

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, November 2010

IMPLEMENTING AN OPEN SOURCE AMHARIC

RESOURCE GRAMMAR IN GF

Master of Science Thesis in Intelligent Systems Design

MARKOS KASSA GOBENA

2

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

IMPLEMENTING AN OPEN SOURCE AMHARIC RESOURCE GRAMMAR IN GF

MARKOS KASSA GOBENA

© MARKOS KASSA GOBENA November 2010.

Examiner: AARNE RANTA (Prof.)

Supervisor: RAMONA ENACHE

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Amharic Fidäl and the GF official logo marking the implementation of Amharic resource

grammar in GF

Department of Computer Science and Engineering

Göteborg, Sweden November 2010

3

Abstract

Developing language applications or localization of software is a resource intensive task that

requires the active participation of stakeholders with various backgrounds. With a constant

increase in the amounts of electronic information and the diversity of languages which are used

to produce them, these challenges get compounded. Various researches in the fields of

computational linguistics and computer science have been carried out while still many more are

on their way to alleviate such problems. Grammatical Framework (GF) is one potential

candidate to this. GF is a grammar formalism designed for multilingual grammars. A

multilingual grammar has a shared representation, called abstract syntax, and a set of concrete

syntaxes that map the abstract syntax to different languages. In this thesis, we describe an

implementation of Amharic, a Semitic language spoken in Ethiopia, as a resource grammar in

GF and we deal with orthography, morphology and syntax of the language. The work contributes

to the reduction of the amount of time and energy spent while developing language-related

applications using Amharic.

This report is written in English.

4

Acknowledgement

I am humbly grateful to my Lord for guiding me and helping me all the way through. My

heartfelt thanks goes to my examiner and father of GF Aarne Ranta, for letting me undertake this

project and showing me lots of kindness whenever I visited his office. Ramona Enache, you

have always been brilliant and attentive. I sincerely thank you very much for the supervision and

creating a friendly environment whenever we sit for discussions. I love my mom so I can't thank

her enough for everything. Thank you brothers and sisters for all the support and love I got while

trying to make it on a foreign soil. There were times when I was flying in the air without my

compasses set, thank you Selam for showing me the directions, MLL. Dear friends; thanks for

making my life so rich. Gunilla, you have all been a God-sent. Gossish & family, it always felt

like home-away-from-home whenever I visited your place. The Ethiopian community at St.

Gabriel Ethiopian Orthodox Church, my indebtedness goes to you for the love and support you

gave me, may God bless our gathering forever and ever amen!

5

Contents

Abstract ... 3

Acknowledgement ... 4

List of Abbreviations .. 7

Chapter 1 ... 9

Introduction .. 9

Motivation.. 10

Organization of the Report ... 11

Chapter 2 ... 12

Grammatical Framework .. 12

2.1 Multilingual Grammars .. 12

2.2 Translation and GF .. 13

2.3 Application Grammars and Resource Grammars .. 13

2.4 The Resource Grammar Library ... 13

Chapter 3 ... 15

Background .. 15

3.1 Amharic .. 15

3.2 “The boy loves this beautiful girl” in GF .. 17

Chapter 4 ... 22

System Overview ... 22

4.1 Grammar Files ... 22

4.1.1 Orthography .. 22

4.1.2 Morphology ... 22

4.1.3 Syntax .. 23

4.1.4 Resource Lexicon ... 23

4.2 Transliterations .. 23

Chapter 5 ... 25

Implementation of Amharic in GF .. 25

5.1 Orthography ... 25

5.2 Verbal Morphology ... 26

5.2.1 Introduction to Non-Concatenative Morphology .. 26

6

5.2.2 Survey of the Amharic Verb ... 28

5.2.3 Implementation of Verbal Morphology .. 31

5.3 Morphology of Nouns ... 34

5.3.1 Number of the Noun ... 35

5.3.2 Species / Definiteness of the Noun .. 35

5.3.3 Gender of the Noun .. 36

5.3.4 Cases of the noun ... 36

5.4 Morphology of the Adjectives.. 39

5.4 The Numerals ... 40

5.5 Swadesh Lexicon .. 44

5.6 Syntax ... 45

Chapter 6 ... 53

Related Work ... 53

Chapter 7 ... 55

Conclusion .. 55

Chapter 8 ... 56

Future Work ... 56

References ... 58

Appendices .. 60

7

List of Abbreviations

API Application Programmers Interface

DEF Defininte

EU European Union

FEM Feminine

GF Grammatical Framework

GNU GNU is Not Unix

GPL General Public License

LGPL Lesser General Public License

MASC Masculine

MOLTO Multilingual Online Translation

NLP Natural Language Processing

NP Noun Phrase

PGF Portable Grammar Format

RGL Resource Grammar Library

SERA System for Ethiopic Representation in ASCII

SOV Subject-Object-Verb

TAM Tense-Aspect-Mood

UTF-8 8-bit Unicode Transformation Format

VP Verb Phrase

8

9

Chapter 1

Introduction

One of the fundamental features of human behavior is the natural language. It is a vital

component through which we communicate about the world that affects our daily lives. Most

human knowledge is recorded using natural languages, therefore, only computers that have the

capability to understand natural language can access the information contained in the natural

language efficiently.

Natural language processing (NLP) can be described as the ability of computers to generate and

interpret natural languages. NLP is also a major subfield of study in computer science. The

applications that will be possible when NLP capabilities are fully realized are impressive as

computers would be able to understand and process natural language, translate languages

accurately and in real time, or extract and summarize information from a variety of data sources,

depending on the users' requests. (Grishman, 1994)

Language engineering is another topic that has attracted the attention of both linguists and

computer scientists who are involved in NLP. This venture effort aspires to bring a computation

based representation of human language enabling further processing. One feasible approach to

this is the formalization of linguistic knowledge into some form of grammatical rules. The

appropriate term to describe such an approach is called grammar formalism.

Grammatical Framework (GF)
1
 is one such grammar formalism which is based on constructive

type theory to express the semantics of natural languages for multilingual grammar applications.

(Ranta, 2004)

This framework (GF) has a language library known as the „GF Resource Grammar Library’

which is constituted of resource grammars implemented using the GF programming language

(Ranta, 2009) for various languages. The resource grammar for each language defines a

complete set of morphological paradigms and a syntax fragment. It is composed of a common

1 http://www.grammaticalframework.org

http://www.grammaticalframework.org/

10

representation, called abstract syntax, and a set of concrete syntaxes. These two are distinctly

identified in GF. The first represents the structure or meaning of values in the language while the

later describes their appearance. The idea is that the abstract syntax is kept off from irrelevant

details and concentrates on the structure of the common features. The concrete syntaxes, on the

other hand, handle the details of language specific decisions and are written as linearization rules

for the abstract terms. Therefore, in GF context, compilation is nothing but parsing with the

concrete syntax of source language and linearizing the resulting tree into the target language.

The advantage of such a design is that the abstract syntax can have several concrete

linearizations allowing it to work like an interlingua between the concrete syntaxes.

These modules also have the capabilities of sharing code through inheritance while still

abstracting information. The inclusion of such important software engineering concepts in GF

grammars proves an increasing work efficiency as labor would be divided between grammarians

working on different modules. This effect is specially magnified while implementing natural

languages of similar family, such as a Romance or Scandinavian that could share nearly three-

fourth of their implementation code.

The application grammarians make use of the resource grammars through application

programming interfaces (API's) included as abstract syntaxes in the GF library. Therefore, the

overall aim of such a library based design is to make it possible for linguistically untrained

application programmers to write linguistically correct application grammars encoding the

semantics of special domain as stated by Ranta in (Ranta, 2009)

The ongoing GF resource grammar project provides resource grammars for seventeen languages,

Amharic being the eighteenth. More languages are also under construction when we write this

report. Currently there are also a good number of applications that use GF which include the

verification tool KeY
1
, the dialogue system research project TALK

2
 and the educational project

WebALT
3
 are major ones. The GF inspired EU project, MOLTO

4
 is another ambitious initiative

that develops a set of tools for translating texts between multiple languages in real time with

high quality. Moreover, the availability of such a library as open-source software under the GNU

LGPL helps the aspirations being made to bring less recognized and NLP wise under resourced

languages, such as Amharic, to the world of computation.

Motivation

Amharic (አሚሬኛ amarəñña) is a Semitic language spoken in North and Central Ethiopia. It is the

second most-spoken Semitic language in the world, after Arabic, and the official working

1 http://www.key-project.org
2 http://www.talk-project.org
3 http://webalt.math.helsinki.fi
4 http://www.molto-project.eu

11

language of the Federal Democratic Republic of Ethiopia
1
. Currently, there is almost no software

or web-services that are used for implementing language specific features such as spell checking,

grammar, translation etc for Amharic. Amharic is not even part of the free online translator from

Google™, Google-Translate™. The availability of Google™ search and G-mail™ electronic

mail software in Amharic are the two recent progresses of the language in the cyber world. It can

therefore be concluded that there is only little work done on computational resources for

Amharic and its use for parsing and generation. In addition we strongly share the conclusion by

Gasser (Gasser, 2010) that within the current explosion in the quantity of information and in the

means to access it, much of the world has been left behind because the information is not in a

language that they understand. This fact, of all the rest, motivated us to contribute to the research

in NLP of Amharic by implementing a computational grammar as a resource in the GF library.

By doing so, we believe, our work gives yet another perspective for current research and

strengthens the attempts already made on the NLP of Amharic.

Organization of the Report

The next chapter discusses the grammatical framework and some important aspects of the

formalism. The third chapter describes the Amharic grammar. Included in the discussion are

highlights of the different word classes, phrase structures and sentence structures of the language

which we provide through an example. The chapter that follows details the main product of this

thesis: the implementation of Amharic in the GF library and the various decisions taken while

designing the modules. The final chapters deal with related and future works plus conclusions

and recommendations we have made with regard to our work.

1
 http://www.en.wikipedia.org/wiki/Amharic

12

Chapter 2

Grammatical Framework

This chapter gives a thumbnail introduction to GF and discusses some of the points that are

crucial in resource grammar engineering.

2.1 Multilingual Grammars

Simply defined, a „multilingual grammar‟ is a grammar that describes multiple languages that

share a common representation. (Ranta, 2009) Various translation and localization applications

between languages make use of multilingual grammars. The common feature, which is shared by

the languages under question, alleviates the load of work needed to implement another new

language.

To better show the concepts lying behind multilingual grammars with a shared representation,

we give the following explanation by Ranta in his description of multilingual grammar

engineering (Ranta, 2009).

‘Formally, a multilingual grammar in GF is a pair

 G = < A, {C1, . . . ,Cn} >

where A is an abstract syntax and Ci are concrete syntaxes for A. The abstract syntax is a collection of

categories and functions. It defines a tree language, which is a common representation of the string

languages defined by the concrete syntaxes. A concrete syntax is given by a method of linearization,

which translates abstract syntax trees into strings (more generally, into records of strings and

features). A multilingual grammar thereby defines a system of multilingual generation from the

shared abstract syntax.’

Ranta goes on to explain the important property of GF grammars that emanates from the fact of

the generations being the primary directions of grammatical description, a different feature from

other formalisms. Furthermore the parser can independently map strings directly into abstract

syntax trees making the linearization inevitable.

13

2.2 Translation and GF

From the forgoing explanation it is logical to deduce that, in the context of multilingual

grammars, translation is nothing but the parsing from one language followed by linearization

into another. Transfer functions need not be required between the two languages under

translation question; instead, the abstract syntax takes care of the interlingua burden doing the

magic work.

It would of course be unrealistic of us if we claimed that GF already has a unique single

interlingua to get the translation work done. Rather, the matter worth noting is that GF is just a

framework for giving interlinguas i.e. language-independent abstract syntaxes that deal with

pure tree structures and the set of language-dependent concrete syntaxes that specify how the

interlinguas are rendered in different languages.

In addition, the interlingua assumes various semantic descriptions according to the application

domain it is built for, this eventually provides a meaning-wise-intact translation in that specific

domain.

2.3 Application Grammars and Resource Grammars

The narrower the scope of the domain that we consider for translation, the better the semantics

of the translation becomes. But this can be a resource intensive operation requiring the

attendance of domain experts and linguists alike. The knowledge of the domain experts that is

required for the translation work varies according to the domain under consideration while the

same linguistic expertise is needed for each domain. However, it is often very rare and resource

demanding per se, to bring the two kind of expertise around the same table. This is when GF

comes to the rescue by providing a division of labor in grammar engineering between domain

experts and linguistic experts. Such a fine division is brought about by the distinctions made

between application grammars and resource grammars.

Ranta in the same document goes on to state that ‟an application grammar has an abstract syntax

expressing the semantics of an application domain. A resource grammar has an abstract syntax

expressing linguistic structures. The concrete syntax of an application grammar can be defined as a

mapping to the abstract syntax of the resource grammar: it tells what structures are used for

expressing semantic object, instead of telling what strings are used.‟

2.4 The Resource Grammar Library

As we tried to highlight in the first chapter of the report, resource grammars in GF technically

serve as standard software engineering libraries like those found in main stream programming

languages such as Java and C. The abstract syntax of the resource grammar is the API of the

14

library through which application grammarians can access it. The rest of the concrete syntax is

abstracted away from the application grammarian and is the duty of the resource grammarian.

Orchestrating the design into standard libraries can save the man-power required for coding and

betters the quality of work by allocating different subtasks of grammar writing to different

grammarians. Such shared representations of the resource library are crucial for the application

grammarians too as it makes their life easier while they port applications from one language to

another.

15

Chapter 3

Background

In this chapter we summarize the main features of the Amharic language. The majority of the

concepts are adopted from a grammar book written in Amharic (Yimam, 1987). Our intention is

neither to give the details of the grammar nor provide a crash course of the language. The works

by Atalech (Argaw, 2002) and Abiyot (Bayou, 2000) discuss such concise introduction to the

grammar of Amharic.

3.1 Amharic

Amharic /አማርኛ is a member of the Semitic branch of the Afro-Asiatic language family. It is

spoken by over twenty five millions people and is the working language of the government of

Ethiopia.
1

The language has its alphabet, ፊደል/ fidäl, inherited from the Geez (Ethiopic) language. Geez is

an ancient South Semitic language which now serves only as the liturgical language of the

Ethiopian Orthodox Tewahedo Church. Fidäl is a syllabary writing system where the consonants

and vowels co-exist within each graphic symbol. Unlike majority of its Semitic scripts, such as

Arabic and Hebrew, fidäl is written from left to right. The writing system consists of 33

consonants, each having seven „orders‟ or shapes depending on the vowel with which a given

consonant is combined. The alphabet in the traditional order is given in Appendix C. It is

necessary to have a Unicode infrastructure set before one attempts to make use of the fidäl.

Because of the syllabary features, due consideration must also be given while dealing with the

Amharic strings. There is no standard way to transliterate Amharic into the Latin alphabet.

Having said this much about the fidäl alphabet, let‟s give a thumbnail summary of the

morphology of Amharic words. Nouns in Amharic decline for number (singular/plural), species

(definite/indefinite) and case (nominative/accusative/genitive/dative). Unlike these variable

features, the nouns exhibit an inherent behavior towards gender, that is, a given Amharic noun is

either masculine or feminine. These declensions are usually achieved through affixation. Suffixal

affixations are predominant while there are also a good number of prefixings. The above order as

well shows the way in which these nominal affixes appear. We show this by giving an example

„the houses‟ (definite, plural noun phrase used as a direct object) from the sentence „I sold the

houses.‟ and show the Amharic counterpart as follows,

1 http://en.wikipedia.org/wiki/Amharic_language

16

the houses-Acc - ቤቶቹን - bet-occ-u-n

Here the suffixes („-occ‟, „-u‟ and „-n‟) are added to the head noun „bet‟, which means house, to

mark declensions for number (Pl), definiteness (Def) and case (Acc) to get the required form –

the houses - betoccun (ቤቶቹን).

The pronouns in Amharic can be put into three persons as in English, but there are some unique

features such as the second person 'you' which may take different agreements when referring

'plural', 'respected (politeness)','singular-female' or 'singular-male' nouns as shown below.

You (Masc. Sg.) : አንተ - antä

You (Fem. Sg.) : አንቺ - anči

You (Pl.) : እናንተ- ǝnantä

You (Politeness) : እሬስዎ- ǝrswo

Adjectives come before nouns in a sentence to modify them. In a sentence „antä bäTam gobäz

tamari näh‟ – „you are a very clever student‟ there are two adjectives „bäTam‟ - very and „gobäz‟

– clever. „bäTam‟- very modifies „gobäz‟ - clever , and „gobäz‟ modifies the noun „tamari‟ –

student.

Unlike majority of the languages in the GF library that construct words by linearly concatenating

morphemes, Semitic languages have unique non-concatenative properties in addition to the

conventional concatenative modifications. Therefore, in Amharic a verb, which is the most

complex category of words, is created generally from consonantal radicals which are inflected

by a process of merging with vocalic components based on various patterns. The majority of

roots, like other Semitic languages, have three radicals. However, there are also a significant

number of verbs that are multi-radical and bi-radical. A verb takes various forms depending on

the tense-aspect-mood, voice and root structure while inflecting for person gender and number.

This is done through the addition of affixes at both ends and even between the roots of a stem.

The numerals in Amharic can assume a cardinal or ordinal form. The ordinals are all the times

achieved by adding the prefix äňňa on the ordinals.

Cardinal Ordinal

 ሁሇት hulät / two ሁሇት+ -ኧኛ -> ሁሇተኛ hulät-äňňa/ second

The prepositions appear as simple prepositions that are stand alone or as separate entities coming

both at pre and post positions.

To – you ሇ - አንተ - lä antä (pre)

On - you አንተ - ሊያ - antä lay (post)

With – you ከ - አንተ - ጋሬ - ke antä gar (both pre and post)

17

The word order in Amharic clauses is generally SOV. Verbs agree with their subjects in number

gender and person and objects precede verbs within the verb phrase

In Amharic comparison, both comparative and superlative forms exist nearly following the same

trend of formation. The superlative form is like a comparative between the whole and the one in

question. This means that the Amharic equivalent of, for example, „I am the best‟ will be

equivalently translated as „I am better than the rest‟.

There are also other syntactic considerations that need to be made while studying the Amharic

grammar. For instance, the definite article in Amharic is a morphologically bound element and

its treatment has been a point of discussion for many linguists.

3.2 “The boy loves this beautiful girl” in GF

To help us better explain GF's way of grammar engineering; let's take a simple Amharic sentence

as an example – 'The boy loves this beautiful girl'. To further clarify our purpose for the wider

audience, we translate this to English using our system.

 ሌጁ ያህች ቆንጆ ሌጃገሧዲን ያወደሌ ::

 l∂ju y∂h∂c qonjo l∂jagäräd∂n y∂wäddal

boy-DEF this-FEM beautiful girl-FEM loves

 The boy loves this beautiful girl.

The parsing tree representation of the above sentence is given in fig.1 below. To give a summary,

the purpose of the whole work is to enable the user of the library to obtain Amharic concrete

sentences like the above just from descriptions made in the abstract syntax. This abstract syntax,

as we tried to note out earlier, is shared by all the languages while the rules governing the

concrete syntax vary in accordance with the morphosyntatic properties and lexicon of the

language under implementation. This means that each branch of the tree describing some form

of syntactic rules is implemented for Amharic. The related morphological rules and lexicon

selections together provide the equivalents of the nodes. Let us emphasize more on this using

our example.

18

Fig 1: A tree structure representing „The boy loves this beautiful girl‟

Considering the left branch in the tree which represents the rule in the abstract syntax that takes

a determiner and noun to give a noun phrase has the following type signature.

fun

 DetCN: Det -> CN -> NP; (3.1)

 Where

DetCN: the name of the syntax rule

Det: the types for the determiner and

CN: the noun component.

For the case of our example Det is -ኡ / -u and the CN is l∂j /ሌጅ -boy. But these separate entities

l∂j and -u are combined to form l∂ju / ሌጁ- the boy showing the definite marker in Amharic is a

morphologically bound element. One must be watchful while making such selections as the

gender of the determiner which actually comes from the noun. In our example ሌጃገሧዲ/l∂jagäräd/

-girl is a feminine noun and this is the reason why ያህች/ y∂h∂c- this is selected instead of ያህ/y∂h

– (masculine counterpart for this). In the same fashion the number and definiteness features of

the noun come from the determiner while case remains usually nominative.

19

What we have tried to discuss above is rather a simplified presentation that merely handles a part

of the example we picked at the beginning of the section. So as to better understand the

generalizations that can be made with these rules and appreciate the way GF deals with such

grammatical decisions, we first identify the types of the categories involved and forward the

variable and inherent features. The two features are later on connected with the mechanism of

agreement where a variable feature of one entity is determined by the inherent feature of the

other. For the categories we have in our rule 3.1.

lincat

Det = { s : Gender => Case => Str ;

 d : Species;

 n : Number

 } ;

CN = { s : Number => Species => Case => Str ;

 g : Gender} ;

NP = { s : Case => Str ;

 n : Number ;

 g : Gender ;

 p : Person

} ;

As can be seen the types are put in the form of a GF record

where

s is the string

n is the number (Sg or Pl)

d is the species that signifies the definitiveness (Def or Indef)

g is the gender (Masc or Fem)

p is the person (Per1, Per2, or Per3)

From the above for instance the type representation for NP states that noun phrases in Amharic

have an inherent gender, number and person while they vary in case. The => is the table

operator in GF, so having a single input to NP table means that a NP in Amharic is inflected for

only this attribute. A complete description of how such multi dimensional table representations

work is given in (Ranta, 2010)

However, it is worth noting at this moment that while designing such features we have come to

notice a significant amount of similarity with other languages in the library such as Arabic

20

hinting the framework's capacity of serving as a platform for investigating structural

similarities between the languages that are implemented in the library.

Coming back to the story with the boy and the girl, an implementation of the abstract syntax rule

in 3.1 can be given for Amharic in the NounAmh module as:

Lin

DetCN det cn = {

 s = \\ c =>

 det.s ! cn.g ! c

 ++ cn.s ! det.n! det.d ! Nom ;

 n = det.n;

 g = cn.g;

 p = Per3;

 };

The above concrete syntax rule for Amharic has a lot of abstractions in it. First of all the rule

accepts a case argument c because the NP declines only for case as mentioned above. Of course

the roles played by the NP in a given context vary in accordance with the case types. In Amharic

these values for case can assume an accusative, nominative, genitive or dative form. The rule

goes on to state that the string of the determiner is directly brought from its own inflection table

once we have the gender of the noun and case of the noun phrase. Extending the same pattern,

the string of the noun is selected by making use of the number and definiteness of the determiner

while the case remains nominative.

After we choose those Det and CN strings, we concatenate them using the concatenation

operator ++ to form the NP's string. It would be an error to leave this operator out and use a

simple juxtaposition as GF is a functional programming language and juxtaposition is used as a

notation for function application. Having done the string part further consideration is given for

agreement features where the noun phrase receives its number from the determiner and its

gender from the noun. This is how the elements formally complete each other to support what

we descriptively explained about ያ-ህች ቆንጆ ሌጃገሧዲ-ን / y∂h∂c qonjo l∂jagäräd∂n at the beginning

of the section.

We have been so far discussing the abstract morphosyntatic features of the API and how they

work underneath through an example. This will, of course, not be complete without the lexical

entries of normal and structural words that the user requires. This means that the Amharic

application programmer expects to get the necessary word entries. If this is not available, taking

the case of our example, entries can be made a follows

 boy_N = mkN "ሌጅ";

21

 girl_N = mkN "ሌጃገሧዲ" feminine;
 beautiful_A = mkA "ቆንጆ";
 love_V2 = mkV3gdl "wdd";

Where mkN, mkA and mkV3gdl respectively specify the lexical paradigms for regular nouns,

the lexical paradigms for regular adjectives, and triradical verb of the gdl (ገይሇ) family

 The feminine entry after the second mkN signifies the fact that ሌጃገሧዲ/l∂jagäräd – girl

is a feminine noun. There are very few nouns that follow this paradigm while the default gender

of a noun is taken to be masculine. Given, for instance the three roots 'wdd, our system is

capable of generating most Amharic stems with minimal error in inflection and orthography.

In this chapter we have tried to give a brief introduction to the Amharic language and the GF

formalism we have used to implement it and how it works. We also picked an example and

operated on it to see how it can be generated in GF and explained the works that happen behind

the scenes while doing so. The next chapter emphasizes more the overview of the system by

describing the modules and components it is made of. We do so to lay the ground work for the

implementation we show in chapter 5.

22

Chapter 4

System Overview

Having justified the importance of such a work in the Amharic NLP, discussing the important

features of the language and showing how these features are implemented in the GF formalism,

we now lay the grounds for our work by giving an overview the modules and components from

which our system is made of. It is also our intention to sometimes give the reader only the

references to the grammar files (*.gf) where the details are found rather than discuss the whole

code in this report.

4.1 Grammar Files

GF adopts a module system which is useful for software engineering and separate compilation.

The two major GF modules are the abstract and concrete syntax modules. These two are used at

run time while parsing and generating. They are arranged into hierarchies in similar fashion as

object oriented programs whereby grammar sharing is enabled at top-level grammars. Resource

module is a channel module for sharing code across other concrete modules independently. Here,

we rather give the system overview of the grammar files that we covered ranging from such

linguistic features as the morphology, syntax and lexicon. We also introduce the transliteration

technique adopted to handle the need for Unicode infrastructure by Amharic orthography.

4.1.1 Orthography

Amharic has its own syllabic alphabet that requires close orthographic treatment when forming

words. For example, the operations that must be considered while inflecting for definiteness and

number, palatalization rules where dental sounds get changed to plate sounds, and the various

conjugations of verbs all need due orthographic consideration when they are written down.

4.1.2 Morphology

Morphology in a resource encompasses the sets of operators that help transform one entity into

another with the required morph or form. For instance, the resource morphology of Amharic

consists of verb conjugations that are expressed as operation and paradigms used to handle the

declensions of nouns and adjectives. This includes different files in the modules that cover parts

23

of the complex Amharic morphology. We first present the types that are needed in the resource

module ResAmh, thereby discussing the roots and patterns feature and how they help in verbal

morphology. We take into consideration radicals that range from two to four to show our

purpose. In PatternsAmh we try to give the major patterns that the Amharic verbs take. We

do not dare to claim that we have covered every possible pattern of the language, rather the

majority of bi, tri and quadriradical verbs can be formed using the patterns. In addition to the

definition of tables for the nominal morphologies in the ResAmh module, a set of paradigms

which are used while building the lexicon are given in the ParadigmsAmh module. We did

this to increase the loading efficiency during compilation.

4.1.3 Syntax

The implementation of the basic syntax rules is distributed across various modules complying

with the requirements of the resource grammar API. These modules include the various phrase

categories that describe the phrase construction in that specific category such as noun, verb,

adjective, sentence, etc.

4.1.4 Resource Lexicon

A resource lexicon is a set of words paired with paradigms. In the system there are two

independent lexical modules: the StructuralAmh and the LexiconAmh. The first contains

sets of structural words such as (determiners, prepositions, etc) while the later is the main

module where a list of few hundred words (nouns, verbs, adjectives etc) from the Swadesh list –

which is a list of basic lexical terms compiled by Morris Swadesh
1
, is included. It is a general

trend that lexica of a language keep evolving all the time, either with the addition of newer

words or inflection of older words with newer paradigms; hence, the inflection of these words

only represents the features of the present day Amharic.

4.2 Transliterations

Strings in the GF grammar files are built from Unicode characters internally. This makes it easy

to handle languages such as Amharic which use their own set of writing system. We had

difficulty in writing Amharic characters in iso-latin-1 as the latest of everything with Amharic

keyboards is Unicode, plus trying to save the grammar file in any other format but Unicode or

UTF-8 creates series of '?' instead of the Amharic characters we wanted to see. So we have

defined our own non-ASCII character sets through transliteration. Amharic characters are

1 The Swadesh list is one of several lists of vocabulary with basic meanings, developed by Morris Swadesh.

 http://en.wikipedia.org/wiki/Swadesh_list

24

represented in the range from 1200 to 137F in the Unicode range. This makes the language the

largest set in the world with 384 unique characters, including the reserved codes. Fidäl contains

some characters which are identical and thus could be used interchangeably in modern Amharic.

In old days Amharic, as in the case of Geez, the cases of using these similar sounding letters was

given due attention but we do not consider all of that here. We make the decision not based on

any linguistic fact but for the mere sake of brevity. This leaves the transliterated table with only

344 characters as shall be seen in the appendix section. The rules that we followed while

defining our transliteration table were already predefined so we had to stick to them. These rules

stated that: the transliteration should be a letter or a letter character and non letter character, in

addition capital and small letters should be treated separately. These have restricted us from

using an already existing, but not officially standard, phonetic transliteration scheme for

Amharic known as SERA
1
.We have given in appendix A the transliterations for our 344

characters that span from 0x1200 to 0x1357 in the Unicode range .

1 http://www.geez.org/IM/

25

Chapter 5

Implementation of Amharic in GF

In the previous chapters of this report we have been trying to lay the foundation of our work by

describing the Amharic language through examples and introducing the major components that

our system is made of. We now start with the implementation of these components in the order

that they appear in the specification.

5.1 Orthography

The fidäl
1
, Amharic's alphabet, is written from left to right and is composed of thirty three

consonants and seven vowels. These are arranged into seven houses (orders) according to the

kind of each vowel that the consonants associate themselves with, i.e., the consonant-vowel

(CV) combinations. Consider for instance the following individual symbols:

 በ ቡ ቢ ባ ቤ ብ ቦ

 bä bu bi ba be b∂ bo

 ተ ቱ ቲ ታ ቴ ት ቶ

 tä tu ti ta te t∂ to

However, if a string begins with a vowel then the vowel is written independently; which means,

there are no symbols added to the individual vowels.

 ኧ ኡ ኢ ኣ ኤ እ ኦ

 ä u i a e ∂ o

In such cases as affixation, a vowel may come in contact with a consonant on its left side.

During such cases the vowel will no longer be considered independently but together with the

immediate preceding consonant forming a new unique symbol. We can better clarify this by

1 A complete list of the Amharic fidäl is given in Appendix C

26

taking a case for the declension of a noun for number by adding -occ / -ኦች at the end of the

noun. As can be seen in the example below the combination of ት and ኦ results in ቶ.

ቤት + -ኦች = ቤትኦች
 ቤቶች

 bet + -occ = betocc

 house houses

Below we give the implementation of such changes by defining an operation that takes a word as

an input and gives an orthographically sound word. The GF's regular expression is such a handy

method to do this as can be seen in replaceLastLet6_7. The operation helps to change the

sixth orders to the seventh while declining for number, and hence the nomenclature. The key

word oper, that denotes operation, is placed at the beginning to convey the fact that

replaceLastLet6_7 is a function.

oper

replaceLastLet6_7 : Str -> Str = word ->

 let y = last word in

 case y of {

"ህ" =>"ሆች" ;

"ሌ" => "ልች" ;

 "ሔ" => "ሕች" ;

 "ሜ" => "ምች" ;

 "ሤ" => "ሥች" ;

 ...

 "ት" => "ቶች";

...

 _ => word+"ዎች"
 } ;

In addition to such cases which happen during pluralization, similar trends of transformation

may occur in the declension for definiteness. For instance, if the noun in question ends in the

sixth order and its gender is masculine, then it only changes this ending letter to the second order

during the declension for species (definiteness). Otherwise, it always takes -wu/ ዉ at the end.

Similarly for feminine nouns the same trend of order change holds but they instead add -wa/ ዋ

at the end and so on.

5.2 Verbal Morphology

5.2.1 Introduction to Non-Concatenative Morphology

Unlike majority of the languages in the GF library that construct words by linearly concatenating

morphemes, Semitic languages have unique non-concatenative properties in addition to the

27

conventional concatenative modifications. Therefore in Amharic, verbs are created mostly from

consonantal radicals or roots which are inflected by a process of merging with vocalic

components based on the various patterns which are sequences of vowels and consonants into

which root consonants are inserted. In Amharic, even if majority of the verbs are triradical (three

consonantal roots), the number of these radicals may range from two to five and more. In our

implementation we have only considered those between two and four radicals. We define these

by using record types that help to represent words as data structure as follows:

 Root2 : Type = {C1,C2: Str};

 Root3 : Type = Root2 ** {C3 : Str};

 Root4 : Type = Root3 ** {C4 : Str};

 Pattern2 : Type = {C1,C1C2,C2: Str};

 Pattern3 : Type = {C1,C1C2,C2C3,C3 : Str};

 Pattern4 : Type = {C1,C1C2,C2C3,C3C4,C4 : Str};

where C1, C2 ,C3 and C4 stand for the consonantal radicals while, for instance in Pattern2

C1,C1C2 and C3 represent the head, the middle and the tail of the pattern. The ** operator in

GF is used to add an additional field into a record and hence, Root2 is biradical while Root3

has an additional one consonant making it a triradical and similarly Root4 is quadriradical.

The root itself has no definite pronunciation until combined with the appropriate pattern. Such

combinations are non-linear making them rely on two independent root and pattern. In Amharic

there are different ways in how templates modify the root consonants: doubling the middle

consonants, inserting vowels between consonants, adding consonantal affixes, etc.

We do such interwinings of roots and patterns by implementing two functions that help

extracting each root from a given root-string and applying a selected pattern on the extracted

roots to make the final form. We show how these two work flows are applied by considering

triradicals :

getRoot3 : Str -> Root3 = \s -> case s of {

 C1@? + C2@? + C3 => {C1 = C1 ; C2 = C2 ; C3 = C3} ;

 _ => Predef.error ("cannot get root from" ++ s)

 };

appPattern3 : Root3 -> Pattern3 -> Str = \r,p ->

 p.C1 + r.C1 + p.C1C2 + r.C2 + p.C2C3 + r.C3 + p.C3 ;

28

The operation getRoot3 associates every consonant in the input string Str with a variable.

This is achieved by using the operation C@ which binds each consonant in the strings to a

variable, e.g. C1,C2 and C3. These variables are then coded into patterns using the operation

appPattern3 which specifies how the root‟s consonants should be inserted into a pattern, i.e.,

given a root and a pattern. The final output is just a concatenation of the seven strings , without

dropping any. We can take example patterns to demonstrate our purpose. These patterns

specify the consonant slots and morphological forms as shown below

 C1aC2aC3a = {C1 = "" ; C1C2="ä"; C2C3 ="ä"; C3="ä"};

 meC1C2aC3 = {C1 ="mä"; C1C2="" ; C2C3 ="ä"; C3="" };

For example, when the root sbr is applied to the first pattern C1aC2aC3a, it forms the perfect

stem ሯበሧ /säbärä (he broke) while when applied to the second pattern it forms an Amharic

infinitive ሗስበሬ/ mäsbär (to break). Of course these examples do not show gemination as the

Fidäl alphabet does not indicate the same and therefore our Amharic outputs do not provide this.

However such properties play a significant role while classifying the verb conjugations. In

addition, marking gemination in some format is of course useful when developing speech

applications using the language and we leave that as a future work. We now proceed to our

survey of Amharic verbs and later on show how these root-pattern combinations are

implemented for their morphology.

5.2.2 Survey of the Amharic Verb

As we stated earlier, Amharic verb forms are derived by applying various templates (vowel and

affix patterns) to a set of roots consisting of between two to five consonants. The prefixes and

suffixes are all grammatical morphemes that are added to the stem while the stem remains the

lexical part of the verb and also the source of most of its complexity. Verbs in Amharic are

marked for person, number, and gender and the different forms can be described as varying

along the following grammatical dimensions:

Tense/Aspect/Mood

Tense/aspect/mood (TAM) is signaled mainly by the prefixes and suffixes that indicate the

subject of the verb but is also reflected in the stem template.

Traditionally the four main TAM's: perfective (or perfect), imperfective (or imperfect), jussive

/imperative (the imperative is just another form of the jussive when applied on the second-

person), and gerundive (or gerund) are usually given by scholars. We have extended this with the

four „extra‟ forms: infinitive, participle, compound-perfect and the contingent that form verbs

with auxiliaries. Appendix B shows the various verb forms.

29

Here are non-geminated examples of each of the main TAM‟s when considered for the third

person singular masculine (Per3 Sg Masc), active (Act) voice. The root of the verb is sbr –

to break.

 • Perfective: ሟበሧ säbärä / he broke

 • Imperfective: ያሟብሪሌ y∂-säbr-al / he breaks /he will break

 • Jussive: ያሤበሬ y∂-sbär / let him break

 • Imperative: ሤበሬ sbär / break!

 • Gerundive: ሟብር säbr-o/ having broken

Voice

For the verb forms we considered above, the voice is signaled by the stem prefixes tä as well as

particular patterns of vowels between the root consonants. The first example below shows the

first case by taking tä as a prefix on the stem säbärä (to break) while the second one takes 'ä' in

between the second and third roots (bear in mind that sbr is the root form).

 Passive: ተሯበሧ tä-säbärä (he is broken) ያሯበሪሌ y∂-säbär-al (he will be broken)

The stem-internal aspect does also give yet another dimension of the templates in addition to the

values of the TAM and voice features. This can assume the normal or simple form and two other

forms (reciprocal and internal). We only take the normal form in our implementation as almost

all of the API rules ask for the same.

Stems: roots

The majority of roots in Amharic, like other Semitic languages, have three radicals. However,

there are also a significant number of verbs that are multiradical and biradical.

Example with two, three, four, and five radicals is given below:

1. ሯሚ säma „he heard‟,

2. ገይሇ gädälä „he killed‟,

3. ሗሯከሧ mäsäkärä „he testified‟ and

4. ተብሧከሧከ (tä)bräkäräkä„he got trembled‟

Considering the vocalic structure and the germination or non germination of the 2nd radical in

the triradical, the verb has three types: types A, B and C. Regardless of the type , the 2nd radical

is always geminated in the perfect. The reader of this report should note that we have come up

with the derivational root patterns and only briefly adopted the verb classification from previous

scholars to fit our purpose.(Leslau 1969). We now describe these commonly occurring root

patterns of the bi, tri and quadri radicals.

30

BIRADICALs

 In the biradical, the 2nd consonant is geminated in the perfect only if it is the 2nd radical of

the root.

Class mkV2bl

Type A: mkV2bl በሊ/ bälla „eat‟

Type B: mkV2TT ጠጣ /tätta „drink‟

Type C: mkV2qT ቀጣ /qatta „punish‟

Class mkV2sT

Type A: mkV2sT ሯጠ /säTTä „give‟

Type B: mkV2ly ሇየ /läyyä „distinguish‟

Type C: mkV2wN ዋኘ /waNNä „swim‟.

The other biradicals considered in the implementation have only one type. These classes are

Class mkV2yz ዩዖ /yazä „hold/capture‟

Class mkV2nr ኖሧ /norä „live‟

Class mkV2hd ሄይ /hedä „go‟

 A special verb አለ / alä „say‟ is also implemented independently.

TRIRADICALs

mkV3gdl: ገይሇ gäddälä, characterized by lack of germination of the 2nd radical in the verb forms

other than the perfect.

mkV3mls: መሇሯ, mälläsä, characterized by the germination of the 2nd radical in all the verb

forms.

mkV3brk: ባሧከ barräkä, characterized by the vowel a after the 1st radical for the germination or

non germination of the 2nd radical. mkV3tTb : ታጠበ tattäbä is yet another variation of such

triradical classes having differences in the imperative/ jussive forms.

The above first three forms for triradicals mkV3gdl, mkV3mls and mkV3brk from now on called

TYPEA, TYPEB and TYPEC respectively, do usually lay foundation work for the variation of

the rest of the other classes. In other words, it is usual that the others (including bi, tri, ...) can

inherit these basic forms and then add their unique features.

The other triradical verbal classes considered include those that have initial labiavelerals ኦ /'o' or

ኡ / 'u' after the initial radical.

mkV3qTl: ቆጠሧ qoTTärä, count

mkV3qfr: ቆፈሧ qoffärä, dig

mkVqTr: ቋጠሧ quaTTärä, tie

A special class for the triradical is one that accounts for the verbs beginning with አ /a, which is

a vowel itself. This puts extra challenges in the orthographic and phonetic analysis of the

gemination process.

31

mkV3asr: አሯሧ assärä „pass‟ which

mkV3asb: አሯበ assäbä „think‟

QUADRIRADICALs

 In the quadriradical, the 3rd radical is geminated in the perfect. The quadriradical have two

types:

mkV4dbdb: ይበይበ / däbäddäbä „kick‟

mkV4qlql 2: ቀሊቀሇ/ qälaqqälä „mix‟ characterized by the vowel a after 2nd radical. The

gemination or the non gemination of the 3rd radical in the verb form other than the perfect is the

same in both types.

5.2.3 Implementation of Verbal Morphology

In section 5.2.1 we have shown that, for example, typical triradical root operations include,

pattern - which is a string consisting of a four position pattern slots and root - which is a string

consisting of three consonant roots. Furthermore we have given the analysis of a triradical root

showing the mechanism for achieving this non- concatenative inflection.

In the resource grammar, the verb is represented as

param

 Number = Sg | Pl;

 Gender = Masc | Fem;

 Voice = Act|Pas;

VForm = Perf|Imperf |Jus_Imperat|Gerund|Infinitive|

Parti|CompPerf|Cont;

 PerNumGen = Per1 Number

 | Per2 Number Gender

 | Per3 Number Gender;

oper

 Verb = {s: VForm =>Voice=> PerNumGen => Str }

The first parameter VForm details the TAM constructors of the verb forms, while the additional

parameter PerNumGen provides a detailed description of how verbs are inflected with regard to

person, number and gender. The three constructors of the PerNumGen indicate: first person

singular/plural, second and third person singular/plural and masculine/feminine showing that

Verb lexemes are inflected for person, number, gender, voice and form. Parameter types are

similar to algebraic data types in functional programming languages. Such a representation

avoids considering the cross products of the atomic members like person, number and gender.

For instance, PerNumGen gives a more compact representation (2+4+4 =10) than listing all the

constructors (3x2x2 = 12). The above three dimensions (Mood, Aspect (TAM)-(8) and Voice-

(2)) when applied to the 10 possible combinations of person-number-gender give a crude table

32

with 160 forms. We tagged them as being 'crude' because such forms as 'participles' and

'infinitives' show the same trend of variation for every person, gender and number and thus

should be counted as unit.

Following the discussion and example in section 5.2.1 a triradical verb-inflecting-operation

such as mkV3gdl defines regular verb paradigms for each form and agreement features shown

above as follows :

mkV3gdl : Str -> Verb = \v ->

 let root = getRoot3 v

 in {

 s = table {

 Perf => table {

 Per1 Sg => appPattern3 root C1aC2aC3ku ;

 Per1 Pl => appPattern3 root C1aC2aC3n ;

 Per2 Sg Masc => appPattern3 root C1aC2aC3k ;

 Per2 Sg Fem => appPattern3 root C1aC2aC3sh ;

 Per2 Pl _ => appPattern3 root C1aC2aC3achehu ;

 ...

 };

 Imperf => table { ... }

 ...

 }

};

The original patterns that signify the consonant slots and morphological forms have a

transliterated version of the vocalic patterns as described in section TO DO:

 C1aC2aC3ku = { C1 ="" ; C1C2="'"; C2C3 ="'"; C3="k&"};

 C1aC2aC3n = { C1 = "" ; C1C2="'"; C2C3 ="'"; C3="n"};

 C1aC2aC3k = { C1 = "" ; C1C2="'"; C2C3 ="'"; C3="k"};

 C1aC2aC3sh = { C1 = "" ; C1C2="'"; C2C3 ="'"; C3="x"};

 ...

Here below we summarize the results of how the parameters mentioned can be used . This very

much attests to the fact the GF formalism is indeed carefully engineered to parallel the way

grammarians think of languages. This is shown by taking the root form 'sbr' – to break and

inflecting it with the conjugating operation mkV3gdl described above (i.e. by executing

mkV3gdl against "sbr"). We only show the perfective verb forms in an active voice while the

details of the rest can be seen in Appendix B:

Perf Act (Per1 Sg) : ሟበሬኩ säbbärku – I broke

Perf Act (Per1 Pl) : ሟበሬን säbbärn – We broke

Perf Act (Per2 Sg Masc): ሟበሬክ säbbärk – You broke (for Masc)

Perf Act (Per2 Sg Fem) : ሟበሬሽ säbbärx –You brike (for Fem)

Perf Act (Per2 Pl Masc): ሟበሪችሁ säbbärachu Your broke (for plurals of any gender

)-same for : s Perf- Act (Per2 Pl Fem)

33

Perf Act (Per3 Sg Masc): ሟበሧ säbbärä – He broke

Perf Act (Per3 Sg Fem) : ሟበሧች säbbäräc – She broke

Perf Act (Per3 Pl Masc): ሟበረ säbbäru – They broke - same for : Perf Act
(Per3 Pl Fem)

...

It can be noted from here that the perfect form is made by inserting vocalic elements and adding

suffixes to identify the Person Number and Gender combinations except in cases of second and

third person plural that remain the same for both genders. Such situations in GF, like other

functional programming languages such as Haskell, are handled by a wild card patterns '_'. The

rest of the verb forms can be handled in similar fashions as variations in the type of vocalic

patterns, the position of the vocalic pattern's insertion, the kinds of affixes that can be added and

so on.

The transliterated intermediate form of the above result looks like this :
1

 Perf Act (Per1 Sg) : s'b'rk&

 Perf Act (Per1 Pl) : s'b'rn

 Perf Act (Per2 Sg Masc) : s'b'rk

 Perf Act (Per2 Sg Fem) : s'b'rx

 Perf Act (Per2 Pl Masc) : s'b'r!ch&

 Perf Act (Per2 Pl Fem) : s'b'r!ch&

 Perf Act (Per3 Sg Masc) : s'b'r'

 Perf Act (Per3 Sg Fem) : s'b'r'c

 Perf Act (Per3 Pl Masc) : s'b'r&

 Perf Act (Per3 Pl Fem) : s'b'r&

 Perf Pas (Per1 Sg) : t's'b'rk&

 Perf Pas (Per1 Pl) : t's'b'rn

 ...

We note from this transliterated result that an outstanding achievement can be found by treating

the inflection this way as the vocalic patterns can easily get concatenated with the roots and the

inflected stem is displayed back into Amharic. One such orthographic error could happen when

the final vowel of the Singular - Second Person – Feminine verb is of the third order (ends with

'-i'). This brings about the palatalization of any dental, or sibilant where the vowel 'i' is absorbed

by the palatal sound. This happens while making such verb forms as imperative, imperfect and

participle. So as to handle such a phenomenon we define an operation that can manage to change

the graphic symbols whenever they happen as follows:

oper

 pallatalize : Str -> Str = \c->

1 The reader can refer to Appendix A for a transliteration table.

34

 case c of {

 "d" => "j";

 "t" => "c";

 "T" => "C";

 "n" => "N";

 "l" => "y";

 "s" => "x";

 "z" => "Z";

 "S" => "C";

 _ => c

 } ;

This is then implemented in the following operation to bring the effect that we want by using it

instead of appPattern3 whenever appropriate.

appPattern3pal : Root3 -> Pattern3 -> Str = \r,p ->

p.C1 + r.C1 + p.C1C2 + r.C2 + p.C2C3 + pallatalize (r.C3) +

p.C3;

Below we give two imperative examples for a third person female to show results before and

after we introduced palatalization.

Before correction | After Correction

gdl - kill (Fem) gdl- kill (Fem)

gd'l# gd'y#

ግይሉ (?) ግይያ

lbs - dress (Fem) lbs- dress (Fem)

lb's# lb'x#

ሌበሡ (?) ሌበሺ

This template based approach has even given us the possibility of handling verb roots like አደነ

adn – to save that start with a vowel አ /a easily, we first get rid of the vowel 'root' (i.e leaving

'r.C1') to get ‟dn which we treat as a normal triradical. The vowel is then added in place of

the removed root.
 appPatternRemove : Root3 -> Pattern3 -> Str = \r,p ->

 p.C1 + a + p.C1C2 + r.C2 + p.C2C3 + r.C3 + p.C3;

5.3 Morphology of Nouns

 In our implementation of the Amharic resource grammar, the noun is represented as follows:
Param

 Number = Sg | Pl;

 Species = Def | Indef;

 Case = Nom | Acc | Gen| Dat;

35

 Gender = Masc| Fem;

oper

Noun : Type = { s : Number => Species => Case => Str;

 g : Gender

 } ;

The GF syntax of the noun type and parameters it depends on follow the same trend as the

verbs in section 5.2.3 but here it states that nouns (N) inflect in number (singular or plural),

species (definite or indefinite) and case (Nominative, Accusative, Genitive or Dative) while a

given noun has an inherent gender, that is, no noun is both feminine and masculine at the same

time. This record representation of the noun has an s field as multidimensional table storing the

(2 x 2 x 4 = 16) forms of the noun.

5.3.1 Number of the Noun

In Amharic, the nouns have both the singular and the plural forms. The plural suffix added on

all nouns is either /-ኦ ች /-occ or /-ዎች /-wocc, the former for nouns ending in a consonant and the

latter for nouns ending in a vowel. There are some additional ways of inflecting some nouns for

number, especially those inherited from Geez, but they will not be considered here as equivalent

forms can easily be formed this way.

5.3.2 Species / Definiteness of the Noun

The Amharic definite article is a suffixed element and has different realizations depending on

whether the noun to which it is attached ends in a consonant or a vowel, singular or plural, and

masculine or feminine. If the noun to which it is attached is masculine singular and ends in a

consonant, the suffix added to mark definiteness is /ኡ/- u as in /ቤት/ - bet „house‟, which

becomes /ቤት-ኡ = ቤቱ/ bet-u „the house‟. If the masculine singular ends in a vowel, the definite

suffix will be /-ው/-w as in /ራሲ/ - resa „corpse‟, which becomes /ራሲው/resa-w „the corpse‟. It is

worth mentioning the fact that this definite article homonyms with the possessive marker for

third person masculine singular that is bet-u can also mean 'his house' and so on.

 On the other hand, if the noun to which the definite suffix is attached is feminine singular and

ends in a consonant, the marker is realized as /-ዋ/-wa, /-ኢቱ/-itu, or /-ኢትዋ/-itwa (twa) used

interchangeably as in ሌጂት-l∂j∂t „girl‟ which becomes l∂j∂twa/ l∂j∂tu/ l∂jtitu „the maid‟. If the

noun is feminine singular and ends in a vowel, the suffixed element is /-ዋ/ -wa, /-ያቱ/ - yitu (-ytu)

or /-ያትዋ/-ytwa, again used interchangeably, as in ዳር- doro „hen‟, which become dorowa/ doroy-

tu/ doro- ytwa all meaning „the hen‟. In this library implementation the first of the three is

adopted as it is common in present day spoken Amharic and it avoids considering the

vowelness/consonantness of the last leter of the nound in question making it less laborious to

implement.

36

The definite suffix added to plural nouns ,regardless of gender of the noun, is -u. For example, in

the masculine, as in /ንጉሶች/ n∂gusocc „kings‟ (the plural of n∂gus „king‟), the definite form

becomes /ንጉሶቹ/n∂gusocc-u „the kings’. In the feminine, as in /ንግስቶች/n∂g∂stocc „queens‟ (the

plural of n∂g∂st „queen‟), the definite form becomes /ንግስት -ኦች - ኡ = ንግስቶቹ/ n∂g∂stocc-u „the

queens‟.

5.3.3 Gender of the Noun

Some nouns take a feminine marker -it /-ኢት/: l∂j /ሌጅ /'child, boy' vs. l∂j-it /ሌጅ- ኢት =

ሌጂት/‟girl‟. But there are ample other masculine nouns that end with -it /-ኢት/. The feminine

gender is not only used to indicate biological gender, but may also be used to express

diminutiveness, e.g. bet-it-u 'the little house' (lit. house-FEM-DEF). The feminine marker can also

serve to admire beauty or express sympathy. This makes it almost impossible to automatically

infer the gender of a noun from its structure and construct a smart paradigm function that could

infer the gender of the noun from the last letter of the singular form. Majority of the nouns in

Amharic take the masculine gender. In the GF Lexicon for Amharic there are more than 175

nouns considered of which only less than 10% are inherently feminine attesting to this fact.

5.3.4 Cases of the noun

The declension of nouns is very simple and uniform. Nouns are inflected through four cases,

equally in the singular and the plural,i.e., the nominative, the genitive, dative and accusative.

One example may suffice to show the while mode of proceeding

 Singular Plural

Nom: ቤት-bEt - a house ቤቶች /bEt-occ - houses

Gen: ዦቤት-yä-bEt - of a house, a house's ዦቤቶች/yä-bEt-occ - of houses

Dat: ሇቤት-lä-bEt - to a house ሇቤቶች/lä-bEt-occ - to houses

Acc: ቤትን- bEt-n- a house ቤቶችን/bEt-occ-n - houses

As can be seen from above the nominative is characterized by the total absence of outward

indicators. It can also be generalized that accusative endings comes after all other noun formats

i.e. at first is added the number indicator then comes the accusative case. The meanings of the

noun's genitive and dative cases are conveyed by the possessive prefixes -የ /-yä : and -ለ /-lä

respectively.

The following operation defines the affixes that attach to strings to inflect them for case. Given

an input string the above declensions for case can clearly be coded as shown below.

 oper affix : Str -> Case => Str = \str->
 table {

 Gen => "ዦ" + str;
 Dat => "ሇ" + str;
 Acc => str + "ን" ;

37

 Nom => str
 };

When it comes to accounting for the above inflections we define an inflection table that

internally represents all the sixteen cases we outlined at the beginning of this section.

mkNoun : (x1,_,_,_,_,_,_,_,_,_,_,_,_,_,_,x16 : Str) -> Gender -> Noun =

\sdn,sda,sdg,sdd,sin,sia,sig,sid,pdn,pda,pdg,pdd,pin,pia,pig,pid,g -> {

 s = table {

 Sg => table {

 Def => table

 {

 Nom => sdn ;

 Acc => sda ;

 Gen => sdg ;

 Dat => sdd

 };

 Indef => table

 {

 Nom => sin ;

 Acc => sia ;

 Gen => sig ;

 Dat => sid

 }

 } ;

 Pl => table {

 Def=> table

 {

 Nom => pdn ;

 Acc => pda ;

 Gen => pdg ;

 Dat => pdd

 };

 Indef => table

 {

 Nom => pin ;

 Acc => pia ;

 Gen => pig ;

 Dat => pid

 }

 }

 } ; g = g

 } ;

The table serves as a template to form other paradigms that account for the 16 forms (sdn or

(Sg,Def,Nom), sda or (Sg,Def,Acc), etc). The details of orthographic changes

we discussed in section 5.1 are now used here. In addition it gives the possibility of handling

cases of the inherent features g as shown below.

 regN2 : Str -> Gender -> Noun = \root,g ->

 case root of {

38

 roo + t@? => table {

 Masc => mkNoun

 (roo + replaceLastLet6_2_M (t))

 (roo + replaceLastLet6_2_M (t)+"ን")
 . . .

 g;

 Fem => mkNoun

 (roo + replaceLastLet6_2_F (t))

 (roo + replaceLastLet6_2_F (t)+"ን")
 . . .

 g

 } ! g

 };

Depending on the gender of the noun in question, analysis is made on its last character by

making use of the othographic operations for the 16 cases discussed earlier. Below is shown an

example obtained from such analysis we made for the Amharic noun for ‟house‟ bet/ቤት

 Sg Def Nom : ቤቱ

 Sg Def Acc : ቤቱን
 Sg Def Gen : ዦቤቱ
 Sg Def Dat : ሇቤቱ
 Sg Indef Nom : ቤት
 Sg Indef Acc : ቤትን
 Sg Indef Gen : ዦቤት
 Sg Indef Dat : ሇቤት
 Pl Def Nom : ቤቶቹ
 Pl Def Acc : ቤቶቹን
 Pl Def Gen : ዦቤቶቹ
 Pl Def Dat : ሇቤቶቹ
 Pl Indef Nom : ቤቶች
 Pl Indef Acc : ቤቶችን
 Pl Indef Gen : ዦቤቶች
 Pl Indef Dat : ሇቤቶች

Before concluding our report on the works done with Amharic nouns, let‟s mention one special

case of compound nouns. In Amharic two nouns may combine to form another noun such as

ትሜህሬት ቤት - təməhərət bet „school‟ which is formed by two nouns ትሜህሬት- təməhərət- 'school'

and ቤት - bet ' house'. Here inflection for a dative or genitive case is added on the first element

while accusative case and the plural markers are suffixed on the second noun. compN is special

function that can handle such variations as shown below. It takes two nouns and forms a

compound noun with the correct inflections.

compN : Noun -> Noun -> Noun ;

 compN x y =

 {

 s = \\N,S,C => case C of

 {

39

 Gen|Dat => x.s ! Sg ! Indef!C ++ y.s ! N ! S ! Nom ;

 _ => x.s ! Sg ! Indef!Nom ++ y.s ! N ! S !C

 };

 g = y.g;

 } ;

A GF output for such an analysis can be shown here for the noun school ትሜህሬት ቤት - təməhət bet

'school'

 Sg Def Nom : ትሜህሬት ቤቱ
 Sg Def Acc : ትሜህሬት ቤቱን
 Sg Def Gen : ዦትሜህሬት ቤቱ
 Sg Def Dat : ሇትሜህሬት ቤቱ
 Sg Indef Nom : ትሜህሬት ቤት
 Sg Indef Acc : ትሜህሬት ቤትን
 Sg Indef Gen : ዦትሜህሬት ቤት
 Sg Indef Dat : ሇትሜህሬት ቤት
 Pl Def Nom : ትሜህሬት ቤቶቹ
 Pl Def Acc : ትሜህሬት ቤቶቹን
 Pl Def Gen : ዦትሜህሬት ቤቶቹ
 Pl Def Dat : ሇትሜህሬት ቤቶቹ
 Pl Indef Nom : ትሜህሬት ቤቶች
 Pl Indef Acc : ትሜህሬት ቤቶችን
 Pl Indef Gen : ዦትሜህሬት ቤቶች
 Pl Indef Dat : ሇትሜህሬት ቤቶች

5.4 Morphology of the Adjectives

As we mentioned in chapter three of this report adjectives in Amharic precede the nouns that

they modify.

 እሬሰ ሯነፍ ተሚሩ ነው ::

 ∂rsu sänäf tämari näw

 He lazy student is

 “He is a lazy student.”

In this example, the adjective sänäf “lazy” precedes the noun tämari “student” which it

modifies.

Adjectives (A) are represented in our resource grammar as

 A = {s : Gender => Number => Species => Case => Str} ;

This builds the representation table of an adjectives, consisting of 32 (2x2x2x4) forms. There is

a great deal of similarity between nouns and adjectives when it comes to inflection except that

the gender is no longer treated as an inherent feature in the adjectives. This means that one form

of adjective can be used to describe both masculine and feminine nouns in some of the cases.

40

This representation table is also so uniform among adjectives that a single paradigm mkA is

used to build the whole representation of the more than 50 regular adjectives in our Swadesh

Lexicon list. A lexicographer can, for example, enter a new adjective in this list as shown below:

 beautiful_A = mkA "ቆንጆ" ; where mkA is an operation that transfers a

given string to an adjective table (mkA : Str -> A) inflecting it along the way to give a

tabular output such as:

 Masc Sg Def Nom : ቆንጆዉ

 Masc Sg Def Acc : ቆንጆዉን

 Masc Pl Def Acc : ቆንጆዎቹን

 Masc Pl Indef Nom : ቆንጆዎች

 Fem Sg Def Dat : ሇቆንጆዋ

 . . .

5.4 The Numerals

Now we forward the explanation of our implementation of the numeral system of Amharic. We

consider both the cardinals and ordinals while doing so. Our work on the numerals is basically

an extension of a previous work for defining number systems of various languages using GF. We

gradually give the governing grammar rules along with their formal description in GF.

Before diving into the library implementations, let‟s discuss some peculiar features of Amharic

numerals. In Amharic, the ordinal numbers are formed from the cardinal numbers by adding the

suffix -ኧኛ / -äňňa after the stem consonant.

Example Cardinal Ordinal

 ሁሇት ሁሇት+ -ኧኛ -> ሁሇተኛ

 hulät / two hulät-äňňa/ second

The compound numerals, like English are put separately.

Example ሁሇት ሗቶ ሯሊሲ አንዲ

 hulät mäto sälasa and / two hundred thirty one

 ሁሇት ሗቶ ሯሊሲ አንይኛ

 hulät mäto sälasa and-äňňa / two hundred thirty first

In addition to species and case, both the ordinals and cardinals inflect in gender and number very

much following the pattern of adjectives that modify nouns. This leaves 40 distinct ways of

inflecting both cardinal and ordinals when accounting gender (2), number (2), definiteness (2)

41

and case (4) for each of them. The rest 24 are common cases for plural numbers and singular

indefinites. Our system gives this for both the text numerals and digits. Below in the table are

shown parts of the the text and digit ordinals for threehundred - ሶስት ሗቶ -“sost meto” - 300.

Masc Sg Def Nom : 3 0 0ኛዉ

Masc Sg Def Acc : 3 0 0ኛዉን

Masc Sg Def Gen : ዦ3 0 0ኛዉ

Masc Sg Def Dat : ሇ3 0 0ኛዉ

…

Masc Sg Def Nom : ሶስት ሗቶኛዉ

Masc Sg Def Acc : ሶስት ሗቶኛዉን

Masc Sg Def Gen : ዦሶስት ሗቶኛዉ

Masc Sg Def Dat : ሇሶስት ሗቶኛዉ

…

The numerals are basically implemented in the NumeralsAmh module. An inflection table of

numerals has the following type together with the attributes that a number can inflect in:

param

 CardOrd = NCard | NOrd ;

oper

Numeral = {

 s:CardOrd=>Gender=>Number=>Species=>Case=>Str

 };

Because of the uniformity of inflectional forms across all ranges of numbers, in Amharic, we do

not need to consider special sizes to implement the rules governing their inflections. This

uniformity makes syntactic formations using the numerals, such as noun phrases, a lot easier. We

do, however, handle the orthographic changes that occur while adding affixes during inflection.

One such function can be :

oper

regOrd : Str -> Str = \number ->

 case last number of {

 "ዲ" => init number + "ይኛ" ;

 "ት" => init number + "ተኛ" ;

 "ኝ" => init number + "ነኛ" ;

 "ሬ" => init number + "ሧኛ" ;
 _ => number + "ኛ"
 } ;

The function helps to handle the formation of ordinal numerals from their cardinal counterparts

accounting for the orthographic changes. It describes that whenever the last character of a string

'number' ends in the shown letters it takes the initials of the 'number' without the last

42

character and adds the respective suffixes, otherwise, it just adds "ኛ" /ňa on the original

number. If we make use of such a function on strings such as አንዲ ,ሁሇት , and ሗቶ, the results are

አንይኛ, ሁሇተኛand ሗቶኛ which are equivalents to the English first, second and hundredth

respectively.

The abstract syntax in the library details the categories and functions governing the numbers. We

show these for numbers less than ten below:

cat

 Digit ; -- 2..9

 Sub10 ; -- 1..9

fun

 n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;

 pot01 : Sub10 ; -- 1

 pot0 : Digit -> Sub10 ; -- d * 1

As can be seen the number 1 is treated separately from the remaining digits . In our concrete

module, the following is the type of the categories above in Amharic (the concrete syntax):

param

 DForm = unit | ten ;

lincat

 Digit =

{s : DForm => CardOrd => Gender=>Number=>Species=>Case=> Str} ;

 Sub10 =

{s : DForm => CardOrd =>Gender=>Number=>Species=>Case=> Str } ;

The inflection table shows what we discussed earlier, that Amharic numbers (both numerals and

ordinals) inflect in gender, number, species (definiteness), and case. The DForm is given so as

to implement a digit with its multiples of ten. The function below forms the inflection table of

the digits by taking the unit, its multiple of ten and the ordinal forms:

oper

mkNum : Str -> Str -> Str -> {s : DForm =>

 CardOrd=>Gender=>Number=>Species=>Case=> Str} =

 \hulet,haya, huleteNa ->

 {

 s = table {

 unit => table {

 NCard => adjaffix hulet ;

43

 NOrd => adjaffix huleteNa

 } ;

 ten => \\c => mkCard c haya

 }

 } ;

The adjaffix is the main inflecting function that takes a string to give the 64 possible tabular

outputs, while the other operation mkCard considers cardinality and a string to make the

correct inflections. At this stage we refrain from going into the details of such implementation

operation but rather show how such helping functions are finally put to use.

 lin n2 = mkNum "ሁሇት" "ሃዩ" "ሁሇተኛ" ;
 lin n3 = mkNum "ሶስት" "ሯሊሲ" "ሶስተኛ";
 lin n4 = mkNum "አሪት" "አሬባ" "አሪተኛ";
 lin n5 = mkNum "አሜስት" "ሃሜሲ" "አሜስተኛ";
 lin n6 = mkNum "ስዲስት" "ስዲሲ" "ስዲስተኛ";
 lin n7 = mkNum "ሯባት" "ሯባ" "ሯባተኛ";
 lin n8 = mkNum "ስሜንት" "ሯሚንዩ" "ስሜንተኛ";
 lin n9 = mkNum "ዖጠኝ" "ዖጠና" "ዖጠነኛ";

 lin pot01 = mkNum "አንዲ" "አስሬ" "አንይኛ" ;
 lin pot0 d = d ;

Of course the above does not account for the variations that could arise due to the possibilities of

using more than one symbolic character to write the same number. For instance if we are to write

„twenty‟ in Amharic, ሃዩ/ሏዩ/ሀዩ/ኃዩ (all of which are read as „haya‟) can be used. This is because

the first letters ሃ, ሀ, ሏ and ኃ (all of which are read as „ha‟) are given in the fidäl in four different

positions with their distinct shapes, even though all sound the same.

The abstract syntax divides the categories based on the decimal system. If we consider the last

function in the linearization, pot0, is used to transfer the Digit into Sub10 so that it can be

used as any numeral less than ten later. The linearization of the rest of the categories from the

abstract syntax and their implementation in Amharic follows similar trend as the above. We

conclude the section by giving examples of two ordinal forms with similar paramours but

gender. We try to clarify this by using an example sentence generated by our system.

Inflection form of the ordinal: sMasc Sg Def Nom:ሶስት ሗቶኛዉ / the three hundredth+masc

Usage:preceeds a masculine noun while forming phrases such as noun phrases. A digital form

of the same is also possible in our system:s Masc Sg Def Nom:300ኛዉ / the 300th+Masc

Example: ሶስት ሗቶኛው ሌጅ በሇሶቹን በሊ። / the three hundredth boy ate the apples

 sost mätoňňaw l∂j bäläsoccun bäla

44

Inflection form of the ordinal: s Fem Sg Def Nom : ሶስት ሗቶኛዋ / the three hundredth+fem

Usage: preceeds a feminine noun while forming phrases such as noun phrases. The digital

take this form: s Fem Sg Def Nom : 300ኛዋ /the 300th +fem

Example: ሶስት ሗቶኛዋ ሌጃገሧዲ በሇሶቹን በሊች ። / The three hundredth girl ate the apples.

 sost mätoňňawa l∂jagäräd bäläsoccun bälacc

5.5 Swadesh
1
 Lexicon

The test lexicon we have uses is in LexiconAmh module. Below are given examples from the

main word types that show how a lexicographer can use this to enter them:

Verbs

 Bi-radical
 break_V2 = mkV3gdl "sbr" ;

 sing_V = mkV3mls "zmr";

 Tri-radical
 sew_V = mkV2bl "sf" ;

 stand_V = mkV2nr "qm";

 give_V3 = mkV3 (mkV2sT "sT") (mkPrep "ሇ" "" True);
 Quadri-radical
 freeze_V = mkV4dbdb "qzqz";

 throw_V2 = mkV4dbdb "wrwr";

Nouns

 ship_N = mkN
2 "ሗሬከብ" feminine ;

 church_N = mkN (mkN "ቤተ") (mkN "ክሬስትዩን" feminine);
 ceiling_N = mkN "ጣሪ";

Adjectives

 full_A = mkA "መለ" ;

 heavy_A = mkA "ከባዲ" ;

We also provide additional list of structural words in the StructuralAmh module for

instance,

 we_Pron = pronNP "እኛ" "እኛን" "ዦእኛ" "ሇእኛ" (Per1 Pl);

1 The Swadesh list is one of several lists of vocabulary with basic meanings, developed by Morris Swadesh.

2This single wrapper function mkN is overloaded with the various forms of nominal declension to make it 'smart'

enough to guess the outputs for the different input signatures. Such functions in GF are called smart paradigms.

45

where the helping function pronNP is defined in ResAmh to take four strings and person-

number-gender agreement feature, to build a noun phrase with the proper cases,i.e., nominative,

accusative ,genitive and dative. This can be shown below.

pronNP : (N,A,G,D : Str) -> PerNumGen -> NP = \N,A,G,D,png-> {

 s = table {

 Nom => N ;

 Acc => A ;

 Gen => G ;

 Dat => D

 } ;

 a = Agr

 };

Similarly, the rest of the structural words which includes, prepositions, conjunctions, adverbs,

quantifiers and so on are constructed by making use of the proper functions we provide in the

ResAmh module.

5.6 Syntax

The final part of the grammar that we have implemented is a set of syntactic rules such as the

one we described in section in chapter 3.2. A complete description of the language independent

API rules in the abstract resource grammar,i.e., the syntactic structures of the abstract API is

given by Ranta in his description of the resource library (Ranta, 2004), so we do not discuss

them here. We give two examples, one noun determination and another verb predication, to show

the expressive power of the formalism. We as well forward some points with regard to the

VPSlash (a verb phrase without an object / complement) and verb complementation issues, at

last the uses of conjunction in order to coordinate the semantic flow of two or more list of

expressions in the same category is given.

Example 1:

The example we give hereunder is the formation of Amharic determiner using quantifiers and

numerals to show the concepts of definite and indefinite articles and they are implemented. First

let‟s give the abstract categories (cat) and functions (fun). Our goal is to linearize the rules,

both categories (using lincat) and functions (using lin) into Amharic according to the

grammar.

cat

 Det;

 Quant;

 Num;

fun

46

 DetQuant : Quant -> Num -> Det ;

 IndefArt : Quant ;

 DefArt : Quant ;

 NumSg : Num ;

 NumPl : Num ;

lincat

 Quant = {

 s : Number => Gender => Case => Str;

 d : Species;

 isNum : Bool;

 isPron: Bool

 } ;

 Det = {

 s : Gender => Case => Str ;

 d : Species;

 n : Number;

 isNum : Bool;

 isPron : Bool

 } ;

 Num = { s : Species=>Case => Str ;

 n : Number ;

 hasCard : Bool

 } ;

lin

 DetQuant quant num = {

 s = \\g,c => quant.s!num.n!g!c ++ num.s!quant.d!c ;

 d = quant.d;

 n = num.n;

 isNum = True;

 isPron = quant.isPron

 } ;

 DefArt = {

 s = _,_,_ => [];

 d = Def ;

 isNum,isPron = False

 } ;

 IndefArt = {

 s = \\n,g,_ =>

 case <n,g> of {

 <Sg,Masc> => "አንዲ" ++ [];

 <Sg,Fem> => "አንዯት" ++ [];
 <Pl,_> => [] };

47

 d = Indef ;

 isNum,isPron = False

 } ;

One way of making determiners such as these five, is by making use of quantifiers and numerals

as given by DetQuant. It can be seen from the same linearization that the inherent number of

the determiner comes from the numeral while the definiteness is decided by the quantifier. Our

interest is to show the extra things that come with Amharic definite and indefinite articles and

how they could be captured by the Quant category. From DefArt it can be seen that the

definite article in Amharic has no explicit word corresponding to it making its implementation

look more complex. But there is another way out of this, i.e., treating the quantifier's inherent

species as definite regardless of the number, gender and case. This better explains the situation

with Amharic definiteness – a point of discussion amongst scholars (Beermann and Ephrem,

2007). The other feature could be the case of the indefinite article for singular quantifiers.

Indefinite nouns are normally not marked with determiners and hence we could leave the

nucleus quantifier the same as definite article while only marking the species with Indef. But

occasionally the cardinal numeral and/ አንዲ („one‟) is used to indicate the meaning of

indefiniteness and that is what we have shown in IndefArt. It is further to be noted that the

indefinite article takes two different forms depending on the gender. For instance, in Amharic,

we say አንዲ ሌጅ and l∂j / a boy and አንዯት ሌጃገሧዲ andit l∂jagäräd to mean ‘a girl’.

To summarize this, we show two sentences that make use of verb phrase from the verb 'love' (we

shall give the verb predication implementation in our next example) and a noun phrase which in

turn is made by such determiners as the one shown in the previous example and nouns (boy and

girl).

 ሌጁ አንዯት ሌጃገሧዲን ያወደሌ::

 l∂ju andit l∂jagäräd∂n y∂wädal

 The boy a girl loves : the boy loves a girl

 ሌጃገሧዴ አንዲ ሌጅን ትወዲደሇች::

 l∂jagärädua and l∂j∂n t∂wädaläcc

 The girl a boy loves : the girl loves a boy

These two simple sentences could show how much Amharic deviates from English. English only

has to swap the nouns 'girl' and 'boy' to bring the required semantic difference while there is high

similarity between the structures for the two cases. Meanwhile, in Amharic we have to consider

lots of grammatical decisions almost on every word of the sentence. The way we explain

definiteness, the way we give indefiniteness, the way we decline for accusative cases and even

the way we inflect the verbs are all different between the two sentences.

Example 2:

48

As a second example let‟s take the rule of verb predication where a verb phrase is formed from a

verb. In order to do so we need to decide the type of verb phrases (VP) first. A verb phrase in

Amharic can be given in its compact form as:

param

TenseAmh=PresFut|SimplePast|PresPerf|PastPerf|PresCont|

PastCont;

Polarity = Pos | Neg;

lincat

VP = {

 s : TenseAmh=> Polarity =>PerNumGen => Str ;

 compl : NP

 } ;

In our implementation the VP takes several more inherent features, which we have summarized

and put just as an NP complement for the sake of brevity. It can also be seen from the table that

a VP inflects for tense, polarity (which is used when making either positive or negative

sentences) and agreement feature PerNumGen

The operation predV below takes a verb and makes a verb phrase. Most of the discussions we

had in the verb morphology are now implemented here (see that we have used the transliteration

we described earlier whose list can also be found in the appendix A):

predV :V -> VP = \v ->

 {

s = \\t,p,png =>

 let

 ketebku = v.s ! Perf !Act! png ;

 eketbalehu = v.s ! Imperf !Act! png ;

 keteb = v.s ! Jus_Imperat !Act! png ;

 ketbie = v.s ! Gerund !Act! png ;

 mekteb = v.s ! Infinitive !Act! png ;

 ketabi = v.s ! Parti !Act! png ;

 ketbiealehu = v.s ! CompPerf !Act! png ;

 eketib = v.s ! Cont !Act! png ;

 in

 case <t,p> of

{

 <PresFut,Pos> => eketbalehu ;

49

 <PresFut,Neg> => "!" ++"&+"++ eketib ++"&+" ++"m" ;

 <PresPerf,Pos> => ketbiealehu;

 <PresPerf,Neg> => "!l"++"&+"++ketebku++"&+"++"m";

 <PresCont,Pos> => "(y'"++ "&+"++ketebku ++"n'w" ;

 <PresCont,Neg> =>"(y'"++ "&+"++ketebku ++"Ayd'l'm" ;

 <SimplePast,Pos> => ketebku;

 <SimplePast,Neg> => "!l"++"&+"++ketebku++"&+"++"m";

 <PastPerf,Pos> => ketbie++"n'b'r";

<PastPerf,Neg>=>"!l"++"&+"++ketebku++"&+"++"m"++"n'b'r";

 <PastCont,Pos> => "(y'"++ "&+"++ketebku ++ "n'b'r" ;

 <PastCont,Neg> => "(y'"++ "&+"++ketebku ++

"Aln'b'r'm"

 };

 comp = { s = _ => [] };

 };

We want to mark at this point that verb phrases are primarily formed from a verb and its required

complements. But verbs can be of various categories corresponding to the possible complements

and their combinations. Such division of verbs by the complement is known as

subcategorization. (Ranta, 2009). The way such subcategorizations are handled is abstract in a

sense that it doesn‟t distinguish prepositional phrase complements from noun phrases. This

means that the treatment given to the prepositional phrases is almost the same as noun phrases.

The case is a language-dependent concrete syntax feature, and complement cases are inherent

features of verbs. For instance, the linearization type of V3 is formed from the linearization type

of one-place verbs by adding two cases. In Amharic, these cases are simply prepositions, which

can be expressed as strings. Thus the verb „talk‟ (to somebody about something) has the

following linearization

mkV3 (mkV3asr "'wr")(mkPrep "ከ" "ጋሬ" True)(mkPrep "ሯሇ" "" True);

At this point, we do not intend to explain the code and how it evolved to get to this form in this

report but merely mention the fact that the prepositional phrases are almost treated the same way

as noun phrase complements in GF.

50

Clauses and Sentences

A clause in GF, which is a syntactic category that has variable tense, polarity and order, can be

formed in various ways. Of such formations, predication of a NP and VP is one as shown below.

fun PredVP : NP -> VP -> Cl

Where the clause is given by

lincat Cl : Type = { s : TenseAmh => Polarity => Str};

The GF tense system found in the common API, which is given as tense and anteriority, is a

simplified one. There are only four tenses named as present, past, future and conditional, and

two possibilities of anteriority (Simul, Anter) which leave the possibility of generating only 8

possible combinations. This coverage is not sufficient enough to handle all the tense forms of

Amharic which we mentioned earlier, therefore, further coverage is given at the clause level to

address that.

Further explaining this problem, the above PredVP function creates clauses which can further

be fixed for tense and polarity to form sentences. One such sentence forming function that can

fix clauses for polarity and tense is:

fun UseCl : Temp -> Pol -> Cl -> S

While forming declarative sentences, the tense in the Temp category refers to abstract level tense

and we just map it to Amharic tenses by selecting the appropriate clause as shown below.

UseCl t ap cl =

 let ss : Str = case t.t of

 {

 Pres => cl.s ! PresFut ! ap.p ;

 Cond => cl.s ! PresFut ! ap.p ;

 Past => cl.s ! SimplePast ! ap.p ;

 Fut => cl.s ! PresFut ! ap.p

 }

 in {

 s = ss

 };

51

Here we may lose some semantic equivalence as, for example, there is no conditional tense in

Amharic and what we picked instead is the one that is „similar‟ to this tense type, PresFut
1

which may not be correct all the time.

Question Forms

Unlike some of the languages in the GF library, Amharic clauses do not vary in „order‟ (direct or

question). We consider only direct clauses even when forming interrogative sentences. The way

the speaker says the sentence and the addition of tags like "እንዱ"- „ände‟ at the end of the

direct clause that was formed from the clause level helps to make questions. For examples a

simple way to create a question clause can be given in the abstract as:

fun QuestCl : Cl -> QCl ;

which can be linearized as

QuestCl cl = {

 s = \\t,p => cl.s! t! p ++ "እንዱ"

 };

The tense and polarity of this clause will be fixed at the sentence level while forming question

sentences the same way we did with the normal clauses that use UseCl as described above.

There are also other forms of question clauses which include clauses made with interrogative

pronouns (IP), interrogative adverbs (IAdv), and interrogative determiners (IDet) which are

given as structural words.

Coordinating Conjunction

A coordinating conjunction can join lists of expression that a user of a language wants to

emphasize equally. The list can be composed of 2 (X and Y) or more (X, Y, Z and U). The GF

library allows coordination of five categories (Ranta, 2009)

አ adverbs (here or there),

አ adjectival phrases (cold and warm),

አ noun phrases (she or John),

አ relative clauses (who walks or whom she loves), and

አ sentences (he walks and she runs)

The conjunctions are given as a structural word in the structuralAmh.gf module. These can

assume wither a simple (and, or) or discontinuous (both-and, either-or) forms. We show below

the implementation of coordination in the NP category eg. “she and we” .

1
 The present and future tenses are not separated in Amharic and we give them as PresFut.

52

fun ConjNP : Conj ->[NP]->NP;

Such a rule can be applied to lists of two or more elements as shown in the translation given by

our GF system.

Languages: LangAmh LangEng

Lang> p -lang=LangEng "he , John and she eat red apple"| l -lang=LangAmh -treebank -

to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos (PredVP (ConjNP

and_Conj (ConsNP (UsePron he_Pron) (BaseNP (UsePN john_PN) (UsePron she_Pron))))

(ComplSlash (SlashV2a eat_V2) (MassNP (AdjCN (PositA red_A) (UseN apple_N)))))))

NoVoc

LangAmh: እሬሰ ፣ ዬሃንስ እና እሬሷ ቀያ በሇስ ያበሊለ

The “፣” in the Amharic translation by GF is an equivalent mark for “,” in English. It can also be

seen that the verb selection in the sentence smartly takes its agreement feature as third person

plural, i.e., as in „they eat red apple‟.

A slash category CSlash is like the category C but "missing" a noun phrase.(Ranta 2009). From

the bold written part of the parse tree structure provided by GF, the function SlashV2a is given in

the common API as:

fun: SlashV2a : V2 ->VPSlash

It takes a two place verb V2 (ያበሊለ -y∂bälalu eat-Per3Pl) to form a verb phrase known as

VPSlash which lacks a complement NP. At a later stage this VPSlash is converted to VP

through ComplSlash function which is given in abstract syntax as:

fun: ComplSlash : VPSlash -> NP -> VP ;

where as in this case the NP (ቀያ በሇስ - qäy bäläs - red apple) is formed by MassNP that simple

takes a noun (CN) piped from AdjCN which takes Adj ቀያ- qäy-red and another noun CN

በሇስ - bäläs- apple as inputs as shown below.

fun MassNP : CN ->NP

fun AdjCN : AP -> CN -> CN

Furthermore, in Amharic the complement of a verb precedes the actual verb e.g (እሬሷ

ሗሄዲ ትፈሌጋሇች ∂rsua mähed t∂fäl∂galäc “she wants to go”), where (ትፈሌጋሇች - t∂fäl∂galäc

“want”-Per3SgFem) is a complement of verb (ሗሄዲ-mähed “go”-inf).

53

Chapter 6

Related Work

Amharic is an under resourced language with regard to NLP. Therefore, works regarding the

computational aspect of the language are rather hard to come by. This being the general case,

there are initiatives by individual researchers whose theoretical works extend from machine

translation to speech recognition. Even if such islands of researches are still shy of coordination

and practicality to bring the language a step closer to the world of computation, we found the

following works worth mentioning as a related work.

6.1 Arabic Resource Grammar in Grammatical Framework

Our work on Amharic has benefited much from the work of Ali El Dada and Aarne Ranta on the

implementation of the other Semitic language in the library, Arabic. (El Dada and Ranta, 2007)

Their work deals with some of the problems in the NLP of Arabic and introduces natural

language constructs and rules implemented in libraries. This has considered rules that span from

orthography and morphology to syntax. Similarly, we revised another mini resource work on

Hebrew and Maltese (Dannélls and Camiller, 2010).

6.2 HornMorpho Amharic Morphological Analyzer and Generator

HornMorpho
1
 is a program that analyzes Amharic words into their constituent morphemes

(meaningful parts), returning, whenever possible, the stem or root of the word, along with a

representation of its grammatical structure. It is the first in a planned series of programs to

handle the morphology of Ethiopian and Eritrean languages.

The software is released as part of the L3 project ("Learning Lots of Languages") which has a

long-term goal of developing a system to translate to and from many under-represented

languages and (less ambitiously) of creating tools to be used in information retrieval and

computer-assisted language learning with these languages.

The approach they implement is based on the Finite State Transducers weighted with feature

structures. The program is written in Python and the FST module they use is adapted from the

Natural Language Tool Kit (NLTK)
2
 - an open-source suit of Python tools for computational

linguistics applications. The generator takes inputs both in Romans and Fidäl (UTF-8 encoding)

1 https://www.cs.indiana.edu/~gasser/software.html
2 www.nltk.org

54

versions and the orthographic version of the analyzer romanizes the Fidäl inputs using the SERA

transliteration convention.

Even if the morphology part of our study is limited to inflectional generations, there is a crossing

with FST approach they implemented in a way that we both adopt the root-pattern, where the

roots and patterns are explicitly separated for combining during processing. However, the FST

implementation of HornMorpho adds features such as weights on the transitions and uses multi

layered transducers to do the analysis and generation.(Gasser, 2009)

6.3 Syntax

Works on Amharic syntax, even at theoretical level, are rather rare to find than those on

morphology. Of the available works, we note Baye Yimam's work (Yimam, 1987) that gives a

formal description of the Amharic grammar in his book written in Amharic. His paper on the

interaction of tense, aspect, and agreement in Amharic syntax is another piece to mention

(Yimam, 2006). A thesis work by Atalech, presently a Phd student at Stockholm University,

(Argaw, 2002) describes a work on automatic sentence parsing for Amharic text. Finally, works

on dependency parsers for Amharic by Gasser (Gasser, 2010) where he introduces a grammar for

a fragment of Amharic within the Extensible Dependency Grammar (XDG) framework gives a

highlight into some of the morphological and syntactic complexities in the language and this,i.e

XDG, methodology to deal with them.

55

Chapter 7

Conclusion

We discussed in this report the implementation of Amharic as a resource grammar. The project

consists of 25 modules and more than 4,000 lines of GF code that cover orthographic, morpho-

logical and syntactical features of the language.

We took on the project from the zero-ground all the way up. Our work started with the morphol-

ogy where majority of the nominal declensions followed uniform and simple trends. The verbal

inflections, though not complete, required us to design unique patterns longer than 1,000 lines of

code. We approached such verbal analysis using transliterations, unlike nouns and adjectives that

use Amharic characters, as it gave us flexibility and lessened the burden of orthographic errors

dramatically. The numerals from a previous work had to get refurnished and can now be used

smoothly. At times we used near-meanings when we miss direct translations and when the rule

of the syntax is far too complex to implement. The compiling time is also reasonably good to

generate PGF files - portable grammar formats, which will be imported and processed by main

stream programming languages like Haskell and Java. (Angelov and Bringert, 2009)

Throughout the project we came to witness that GF indeed has lots of strengths when describing

rather complicated linguistic issues such as grammar rules and inflection tables. We note also the

extent of classiness in which formalism like GF enables us to represent linguistic rules and ab-

stractions.

Finally, the current grammar do not cover all aspect of Amharic and it does not be used to parse

arbitrary texts as we do in Google-Translator
®
; but with extended inclusion of more syntactic

rules and a multi-dimensional overhaul of morphology, we strongly assert that GF has all that it

takes to make Amharic be used in text generation applications and for software localization

works.

56

Chapter 8

Future Work

A language with morphosyntatic complexity like Amharic puts immense challenges during its

implementation as a resource grammar. We do not dare to claim that our work has covered

everything there is to know about Amharic at this stage. We rather aim to extend such an

initiative through open sharing of sources to linguists (computational and theoretical) and

anyone interested on Amharic NLP. Therefore, we site the following additions and completions

as future works:

አ The level of coverage given to root-pattern classification of the verbs could

further be augmented to address various other derivational templates than we

could cover here. Especially verbs that start with a vowel and ‟tä‟ behave in a

different way. Therefore they need further analysis than we could make in this

work. The implementation of verb ‟to have‟ is also over simplified and needs

detailed consideration like the verb to-be‟s.

አ Improving the efficiency and broadening the coverage of the grammar can be

another direction for future work. Some forms are also left out for the sake of

time. These include the case of object suffixes, relative clauses and aspects such

as reciprocals and iteratives for the various TAM's and voices. These will require

redesigning some types and patterns.
1

አ Steps towards a robust grammar cannot be attained without the inclusion of a

larger lexicon. Therefore, future work should consider more lexica to test the

various morphosyntactic properties of the language.

1 There are also some feature of Amharic which are not yet given a coverage with the current API , such as extra

tense varieties and some pronoun forms, these features are implemented in the ExtraAmh module.

57

አ Writing an application grammar of some kind (could be started from those that

have already used GF such as the phrase book in the MOLTO project
1
) in

Amharic can also help test the practicalities of our approach.

አ Finally, generation of sentences attained by our system so far should be extended

into texts. Such achievements, when implemented on a good amount of lexica,

may lead to the generation of a good amount of bi or multi-lingual corpora which

are missing in Amharic. These, eventually, could serve as an important input to

statistical technologies, such as machine translation, bringing the language into

the lights of computation faster.

1 http://www.molto-project.eu/demo/phrasebook

58

References

Angelov, Krasimir, Bringert, Björn. and Ranta, Aarne. PGF: A Portable Run-Time Format for

Type-Theoretical Grammars. Journal of Logic, Language and Information. 2009

Angelov, Krasimir. Type-Theoretical Bulgarian Grammar. Proceedings of the 6th international

conference on Advances in Natural Language Processing, 2008

Argaw, Atalech. Automatic Sentence Parsing for Amharic Text: An Experiment Using

Probabilistic Context Free Grammars. Addis Ababa: Addis Ababa University Press. 2002

Bayou, Abiyot. Design and Development if a Word Parser for Amharic Language: Master’s

Thesis. Addis Ababa: Addis Ababa University Press. 2000

Beermann, Dorothee and Ephrem, Binyam: The Definite Article and Possessive Marking in

Amharic. Texas Linguistics Society 9: Morphosyntax of Underrepresented Languages. CSLI

Publications. 2007

Dana Dannélls and John J. Camiller. Verb Morphology of Hebrew and Maltese: Towards an

Open Source Type Theoretical Resource Grammar in GF. Proceedings of LREC. 2010

El Dada, Ali and Ranta, Aarne. Implementing an Open Source Arabic Resource Grammar in GF.

In Perspectives on Arabic Linguistics XX. John Benjamins Publishing Company. 2007

Enache, Ramona; Ranta, Aarne and Angelov, Krasimir: An Open-Source Computational

Grammar for Romanian. In Computational Linguistics and Intelligent Text Processing 11th

International Conference, Iasi, Romania 2010

Fisseha, Sissay and Haller, Johann. Amharic verb lexicon in the context of machine translation

.Saarbrücken: University of Saarland Press. 2003

Gasser, Michael. A dependency grammar for Amharic. Workshop on Language Resources and

Human Language Technologies for Semitic Languages. 2010

Gasser, Michael. Semitic morphological analysis and generation using finite state transducers

with feature structures. In Proceedings of the 12th Conference of the European Chapter of the

ACL, pages 309–317, Athens. 2009

59

Grishman, Ralph. Computational Linguistics: An Introduction. New York: Cambridge University

Press. 1994

Khegai, Janna. Language Engineering in Grammatical Framework (GF): Phd Thesis. Göteborg:

Chalmers University Press. 2006

Leslau, Wolf. Reference Grammar of Amharic. Wiesbaden: Otto Harrassowitz. 1995

Leslau, Wolf. An Amharic Reference Grammar. University of California: Los Angelese 1969

Ranta, Aarne. Grammatical Framework : A Type Theoretical Grammar Formalism. The Journal

of Functional Programming 14(2), 145-189 . 2004

Ranta, Aarne. The GF Resource Grammar Library. Linguistic Issues in Language Technology –

LiLT . 2009

Ranta, Aarne. GF: A Multilingual Grammar Formalism. Language and Linguistics Compass.

2009b

Ranta, Aarne. Grammatical Framework: A Programming Language for Multilingual Grammars

and Their Applications. Stanford: CSLI Publications, 2010 (to appear)

Yimam, Baye. The interaction of tense, aspect, and agreement in Amharic syntax . In Selected

Proceedings of the 35th Annual Conference on African Linguistics, pages 193-202, Somerville.

2006.

Yiman, Baye. ዦአሚሬኛ ስዋሯው. Addis Ababa: E.M.P.D.A Press. 1987

60

Appendices

61

| 1200 | ሀ | h' |

| 1201 | ሁ | h& |

| 1202 | ሂ | h# |

| 1203 | ሃ | h! |

| 1204 | ሄ | h% |

| 1205 | ህ | h |

| 1206 | ሆ | h/ |

| 1207 | ሇ | h7 |

| 1208 | ሇ | l' |

| 1209 | ለ | l& |

| 120a | ሉ | l# |

| 120b | ሊ | l! |

| 120c | ላ | l% |

| 120d | ሌ | l |

| 120e | ል | l/ |

| 120f | ሎ | l7 |

| 1210 | ሏ | H' |

| 1211 | ሐ | H&

| 1212 | ሑ | H# |

| 1213 | ሒ | H! |

| 1214 | ሓ | H%

| 1215 | ሔ | H |

| 1216 | ሕ | H/ |

| 1217 | ሖ | H7 |

| 1218 | ሗ | m' |

| 1219 | መ | m&

| 121a | ሙ | m# |

| 121b | ሚ | m! |

| 121c | ማ | m%

| 121d | ሜ | m |

| 121e | ም | m/ |

| 121f | ሞ | m7 |

| 1220 | ሟ | s' |

| 1221 | ሠ | s& |

| 1222 | ሡ | s# |

| 1223 | ሢ | s! |

| 1224 | ሣ | s% |

| 1225 | ሤ | s |

| 1226 | ሥ | s/ |

| 1227 | ሦ | s7 |

| 1228 | ሧ | r' |

| 1229 | ረ | r& |

| 122a | ሩ | r# |

| 122b | ሪ | r! |

| 122c | ራ | r% |

| 122d | ሬ | r |

| 122e | ር | r/ |

| 122f | ሮ | r7 |

| 1238 | ሸ | x' |

| 1239 | ሹ | x& |

| 123a | ሺ | x# |

| 123b | ሻ | x! |

| 123c | ሼ | x% |

| 123d | ሽ | x |

| 123e | ሾ | x/ |

| 123f | ሿ | x7 |

| 1240 | ቀ | q' |

| 1241 | ቁ | q& |

| 1242 | ቂ | q# |

| 1243 | ቃ | q! |

| 1244 | ቄ | q% |

| 1245 | ቅ | q |

| 1246 | ቆ | q/ |

| 1247 | ቇ | q7 |

| 1260 | በ | b' |

| 1261 | ቡ | b& |

| 1262 | ቢ | b# |

| 1263 | ባ | b! |

| 1264 | ቤ | b% |

| 1265 | ብ | b |

| 1266 | ቦ | b/ |

| 1267 | ቧ | b7 |

| 1268 | ቨ | v' |

| 1269 | ቩ | v& |

| 126a | ቪ | v# |

| 126b | ቫ | v! |

| 126c | ቬ | v% |

| 126d | ቭ | v |

| 126e | ቮ | v/ |

| 126f | ቯ | v7 |

| 1270 | ተ | t' |

| 1271 | ቱ | t& |

| 1272 | ቲ | t# |

| 1273 | ታ | t! |

| 1274 | ቴ | t% |

| 1275 | ት | t |

| 1276 | ቶ | t/ |

| 1277 | ቷ | t7 |

| 1278 | ቸ | c' |

| 1279 | ቹ | c& |

| 127a | ቺ | c# |

| 127b | ቻ | c! |

| 127c | ቼ | c% |

| 127d | ች | c |

| 127e | ቾ | c/ |

| 127f | ቿ | c7 |

| 1280 | ኀ | X' |

| 1281 | ኁ | X& |

1282 | ኂ | X# |

| 1283 | ኃ | X! |

| 1284 | ኄ | X% |

1285 | ኅ | X |

| 1286 | ኆ | X/ |

| 128b | ኋ | X7 |

| 1290 | ነ | n' |

| 1291 | ኑ | n& |

| 1292 | ኒ | n# |

| 1293 | ና | n! |

| 1294 | ኔ | n% |

| 1295 | ን | n |

| 1296 | ኖ | n/ |

| 1297 | ኗ | n7 |

| 1298 | ኘ | N' |

| 1299 | ኙ | N& |

| 129a | ኚ | N# |

| 129b | ኛ | N! |

| 129c | ኜ | N% |

| 129d | ኝ | N |

| 129e | ኞ | N/ |

| 129f | ኟ | N7 |

| 12a0 | አ | ! |

| 12a1 | ኡ | & |

| 12a2 | ኢ | # |

| 12a3 | ኣ | A |

| 12a4 | ኤ | % |

| 12a5 | እ | (|

| 12a6 | ኦ | / |

| 12a7 | ኧ | ' |

| 12a8 | ከ | k' |

| 12a9 | ኩ | k& |

| 12aa | ኪ | k# |

| 12ab | ካ | k! |

| 12ac | ኬ | k% |

| 12ad | ክ | k |

| 12ae | ኮ | k/ |

| 12b3 | ኳ | k7 |

| 12c8 | ወ | w' |

| 12c9 | ዉ | w&

| 12ca | ዊ | w# |

| 12cb | ዋ | w! |

| 12cc | ዌ | w% |

| 12cd | ው | w |

| 12ce | ዎ | w/ |

| 12cf | ዏ | w7 |

| 12d0 | ዏ | ä' |

| 12d1 | ዐ | ä& |

| 12d2 | ዑ | ä# |

| 12d3 | ዒ | ä! |

| 12d4 | ዓ | ä% |

| 12d5 | ዔ | ä |

| 12d6 | ዕ | ä/ |

| 12d8 | ዖ | z' |

| 12d9 | | z& |

| 12da | ዘ | z# |

| 12db | ዙ | z! |

| 12dc | ዚ | z% |

| 12dd | ዛ | z |

| 12de | ዜ | z/ |

| 12df | ዝ | z7 |

| 12e0 | ዞ | Z' |

| 12e1 | ዟ | Z& |

| 12e2 | ዠ | Z# |

| 12e3 | ዡ | Z! |

| 12e4 | ዢ | Z%

| 12e5 | ዣ | Z |

| 12e6 | ዤ | Z/ |

| 12e7 | ዥ | Z7 |

| 12e8 | ዦ | y' |

| 12e9 | ዧ | y& |

| 12ea | የ | y# |

| 12eb | ዩ | y! |

| 12ec | ዪ | y% |

| 12ed | ያ | y |

| 12ee | ዬ | y/ |

| 12ef | ዯ | y7 |

| 12f0 | ይ | d' |

| 12f1 | ዮ | d& |

| 12f2 | ዯ | d# |

| 12f3 | ደ | d! |

| 12f4 | ዱ | d% |

| 12f5 | ዲ | d |

| 12f6 | ዳ | d/ |

| 12f7 | ዴ | d7 |

| 1300 | ጀ | j' |

| 1301 | ጁ | j& |

| 1302 | ጂ | j# |

| 1303 | ጃ | j! |

| 1304 | ጄ | j% |

| 1305 | ጅ | j |

| 1306 | ጆ | j/ |

| 1307 | ጇ | j7 |

| 1308 | ገ | g' |

| 1309 | ጉ | g& |

| 130a | ጊ | g# |

| 130b | ጋ | g! |

| 130c | ጌ | g% |

| 130d | ግ | g |

| 130e | ጎ | g/ |

| 1313 | ጓ | g7 |

| 1320 | ጠ | T' |

| 1321 | ጡ | T&

| 1322 | ጢ | T# |

| 1323 | ጣ | T! |

| 1324 | ጤ | T%

| 1325 | ጥ | T |

| 1326 | ጦ | T/ |

| 1327 | ጧ | T7 |

| 1328 | ጨ | C' |

| 1329 | ጩ | C&

| 132a | ጪ | C# |

| 132b | ጫ | C! |

| 132c | ጬ | C%

| 132d | ጭ | C |

| 132e | ጮ | C/ |

| 132f | ጯ | C7 |

| 1330 | ጰ | P' |

| 1331 | ጱ | P& |

| 1332 | ጲ | P# |

| 1333 | ጳ | P! |

| 1334 | ጴ | P% |

| 1335 | ጵ | P |

| 1336 | ጶ | P/ |

| 1337 | ጷ | P7 |

| 1338 | ጸ | S' |

| 1339 | ጹ | S& |

| 133a | ጺ | S# |

| 133b | ጻ | S! |

| 133c | ጼ | S% |

| 133d | ጽ | S |

| 133e | ጾ | S/ |

| 133f | ጿ | S7 |

| 1348 | ፈ | f' |

| 1349 | ፉ | f& |

| 134a | ፊ | f# |

| 134b | ፋ | f! |

| 134c | ፌ | f% |

| 134d | ፍ | f |

| 134e | ፎ | f/ |

| 134f | ፏ | f7 |

| 1350 | ፐ | p' |

| 1351 | ፑ | p& |

| 1352 | ፒ | p# |

| 1353 | ፓ | p! |

| 1354 | ፔ | p% |

| 1355 | ፕ | p |

| 1356 | ፖ | p/ |

| 1357 | ፗ | p7 |

Appendix - A- Transliteration Table for the Fidäl as used in the project.
Format: | UTF code no | fidäl character | transliteration in the system |

62

Perf Act (Per1 Sg) : ሟበሬኩ

Perf Act (Per1 Pl) : ሟበሬን

Perf Act (Per2 Sg Masc) : ሟበሬክ

Perf Act (Per2 Sg Fem) : ሟበሬሽ

Perf Act (Per2 Pl Masc) : ሟበሪችሁ

Perf Act (Per2 Pl Fem) : ሟበሪችሁ

Perf Act (Per3 Sg Masc) : ሟበሧ

Perf Act (Per3 Sg Fem) : ሟበሧች

Perf Act (Per3 Pl Masc) : ሟበረ

Perf Act (Per3 Pl Fem) : ሟበረ

Perf Pas(Per1 Sg) : ተሟበሬኩ

Perf Pas(Per1 Pl) : ተሟበሬን

Perf Pas(Per2 Sg Masc) : ተሟበሬክ

Perf Pas(Per2 Sg Fem) : ተሟበሬሽ

Perf Pas(Per2 Pl Masc) : ተሟበሪችሁ

Perf Pas(Per2 Pl Fem) : ተሟበሪችሁ

Perf Pas(Per3 Sg Masc) : ተሟበሧ

Perf Pas(Per3 Sg Fem) : ተሟበሧች

Perf Pas(Per3 Pl Masc) : ተሟበረ

Perf Pas(Per3 Pl Fem) : ተሟበረ

Imperf Act (Per1 Sg) : ዔሟብሪሇሁ

Imperf Act (Per1 Pl) : ዔንሟብሪሇን

Imperf Act (Per2 Sg Masc) : ትሟብሪሇህ

Imperf Act (Per2 Sg Fem) : ትሟብሬዩሇሽ

Imperf Act (Per2 Pl Masc) : ትሟብሪሊችሁ

Imperf Act (Per2 Pl Fem) : ትሟብሪሊችሁ

Imperf Act (Per3 Sg Masc) : ያሟብሪሌ

Imperf Act (Per3 Sg Fem) : ትሟብሪሇች

Imperf Act (Per3 Pl Masc) : ያሟብሪለ

Imperf Act (Per3 Pl Fem) : ያሟብሪለ

Imperf Pas(Per1 Sg) : ዔሟበሪሇሁ

Imperf Pas(Per1 Pl) : ዔንሟበሪሇን

Imperf Pas(Per2 Sg Masc) : ትሟበሪሇህ

Imperf Pas(Per2 Sg Fem) : ትሟበሬዩሇሽ

Imperf Pas(Per2 Pl Masc) : ትሟበሪሊችሁ

Imperf Pas(Per2 Pl Fem) : ትሟበሪሊችሁ

Imperf Pas(Per3 Sg Masc) : ያሟበሪሌ

Imperf Pas(Per3 Sg Fem) : ትሟበሪሇች

Imperf Pas(Per3 Pl Masc) : ያሟበሪለ

Imperf Pas(Per3 Pl Fem) : ያሟበሪለ

Jus_Imperat Act (Per1 Sg) : ሌሤበሬ

Jus_Imperat Act (Per1 Pl) : ዔንሤበሬ

Jus_Imperat Act (Per2 Sg Masc) : ሤበሬ

Jus_Imperat Act (Per2 Sg Fem) : ሤበሩ

Jus_Imperat Act (Per2 Pl Masc) : ሤበረ

Jus_Imperat Act (Per2 Pl Fem) : ሤበረ

Jus_Imperat Act (Per3 Sg Masc) : ያሤበሬ

Jus_Imperat Act (Per3 Sg Fem) : ትሤበሬ

Jus_Imperat Act (Per3 Pl Masc) : ያሤበረ

Jus_Imperat Act (Per3 Pl Fem) : ያሤበረ

Jus_Imperat Pas(Per1 Sg) : ሌሟበሬ

Jus_Imperat Pas(Per1 Pl) : ዔንሟበሬ

Jus_Imperat Pas(Per2 Sg Masc) : ተሟበሬ

Jus_Imperat Pas(Per2 Sg Fem) : ተሟበሩ

Jus_Imperat Pas(Per2 Pl Masc) : ተሟበረ

Jus_Imperat Pas(Per2 Pl Fem) : ተሟበረ

Jus_Imperat Pas(Per3 Sg Masc) : ያሟበሬ

Jus_Imperat Pas(Per3 Sg Fem) : ትሟበሬ

Jus_Imperat Pas(Per3 Pl Masc) : ያሟበረ

Jus_Imperat Pas(Per3 Pl Fem) : ያሟበረ

Gerund Act (Per1 Sg) : ሟብራ

Gerund Act (Per1 Pl) : ሟብሧን

Gerund Act (Per2 Sg Masc) : ሟብሧክ

Gerund Act (Per2 Sg Fem) : ሟብሧሽ

Gerund Act (Per2 Pl Masc) : ሟብሪችሁ

Gerund Act (Per2 Pl Fem) : ሟብሪችሁ

Gerund Act (Per3 Sg Masc) : ሟብር

Gerund Act (Per3 Sg Fem) : ሟብሪ

Gerund Act (Per3 Pl Masc) : ሟብሧው

Gerund Act (Per3 Pl Fem) : ሟብሧው

Gerund Pas(Per1 Sg) : ተሟብራ

Gerund Pas(Per1 Pl) : ተሟብሧን

Gerund Pas(Per2 Sg Masc) : ተሟብሧክ

Gerund Pas(Per2 Sg Fem) : ተሟብሧሽ

Gerund Pas(Per2 Pl Masc) : ተሟብሪችሁ

Gerund Pas(Per2 Pl Fem) : ተሟብሪችሁ

Gerund Pas(Per3 Sg Masc) : ተሟብር

Gerund Pas(Per3 Sg Fem) : ተሟብሪ

Gerund Pas(Per3 Pl Masc) : ተሟብሧው

Gerund Pas(Per3 Pl Fem) : ተሟብሧው

Infinitive Act (Per1 Sg) : ሗሤበሬ

Infinitive Act (Per1 Pl) : ሗሤበሬ

Infinitive Act (Per2 Sg Masc) : ሗሤበሬ

Infinitive Act (Per2 Sg Fem) : ሗሤበሬ

Infinitive Act (Per2 Pl Masc) : ሗሤበሬ

Infinitive Act (Per2 Pl Fem) : ሗሤበሬ

Infinitive Act (Per3 Sg Masc) : ሗሤበሬ

Infinitive Act (Per3 Sg Fem) : ሗሤበሬ

Infinitive Act (Per3 Pl Masc) : ሗሤበሬ

Infinitive Act (Per3 Pl Fem) : ሗሤበሬ

Infinitive Pas(Per1 Sg) : ሗሟበሬ

Infinitive Pas(Per1 Pl) : ሗሟበሬ

Infinitive Pas(Per2 Sg Masc) : ሗሟበሬ

Infinitive Pas(Per2 Sg Fem) : ሗሟበሬ

Infinitive Pas(Per2 Pl Masc) : ሗሟበሬ

Infinitive Pas(Per2 Pl Fem) : ሗሟበሬ

Infinitive Pas(Per3 Sg Masc) : ሗሟበሬ

Infinitive Pas(Per3 Sg Fem) : ሗሟበሬ

Infinitive Pas(Per3 Pl Masc) : ሗሟበሬ

Infinitive Pas(Per3 Pl Fem) : ሗሟበሬ

Parti Act (Per1 Sg) : ሟባሩ

Parti Act (Per1 Pl) : ሟባሩ

Parti Act (Per2 Sg Masc) : ሟባሩ

Parti Act (Per2 Sg Fem) : ሟባሩ

Parti Act (Per2 Pl Masc) : ሟባሩ

Parti Act (Per2 Pl Fem) : ሟባሩ

Parti Act (Per3 Sg Masc) : ሟባሩ

Parti Act (Per3 Sg Fem) : ሟባሩ

Parti Act (Per3 Pl Masc) : ሟባሩ

Parti Act (Per3 Pl Fem) : ሟባሩ

Parti Pas(Per1 Sg) : ተሟባሩ

Parti Pas(Per1 Pl) : ተሟባሩ

Parti Pas(Per2 Sg Masc) : ተሟባሩ

Parti Pas(Per2 Sg Fem) : ተሟባሩ

Parti Pas(Per2 Pl Masc) : ተሟባሩ

Parti Pas(Per2 Pl Fem) : ተሟባሩ

Parti Pas(Per3 Sg Masc) : ተሟባሩ

Parti Pas(Per3 Sg Fem) : ተሟባሩ

Parti Pas(Per3 Pl Masc) : ተሟባሩ

Parti Pas(Per3 Pl Fem) : ተሟባሩ

CompPerf Act (Per1 Sg) : ሟብራዩሇሁ

CompPerf Act (Per1 Pl) : ሟብሧናሌ

CompPerf Act (Per2 Sg Masc) : ሟብሧካሌ

CompPerf Act (Per2 Sg Fem) : ሟብሧሻሌ

CompPerf Act (Per2 Pl Masc) : ሟብሪችኋሌ

CompPerf Act (Per2 Pl Fem) : ሟብሪችኋሌ

CompPerf Act (Per3 Sg Masc) : ሟብሮሌ

CompPerf Act (Per3 Sg Fem) : ሟብሪሇች

CompPerf Act (Per3 Pl Masc) : ሟብሧዋሌ

CompPerf Act (Per3 Pl Fem) : ሟብሧዋሌ

CompPerf Pas(Per1 Sg) : ተሟብራዩሇሁ

CompPerf Pas(Per1 Pl) : ተሟብሧናሌ

CompPerf Pas(Per2 Sg Masc) : ተሟብሧካሌ

CompPerf Pas(Per2 Sg Fem) : ተሟብሧሻሌ

CompPerf Pas(Per2 Pl Masc) : ተሟብሪችኋሌ

CompPerf Pas(Per2 Pl Fem) : ተሟብሪችኋሌ

CompPerf Pas(Per3 Sg Masc) : ተሟብሮሌ

CompPerf Pas(Per3 Sg Fem) : ተሟብሪሇች

CompPerf Pas(Per3 Pl Masc) : ተሟብሧዋሌ

CompPerf Pas(Per3 Pl Fem) : ተሟብሧዋሌ

Cont Act (Per1 Sg) : ዔሟብሬ

Cont Act (Per1 Pl) : ዔንሟብሬ

Cont Act (Per2 Sg Masc) : ትሟብሬ

Cont Act (Per2 Sg Fem) : ትሟብሬ

Cont Act (Per2 Pl Masc) : ትሟብረ

Cont Act (Per2 Pl Fem) : ትሟብረ

Cont Act (Per3 Sg Masc) : ያሟብሬ

Cont Act (Per3 Sg Fem) : ትሟብሬ

Cont Act (Per3 Pl Masc) : ያሟብረ

Cont Act (Per3 Pl Fem) : ያሟብረ

Cont Pas(Per1 Sg) : ዔሟበሬ

Cont Pas(Per1 Pl) : ዔንሟበሬ

Cont Pas(Per2 Sg Masc) : ትሟበሬ

Cont Pas(Per2 Sg Fem) : ትሟበሬ

Cont Pas(Per2 Pl Masc) : ትሟበረ

Cont Pas(Per2 Pl Fem) : ትሟበረ

Cont Pas(Per3 Sg Masc) : ያሟበሬ

Cont Pas(Per3 Sg Fem) : ትሟበሬ

Cont Pas(Per3 Pl Masc) : ያሟበረ

Cont Pas(Per3 Pl Fem) : ያሟበረ

Appendix – B1 - Simple inflection table of the verb sbr (break)
Format : Verb form Voice (Person Number Gender) : Verb in Amharic Eg: Perf Act (Per1 Sg): ሟበሬኩ - I broke .

63

Appendix- C - The Amharic Fidäl

64

The test examples are generated using the resource grammar library function as shown below

and are intended merely for proof-reading. They can also reflect, to some extent, the coverage of

the work done on Amharic resource library.

EX1 Lang> p -lang=LangEng "I will kill him cleanly , cleverly and badly"|l -treebank -all -

to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron i_Pron)

(AdvVP (ComplSlash (SlashV2a kill_V2) (UsePron he_Pron)) (ConjAdv and_Conj (ConsAdv

(PositAdvAdj clean_A) (BaseAdv (PositAdvAdj clever_A) (PositAdvAdj bad_A)))))))) NoVoc

LangAmh: እኔ እሬሰን በ ንጹህ ሁኔታ ፣ በ ብሌህ ሁኔታ እና በ ሗጥፎ ሁኔታ ዔገዲሊሇሁ

EX2 Lang> p -cat=S -lang=LangEng "he , John and she will come"|l -treebank -all -

to_amharic

Lang: UseCl (TTAnt TFut ASimul) PPos (PredVP (ConjNP and_Conj (ConsNP (UsePron

he_Pron) (BaseNP (UsePN john_PN) (UsePron she_Pron)))) (UseV come_V))

LangAmh: እሬሰ ፣ ዬሃንስ እና እሬሷ ያሗጣለ

EX3 Lang> p -cat=S -lang=LangEng "John and I will come to you"|l -treebank -all -

to_amharic

Lang: UseCl (TTAnt TFut ASimul) PPos (PredVP (ConjNP and_Conj (BaseNP (UsePN

john_PN) (UsePron i_Pron))) (AdvVP (UseV come_V) (PrepNP to_Prep (UsePron

youPl_Pron))))

LangAmh: ዬሃንስ እና እኔ ወይ እናንተ ዔንሗጣሇን

EX4 Lang> p -cat=S -lang=LangEng "this long girl is so clever and beautiful"|l -treebank -all -

to_amharic

Lang: UseCl (TTAnt TPres ASimul) PPos (PredVP (DetCN (DetQuant this_Quant NumSg)

(AdjCN (PositA long_A) (UseN girl_N))) (UseComp (CompAP (AdAP so_AdA (ConjAP

and_Conj (BaseAP (PositA clever_A) (PositA beautiful_A)))))))

LangAmh: ያህች ሧጅሜ ሌጃገሧዲ በጣሜ ብሌህ እና ቆንጆ ነች

D - Test Examples

65

EX5 Lang> p -cat=S -lang=LangEng "the long girls are clever , young and beautiful"|l -

treebank -all -to_amharic

Lang: UseCl (TTAnt TPres ASimul) PPos (PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN

(PositA long_A) (UseN girl_N))) (UseComp (CompAP (ConjAP and_Conj (ConsAP (PositA

clever_A) (BaseAP (PositA young_A) (PositA beautiful_A)))))))

LangAmh: ሧጅምቹ ሌጃገሧዳች ብሌሆች ፣ ወጣቶች እና ቆንጆዎች ናቸው

EX6 Lang> p -lang=LangEng "a boy hit a girl by the car" | l -lang=LangAmh -to_amharic -

treebank

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant

IndefArt NumSg) (UseN boy_N)) (ComplSlash (SlashV2a hit_V2) (AdvNP (DetCN (DetQuant

IndefArt NumSg) (UseN girl_N)) (PrepNP by8agent_Prep (DetCN (DetQuant DefArt NumSg)

(UseN car_N)))))))) NoVoc

LangAmh: አንዲ ሌጅ አንዯት ሌጃገሧዲን ሗኪናዉ ጋ ሗታ

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant

IndefArt NumSg) (UseN boy_N)) (ComplSlash (SlashV2a hit_V2) (AdvNP (DetCN (DetQuant

IndefArt NumSg) (UseN girl_N)) (PrepNP by8means_Prep (DetCN (DetQuant DefArt NumSg)

(UseN car_N)))))))) NoVoc

LangAmh: አንዲ ሌጅ አንዯት ሌጃገሧዲን በ ሗኪናዉ ሗታ

EX7 Lang> p -lang=LangEng "the girl was hit by the car" | l -lang=LangAmh -to_amharic -

treebank

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant

DefArt NumSg) (UseN girl_N)) (AdvVP (PassV2 hit_V2) (PrepNP by8agent_Prep (DetCN

(DetQuant DefArt NumSg) (UseN car_N))))))) NoVoc

LangAmh: ሌጃገሧዴ ሗኪናዉ ጋ ተሗታች

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant

DefArt NumSg) (UseN girl_N)) (AdvVP (PassV2 hit_V2) (PrepNP by8means_Prep (DetCN

(DetQuant DefArt NumSg) (UseN car_N))))))) NoVoc

LangAmh: ሌጃገሧዴ በ ሗኪናዉ ተሗታች

EX8 Lang> p -lang=LangEng "the young , red and beautiful boys come here or you will

come there" | l -lang=LangAmh -to_amharic -treebank

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos

(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA

young_A) (BaseAP (PositA red_A) (PositA beautiful_A)))) (UseN boy_N))) (AdvVP (UseV

come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youPl_Pron)

(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

66

LangAmh: ወጣቶቹ ፣ ቀዬቹ እና ቆንጆዎቹ ሌጆች እዘህ ያሗጣለ ወያሜ እናንተ ወይዘዩ ትሗጣሊችሁ

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos

(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA

young_A) (BaseAP (PositA red_A) (PositA beautiful_A)))) (UseN boy_N))) (AdvVP (UseV

come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youPol_Pron)

(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

LangAmh: ወጣቶቹ ፣ ቀዬቹ እና ቆንጆዎቹ ሌጆች እዘህ ያሗጣለ ወያሜ እሬስዎ ወይዘዩ ያሗጣለ

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos

(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA

young_A) (BaseAP (PositA red_A) (PositA beautiful_A)))) (UseN boy_N))) (AdvVP (UseV

come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youSg_Pron)

(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

LangAmh: ወጣቶቹ ፣ ቀዬቹ እና ቆንጆዎቹ ሌጆች እዘህ ያሗጣለ ወያሜ አንተ ወይዘዩ ትሗጣሇህ

EX9 Lang> p -lang=LangEng "she didn't come to university before the industry" | l -

lang=LangAmh -treebank -to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PNeg (PredVP (UsePron she_Pron)

(AdvVP (AdvVP (UseV come_V) (PrepNP to_Prep (MassNP (UseN university_N)))) (PrepNP

before_Prep (DetCN (DetQuant DefArt NumSg) (UseN industry_N))))))) NoVoc

LangAmh: እሬሷ ከ ኢንዮስትሩዉ በፊት ወይ ዧንቨሬሱቲ አሌ &+ ሗጣች &+ ሜ

EX10 Lang> p -lang=LangEng "ash laughs on fire" | l -lang=LangAmh -treebank -to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos (PredVP (MassNP (UseN

ashes_N)) (AdvVP (UseV laugh_V) (PrepNP on_Prep (MassNP (UseN fire_N))))))) NoVoc

LangAmh: አሗዲ በ እሲት ሊያ ያሤቃሌ

EX11 Lang> p -lang=LangEng "I bought 3 houses in Paris"| l -lang=LangAmh -treebank -

to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (UsePron i_Pron)

(AdvVP (ComplSlash (SlashV2a buy_V2) (DetCN (DetQuant IndefArt (NumCard (NumDigits

(IDig D_3)))) (UseN house_N))) (PrepNP in_Prep (UsePN paris_PN)))))) NoVoc

LangAmh: እኔ 3 ቤቶችን ፓሩስ ውስጥ ገዙሁ

EX12 Lang> p -lang=LangEng "does he come today"| l -lang=LangAmh -treebank -to_amharic

Lang: PhrUtt NoPConj (UttQS (UseQCl (TTAnt TPres ASimul) PPos (QuestCl (PredVP

(UsePron he_Pron) (AdvVP (UseV come_V) today_Adv))))) NoVoc

LangAmh: እሬሰ ዙራ ያሗጣሌ እንዱ

67

