
        end 
        inutiSekvens = 0; 
    end  

 % During no sequence: If baseline is passed (above)    
    if fhr(i) > fhrBas(i) && inutiSekvens == 0       
        inutiPotSekvens = 0;                        
    end 
end 

fhrBas = fhrNy; 

end 

  



 
 

Appendix	B	–	Algorithm	1	with	deceleration	detection	
The algorithm uses the resampled (1250 ms) fetal heart rate signal, “fhr”,  as input 
 
starttider = NaN;    % Will store start times for decelerations 
sluttider = NaN;     % Will store end times for decelerations 
 
fhrBas=zeros(1,length(fhr));              % Will become the running baseline 
gjort =0; 
 
decTid = 0;                              
found = 0;                               
ampCriteria = 0;                         
decStart=0;                              
 
% Decide window size and interval time for which the baseline is decided  
hoger = 5*(60000/samplingstid);            
vanster = min(15*(60000/samplingstid), length(fhr)-hoger-1);  
intervall = 1*(60000/samplingstid);        
  
% Create weight function 
a = linspace(0, 5, vanster); 
b = linspace(2, 1/10, hoger+1); 
c = exp(a)/exp(5); 
d = exp(b)/exp(2); 
vikt = [c, d(2:end)]; 
  
forekomst = zeros(1, 300);                               % Create empty histogram 
  
for i = vanster : length(fhr)-2                          % Scan the signal, start at 15 minutes   
    if rem(i, intervall) == 0 || i==vanster               % Each minute: calculate new baseline     
 
% If i = 15 minutes, decide the baseline for 0 - 16 minutes         
        if i == vanster     
            fhrBasTemp = bas(fhr(1:vanster + 1 + hoger));   
            fhrBas(1:vanster+intervall) = fhrBasTemp(1:vanster+intervall);  
             
% If 15 minutes  <  i  <  fhr(length) – 5 minutes, decide the baseline 1 minute at a time 
        elseif i > vanster && i <= length(fhr)-hoger 
            fhrBasTemp = bas(fhr(i-vanster:i+hoger)); 
            fhrBas(i:i+intervall) = fhrBasTemp(end-hoger:end-hoger+intervall);  
         
% If  i  >  fhr(length) – 5 minutes, decide the baseline for the last 5 minutes (this will never happen in real time)   
        elseif i > length(fhr)-hoger         
            if gjort == 0 
                fhrBasTemp = bas(fhr(i-vanster:end));    
                fhrBas(end-hoger:end) = fhrBasTemp(end-hoger:end);  
                gjort = 1 
            end 
        end 
   end 
 
% Identify decelerations 
     If i = 15 minutes, loop through time from start to 15 minutes 
        if i == vanster 
            for j = 4 : vanster                  
                % (see below first...) Continue counting time since potential start 
                if decTime > 0 



 
 

                    decTime = decTime + 1; 
                end   

                % Potential deceleration starts when baseline is passed (below) 
                if decTime == 0 && fhr(j+1) < fhr(j) && fhr(j+2)< fhr(j+1) && fhr(j)< fhrBas(j)+1 && 
interpolerade(j)==1 
                    decTime = 1;                                       
                end 

                % Has at least one sample exceeded baseline - 15 bpm? 
                if fhr(j) < fhrBas(j) - 15                           
                    ampCriteria = 1;                                 
                end 
 
                % During potential deceleration: Baseline is passed (above) 
                if  fhr(j) > fhrBas(j) && fhr(j)>fhr(j-1) && decTime~=1 
                    if found ==1      % If within a confirmed deceleration                                      
                        decSlut = j;                                  % ... this is the end time     
                       signalbortfall = signalLoss(interpolerade(decStart: decSlut)); 
                        if signalbortfall < 0.3           % because fhr was interpolated to have values at all times 
                            starttider(end+1) = decStart; 
                            sluttider(end+1) = decSlut; 
                        end 
                    end 

                    % Since we are no longer within a potential or confirmed deceleration: 
                    decTime = 0;                                     
                    ampCriteria = 0;                                 
                    found = 0;                                       
                end             
           
                % If all criteria passed: A deceleration is confirmed 
                if decTime > (15000/samplingstid) && ampCriteria == 1 && found == 0  
                    found = 1;                                                       
                    decStart = j-(decTime-1);        % This is the start time                                  
                end 
            end   
         

 % If i  > 15 minutes: continue acceleration detection in real time 
        else     
            % (see below first...) Continue counting time since potential start 
            if decTime > 0                                           
                    decTime = decTime + 1;                           
            end 

            % Potential deceleration starts when baseline is passed (below) 
            if decTime == 0 && fhr(i+1) < fhr(i) && fhr(i+2)< fhr(i+1) && fhr(i)< fhrBas(i)+1 && 
interpolerade(i)==1 
                decTime = 1;                                         
            end     

            % Has at least one sample exceeded baseline - 15 bpm? 
            if fhr(i) < fhrBas(i) - 15                               
                ampCriteria = 1;                                     
            end   



 
 

            % During potential deceleration: Baseline is passed (above) 
            if (fhr(i) > fhrBas(i) && fhr(i)>fhr(i-1) && decTime~=1) || i == length(fhr)-2 
                if found ==1   % If within a confirmed deceleration                                      
                    decSlut = i;                                      % ... this is the end time     
                    signalbortfall = signalLoss(interpolerade(decStart: decSlut));                    
                    if signalbortfall < 0.3                                   % because fhr was interpolated to have values at all times 
                        starttider(end+1) = decStart; 
                        sluttider(end+1) = decSlut; 
                    end 
                end 

                % Since we are no longer within a potential or confirmed deceleration: 
                decTime = 0;                                          
                ampCriteria = 0;                                      
                found = 0;                                            
            end 

            % If all criteria passed: A deceleration is confirmed 
            if decTime > (15000/samplingstid) && ampCriteria == 1 && found == 0  
                found = 1;                                                       
                decStart = i-(decTime-1);                                     % This is the start time                                     
            end 
        end 
end 

      
  



 
 

Appendix	C	–	Algorithm	2	with	acceleration	detection	
The algorithm uses the resampled (1250 ms) fetal heart rate signal, “fhr”,  as input 
 
starttider = NaN;    % Will store start times for accelerations 
sluttider = NaN;     % Will store end times for accelerations 
 
fhrBas=zeros(1,length(fhr));              % Will become the running baseline 
gjort =0; 
 
accTid = 0;                              
found = 0;                               
ampCriteria = 0;                         
accStart=0;                              
 
% Decide window size and interval time for which the baseline is decided  
hoger = 5*(60000/samplingstid);            
vanster = min(15*(60000/samplingstid), length(fhr)-hoger-1);  
intervall = 1*(60000/samplingstid);        
  
% Create weight function 
a = linspace(0, 5, vanster); 
b = linspace(2, 1/10, hoger+1); 
c = exp(a)/exp(5); 
d = exp(b)/exp(2); 
vikt = [c, d(2:end)]; 
  
forekomst = zeros(1, 300);                               % Create empty histogram 
 

for i = 2 : length(fhr)-2                                  
    % If i < 15 minutes, decide the baseline based on a shorter window 
    if i<vanster          
        viktTemp = vikt(end-hoger-i : end);              %  Shortened weigth function 
        for j = 1 : i+hoger                               %  Create histogram 
            heartrate = round(fhr(j)); 
            forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
        end         

        % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              
                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                medelHist = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 

       % If the 10bpm long window contains enough signal, set mean value as baseline 
        if maxFonster/sum(forekomst) >= 0.4 
            fhrBas(i) = medelHist;   



 
 

        end 
 
        % If the 10bpm long window does not contain enough signal, set baseline to NaN 
        if maxFonster/sum(forekomst) < 0.4 
            fhrBas(i)= NaN; 
        end 

        forekomst = zeros(1, 300); 

    % If 15 minutes  <  i  <  fhr(length) – 5 minutes, decide the baseline based on the 20 min window 
    elseif i >= vanster && i <= length(fhr)-hoger       
        for j = 1: vanster+hoger                      %  Create histogram 
            heartrate = round(fhr(i-vanster+j)); 
            forekomst(heartrate) = forekomst(heartrate) + vikt(j); 
        end   

         % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              
                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                medelHist = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 

       % If the 10bpm long window contains enough signal, set mean value as baseline 
        if maxFonster/sum(forekomst) >= 0.4 
            fhrBas(i) = medelHist;   
        end 
 
        % If the 10bpm long window does not contain enough signal, set baseline to NaN 
        if maxFonster/sum(forekomst) < 0.4 
            fhrBas(i)= NaN; 
        end 

        forekomst = zeros(1, 300); 

    % If  i  >  fhr(length) – 5 minutes, decide the baseline based on a shorter window 
    elseif i > length(fhr)-hoger  
        viktTemp = vikt(1 : vanster+length(fhr)-i);   %  Shortened weigth function 
        for j = 1 : vanster+length(fhr)-i            %  Create histogram 
            heartrate = round(fhr(i-vanster+j)); 
            forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
        end                      

        % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              



 
 

                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                medelHist = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 

       % If the 10bpm long window contains enough signal, set mean value as baseline 
        if maxFonster/sum(forekomst) >= 0.4 
            fhrBas(i) = medelHist;   
        end 
 
        % If the 10bpm long window does not contain enough signal, set baseline to NaN 
        if maxFonster/sum(forekomst) < 0.4 
            fhrBas(i)= NaN; 
        end 

        forekomst = zeros(1, 300); 
     end 

% Identify accelerations 
     % (see below first...) Continue counting time since potential start 
     if accTid > 0                                        
             accTid = accTid + 1 
     end 
             
     % Potential acceleration starts when baseline is passed (above) 
     if accTid == 0 && fhr(i+1) > fhr(i) && fhr(i+2)> fhr(i+1) && fhr(i)> fhrBas(i)-1 && interpolerade(i)==1 
         accTid = 1;                                      
    end 
     
     % Has at least one sample exceeded baseline + 15 bpm? 
     if fhr(i) > fhrBas(i) + 15                           
         ampCriteria = 1;                                 
     end 
                                   
     % During potential acceleration: Baseline is passed (below) 
     if fhr(i) < fhrBas(i) && fhr(i)<fhr(i-1) && accTid~=1 
         if found ==1        % If within a confirmed acceleration...                                                                         
             accSlut = i;                                    % ... this is the end time     
             signalbortfall = signalLoss(interpolerade(accStart: accSlut));                    
             if signalbortfall < 0.3                                     % because fhr was interpolated to have values at all times 
                 starttider(end+1) = accStart; 
                 sluttider(end+1) = accSlut; 
            end 
        end 
        % Since we are no longer within a potential or confirmed acceleration: 
        accTid = 0;                                      
        ampCriteria = 0;                                 
        found = 0;                                       
    end 
         
    % If all criteria passed: An acceleration is confirmed 



 
 

    if accTid > (15000/samplingstid) && ampCriteria == 1 && found == 0  
        found = 1;                                                      
        accStart = i-(accTid-1);                                     % This is the start time    
    end 
             
    % Abort acceleration detection if no baseline exists during 5 seconds 

if isfinite(fhrBas(i)) == 0 && isfinite(fhrBas(i-1)) == 0 && isfinite(fhrBas(i-2)) == 0 && isfinite(fhrBas(i-
3)) == 0 

            accTid = 0;                                  
            ampCriteria = 0;                             
            found = 0;                                   
     end 
end 
 

     

  



 
 

Appendix	D	–	Algorithm	2	with	deceleration	detection	
The algorithm uses the resampled (1250 ms) fetal heart rate signal, “fhr”,  as input 
 
starttider = NaN;    % Will store start times for decelerations 
sluttider = NaN;     % Will store end times for decelerations 
 
fhrBas=zeros(1,length(fhr));              % Will become the running baseline 
gjort =0; 
 
decTid = 0;                              
found = 0;                               
ampCriteria = 0;                         
decStart=0;                              
 
% Decide window size and interval time for which the baseline is decided  
hoger = 5*(60000/samplingstid);            
vanster = min(15*(60000/samplingstid), length(fhr)-hoger-1);  
intervall = 1*(60000/samplingstid);        
  
% Create weight function 
a = linspace(0, 5, vanster); 
b = linspace(2, 1/10, hoger+1); 
c = exp(a)/exp(5); 
d = exp(b)/exp(2); 
vikt = [c, d(2:end)]; 
  
forekomst = zeros(1, 300);                               % Create empty histogram 
 

for i = 2 : length(fhr)-2                                  
    % If i < 15 minutes, decide the baseline based on a shorter window 
    if i<vanster          
        viktTemp = vikt(end-hoger-i : end);              %  Shortened weigth function 
        for j = 1 : i+hoger                               %  Create histogram 
            heartrate = round(fhr(j)); 
            forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
        end         

        % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              
                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                fhrBas(i)  = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 

        forekomst = zeros(1, 300); 



 
 

    % If 15 minutes  <  i  <  fhr(length) – 5 minutes, decide the baseline based on the 20 min window 
    elseif i >= vanster && i <= length(fhr)-hoger       
        for j = 1: vanster+hoger                      %  Create histogram 
            heartrate = round(fhr(i-vanster+j)); 
            forekomst(heartrate) = forekomst(heartrate) + vikt(j); 
        end   

         % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              
                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                fhrBas(i)  = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 
         
        forekomst = zeros(1, 300); 

    % If  i  >  fhr(length) – 5 minutes, decide the baseline based on a shorter window 
    elseif i > length(fhr)-hoger  
        viktTemp = vikt(1 : vanster+length(fhr)-i);   %  Shortened weigth function 
        for j = 1 : vanster+length(fhr)-i            %  Create histogram 
            heartrate = round(fhr(i-vanster+j)); 
            forekomst(heartrate) = forekomst(heartrate) + viktTemp(j);     
        end                      

        % Find the 10bpm long window of the histogram which contains most of the signal  
        summa = 0; allaBidrag = 0; maxFonster = 0; 
        for k = 1 : length(forekomst) - 10           
            for m = 0:9                              
                summa = summa + forekomst(k+m);      
                allaBidrag = allaBidrag + (k+m)*forekomst(k+m);    
            end 
            if summa > maxFonster                    
                maxFonster = summa;                  
                fhrBas(i) = allaBidrag/summa;         % Mean value (to be used as baseline)  
            end 
            summa = 0; 
            allaBidrag = 0; 
        end 
 
        forekomst = zeros(1, 300); 
     end 

% Identify decelerations 
     % (see below first...) Continue counting time since potential start 
     if decTime > 0                                           



 
 

             decTime = decTime + 1;                           
     end 

     % Potential deceleration starts when baseline is passed (below) 
     if decTime == 0 && fhr(i+1) < fhr(i) && fhr(i+2)< fhr(i+1) && fhr(i)< fhrBas(i)+1 && interpolerade(i)==1 
         decTime = 1;                                         
     end     

     % Has at least one sample exceeded baseline - 15 bpm? 
     if fhr(i) < fhrBas(i) - 15                               
         ampCriteria = 1;                                     
     end   

     % During potential deceleration: Baseline is passed (above) 
     if (fhr(i) > fhrBas(i) && fhr(i)>fhr(i-1) && decTime~=1) || i == length(fhr)-2 
         if found ==1   % If within a confirmed deceleration                                      
             decSlut = i;                                      % ... this is the end time     
             signalbortfall = signalLoss(interpolerade(decStart: decSlut));                    
             if signalbortfall < 0.3                       % because fhr was interpolated to have values at all times 
                 starttider(end+1) = decStart; 
                 sluttider(end+1) = decSlut; 
             end 
         end 

         % Since we are no longer within a potential or confirmed deceleration: 
         decTime = 0;                                          
         ampCriteria = 0;                                      
         found = 0;                                            
     end 

     % If all criteria passed: A deceleration is confirmed 
     if decTime > (15000/samplingstid) && ampCriteria == 1 && found == 0  
         found = 1;                                                       
         decStart = i-(decTime-1);                                     % This is the start time                                     
     end 
end 

 

  



 
 

Appendix	E	–	Algorithm	A	and	algorithm	B	
The same code is applied for both algorithm A and B, however algorithm A uses the resampled (1250 ms) fetal 
heart rate signal as input, algorithm B uses an altered version of the same, obtained according to 

fhrStabilt = NaN(1, length(fhr));     

for j=3:length(fhrStabilt)-2; 
   difference= max(fhr(j-2:j+2))-min(fhr(j-2:j+2));               % difference in heart rate over 5 samples 
   if difference <= 10                                 
       fhrStabilt(j) = fhr(j); 
   end 
end 

fhr = fhrStabilt; 

 

The following code is then used by both algorithm A and algorithm B. 

 

b = find(interpolerade);  % The fetal heart rate signal was interpolated to 
have values at all times at a previous stage. This 
line find the samples which contained no value. 

if 1-(length(b)/length(fhr)) < 0.65             % Allows signal loss below 65%  
     
    % Removes false values which were obtained by interpolation 
    for i = 1:length(fhr)    
        if interpolerade(i) == 0 
            fhr(i) = NaN;  
        end 
    end  

    % Creates histogram of multiples of 5 
    [forekomst,heartrate] = hist(fhr, 20:5:250);         

    [~,pos] = max(forekomst);     % Finds the histogram mode… 
    basal = heartrate(pos);        % … and sets this as basal heart rate 

else 
     basal = NaN;   % Not defined for signal loss above 65% 
end 

  



 
 

Appendix F – Basal heart rate estimation by SisPorto 
Flow chart describing the SisPorto 2.0 baseline algorithm (Ayres-de-Campos 2000). aSTV 
refers to abnormal short term variability. This is defined as the amount of signal, expressed in 
%, where fetal heart rate differs less than 1bpm between adjacent samples. 

 

 

 

Flow chart describing the SisPorto 2.0 baseline algorithm. 

 


