

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, March 2011

In Vehicle Infotainment Demonstrator
Master of Science Thesis Software Engineer and Technology
Master of Science Thesis Intetgrated Electronic System Design

HANS SANELL
GÖRAN SAMUELSSON

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

In Vehicle Infotainment Demonstrator.
Research report on how to create an In Vehicle Infotainment system using existing
hardware and Linux OS.

Hans Sanell
Göran Samuelsson

© Hans Sanell, March 2011.
© Göran Samuelsson, March 2011.

Examiner: Jan Jonsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden March 2011

3

ABSTRACT

In modern cars the information systems have increased in the last decade. To handle this
information flow to the driver a stable and intuitive computer system is needed. These systems are
currently built on purpose specific hardware running purpose specific software, which is quite
expensive to develop. This thesis describes a project where a multipurpose computer on module
running a Linux distribution can act as an infotainment demonstrator. The report details how such
demonstrator can be built and programmed to receive communication packages via a CAN bus.

4

PREFACE

This thesis was written for Chalmers University of Technology, Göteborg, Sweden as part of the
Master programs Software Engineer and Technology and Integrated Electronic System Design. This
Thesis work was performed by Hans Sanell and Göran Samuelsson at QRTECH, Göteborg. Examiner
and supervisor at Chalmers for this project was Jan Jonsson at the Department of Computer Science
and Engineering. Supervisor at QRTECH was Anders Runeson.

We would like to thank our supervisor at QRTECH for the dedication and help in our project.

5

TABLE OF CONTENTS
1. Introduction .. 11

1.1. Background ... 11
1.1.1. About QRTECH .. 11
1.1.2. Problem description .. 11
1.1.3. Previous work .. 12

2. Theory ... 13
2.1. MeeGo .. 13
2.2. GumStix ... 13
2.3. CAN ... 14

2.3.1. History ... 14
2.3.2. The protocol .. 14

3. Method ... 19
4. Demonstrator design and implementation .. 21

4.1. Design .. 21
4.1.1. Software Requirements .. 21
4.1.2. Use Cases .. 23

4.2. Implementation .. 23
5. Result .. 27
6. Discussion .. 31

6.1. Software .. 31
6.2. Hardware .. 33

6.2.1. Motherboard ... 34
7. Conclusion ... 35

7.1. Software .. 35
7.2. Hardware .. 35
7.3. Future work ... 37

8. Sources .. 39
9. Appendix ... 41

9.1. Time plan... 41
9.2. Circuit board.. 43
9.3. List of hardware .. 44
9.4. Class diagram .. 45
9.5. MCP2515 setup ... 46

6

7

VOCABULARY

CAN Controller Area Network

COM Computer On Module

CS Chip Select

DLC Data Length Code

ECU Electronic Control Unit

FMS Fleet Management System

GUI Graphical User Interface

IC Integrated Circuit

IDE Integrated Development Environment

IVI In-vehicle-infotainment

IRQ Interrupt ReQuest

MISO Master Input Slave Output

MOSI Master Output Slave Input

OS Operating System

RPM Revolutions Per Minute

SPI Serial Peripheral Interface bus

SCK Serial Clock

XML eXtended Markup Language

8

9

LIST OF FIGURES

1. CAN-frame, standard format
2. CAN-frame, extended format
3. Method model
4. Solution structure
5. Demonstrator screenshot
6. Demonstrator screenshot
7. Frame intensity graph
8. Breadboard
9. Circuit board
10. System sequence diagram
11. Transistor solution
12. Logic unit
13. Screenshot from logic unit plot over one CAN transmission
14. Screenshot from logic unit plot under full CAN load

LIST OF TABLES

1. Table of bits for a standard data CAN frame
2. Table of bits for a extended data CAN frame

10

11

1. INTRODUCTION

In modern cars there has been an increase in information flow to and from the driver. To handle this
information easy to use systems have to be developed. These systems are currently quite costly to
manufacture due to specialized parts

In order to address this problem QRTECH assembled a master thesis with a goal to create an
infotainment system using off-the-shelf hardware combined with a Linux kernel.

1.1. BACKGROUND

This section will describe the need for this thesis, its addresses problem and its delimitations, as well
as the consultant firm that requested the thesis.

1.1.1. ABOUT QRTECH

QRTECH is a consultant firm that specializes in electronic and software development in a series of
high tech areas where their main business areas are Product Development, Advance Engineering and
Product Supply & Support. Their long experience in the automotive business has given them
knowledge to develop and industrialize cost-efficient products designed for applications where the
demand relies heavily on quality and environmental durability. QRTECH has knowledge of the whole
life cycle of the product, from development and industrialization to support and refining.

Since they strive for excellence and to become leaders in their area of expertise all new areas of
technology and solution have to be investigated, hence this master thesis.

1.1.2. PROBLEM DESCRIPTION

Development of hardware and software for a specific platform and purpose is known to very
expensive, a specific hardware has to be designed and developed to fulfill the functionality of the
software. The development of the software often includes writing everything that will match a
certain hardware and purpose which often have to be rewritten next time if a new hardware setup is
used. The basis for this thesis was to see if it is possible to achieve the same kind of performance but
build the whole system on premade hardware and open source solutions. To that end this thesis set
out to use GumStix hardware combined with the MeeGo Linux OS(operating system) to see if it is
possible to connect the system to a CAN(Controller area network) network for receiving packages.
The outcome of this thesis is supposed to lead to a fully functioning demonstrator built on MeeGo
that will receive CAN-frames and display them appropriately on screen, which leaves very much for
interpretations. It was not stated how far this thesis would be taken more than the investigation and
how-to’s.

As both the desired hardware and OS were already given the strict research part was diminished
quite early on and limited to research concerning the hardware and the specific Linux distribution.

12

1.1.2.1. DELIMITATIONS

Due to this just being a demonstrator to see what the hardware and software combinations can
achieve several delimitations in the form of security and fault tolerance were set. Those issues
would be considered later. The purpose of the thesis was instead mainly to investigate the systems
ability to connect to the CAN-protocol, receive simple CAN-frames and display those accordingly.
Since the project has a limited supply of displays everything will not be resolution independent, but
all development will have that aspect in mind as far as possible.

1.1.2.2. TARGET PLATFORM

The targeted platform for the development is Gumstix Overo Fire COM (Computer on moduel) (1)
which will run the MeeGo Linux OS (2). In the last phase the GumStix will be transferred to an in-
house developed motherboard that will supply necessary amount of input and output pins. This
assumes that the motherboard will be delivered on time. The reason for the use of an in-house
developed motherboard is to remove unnecessary components, minimizing the board size and
integrating the extra modules needed for CAN. In the meanwhile all development will be done on a
Chestnut43 (3) expansion board for the GumStix. This will be connected to a 4.3 inch touch display
from LG for both input and output. In addition to facilitate the development also a USB keyboard
and mouse was connected to enable easier manipulation directly to the hardware. These have to be
connected through a powered USB hub, because the USB port on the expansion board does not
have a power supply.

1.1.3. PREVIOUS WORK

The early research on the subject showed that a hardware that communicates by CAN is not that
hard to develop. Although most of the investigated work were based on an ATMEGA processor
where the user has full control of all registers and I/O ports this thesis assumes that these will go
through a MeeGo Linux Kernel. There has also been some previous work on GumStix, our hardware
of choice, but not as extensive as we hoped. MeeGo, on the other hand, has successful been
integrated into a so called Beagle board which has a similar hardware setup as the GumStix. With
some modification it worked on the GumStix as well, mostly because the Beagle board is also built
on ARM architecture.

13

2. THEORY

The theory that belongs to the basis for this thesis is described in this section, such as the chosen
hardware and software.

2.1. MEEGO

A request in the thesis specification was to use existing hardware and software and since MeeGo’s
target group is handheld devices and is starting to get a foothold in the IVI business. Both due to it is
quite new and they had a lot to learn about it as well as if MeeGo gets a real foothold in the IVI (In
vehicle infotainment) business then QRTECH might be a bit ahead of different competitors. The
MeeGo project started as collaboration between Intel and Nokia. Both of them have two separate
Linux projects, Moblin from Intel and Maemo from Nokia. The whole MeeGo project is open source
and it utilizes ideas found in both Moblin and Maemo, which is the OS currently in use in Nokia's
N900. (4) The MeeGo distribution is still in the testing phase, currently at version 1.1, so it doesn't
exists that many commercial products yet that uses it but it shows a great promise. The distribution
is available for download at the MeeGo site (2) and for different platforms, depending what the
target system is i.e. a handheld, and guides on how to install the system. Since it is still in
development there are some problem with the user interface which will be discussed more in the
Discussion section. Even though MeeGo targets smaller system it still has a complete Linux Kernel
which needs some configuration before it can be installed in the target system for example drivers
for peripherals and such.

2.2. GUMSTIX

GumStix is the name of the hardware that was used in this thesis project. The name GumStix comes
from the size of the computer-on-module chip, dimensions 17mm x 58mm x 4.2mm (1), which is
about the size of a chewing gum. It has a 720 MHz ARM processor which is quite useful both due to
the speed and the architecture; most handheld devices today are built on ARM. An extension board
was used as well together with a 4.3 inch touch screen to be able to develop the system. The upside
of using GumStix is that it is fairly easy to develop a motherboard on your own and install the OS on
a SD card and boot from the stick. The extension board comes with integrated mini USB connector
(serial communication with a standard PC), an Ethernet connector for network services and a slave
USB port. Also, but not relevant for this thesis, the expansion board has a stereo output port as well
as a microphone in port. All in all the GumStix with the expansion board gave a good start for the
thesis with communication possibilities, display device and the extra I/O-pins easily available.

The GumStix is delivered with an Angstrom Linux distribution on the onboard memory, but since the
request was to use MeeGo this was overlooked.

One of the reasons for the use of MeeGo is the so called GENIVI alliance (5). This alliance is a
collaboration of different car manufactures, embedded system developers and semiconductor
manufacturer like Intel. The goal is to build a foundation for an IVI system that can shorten the
development time for new IVI’s and hence reduce the development costs based on open source

14

software. GENIVI has said that they will start to develop for the MeeGo platform due to its
optimization for the handheld devices.

2.3. CAN

In a modern car there might be up to 70 ECU for different subsystems (6); those ECU’s(Electronic
control unit) needs to communicate with each other. The CAN bus may be used in vehicles to
connect the engine control unit to the dashboard for instance, or control the door locks and climate
control.

In a modern car the cruise control is a good example. The velocity of the car must be regulated, but
also the breaks and automatic fuel injection which are needed for more power. There are probably a
lot more functions which need to be combined for a feature like cruise control. At a first glance it
might seem simple but it is a more difficult task than one might think.

2.3.1. HISTORY

In early 1980s the engineers at Bosch were revising the existing serial bus systems and how they
could be used in passenger cars but since none of the current network protocols fulfilled the
requirement they started developing on a new bus type in 1983. Quite early in the specification
phase Mercedes-Benz got involved and also Intel as the potential main semiconductor vendor (7). So
in February 1986 the CAN was presented at a SAE (Society of Automotive Engineers) congress in
Detroit (8). The protocol defines a standard for efficient and reliable communication between
sensors, actuator and other nodes in a real-time application. The idea was that the bus would take
care of all messages without a central bus master by giving access to the bus to the message with
the highest priority. The Bosch CAN specification, which was at version 2.0 at the time, was
submitted to the international standardization in the early 1990s. In 1993 CAN got the ISO standard
11898.

2.3.2. THE PROTOCOL

CAN is a so called multi-master broadcast serial bus for connecting ECUs, meaning that every node is
able to send and receive messages although not simultaneously. Each message consist first of an
identifier that is used to present the priority of the message. If the bus is free any node can feel free
to start transmission, but if two or more nodes begin at the same time the message with the more
dominant id will supersede the ones with lower priority. A message with smaller id-value has higher
priority and is transmitted first.

A CAN data frame consists of either an 11 bits identifier (standard format or CAN 2.0A) (9) (10) or a
29 bits identifier (extended format or CAN 2.0B), made up from the base identifiers first 11 bits and
an 18-bit extension. An IDE (Identifier extension bit) bit is used to distinguish between the two types
of frames where the bit is dominant in the 11-bits case and recessive in the 29-bit case. The CAN
protocol supports 4 different frame types but this thesis will only utilize the standard and extended
data frames. All the frame types are listed below. Since only the data frames are of interest for this
thesis they will be shown in a more detailed way in table 1 and 2.

15

• Data frame: a frame containing the node data for transmission.

• Remote frame: a frame requesting the transmission of a specific identifier.

• Error frame: a frame transmitted by any node detecting an error.

• Overload frame: a frame to inject a delay between data and/or remote frame.

16

BASE DATA FORMAT (6)

Field name Length(bits) Purpose

Start-of-frame (SOF) 1 Denotes the start of the frame transmission

Identifier (ID) 11 An identifier for the data which also serves
as the message priority

Remote transmission request (RTR) 1 0 for a data frame

Identifier extension bit (IDE) 1 Must be dominant (0)

Reserved bit (r0) 1 Reserved bit

Data length code (DLC)1 4 Number of bytes of data (0-8 bytes)

Data Field 0-8 bytes Data to be transmitted, decided by the DLC

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be 1

ACK slot 1 Transmitter sends recessive (1) and any
receiver can assert dominant (0)

ACK delimiter 1 Must be 1

End-of-frame (EOF) 7 Must be 1

Table 1

Figure 1 CAN-frame, standard format

1 It is physically possible to address values up to 15 with the 4 bits but the data is still limited to 8
bytes maxium.

17

EXTENDED DATA FORMAT (6)

Field name Length(bits) Purpose

Start-of-frame (SOF) 1 Denotes the start of the frame transmission

Identifier A (ID) 11 First part of the identifier for the data which
also serves as the message priority

Substitute remote request (SRR) 1 Must be 1

Identifier extension bit (IDE) 1 Must be 1

Identifier B (IDB) 18 Second part of the identifier for the data

Remote transmission request (RTR) 1 Must be 0

Reserved bits(r0, r1) 2 Reserved bits, set to 0

Data Length code (DLC)2 4 Number of bytes of data (0-8 bytes)

Data Field 0-8 bytes Data to be transmitted(length decided by

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be 1

ACK slot 1 Transmitter sends recessive (1) and any
receiver can assert dominant (0)

ACK delimiter 1 Must be 1

End-of-frame (EOF) 7 Must be 1

Table 2

Figure 2 CAN-frame, extended format

2 It is physically possible to address values up to 15 with the 4 bits but the data is still limited to 8
bytes maximum.

18

19

3. METHOD

The method that was used was a modified iterative V-mode (11); where each part of the system was
developed through first specifies what was needed to be done, followed by implementing this
specific feature. After the implementation and integration was done the feature was tested to verify
its correctness. All features designed and implemented had testing close in mind. If the feature did
what was intended the cycle starts over with a new feature. This process was used out of necessity
since there was no clear picture what was needed in the program or the system itself. During the
development some changes were necessary.

Figure 3 Method model

The complementary time plan can be found in Appendix 1.

20

21

4. DEMONSTRATOR DESIGN AND IMPLEMENTATION

The demonstrator will have some specific requirements for the design and these will be followed in
the implementation phase. The implementation section will only describe what was done during a
successful integration; all problems on the way are discussed in the result and discussion sections.

4.1. DESIGN

The software high level application would be developed in C++ with the overlaying framework QT in
the given IDE (Integrated development environment) QTCreator, which is the default IDE for the QT
framework (12). This makes it possible to develop graphical user interfaces in a similar way as
Microsoft Visual Studio that many people are familiar with. This drag-and-drop system in
combination with a CSS style sheet editor a sleek design for the user interface can be achieved
easily. Since the majority of the functionality and time will be spent on the kernel and
communication protocol to the CAN-controller the development time on the UI will be as minimized
as possible.

4.1.1. SOFTWARE REQUIREMENTS

Some of the requirements were set before the start of the project by QRTECH and some were
decided to be necessary during the development phase.

SRQ1:
Name: Speed
Description: Due to the speed of the CAN-controller a 2x sampling speed of the bus is needed to
avoid anti aliasing. This is needed to ensure that all packages are received.

SRQ2:
Name: Reliability
Description: The system should be reliable to show the correct data from the can controller

SRQ3:
Name: Configurability
Description: The program should be easy to configure to receive/send another set of CAN-frames.

SRQ4:
Name: Touch screen
Description: The interface should be developed with respect that a touch screen will be used.

SRQ5:
Name: Configuration
Description: The framework for setting CAN-frame settings should be easy to extend to new
protocols.

SRQ6:
Name: Concurrently

22

Description: Since the interrupts to the kernel is difficult to develop, threading should be used to
avoid unnecessary polling.

SRQ7:
Name: OS
Description: The program should be build for the MeeGo Linux distribution

SRQ8:
Name: Framework
Description: The demo program should be build as extensively as possible in C++ with Nokias Qt-
framework, available as default in the MeeGo distribution.

SRQ9:
 Name: Extendibility
Description: The whole program should be developed in such a way that QRTECH can continue the
development at some point without the core knowledge of the developers.

SRQ10:
Name: Understandability
Description: The program should be easy to use and understand, with regard to the other SRQ's such
as small display and touch screen.

SRQ11:
Name: Resolution
Description: The program should not be resolution depended and be developed for small resolutions
such as 480x272

SRQ12:
Name: Input
Description: The program should be able to perform all it is tasks without the user connecting a
mouse or a keyboard, but if needed it should work with that setup as well.

SRQ13:
Name: Guidance
Description: A help function should be implemented to guide the user through the different
functionalities.

SRQ14:
Name: Thread safe
Description: Since threading will be used all communications between threads and processes will be
safe to avoid locking such as live lock, deadlock or starvation, around shared resources.

23

4.1.2. USE CASES

To easier understand what the software part of the project should be able to achieve use cases was
written down to keep the development path clear.

NAME: Receive CAN frame
PRECONDITION: The program is up and running connected to correct peripheral hardware can-
controller
POST CONDITION: The data from the can frame will show up on the screen under a specific
category
STEPS:
1. Drivers receive the CAN-frame.
2. The middleware translates the frame to a data structure that can be used according to current
CAN-configuration
3. Middleware gives the GUI application the data which sorts it out and represent it accordingly on
screen

NAME: Try to receive CAN frame
PRECONDITION: -
POST CONDITION: The user gets notified that the peripheral is not connected
STEPS:
1. The middleware checks if the CAN-controller is connected.
2. The middleware sends error to the GUI application.
3. The GUI application displays this error accordingly, letting the user know that the peripheral
hardware is not connected.

NAME: Send CAN data
PRECONDITION: A configuration is set and the peripherals are connected
POST CONDITION: Successful send of the CAN-frame
STEPS:
1. The user selects 'send CAN-data'
2. The user selects from a drop down menu what id/name the frame should have
3. The user inputs the data that should be sent
4. The user press 'send'
5. The user gets confirmation that the CAN-frame has been sent.

4.2. IMPLEMENTATION

To implement a fully functioning demonstrator for CAN using the GumStix hardware, the MeeGo
Linux distribution and the MCP2515 CAN-controller (13), the controller of choice in this thesis due to
it’s simplicity and functionality, requires a couple of steps to be completed.

Some embedded CPU’s have a controller integrated to receive and send CAN data, the GumStix does
not have that integrated instead an external one had to be implemented, hence the MCP2515.

24

A CAN-controller is needed for receiving CAN-frames. It puts a frame in a buffer slot and gives the
CPU an interrupt to say that there is data to be read. This happens after the CAN-controller has
checked that the CAN-frame is not corrupt. The same thing could be achieved by using the GumStix
but there is a case when the kernel is busy and will not have time to service the newly sent package.

All of these steps assume that the user has access to a PC with Ubuntu installed with root access.
First of all the GumStix uses a microSD memory card as hard drive so one memory card needs to be
acquired. Since the chosen CAN-controller had drivers that were included in the distribution this is
the example that will be followed here. To prepare the device and install the MeeGo Linux
distribution the MeeGo wiki has some notes for installation and configuration which should be
followed. (14) The steps are basically that first the memory card needs to be prepared to accept the
correct file system; it needs a boot partition in FAT32 format as well as a partition for the
distribution in EXT3 format. There are some scripts at the wiki page that is needed after the microSD
card has been formatted. These scripts are the ones that take care of building the Kernel and its
modules. It handles the assembly of the root file system as well installation of the boot loader,
kernel and root file system into the microSD card. To be able to compile the Kernel into the GumStix
a cross compiler is needed. GCC has one that is easy obtained and works well. This thesis is utilizing,
as earlier mentioned, the MCP2515 CAN-controller that already has support in the Kernel in form of
drivers. Although the drivers exist they still need some configuration to be fully implemented. To
achieve this, the Kernel configuration for the target platform needs to be altered. In this case since
the target platform is a GumStix Overo Fire, the “board_overo.c” file takes care of all the
configurations. This is the file that needs altering. In the same directory there are files for all the
target platforms that currently have support. In this file the “mcp251x.h” needs to be included to
gain access to the driver. This driver also needs to be initialized to tell the Kernel where it can locate
this driver after the build. In this thesis the choice of using one of the SPI ports was made so an
initialization that connects the MCP2515 driver to the SPI stack, namely in this case the SPI1.1 port.
The setup for the MCP2515 that needs to be added to the “board_overo.c” file can be found in
Appendix 7. The initialization added to the init function for the SPI can be found below:

#if defined(CONFIG_CAN_MCP251X) || \
 defined(CONFIG_CAN_MCP251X_MODULE)
 {
 .modalias = "mcp2515",
 .bus_num = 1,
 .chip_select = 1,
 .max_speed_hz = 10*1000*1000,
 .controller_data = &overo_mcp251x_mcspi_config,
 .platform_data = &overo_mcp251x_config,
 .irq =
OMAP_GPIO_IRQ(OVERO_GPIO_CAN0_INT),
 .mode = SPI_MODE_0,
 },
#endif

25

One other configuration that was needed, for convenience sake, was the real time clock, this to
enable the system to keep track of the date and time. To enable these following rows needs to be
added to the device init function in “board_overo.c”:

#ifdef CONFIG_RTC_DRV_TWL4030
 &overo_twl4030rtc_device,
#endif

This will call the device constructor that should be added to the file “board_overo.c”:

static struct platform_device overo_twl4030rtc_device = {
 .name = "twl4030_rtc",
 .id = -1,
};

 After all configurations are made the Kernel can now be build. When the build is complete without
errors (warnings are a big probability, but not necessary a threat) the Kernel can be installed into the
microSD card using the previously downloaded script. When the Kernel and boot loader is installed
in the microSD card and all steps from the wiki page have been followed the MeeGo OS should start
up when booted on the GumStix. Even though the system starts it will still need some configurations
in form of screen resolutions and keyboard languages and so on. During the execution of this thesis
the MeeGo window manager was not fully developed therefore to enable the development and use
of the program a switch from MeeGo’s window manager to “twm-session” was made. When booted
this will instead of the MeeGo GUI just show a basic user interface complete with a terminal, using
this the execution of a specific application was made easy. The easiest way to integrate to the
GumStix is by using SSH, this way an ordinary PC can be used for all configuration development. A
good way to check if the driver initialization is working as intended is by checking the “dmesg” queue
and see if the device in question is probed. In this case the command “dmesg | grep mcp2515” will
get the result “mcp2515: probed”, which means that the driver was initialized successful. If the
probing was successful then the platform is ready for development of CAN communication,
otherwise something with the initialization of the driver is incorrect. How to develop to the
socketCAN can be found in the documentation in the Kernel or found online (15). The recommended
way to interface to the CAN-bus using socketCAN is to set up a socket in a similar way as if the
communication would be TCP/IP instead. By using this socket a bit stream will be received that can
be matched against a data structure.

struct can_frame {
 canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
 __u8 can_dlc; /* data length code: 0 .. 8 */
 __u8 data[8] __attribute__((aligned(8)));
};

This represent a basic CAN frame containing the CAN frame’s ID, its data length code and the data
array, maximum of 8 byte of data. This structure can easily be used to identify different ID’s for
further data manipulations as for instance typecasting to different objects depending on the ID and
DLC.

26

After a socket has been created and bounded to the system the receiving part of the program is just
to create a CAN frame data structure which will be sent as an argument to the read function
together with the socket and the size of the data structure. This so that the read function will know
where to read from, where to store the results and how many bytes it should read. The read
function will return the number of bytes read from the stream and if the return value is zero or less
than the size of the CAN frame data structure then the read was incomplete or not correctly
configured.

When all the above steps are done the driver and Kernel settings are finished, now the only thing left
is to write the middleware and software that will interact with the screen and user. The middleware
in this case was just used as a layer between translating the CAN-frames to objects of choice for
easier parsing, so that the software does not have to do the parsing against numerical ID but just
after object types.

Connecting the middleware to a GUI (Graphical user interface) would then just be to import the
library and connect the values read from the CAN-bus to different graphical widgets to update their
respective values. The graphical widgets developed with the QT framework will update and redraw
when there is time for it; meaning if the value comes faster than the GUI has time to update the
update function will take the latest value given and discard
earlier ones to minimize memory leaks. To avoid polling
every time the GUI should update a threading solution is a
recommended one, one thread blocks on the read
instruction and pass on the data via message passing to the
thread handling the graphical part. This mostly since the QT
framework have excellent support for message passing and
mutual exclusion functions.

As the MeeGo Linux distribution is a work in progress some
details about the installation and compilation of the Kernel
have been left out since in probably will change in coming
releases.

These steps was the ones that was done in the execution of
this thesis project but an alternative way to solve this
probably exists but the chosen solution can be seen in
figure 4.

A full class diagram can be found in the Appendix 4. A list of
all essential hardware can be found in Appendix 3.

Figure 4 Solution structure

27

5. RESULT

At the end of the thesis a demonstrator that was fully functional was developed. It has the
capabilities to receive CAN-frames from a CAN-bus that follows the FMS (Fleet management system)
standard (16). A selection of a few frames was selected to test the implementation. The information
received by the demonstrator is shown on the display. The underlying idea for the GUI development

was that it should be easy to use without
unnecessary information. If the device would be
integrated into a vehicle the driver should be able
to use the device without risk for accidents. The
development of the software was done using C++
and the QT framework. After some development
the QT frameworks limitation was shown
regarding creation of own widgets and design.
Due to this all graphical design had to be done by
using the code-based approach, meaning that

adding widgets to layouts and setting the size and position of these with numerical values. This took
a bit of trial and error until a satisfying result was achieved. But the upside is that full control and
insight in the program was given.

See figure 5 for screenshot. As shown in the picture all messages regarding velocity and RPM is
parsed and updated so the dials can show an appropriate value for these. A second widget tab was
developed, it shows the velocity and RPM but as a numerical value instead with some labels for

showing if the breaks, parking break, clutch and
cruise control are active or not which can be seen
in Figure 6.

In the latter part of the development some
problem with the communication came up,
probable due to faulty cabling. This was
temporarily resolved to add a third button to the
GUI, a reset button, which sends a reset
command to the CAN-controller so it starts
receiving again. This button was only used during
the development phase to overcome the current

hardware problem and later removed. As the project progressed many ideas for implementation
came up but just a few where chosen for implementation. Although due to the modularization of the
software it is easy to add more custom widgets, more on this in the section Future work. During the
development a CAN-to-USB device (17) was used to allow sending customized messages to see if the
receiving end got the right package. To this CAN-to-USB device a Perl script was developed to
continually send commands for the demonstrator to receive. Here a series of commands were sent
to show the extent of the demonstrator’s ability to both receive and show information. Where the
periods of the CAN-frames ranged from 20ms to 1000ms the demonstrator was able to receive a
command with at least 10ms apart, this without needing to use to extensive system resources. With

Figure 5 Demonstrator screenshot

Figure 6 Demonstrator screenshot

28

periods of 10ms a zero package loss was achieved out of 1M packaged sent. This displays the
demonstrator’s ability to handle the small but fast amount of data without any problems.

Figure 7 shows a graph over the
intensity of CAN-frames sent
from a FMS Gateway signifying
for example engine speed, fuel
consumptions and so on. These
frames are sent with different
timings where some are sent
often and some less often. VI for
instance, is sent every tenth
second, while others are sent
very often. These timings are
taken from the FMS
specification and the number of
packages gives a mean time of
190,3 packages per second,
which is about 5ms per package.
It is possible that for a full load
some packages might be lost. To

discover possible limits of the
system more extensive testing
should be done on the hardware
and software.

To verify the implemented functions of the demonstrator a FMS gateway was borrowed from
QRTECH. It has a database with values which are broadcasted with real timing intervals according to
specification. This gateway will simulate a real CAN-bus under load and send CAN-frames with
correct intervals, good for see if the hardware can handle real bus load with all messages according
to the FMS specification.

Figure 7 Frame intensity graph

29

When the final phase of the project started to approach we decided to develop a plug in card to the
expansion board to move all our components from the breadboard to this card. This was done to
remove the possibility of faulty cablings and contact surfaces. The difference can be seen in figure 8
and figure 9.

The plug-in extension board removed the
problem with the resetting CAN-controller
which leads to removing of the reset button
in the program. This leads to the conclusion
that it was the breadboard that was at fault
for resetting the controller.

One of the problems with using an OS like
Linux combined with your own hardware
that is interrupt driven is that the control
over the interrupt vectors is handled by the
Kernel. When an interrupt is sent from the
peripheral hardware it is really hard to
control how and when the Kernel actually
will be servicing the interrupt.

The software did work as intended but as mentioned
above, the sending of a CAN-frame was not
implemented, this due to time limitations as well as a
request from QRTECH. If a device is allowed to send out
to a real CAN-bus in a vehicle it has to undergo extensive
testing and licensing to assure that no faulty packages are
sent. Faulty packages might disrupt the other nodes.

Figure 8 Breadboard

Figure 9 Circuit board

30

31

6. DISCUSSION

As this thesis was classified as a more or less exploratory, QRTECH did not know if it was possible to
do or how to get this done, there was a lot of trial and error. This was both good and bad in some
sense. The bad part would be that when something came up that was hard to solve we had no one
to ask for help leaving us more or less for ourselves. The good part about executing a exploratory
thesis is the amount of knowledge amassed when trying out to see what will happened changing
different things in the kernel configuration for instance. All in all it was a good experience.

6.1. SOFTWARE

As the development progressed, a general idea of what the high level software should do resulted in
a couple of smaller software projects. The smaller projects were needed to solve some minor issues
and developed independent of each other. Later they were integrated into one bigger project. The
smaller project that was merged was:

• GUI programming: Using the IDE and manipulating the different widgets available as well as
creating our own.

• Threading: Since the program uses threading this had to be investigated to be able to use it
in a secure way.

• Message passing: To communicate between the threads we chose to use message passing,
mostly since the QT framework has a good support for this.

• System calls and blocking: Since one of the threads will be calling the underlying layer and
block until a message is available this had to be checked to see any unwanted behavior.

As these projects were completed we had a very good foundation of knowledge for creating what
would be our demonstration program. See figure 5 for screenshot. One of the problems during the
software development phase was caused by the need of our own widgets. This enabled us to
encapsulate the different parts into one but it also disabled the possibility to use the graphical
interface IDE from QTCreator. So the layouts had to be created using code style instead of the build
in drag-and-drop system.

All in all, the QT framework and it’s IDE, QTCreator, is fairly good but it needs some more work
before it’s really mature to be used to it’s full capabilities.

After using the QT framework for some time we had a discussion if it would be better to use GKT+
instead. GTK+ is another graphical framework which is used extensively in the Ubuntu Linux
distribution. But we decided upon keeping QT since it already has a compiler for ARM architecture as
well as optimization for this.

There were also some discussions on how the information would be parsed and transported
between the different software layers in the system. Should the CAN-frames be parsed and sorted in
the lowest possible layer or should this be done in the highest possible layer? We concluded that it
would be more computational effective to do it as close to the driver as possible to avoid

32

unnecessary copying and reading of memory addresses. The other option would have been for the
lower layers to pass on all the CAN-frames with a valid format and remove faulty ones. This would
have left the sorting to the higher levels. The sorting part would be developed as a XML format
where the CAN-ID was matched and all information about the number of data-bits and name of the
frame was stored in an XML structure. This would enable further extension of this program to accept
new CAN-frames with just knowledge of the FMS and some basic XML (Extended markup language).
But this idea became unfeasible as it would not be possible to represent this new CAN-frame
graphically in a good way without recompiling the GUI. Also it was not part of the thesis description
but could be regarded as future work. The solution that was used instead was a more object
oriented one where each CAN-frame would have a match in a collection of classes inherited from a
base class, see class diagram in Appendix 4 for more detail. Each of these classes describes exactly
how that specific object has its data sorted. In the case of extending this structure to accept a new
CAN-frame it is just a question of extending the base class and implementing the respective
methods.

The basic idea for the software - hardware interaction when receiving frames can be seen in the
system sequence diagram in figure 10. The general idea is that the gateway thread will read from the
caninterface which is the program code closest to the driver. The caninterface in turn will block if
there is no data available. If the frame is known it will send it to the graphical user interface thread
that will update correct widgets with this new data.

Figure 10 System sequence diagram

33

In the figure above, Figure 10, all communication between libraries and threads are done using
pointers to different VechicleInfo objects. An early solution for this was to send entire objects but
this was later on changed to use pointers instead, both to save memory and decrease execution
time. The pointer solution is better in the aspects of memory conservation, execution speed and
code structure. If the copy solution would be used a lot more execution time would be spent, time
that might lead to missed CAN-frames.

As mentioned earlier there was some problem with the default user interface that belongs to
MeeGo, the window manager did not work as intended at the current release. It was poorly
optimized resulting in long response times and the configuration of menu items did not work as
intended. This resulted in that only the standard programs were able to be started and even these
worked poorly. That is why it was decided to change into the twm window manager, there had been
enough time spent on trying to configure the windows with no result. The window manager was
nothing that we had any control over and since the intended software would use the whole screen it
did not matter that much which window manager that was used.

6.2. HARDWARE

To easier debug the hardware, i.e. what was sent and received, we had the opportunity to borrow
one Logic unit (18) together with the device software. With this we could plot the different signals to

determine if a signal propagated properly from one end to another.
The logic unit and an oscilloscope gave us a fairly good idea what was
happening on the breadboard.

The CAN-controller of choice is driven by 5V but the GumStix I/O
ports are only on 1.8V so a level converter had to be integrated (19).
This converter will act as a bridge between the CAN-controller and
the I/O ports, but for some unknown reason the level converter can
drive all the ports except the MISO (Master input slave output) port.
This port will get a logical zero all the time. To verify that it was not a
faulty circuit a second one was used but with the same result, tested
different channels as well but the MISO still failed. So a solution

involving a transistor was used instead for the MISO channel as can be seen in Figure 11.

One of the biggest weakness in the hardware setup is the CAN-controller which has only two buffers
whiles the ones used more often in the industry have somewhere between 16 and 64 buffers. So it is
theoretically possible for some package loss under full bus load due to full buffers, but that situation
has not been simulated.

During the second half of the development phase some packages losses were discovered and some
packages were too corrupt that the CAN-controller interpreted it as a reset command. This problem
was probably due to connection glitch on the breadboard. The problem appeared from time to time
during the development but was resolved when all components was migrated to our own extension
board as suspected, see Figure 9.

Figure 11 Transistor solution

34

6.2.1. MOTHERBOARD

All development and integration was done on the Overo Extension board as well as a breadboard for
complementary components. QRTECH decided that an in-house motherboard was to be developed.
The motherboard was intended to minimize the board size as well as removing unnecessary
components and add the required functionalities. The development and design of this motherboard
was outside the scope of this thesis work but we had the opportunity to review the hardware
requirement specification to see if something was amiss.

Due to unforeseen factors this motherboard was not finished within the scope of the thesis and
hence we were not able to test if the stability improved or not. Since the motherboard would not be
delivered on time we developed our own extension board for the chestnut43 board to add the CAN
functionality. A full circuit schema can be found in Appendix 2 as well as the layout for the board.

35

7. CONCLUSION

Here we will summarize some conclusions that we reached during this thesis execution, both
regarding the software and hardware as well as what kind of future work this may lead to.

7.1. SOFTWARE

Regarding the software development we have first and foremost learnt a lot in terms of object
oriented programming in a larger scale as in terms of lower level programming for Linux. This is a lot
harder than one may think. The software became more generic than we originally thought, mostly
because we had some time left at the end of the implementation phase. This makes it easier to
extend the program in the future for further development. Sadly the development IDE was not one
of the best on the market so some extra time on finding plug-ins (for instance to Eclipse (20) to use
the QT framework) would have saved us time in the beginning. Also, most middleware
communication had to be tested on the hardware. The second half of the development of the
program was done through SSH using an ordinary terminal text editor.

7.2. HARDWARE

During the final phases of the development most problems were due to hardware problems, faulty
wiring or contact surfaces that did not work.

For the trouble shooting of the hardware the Logic unit was priceless. It was used extensively
throughout the hardware and development phase (18). The unit consists of eight small connectors
for the hardware and one USB connector to the computer, as can be seen in Figure 12. With the
associated program the unit can measure logical ones and zeros at each of these eight ports. This

will in the program give eight graphs that will show
the signals and their timing. The program itself is
configurable so it can interpret the signal of a
specific channel as, for instance, a CAN-frame.

From the graphs that the Logic unit plots it is
typically quite easy to find where the hardware is at
fault, for example if a signal does not end up where
it is supposed.

Examples as how the graphs looks like with some
explanation can be seen in Figure 13.

Figure 12 Logic unit

36

Figure 13 Plot over one CAN transmission

As Figure 13 shows that the CAN data in the CAN format before the CAN-controller takes about 0.5
ms to send with a 250kb/s bit rate, while it after the CAN-controller in the SPI (Serial peripheral
interface bus) format only takes about 0.05ms in 10 MHz clock frequency; the second logical zero on
the SPI CS1 channel (the red one). After the data have been received, and the IRQ has been set to
logical one, the driver resets the status registers and interrupts flags on the CAN-controller.

As shown in Figure 14 each peak in the graph furthest down is a CAN-frame. In the figure each peak
in the MOSI (Master output slave input) and MISO graphs are the same frames but on the other side
of the CAN-controller. These peaks are smaller because the SPI bus has the capability to handle the
data at a much faster rate than the CAN bus. These messages were generated from a CAN gateway
that simulates the full load from a vehicle according to the FMS standard. By counting all incoming
messages and interpreting them we can see that the demonstrator has a zero percent loss of
packages.

As shown in Figure 14 where the demonstrator is under full load from a FMS gateway there is still
plenty of time between the parsing of the different CAN-frames.

CAN data before CAN-controller
CAN format

CAN data after CAN-controller

37

Figure 14 Screenshot from Logic unit under full FMS load

7.3. FUTURE WORK

As the areas of IVIs are huge any future work on this product could end up in basically anything. For
instance, the analog velocity meter in the car with a digital screen, or the fuel consumption could be
shown in real time to give the driver some insight in how economic his/her driving is. For
entertainment purpose it could be possible to integrate it with screens in the backseat for playing
video games, surfing on the Internet or just watching movies. An example would be when there are
children in the back seat watching a movie, but they may fall asleep, the driver could then pause the
movie, from the driver seat, until they wake up and want to continue watching.

This is just the tip of an iceberg for the possibilities of a good IVI system.

On a more relevant note for this demonstrator, the capabilities of adding and removing widgets in
real time would enable it to accept new CAN-frames without having to recompile the project. This
would require a lot of work and was therefore decided to not be within the scope of this thesis.

If the focus of this project would change to use another CAN standard than the FMS the only
adaptation needed would be to change the implemented class in the middleware to receive a
different bit pattern.

When this thesis was closing in on being finalized QRTECH decided that they wanted to continue on
this development and thus created another master thesis that will use this one as a basis. This new

38

thesis will focus more on the actual demonstration program now that the kernel and drivers are in
place.

39

8. SOURCES

1. GumStix. [Online] [Cited: 09 01, 2010.] www.gumstix.com.

2. MeeGo. [Online] [Cited: 08 04, 2010.] www.meego.com.

3. GumStix Expansion board Chestnut43. [Online] gumstix, 2010. [Cited: 02 18, 2011.]
http://www.gumstix.com/store/catalog/product_info.php?products_id=237.

4. Maemo. [Online] [Cited: 11 20, 2010.] http://maemo.nokia.com.

5. GENIVI alliance. [Online] 2010. [Cited: 10 20, 2010.] http://www.genivi.org.

6. Wikipedia. [Online] [Cited: 02 04, 2011.] http://en.wikipedia.org/wiki/Controller_area_network.

7. CAN history. [Online] [Cited: 02 17, 2011.] http://www.can-cia.de/index.php?id=161.

8. Kerl Henrik Johansson, Martin Törngren, Lars Nielsen. Vehicle application of Controller Area
Network. Stockholm : s.n., 2005.

9. CAN specification. [Online] Bosch, 1991. [Cited: 01 05, 2011.]
http://esd.cs.ucr.edu/webres/can20.pdf.

10. Pazul, Keith. Controller Area Network Basics. [Online] [Cited: 02 15, 2011.]
http://www.cl.cam.ac.uk/research/srg/HAN/Lambda/webdocs/an713.pdf.

11. Wikipedia. [Online] [Cited: 02 20, 2011.] http://en.wikipedia.org/wiki/V-
Model_(software_development).

12. QT framework. [Online] Nokia , 2011. [Cited: 02 17, 2011.] http://qt.nokia.com/products/.

13. Stand-Alone CAN Controller With SPI Interface. [Online] 2010.
http://ww1.microchip.com/downloads/en/DeviceDoc/21801F.pdf.

14. MeeGo on Beagleboard. [Online] [Cited: 01 20, 2011.]
http://wiki.meego.com/ARM/Meego_on_Beagleboard_from_scratch.

15. Socket CAN. [Online] [Cited: 02 17, 2011.]
http://www.kernel.org/doc/Documentation/networking/can.txt.

16. FMS-standard. [Online] [Cited: 02 17, 2011.] http://www.fms-standard.com/index.htm.

17. Home automation project. [Online] [Cited: 01 16, 2011.]
http://projekt.auml.se/homeautomation:hardware:avr:corecard.

18. Saleae - Logic unit. [Online] http://www.saleae.com/logic/.

19. TXB0106 level converter. [Online] 9 2008. [Cited: 02 18, 2011.]
http://focus.ti.com/lit/ds/symlink/txb0106.pdf.

20. Eclipse. [Online] The Eclipse Foundation, 2011. http://www.eclipse.org/.

40

21. GumStix Overo Fire COM. [Online] gumstix, 2010. [Cited: 02 18, 2011.]
http://www.gumstix.com/store/catalog/product_info.php?products_id=227.

22. MCP2551 CAN transceiver. [Online] 2003.
http://ww1.microchip.com/downloads/en/devicedoc/21667d.pdf.

23. LG 4.3 inch touch screen. [Online] gumstix, 2010. [Cited: 02 18, 2011.]
http://gumstix.com/store/catalog/product_info.php?products_id=244.

41

9. APPENDIX

9.1. TIME PLAN

42

43

9.2. CIRCUIT BOARD

44

9.3. LIST OF HARDWARE

• GumStix Overo Fire COM (21)
• Overo expansion board cheastnut43 (3)
• Saleae Logic (18)
• MCP2515 – CAN controller (13)
• MCP2551 – CAN transceiver (22)
• LG 4.3 inch LCD touch screen (23)
• TXB0106 – Level converter (19)

45

9.4. CLASS DIAGRAM

46

9.5. MCP2515 SETUP

#if defined(CONFIG_CAN_MCP251X) || \
 defined(CONFIG_CAN_MCP251X_MODULE)

#include <linux/can/platform/mcp251x.h>

#define OVERO_GPIO_CAN0_INT 146
#define OVERO_GPIO_SPI1_CS1 175
#define INSTRUCTION_RESET 0xC0

static int mcp251x_setup(struct spi_device *spi)
{
 printk(KERN_INFO "Running: mcp251x_setup, Reseting...");
 u8 spi_tx = INSTRUCTION_RESET;
 gpio_set_value(OVERO_GPIO_SPI1_CS1, 1);
 msleep(1);
 gpio_set_value(OVERO_GPIO_SPI1_CS1, 0);
 msleep(1);
 if(spi_write(spi, &spi_tx, 1) < 0)

 printk(KERN_INFO "mcp251x Reset: Error");
 else
 printk(KERN_INFO "mcp251x Reset: Successful");

 msleep(1);
 gpio_set_value(OVERO_GPIO_SPI1_CS1, 1);
 return 0;
}

static struct omap2_mcspi_device_config overo_mcp251x_mcspi_config =
{
 .turbo_mode = 0,
 .single_channel = 1, /* 0: slave, 1: master */
};

static struct mcp251x_platform_data overo_mcp251x_config = {
 .oscillator_frequency = 20 * 1000 * 1000,
 .board_specific_setup = &mcp251x_setup,
 .model = CAN_MCP251X_MCP2515,
 .power_enable = NULL,
 .transceiver_enable = NULL,
};

static void __init overo_mcp251x_init(void)
{
 /* printk(KERN_INFO "overo_mcp251x_init(): requesting
interrupt\n"); */

47

 if ((gpio_request(OVERO_GPIO_CAN0_INT, "MCP251X_0_INTERRUPT") ==
0) &&
 (gpio_direction_input(OVERO_GPIO_CAN0_INT) == 0)) {
 gpio_export(OVERO_GPIO_CAN0_INT, 0);
 } else {
 printk(KERN_ERR "overo_mcp251x_init(): could not obtain
gpio for MCP251X_INTERRUPT\n");
 return;
 }
}

#else
static inline void __init overo_mcp251x_init(void) { return; }
#endif

static int __init overo_spi_init(void)
{
#if defined(CONFIG_CAN_MCP251X) || \
 defined(CONFIG_CAN_MCP251X_MODULE)
 overo_mcp251x_init();
#endif

//next initialization

	Cover_page_Chalmers2
	Master of Science Thesis Software Engineer and Technology
	Master of Science Thesis Intetgrated Electronic System Design
	HANS SANELL
	GÖRAN SAMUELSSON

	Cover_page_Chalmers2.pdf
	Master of Science Thesis Software Engineer and Technology
	Master of Science Thesis Intetgrated Electronic System Design
	HANS SANELL
	GÖRAN SAMUELSSON

	Thesis
	Abstract
	Preface
	Table of Contents
	Vocabulary
	List of Figures
	List of tables
	1. Introduction
	1.1. Background
	1.1.1. About QRTECH
	1.1.2. Problem description
	1.1.2.1. Delimitations
	1.1.2.2. Target platform

	1.1.3. Previous work

	2. Theory
	2.1. MeeGo
	2.2. GumStix
	2.3. CAN
	2.3.1. History
	2.3.2. The protocol
	Base data format (6)
	Extended data format (6)

	3. Method
	4. Demonstrator design and implementation
	4.1. Design
	4.1.1. Software Requirements
	4.1.2. Use Cases

	4.2. Implementation

	5. Result
	6. Discussion
	6.1. Software
	6.2. Hardware
	6.2.1. Motherboard

	7. Conclusion
	7.1. Software
	7.2. Hardware
	7.3. Future work

	8. Sources
	9. Appendix
	9.1. Time plan
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	9.1.
	9.2. Circuit board
	9.3. List of hardware
	9.4. Class diagram
	9.5. MCP2515 setup

