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Göteborg, Sweden 2011



Circuit Theory of Mesoscopic Superconducting Components
IAN G. KELLETT

c© IAN G. KELLETT, 2011.

Department of Microtechnology and Nanoscience
Chalmers University of Technology
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Circuit Theory of Mesoscopic Superconducting Components
IAN G. KELLETT
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract

Nazarov’s quantum circuit theory is essentially a discretised ver-
sion of the Usadel equation which describes mesoscopic super-
conducting systems in the diffusive limit.The focus of this thesis
project was to investigate the application of the quantum circuit
theory to an Andreev interferometer.

The report begins with a review of classical transport theory
and then of the full Green’s function theory of superconductivity
leading to the Usadel equation. Quantum circuit theory is then
presented with classical circuit theory as an analogy.

Quantum circuit theory is then applied to the SNS and SS’S
type Josephson junctions that result when discretising the An-
dreev interferometer. Two types of SNS junctions were con-
sidered: firstly, an STNTS type with very strong tunnel junc-
tions separating the intermediate metal from the reservoirs, and
secondly, the short, diffusive SNS junction considered by Kulik-
Omel’yanchuk. Finally, the added difficulties of a superconduct-
ing intermediate metal in the SS’S type junction are discussed
and resolved.

Keywords: quantum circuit theory, Usadel equation, mesoscopic supercon-
ductivity, Josephson junction, Andreev interferometer
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Chapter 1

Introduction

1.1 Background

The crowning achievement of the first half-century of studies on supercon-
ductivity was the microscopic theory put forth by Bardeen, Cooper, and
Schrieffer (BCS) in 1957 [1]. The key is that if electrons near enough the
Fermi surface have a mutual attraction of any strength, the Fermi sea be-
comes unstable. The energetically favourable state for the system then has
electrons near the Fermi surface in pairs known as Cooper pairs each with
energy EF , the Fermi energy. This opens a gap of size 2|∆| in the density of
states of excitations to the system, where ∆ is known as the superconducting
order-parameter which characterises the superconducting state.

The methods used originally by BCS are sufficient for uniform, trasla-
tionally invariant superconductors. In order to include effects such as a
spacially varying order-parameter, ∆(r), or to distinguish local from non-
local effects, more general techniques are required [2]. Such techniques were
developed initially by de Gennes, Gor’kov and others [3, 4, 5] and are largely
based on Green’s functions. These methods were further developed over the
years to include many inhomogeneities, interfaces and constrictions and will
be referred to in the following as “the full theory”. Among these develop-
ments was the quasiclassical technique and the resulting Usadel equation [6]
for the dirty limit from which Nazarov derived the “quantum circuit theory”
of Andreev conductance [7]. Nazarov claims that the idea behind quantum
circuit theory stemmed from the frequent discrepancy between the com-
plexity of the quasiclassical theory and the triviality of its results. Indeed,
quantum circuit theory reproduces many of the results of the full theory
with comparative ease. The circuit theory was developed and extended by
numerous authors (see [8] for references and review) to include a variety of
different types of junctions and to remove the original low-energy restriction
in [7].

Quantum circuit theory is essentially a discretisation of the Usadel equa-
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CHAPTER 1. INTRODUCTION

tion. This discretisation, and, in fact, much of quantum circuit theory is
analogous to the familiar classical circuit theory based on Kirchoff’s rules
and Ohm’s law. The analogy is useful as it allows some intuition in apply-
ing quantum circuit theory. Another important advantage of the quantum
circuit theory is that it is easily programmed on computer for calculations.
Nazarov provides an algorithm described in [8] and [9]. This algorithm is the
basis for many of the calculations done in this thesis work. The most famil-
iar method of electric circuit analysis is to use Kirchoff’s current rule in the
circuit. One divides the circuit into elements that are easily characterised.
One approximates that in the good conducting regions, the potential is con-
stant and then applies standard equations to the elements carrying a large
change in potential. Ohm’s law, I = V/R, for a resistor of resistance R
is probably the best known such equation, implying for instance that the
current through the resistor is given by the change in potential across the
resistor divided by R. This method is an approximation to the more general
Laplace’s equation ∇ · I = 0, which is itself a current conservation law.

These rules, alas, are derived for classical circuits so they do not apply to
quantum circuits. Furthermore, inherently quantum mechanical effects such
as Superconductivity, for instance, requires coherence between electrons and
holes and so could never be incorporated in the framework above.

For circuits of conductivity on the order of a few conductance quanta
GQ = 2e2/h scattering matrix methods may be used to calculate transport
properties. Otherwise, one uses Green’s functions methods. Such methods
lead to the Eilenberger equation and then in the Usadel equation for dirty
systems. These equations are both discussed more later. They are solvable
in some simple cases but even then are often much more complicated than
the results [Nazarov book p.194] 1. The Usadel equation, however, can
be conveniently reformulated into a conservation equation, similar to the
Laplace equation, and used as the basis for a quantum mechanical finite-
element circuit theory analogous to the classical method above [Nazarov
article 1999]. The method is can be used to obtain analytical results in
some cases and is relatively straightforward to apply numerically. It is the
primary method applied in this project work for studying nanostructures.

1.2 Motivation

The objective of the project was to model an Andreev interferometer as
shown in figure 1.1 using quantum circuit theory. The approach of quantum
circuit theory is to discretise a nanostructure into smaller, easily handled
elements. Figure 1.1 shows also some of the building blocks of the Andreev
interferometer arising from discretisation. A large part of this thesis focusses

1Unless otherwise indicated, the material discussed in this text is from Nazarov’s book.
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Figure 1.1: An illustration of an Andreev interferometer indicating
the inherent presence of SNS and SSS type Josephson junctions that
arise when discretising the circuit for calculation using quantum cir-
cuit theory. Such SNS and SSS type junctions were the focus of this
thesis work because these cases can be extended to the full Andreev
interferometer.

on these elementary structures. They serve as good stepping stones towards
the full Andreev interferometer calculation using circuit theory.

1.3 Organisation of the report

This report begins with a review of the classical transport equations based
on particle balance in chapter 2. This will serve as an analogy when the
quantum circuit theory is presented. The full Green’s function theory of
superconductivity is then outlined in chapter 3. This results ultimately in
the derivation of the Usadel equation. With the theoretical background
established, quantum circuit theory is explained in chapter 4 in analogy
with the classical circuit theory.

Chapter 5 then discusses the application of the circuit theory to the
Superconducting-Normal-Superconducting (SNS) and SSS type Josephson
junctions inherent in an Andreev interferometer. Two SNS-type scenarios
are considered. The first such case is the STNTS type in which the in-
termediate normal metal is connected to the superconducting reservoirs by
very strong tunnel junctions. The second case is a short, one dimensional

3



CHAPTER 1. INTRODUCTION

diffusive wire connecting the superconducting reservoirs. The results of the
circuit theory analysis of the latter case are compared with the analytical re-
sults of Kulik and Omelyanchuk [10], referred to as the KO1 results. Having
the superconducting intermediate metal in the SSS case requires additional
care with the finite order-parameter, ∆(R). This is discussed and resolved
in section 5.3.

Finally, conclusions from the thesis work and an outlook for future de-
velopment in the area are given in chapter 6. Appendices supplementing the
main text are provided in the end.
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Chapter 2

“Classical” transport

The purpose of this chapter is to review important concepts of classical
circuit analysis which are useful analogues for the quantum circuit theory
presented in chapter 4. The chapter follows section 2.2 of [9] closely.

2.1 Boltzmann equation

To describe a statistical ensemble of many particles one uses a distribu-
tion function, f(r(t),p(t)), where r(t) and p(t) are position and momentum
points in 6-dimensional phase space. The distribution function, f(r,p) gives
the number of particles within a volume element dr3dp3 at position r and
momentum p. Since r and p change in time, the particles (and also the vol-
ume element) have the velocity v(p) = ṙ under the force F(r) = ṗ. Ignoring
scattering, the number of particles within the volume element is clearly fixed
so

d

dt
f(r(t),p(t)) =

∂f

∂t
+ v

∂f

∂r
+ F

∂f

∂p
= 0. (2.1)

Impurities typically cause sharp potential profiles at a scale of k−1
F . This

enables the particles to scatter into states of different momentum, allowing
for deviations of the distribution function, i.e. df

dt 6= 0. To account for
scattering, one considers the scattering rates, Wp,p′ . The scattering rates
are the probabilities of scattering from a state at p to a state at p′ per unit
time. Thus, the balance equation, eq. 2.1, becomes the Boltzmann equation
for the non-equilibrium filling factor:

∂fp
∂t

= −v∂fp
∂r
− F

∂fp
∂p

+

∫
dp(Wp′,pfp′ −Wp,p′fp′),

with the notation dp = dp3/(2π~)3.

Quantum mechanics determines the scattering rates. Assuming low
enough temperature (so that elastic scattering processes dominate), and

5



CHAPTER 2. “CLASSICAL” TRANSPORT

using the Born approximation and Fermi Golden rule one comes to an ex-
pression for the scattering rates:

Wp,p′ =
cimp
~
|Ũimp(p/~− p′/~)|2δ(E(p)− E(p′)).

Ũimp(p−p′) is a Fourier component of the potential of an impurity and cimp
is the concentration of these impurities.

Supposing k−1
F is much larger than the size of the impurities, then Ũimp

does not depend on k. This situation is called “white noise scattering” since
the scattering potential is now seen as equal for all k’s. The momentum
relaxation time, τ−1

P = (2πνcimp/~|Uimp|2), now completely characterises
the scattering. The symbol ν is the density of states per spin degree of
freedom. The Boltzmann equation now becomes

∂f

∂t
= −v∂f

∂r
− F

∂f

∂p
+ (〈f〉 − f)/τP . (2.2)

2.2 Drift diffusion equation

When the dimensions of a system are on a scale much larger than the mean
free path, l = vτP , the scattering of the electrons occurs so often that they
“forget” their initial direction of momentum. This is the diffusive regime.
In this case the distribution functions become essentially isotropic in p. To
observe the consequences on the Boltzmann equation given in eq. (2.2) a
first approximation f(r,p) = f(E) + f (1)(r,p) is useful, where f (1) is a
small anisotropic part, f(E)� f (1), and

〈
f (1)

〉
= 0. This approximation in

eq. (2.2) leads to

∂f(E)

∂t
= −v∂f(E)

∂r
− (F · v)

∂f(E)

∂E
− f (1)

τP
,

where v = ∂E
∂p and 〈f(E)〉 = f(E).

Taking the average of the original equation over all angles of the direc-
tions of p gives the drift-diffusion equation

∂f(E)

∂t
= −∇ · j, (2.3)

where the spectral current density, j, is temporarily defined as j =
〈
vf (1)

〉
and will be renormalized later for convenience.

Taking the difference of the non-averaged and the averaged equations
gives

−f
(1)

τP
= v

∂f

∂r
+ (F · v)

∂f

∂E
,

6



2.2. DRIFT DIFFUSION EQUATION

which provides an expression for the current density

j = −DF
∂f

∂E
−D∂f

∂r
, (2.4)

where D is the diffusion coefficient. Multiplying eq. 2.4 by e2ν, the current
density is now conveniently in units of conductivity, σ = e2νD. Adopting
this convention, the drift-diffusion equation becomes

e2ν
∂f

∂t
= −∇ · j. (2.5)

The current density is given by

I =

∫
(j/e)dE; j = e2ν

〈
vf (1)

〉
.

Usually ν, D and τP (and thus the conductivity σ also) vary on a scale of
the Fermi energy. Electron transport happens, however, in a narrow range
of energy, which is much smaller than the Fermi energy, at around the Fermi
energy. As particle transport is the current focus, the values of ν, D and
τP (and σ) may be replaced by their values at EF . Integrating eq. 2.5 over
energy then results in a simple conservation equation:

∂ρ

∂t
= −∇ · I ; I = σE −D∇ρ, (2.6)

where ρ =
∫
qνf(E)dE, is the volume charge density. At low temperatures,

states below EF are generally filled and states above EF are generally empty,
the energy integral of δf/δE can be approximated by f(∞)− f(0) = −1.

Since all charges in metals reside at the surface, a good approximation is
ρ = 0. Equation 2.6 then produces Laplace’s equation together with Ohm’s
law:

∇ · I = 0 ; I = σ(r)E = −σ(r)∇V. (2.7)

These equations are the foundation for most basic circuit analysis.

7



Chapter 3

Semiclassical Transport

The classical approach to transport described above considers only particle
balance, making no consideration of coherence between the particles. Of
course, at quantum mechanical scales, coherence is important so that more
rigorous methods are required. Green’s functions methods (outlined briefly
below) may provide a full description of the system of particles including the
coherence but, in many cases, much of this information is superfluous and
needlessly cumbersome mathematically. Some approximations, also outlined
below, discard much of the extraneous information, leading to more easily
handled semiclassical Green’s functions. The material in this section is
also reviewed in numerous other works, including [11] and [12] which give
extensive detail. The references most closely followed here are [13], [14],
[15], and [9].

3.1 The Gor’kov Equations

Because of the coherence between particles and holes in superconducting
states, it is useful to work with pseudospinors in particle-hole (Nambu) space
of the form Ψ̂† = (ψ̂†, ψ̂), where, if spin effects are also of interest, ψ̂ and ψ̂†

are spinors in spin space as well. The work in this thesis, however, focusses
on s-wave superconductivity in the absence of significant spin effects. Using
Ψ̂† = (ψ†↑, ψ↓) and adding a factor of 2 to particle densities is then sufficient.
The Green’s function in Nambu space is given by [15]

Ĝ(1, 2) ≡ −iη̂3

〈
T̂Ψ(1)Ψ†(2)

〉
(3.1)

= −iη̂3

〈T̂ψ↑(1)ψ†↑(2)
〉 〈

T̂ψ↑(1)ψ↓(2)
〉〈

T̂ψ†↓(1)ψ†↑(2)
〉 〈

T̂ψ†↓(1)ψ↓(2)
〉 . (3.2)

Transport properties can be calculated using the time dependence of Ĝ

8



3.1. THE GOR’KOV EQUATIONS

[14]. The time dependence of the field operators is given by

i∂tψ = [ψ, Ĥ], (3.3)

with solutions

ψ(r, t) = exp(iĤ ′t)ψ(r) exp(−iĤ ′t) (3.4)

and

ψ†(r, t) = exp(iĤ ′t)ψ†(r) exp(−iĤ ′t). (3.5)

The field operators also obey the anticommutation relations

{ψα(r1), ψ†β(r2)} = δαβδ(r1 − r2)

and

{ψα(r1), ψβ(r2)} = {ψ†α(r1), ψ†β(r2)} = 0.

Once a suitable Hamiltonian to describe superconductivity can be deter-
mined, the time dependence of Ĝ can be found from the above properties of
the field operators.

Due to the screening of the electrons’ interactions with each other, one
can assume that the interaction between electrons is very localised on a scale
of the particle wavelength. The interaction may thus be approximated by

V (|r1 − r2|) = −λ
2
δ(r1 − r2),

where λ > 0 is the coupling constant giving the strength of the attractive
interaction between electrons [2]. The non-interacting single particle energy
operator is

ε(X) =
1

2m
(i∇r − |e|A(X))2 − |e|V (X)− µ,

where X is the set of spatial and time coordinates (r, t). In this project
all applied fields are assumed to be stationary, giving a time-independent
Hamiltonian. The Hamiltonian in terms of field operators, including only
the local two-particle interaction (ignoring impurity scattering), takes the
form

Ĥ =
∑
α

∫
ψ†α(r)ε(X)ψα(r)dr −

∑
α,β

λ

2

∫
ψ†α(r)ψ†β(r)ψβ(r)ψα(r)dr.

Using this Hamiltonian in eq. 3.3 leads to the following equations of motion
for ψα:

i∂t1ψα(1) = [ε(r1)− λ
∑
β

ψ†β(1)ψβ(1)]ψα(1), (3.6)

9



CHAPTER 3. SEMICLASSICAL TRANSPORT

where the number 1 represents the coordinate set (r1, t1). Taking the com-

plex conjugate of eq. 3.6 gives the equation of motion for ψ†α as

i∂t1ψ
†
α(1) = ψ†α(1)[−ε(r1) + λ

∑
β

ψ†β(1)ψβ(1)].

Acting i∂t1 on each of the four Nambu Green’s functions in eq. 3.1 gives
4 equations that may be grouped together into the following matrix equation
known as the Gor’kov equation:(

(i∂t1 − ε(1)) ∆(1)
−∆∗(1) −(i∂t1 + ε∗(1))

)
Ĝ(1, 2) = δ(1− 2), (3.7)

where ∆(1) is defined as

∆(1) = λ〈ψ↑(1)ψ↓(1)〉 = −iλ lim
2→1−

[Ĝ(1, 2)]12 (3.8)

where [...]ij refers to the ith row, jth column entry of the given matrix.
Equation 3.8 is a self-consistent equation for ∆ which is known as the super-
conducting order parameter. It is generally complex but its magnitude is the
size of the gap in the density of states of a superconductor. In the derivation
of the Gor’kov equation in eq. 3.7, several forms of 2-point Green’s functions
of various forms similar to 〈T̂ψ†α(1)ψ†β(1)ψγ(1)ψδ(2)〉, are encountered. One
then makes the approximation that it is roughly equal to

〈T̂ψ†α(1)ψ†β(1)〉〈T̂ψγ(1)ψδ(2)〉.

Contributions of the form 〈T̂ψ†ψ〉 are accounted for in ε as a shift in the
chemical potential, µ, and the electric potential, V (X) [14].

3.2 Self-energy

Possible interactions of the particles with the material surrounding them
have been neglected so far. Such interactions are usually put together into
a term called the self-energy, denoted Σ̂(1, 2). The total Green’s function,
including all interactions, is composed of the free particle Green’s function
(perhaps in the presence of applied fields), Ĝ0, plus the sum of all possible
interactions at all positions and times. Written out as an equation, this
appears as

Ĝ = Ĝ0 + Ĝ0 ⊗ Σ̂⊗ Ĝ0 + Ĝ0 ⊗ Σ̂⊗ Ĝ0 ⊗ Σ̂⊗ Ĝ0 + ...

= Ĝ0 ⊗ (1̂ + Σ̂⊗ (Ĝ0 + Ĝ0 ⊗ Ĝ0 + ...))

= Ĝ0 ⊗ (1̂ + Σ̂⊗ Ĝ)

= Ĝ0 + Ĝ0 ⊗ Σ̂⊗ Ĝ, (3.9)

10



3.3. MIXED REPRESENTATIONS

where ⊗ implies integration over common space and time coordinates as well
as matrix multiplication. Equation 3.9 is a Dyson Equation. Solving for Σ̂
shows that the self-energy is a functional of the full Green’s function Σ̂ =
Ĝ−1

0 − Ĝ−1. Further, it is useful to note that the equation can equivalently
be written

Ĝ = Ĝ0 + Ĝ⊗ Σ̂⊗ Ĝ0, (3.10)

which is referred to as the right-hand or conjugate Dyson equation.

The free particle Green’s function was encountered implicitly in section
3.1 in its inverse form:

Ĝ−1
0 (1, 1′) = (i∂t1 η̂3 − ε̂(1))δ(1− 1′),

where ε̂(X) = 1
2m (i∇r − |e|A(X)η̂3)2− |e|V (X)−µ. The symbol η̂i here is

a Pauli-type matrix acting in Nambu space defined by

η̂1 =

(
0 1
1 0

)
; η̂2 =

(
0 −i
i 0

)
; η̂3 =

(
1 0
0 −1

)
;

with similar matrices being defined for σi and τi acting in spin and Keldysh
space, respectively. The free particle Green’s function obeys thus [15]

Ĝ−1
0 (1, 1′)⊗ Ĝ0(1′, 2) = δ(1− 2).

Acting Ĝ−1
01 (1, 1′)⊗ Ĝ0(1′, 2) = δ(1−2) from the left on the left-hand Dyson

equation in 3.9 and extracting from Σ̂ the order parameter ∆ produces the
Gor’kov equation in eq. 3.7 but with the addition of the self-energy [13]:

(Ĝ−1
0 + ∆̂− Σ̂)(1, 1′)⊗ Ĝ(1′, 2) = δ(1− 2), (3.11)

where

∆̂(1, 1′) =

(
0 ∆(1)

−∆∗(1) 0

)
δ(1− 1′).

3.3 Mixed Representations

For systems with certain symmetries, switching from the particles’ respective
coordinates (r1, t1) and (r2, t2) to central and relative coordinates,

R =
r1 + r2

2
; r = r1 − r2;

T =
t1 + t2

2
; t = t1 − t2, (3.12)

is useful. In a translationally homogeneous system, for instance, only the rel-
ative positions of the particles, r, are relevant. As another example, systems
with time-independent fields depend only on the relative time coordinates.

11
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Since switching between coordinate systems in this manner is done quite
frequently, some useful relations are presented here for quick reference. Only
equations for position coordinates are given. The time coordinates’ relations
are all identical.

Firstly, the inverse relations are

r1 = R + r/2

r2 = R− r/2. (3.13)

Secondly, consider the gradient operator for R-space, ∇R, acting on a func-
tion f(r1, r2):

∇Rf(r1, r2) =
∂f

∂r1

(
∂r1

∂R
= 1

)
+
∂f

∂r2

(
∂r2

∂R
= 1

)
=

(
∂

∂r1
+

∂

∂r2

)
f ; (3.14)

so that ∇R =

(
∂

∂r1
+

∂

∂r2

)
= ∇r1 +∇r2 . (3.15)

One shows similarly that

∇r =
1

2
(∇r1 −∇r2),

and

∇r1,r2 =
1

2
∇R ±∇r. (3.16)

After switching to relative/central coordinates,

Ĝ(1, 2)→ Ĝ(R + r/2,R− r/2, T + t/2, T − t/2),

the Green’s functions are often written as Fourier transforms with respect
to r or ε or both. For the case of transforming both coordinates,

Ĝ(R, r, T, t) =

∫
e−iεteip·r Ĝ(R,p, T, ε)dpdε. (3.17)

Green’s functions written in this form are said to be in the mixed or Wigner
representations. Clearly, i∂t and −i∇r acting on G(R, r, T, t) give

i∂t → ε ; −i∇r → p.

3.4 Matsubara Technique

The approach thus far is sufficient to consider systems at thermal equi-
librium. When solving the Gor’kov equation as in eq. 3.7, e.g. for a bulk
superconductor, however, poles in the Green’s functions that are at a branch

12
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cut on the real axis are encountered. How to treat these poles around the
branch cut has not been addressed so far. This problem is remedied by
adding an infinitesimal imaginary part to the energy which corresponds to
using a retarded or advanced Green’s function, as will be seen when extend-
ing to the Keldysh technique for systems out of equilibrium. At this point,
however, let us consider the case of equilibrium more closely, turning to the
Matsubara technique.

For a system in thermodynamic equilibrium, switching from the Green’s
functions described in section 3.1 to so-called temperature, or Matsubara,
Green’s functions proves to be useful. Matsubara Green’s functions are
often mathematically simpler and numerically faster than other techniques,
including the Keldysh technique seen later.

The derivation of the Gor’kov equation in the Matsubara formalism is
similar to that in section 3.1 with a few significant differences. The main
difference is that real-time t is exchanged for imaginary time τ = it. This
affects the field operators ψ(r, t) and ψ†(r, t). From eqs. 3.4 and 3.5, they
are replaced by

ψ(r, τ) = exp(Ĥ ′τ)ψ(r) exp(−Ĥ ′τ)

and
ψ+(r, τ) = exp(Ĥ ′τ)ψ†(r) exp(−Ĥ ′τ),

noting that ψ+(r, τ) = ψ†(r,−τ).
The Matsubara Green’s functions are defined as

ĜM (1, 2) = −η̂3〈T̂τ Ψ̂(r1, τ1)Ψ̂+(r2, τ2)〉, (3.18)

where T̂τ is the same as T̂ except orders the field operators from right to
left in order of increasing imaginary time τ . Averaging an operator Ô over
the grand canonical distribution is denoted 〈Ô〉:

〈Ô〉 = Tr

{
exp

(
Ω−H ′

T

)
Ô

}
. (3.19)

Writing out the Green’s functions in eq. 3.18 using the expression in eq.
3.19, one can use the cyclic property of the trace to show that the Matsubara
Green’s functions depend only on the difference τ = τ1− τ2 and are periodic
in β = 1/T according to

ĜM (r,−τ) = −ĜM (r, τ + β). (3.20)

Considering Matsubara Green’s functions only within 0 ≤ τ ≤ β is therefore
sufficient since they can be found for all other τ by eq. 3.20. This periodicity
allows a Fourier series expansion of the Green’s functions of the form

ĜM (r1, r2, τ) = T

∞∑
n=−∞

e−iζnτ ĜM (r1, r2, ζn),

13
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where ζn = (2n+ 1)πT, n = 0,±1,±2, ... which are known as the Matsubara
frequencies.

The real-time Gor’kov equation in eq. 3.11 rewritten for Matsubara
Green’s functions takes the form

(ĜM0 + ∆̂− Σ̂)(1, 1′)⊗ ĜM (1′, 2) = δ(1− 2), (3.21)

where ĜM0 (1, 1′) = (−∂τ1 η̂3 − ε̂(r1, τ1)). The order parameter ∆ in terms of
the Matsubara Green’s function retains a similar form

∆(1) = λ〈ψ↑(1)ψ↓(1)〉 = −λ lim
2→1−

[̂G(1, 2)]12. (3.22)

Although ψ+(r, τ) = ψ†(r,−τ), the complex conjugate, ∆∗, is still the
complex conjugate of ∆ because of the limit τ → 0 in the definition:

∆∗(1) = λ〈ψ+
↓ (1)ψ+

↑ (1)〉 = −λ lim
2→1−

[Ĝ(1, 2)]21.

3.4.1 Matsubara solution for bulk superconductor

The solution of the Gor’kov equation in eq. 3.21 for a bulk superconduc-
tor in thermal equilibrium without scattering or applied fields can now
be computed. The system is translationally homogeneous and also time-
independent thereby promoting Fourier transformation with respect to both
r and τ . For Matsubara Green’s functions, this implies writing

ĜM (r, τ) = T

∞∑
n=−∞

e−iζnτ
∫
eip·rĜM (p, εn)dp.

Substituting ∂t1 → −iζn and ε(1) → ξp where ξp ≡ p2/2m − µ and per-
forming the inverse transforms of the resulting Gor’kov equation gives the
matrix equation (

iζn − ξp + ∆̂
)
ĜM (p, ζn) = 1̂. (3.23)

Inverting eq. 3.23 gives ĜM as

ĜM =
1

ξ2
p − E2

n

(
−iζn − ξp −∆

∆∗ iζn − ξp,

)
, (3.24)

where En = i
√
|∆|2 + ζ2

n. The Green’s function has poles at ξp = ±En,
which, since ξp ∝ ∇r, correspond to a strong dependence of the Green’s
function on r1−r2. These oscillations are not often of interest. The Green’s
function can be simplified by averaging over energies, which corresponds to
integrating over ξp. The terms with ξp in the numerator are odd and so inte-
grate to zero. For the remaining terms, the integration over ξp can be done
using complex contour integration. This involves considering a positively ori-
ented contour enclosing one of the poles. Since En is purely imaginary, all of

14
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the poles are imaginary. For the pole at ξp = En, Cauchy’s residue theorem
gives that the integral

∫
1/(ξ2

p − E2
n)dξp evaluates to 2πiRes(En) = πi/En.

The resulting Green’s function is

ĜM =
1

En

(
iζn ∆
−∆∗ −iζn

)
, (3.25)

where a factor i/π was added for comparison with results presented later.
The Green’s function resulting from the integration i/π

∫
ĜMdξp is known as

the quasi-classical Green’s function. This is discussed more later. The result
in eq. 3.25 often serves as a boundary condition for calculations involving
superconducting reservoirs. It is used frequently throughout this project.

The density of states can be found from eq. 3.25 by analytic continuation
via

ν(ε) =
1

2
Tr[η̂3 ĜM (ζn → iε+ 0)].

It is plotted in figure 3.1.

Figure 3.1: Density of states of a bulk superconductor showing the
gap of width 2|∆| that opens around the Fermi energy.
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3.4.2 Self-consistent gap equation

The order parameter, ∆, is given in eq. 3.22 in terms of the Green’s function
[ĜM ]12 which in turn depends on ∆, as can be seen directly in eq. 3.24. This
is what is meant by self-consistency. In the mixed representation

∆(r → 0+, τ → 0+) = −λT
∞∑

n=−∞

∫
[ĜM ]12(R,p, ζn)dp

= −λνFT
∞∑

n=−∞

∫
dp̂

4π
[ĜM ]12(R,p, ζn)dξp

= −λνFT
∞∑

n=−∞

∫
〈[ĜM ]12(R,p, ζn)〉dξp

= iπλνFT

∞∑
n=−∞

〈[ĜM ]12(R, p̂, ζn)〉, (3.26)

where 〈...〉 denotes averaging over, p̂, the directions of p, and ĜM (R, p̂, ζn) =
i/π

∫
Ĝ(R,p, ζn)dξp is the quasiclassical Matsubara Green’s function.

The solution for a bulk superconductor in eq. 3.25 does not depend on
the direction of p so it averages to itself. The self-consistency equation 3.26
can then be solved for ∆. Using the [ĝM ]12 component of eq. 3.25 gives

∆ = λνFπT
∞∑

n=−∞

∆√
|∆|2 + ζ2

n

. (3.27)

In order to compute this sum, a cutoff energy, nc, must be introduced be-
cause the sum is otherwise divergent. First considering the case as T → Tc
so that ∆→ 0, eq. 3.27 becomes

1 = λνF

nc∑
n=0

1

n+ 1
2

,

where ζn = (2n + 1)πT was substituted. Treating the sum as an integral
and estimating that the cutoff is proportional to the inverse of the critical
temperature, nc = a/Tc � 1, then the critical temperature is

Tc = a exp

(
−1

λνF

)
.

The constant of proportionality, a, is usually said to be related to the Debye
energy at which there are no phonons to mediate the attractive electron-
electron interaction. Rearranging some terms and performing a similar ap-
proximation of a sum over Matsubara frequencies gives

∆ ln

(
T

Tc

)
= 2πT

nc∑
n=0

(
∆√

|∆|2 + ζ2
n

− ∆

|ζn|

)
,
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which is the BCS gap equation for a bulk superconductor.

In cases where the approximation made here to find Tc is reasonable
for non-bulk superconductors, then ∆ can be computed self-consistently
according to

∆ =

iπT

nc∑
n=−nc

〈[ĜM ]12(R, p̂, ζn)〉

ln

(
T

Tc

)
+

nc∑
n=0

1

|ζn|

. (3.28)

3.5 Keldysh Green’s Functions

In order to deal with problems out of thermal equilibrium, with for in-
stance a heat gradient or an applied voltage, the Matsubara technique be-
comes cumbersome. For such non-equilibrium problems, another method,
the Keldysh method, is advantageous. The method is based on perturba-
tion techniques. The perturbation expansions require correct time-ordering
along time-contours. The definition of the Green’s function in Nambu space
given in eq. 3.1 is the Green’s function for the case where both time co-
ordinates t1 and t2 are along the forward-in-time contour. Let this sort
of time-ordered Green’s function be labelled Ǧαα(1, 2), where α labels the
forward-in-time contour, whereas β labels the backward-in-time contour.
Other useful Green’s function definitions are the following [13]:

Ĝββ(1, 2) = −iη̂3〈T̃ Ψ̂(1)Ψ̂†(2)〉;
Ĝαβ(1, 2) = iη̂3〈Ψ̂†(2)Ψ̂(1)〉;
Ĝβα(1, 2) = −iη̂3〈Ψ̂(1)Ψ̂†(2)〉,

(3.29)

where Ǧββ has both t1 and t2 on the backward-in-time contour ordered in
reverse-time order. The operator T̃ is the reverse time-ordering operator.
The functions Ǧαβ and Ǧβα are recognised as the “greater-than” and “less-
than” Green’s functions, Ǧ> and Ǧ<. Each of the matrices defined in eq.
3.29 are themselves matrices in Nambu space. They are not all linearly
independent but are related by

Ĝαα(1, 2) + Ĝββ(1, 2) = Ĝαβ(1, 2) + Ĝβα(1, 2).

Using eq. 3.29, the full matrix Green’s function written in Keldysh space
has the form

Ǧ(1, 2) =

(
Ĝαα(1, 2) Ĝαβ(1, 2)

Ĝβα(1, 2) Ĝββ(1, 2)

)
.

To exploit the linear dependence of the Green’s functions, the full Green’s
function can be first transformed Ǧ → τ̌3Ǧ and then rotated by acting
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Q̌ = (τ̌0 − iτ̌2)/
√

(2) from the left and Q̌† from the right. The resulting
Green’s function has the form

Ǧ(1, 2) =

(
R̂(1, 2) K̂(1, 2)

0̂ Â(1, 2)

)
,

where R̂ = Ĝαα−Ĝαβ, Â = Ĝαα−Ĝβα, K̂ = Gαα+Gββ are respectively the
retarded, advanced, and Keldysh Green’s functions. Performing similar op-
erations on Σ̌, the form of the Dyson equation for the full Green’s functions
including the Keldysh space is the same:

Ǧ = Ǧ0 + Ǧ0 ⊗ Σ̌⊗ Ǧ.

Extracting the self-energy again, the Gor’kov equation including Keldysh
space is also the same:

(Ǧ−1
0 + ∆̌− Σ̌)(1, 1′)⊗ Ǧ(1′, 2) = δ(1− 2),

where

∆̌ =

(
∆̂ 0

0 ∆̂

)
; Ǧ−1

0 =

(
Ĝ−1

0 0

0 Ĝ−1
0

)
.

All spectral information can be found from R̂, which is related to Â
by R̂(1, 2) = −η̂3Â

†(2, 1)η̂3. Information regarding occupation of states,
however, is contained solely in the Keldysh Green’s function K̂.

3.6 Eilenberger Equation

At this point, simplifications can be made to adjust the detail and complexity
of the Green’s function theory to a level appropriate for the systems to
be studied. Only stationary cases, in which all applied fields are constant
in time, will be considered. This encourages switching to the central and
relative time coordinates, T and t, as described in section 3.3 because only
the relative time coordinate is required. Switching to relative and central
position coordinates R and r will also be useful because all fields will be
assumed to depend only on R and not r. The mixed representation as
presented in eq. 3.17 is thus used.

As seen in eq. 3.24, the Green’s functions depend strongly on εp and
ε. Since εp → ∇r, this corresponds to a strong dependence of the Green’s
functions on small length scales. The characteristic length scales of super-
conductivity, ξ0 = vF /∆ and ξN = vF /2πT , however, are much larger than
the Fermi wavelength, λF . Subtracting the right-hand Dyson equation, eq.
3.10, from the left-hand one, eq. 3.9, reduces this dependence on ξp and ε
to weak a one [15]. This step, known as the left-right trick, allows taking
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an average over energy by integrating over ξp, resulting in the semiclassical
Green’s function,

Ǧ(R, p̂; ε) =
i

π

∫
dξǦ(R,p; ε).

After transforming to the mixed representation, the convolutions, ⊗, in
the Gor’kov equation need to be addressed. They can be expanded using a
gradient expansion, i.e. rewriting convolution in the following manner:

A⊗B =

∫
dt3e

i
2

(∇A
R·∇

B
p−∇A

p ·∇B
R)A(R,p, t1, t2)B(R,p, t1, t2).

Specifically, when Fourier transforming to central and relative coordi-
nates in both position and time, the gradient expansion may be written in
the following form when performing the left-right trick if there is assumed
to be no dependence on central time, T [13]:

(A	B)(R,p, ε) = [A,B] +
i

2
[{∇RA,∇pB} − {∇pA,∇RB}] .

As mentioned, the dependence of the Green’s function on ξp is weak after
the left-right trick. In addition, only the diffusive (dirty) limit will be con-
sidered in this work, so that the quantities involved in the Gor’kov equation
have little dependence on the direction of p. The gradients in p in the gra-
dient expansion can thus be neglected. Excluding external fields, with all
the simplifications mentioned above, the resulting equation for the Green’s
function, Ǧ, is

i

~
[Ě, Ǧ] + v · ∇RǦ =

i

~
[Σ̌, Ǧ], (3.30)

known as the Eilenberger equation [16]. The commutators in eq. 3.30 involve
only matrix multiplication. Note the change in notation. In switching to
the mixed representation and considering only lowest order gradients

G−1
0 = i∂t1 +

1

2m
∇2

r1 + µ→ ε+
i

2m
p · ∇R + µ

by eq. 3.16. Since all transport happens around the Fermi surface, all
quantities are replaced by their values there, for instance p → mvf . The
matrix Ě is defined by Ě(R, ε) = Ǧ−1

0 (R,p, ε)− i
2mp·∇R−µ+∆̌. Expressed

instead in Nambu space it has the form

Ě ≡ εη̂3 +
∆

2
(iη̂2 + η̂1) +

∆∗

2
(iη̂2 − η̂1) =

(
ε ∆
−∆∗ −ε

)
.

The Eilenberger equation as developed so far is insufficient to give an
unique solution to any problem. Prior to performing the left-right trick, the
Gor’kov equation was inhomogeneous and produced therefore a single pos-
sible solution, i.e. the equation was normalised. The left-right trick instead
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produces an homogeneous equation, determing the solution up to a constant
factor. The Eilenberger equation should of course give correct results so the
appropriate normalisation needs to be restored. Since Ǧ[Ě, Ǧ]+[Ě, Ǧ]Ǧ = 0
and Ǧ[Σ̌, Ǧ] + [Σ̌, Ǧ]Ǧ = 0, the Eilenberger equation reveals that Ǧ2 is in-
dependent of R:

∇RǦ
2 = Ǧ(∇R)Ǧ+ (∇RǦ)Ǧ = 0. (3.31)

This means that if the Green’s function of a reservoir is known, then Ǧ2 is
known throughout the entire structure. The solution for a superconduct-
ing reservoir was given in the Matsubara formalism in eq. 3.25 for which
Ĝ2 = 1̂. The retarded Green’s function in the reservoir can be obtained by
analytic continuation, R̂ = Ĝ(ζn → iε + 0). Clearly then R̂2 = 1̂ as well.
The advanced Green’s function can then be obtained by Â = −η̂3R̂

†η̂3 so
Â2 = 1̂ also. Since reservoirs are assumed to be in equilibrium, the Keldysh
component is found from (R̂ − Â) tanh(ε/2T ) giving that R̂K̂ + K̂Â = 0
there. The square of the full reservoir Green’s function in Keldysh space is
at last Ǧ2 = 1̌ since R̂K̂ + K̂Â = 0. Equation 3.31 implies then that Ĝ2 = 1̂
and Ǧ2 = 1̌ everywhere in the nanostructure. By these arguments, the nor-
malisation condition is restored. That Ǧ2 = 1̌ is often useful in calculations.
Some simple but useful relations are provided in the appendix section A.
The normalisation condition is discussed in more detail in [17].

3.6.1 The Keldysh component and distribution functions

The R̂K̂ + K̂Â = 0 condition is automatically fulfilled by the following
parameterisation of the Keldysh component,

K̂ = R̂ĥ− ĥÂ, (3.32)

where ĥ is a matrix containing the information about the particles’ distribu-
tion. Inserting this form of the Keldysh component into the Usadel equation
gives a kinetic equation of motion that is linear in ĥ implying that it may
be assumed to be diagonal [15]. This is commonly done by separating ĥ into
‘longitudinal’ and ‘transverse’ components fL and fT as ĥ = fL+fT η̂3. The
longitudinal component, fL, is related to effective temperature change while
the transverse fT is related to changes in the effective chemical potential.
At equilibrium these functions are

fL(T ) =
1

2

[
tanh

(
ε+ eV

2T

)
+ (−) tanh

(
ε− eV

2T

)]
. (3.33)

Once R̂ and Â are known, the Keldysh Green’s function is found from
the parameterisation given in eq. 3.32. Since the superconducting reservoirs
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to be used as boundary conditions are at equilibrium and all at the same
potential, V = 0, using eq. 3.33 gives

K̂ = (R̂− Â) tanh
( ε

2T

)
, (3.34)

where we know R̂ and Â from above. In the case of normal metals where
R̂ = −Â = η̂3,

K̂ = 2

tanh
(
ε+eV
2kBT

)
0

0 − tanh
(
ε−eV
2kBT

) .

3.7 Usadel Equation

Similarly to the classical case, the dirty limit allows significant simplifica-
tion of the Eilenberger equation, eq. 3.30. Also as in the classical case, only
elastic impurity scattering will be included, again using the Born approxi-
mation. The derivation given here again follows that given in [9] closely. As
before, the scattering rate

Wp,p′ =
cimp
~
|Ũimp(p− p′)|2δ(E(p)− E(p′)),

and the relaxation time

τ−1
P =

2πνcimp
~

|Ũimp|2,

are used. Writing the self-energy, Σ̌(p), as

Σ̌(p) =

∫
dp′Wpp′Ǧ(p′),

and rewriting
∫
dp′ →

∫ ∫
νFdp̂

′dξp gives Σ̌ as a functional of the quasiclas-
sical Ǧ:

Σ̌(p) =
−i~
2τp
〈Ǧ(p̂)〉.

As in section 2.2, a first-order approximation of the Green’s function con-
sisting of an isotropic part, Ǧ(R), plus a small anisotropic part, Ǧ(1)(R, p̂),
is useful: Ǧ→ Ǧ(R) + Ǧ(1)(R, p̂) with Ǧ� Ǧ(1) and

〈
Ǧ(1)

〉
= 0. Inserting

this expanded Ǧ into the expression for the impurity self-energy, leads to

Σ̌ =
−i~
2τP

〈
Ǧ(R, p̂)

〉
→ −i~

2τP

〈
Ǧ(R) + Ǧ(1)(R, p̂)

〉
=
−i~
2τP

Ǧ.

Now using the expanded Green’s function in eq. 3.30 gives

i

~
[Ě, Ǧ+ Ǧ(1)]− v · ∇R

(
Ǧ+ Ǧ(1)

)
=

1

2τP

[
Ǧ, Ǧ+ Ǧ(1)

]
. (3.35)
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This equation will provide two equations: an averaged and a non-averaged
one.

Before turning to these equations, the right hand side of eq. 3.35 can
be simplified by noting that [Ǧ, Ǧ+ Ǧ(1)] = [Ǧ, Ǧ(1)]. Using that Ǧ� Ǧ(1)

allows rewriting Ǧ2 = (Ǧ+ Ǧ(1))2 ≈ Ǧ2 + ǦǦ(1) + Ǧ(1)Ǧ. Requiring Ǧ2 = 1̌
leads to {Ǧ, Ǧ(1)} = ǦǦ(1) + Ǧ(1)Ǧ = 0̌, which is used to simplify in the
following step.

For the non-averaged equation, using Ǧ� Ǧ(1) gives

i

~
[Ě, Ǧ]− v · ∇RǦ =

1

2τP

[
Ǧ, Ǧ(1)

]
=

1

τP
ǦǦ(1). (3.36)

Taking the average of eq. 3.35 over directions p̂ and using that
〈
Ǧ(1)

〉
= 0

gives
i

~
[Ě, Ǧ]−∇R · ǰ = 0; ǰ ≡

〈
vǦ(1)

〉
. (3.37)

The ǰ is the spectral matrix current density which will be important later
when discussing circuit theory. The minus sign is to emphasise the similarity
between the equations to follow and the classical equations of section 2.2.
The above step used that ∇ · (fA) = (∇f) ·A+ f(∇ ·A). This means that〈
v · ∇RǦ

(1)
〉

=
〈
∇R · (vǦ(1))− (∇R · v)Ǧ(1)

〉
. Part of the assumption of

isotropisation is, however, that ∇R · v ≈ 0. Thus〈
v · ∇RǦ

(1)
〉

= ∇R ·
〈
vǦ(1)

〉
.

Substracting eq. 3.37 from eq. 3.36 leads to

−v · ∇RǦ =
1

τP
ǦǦ(1).

which gives
Ǧ(1) = −τPv Ǧ ∇RǦ. (3.38)

Using eq. 3.38 in eq. 3.37 gives the so-called Usadel equation for diffusive
nanostructures [6]:

∇R · ǰ −
ie2ν

~
[Ě, Ǧ] = 0; ǰ = −σ Ǧ∇RǦ, (3.39)

where a factor e2ν was added in order to have ǰ in units of conductivity. The
Usadel equation is clearly analogous to the drift-diffusion equation from eq.
2.3. The apparent correspondance of Ǧ∇RǦ to the classical ∇V explains
that the Green’s functions are also known as matrix voltages.
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Chapter 4

Finite-element quantum
circuit theory

The required background for Nazarov’s quantum circuit theory [8] was intro-
duced in chapters 2 and 3. This chapter shows how quantum circuit theory
arises naturally from the semiclassical results of chapter 3 and relates it to
classical circuit theory.

4.1 Classical circuit theory

For classical circuits, solving the Laplace equation (eq. 2.7), while correct, is
often a needlessly complicated task. The simpler and more commonly famil-
iar approach is instead to approximate the circuit by breaking it into differ-
ent elements: terminals, nodes and connectors. Terminals are the sources of
the applied voltages, where the electrons are injected into (or removed from)
the rest of the circuit. Nodes are the small volume elements that form the
circuit when added together. To be a node, such a volume element should
have negligible potential differences across it when compared to between it
and adjacent nodes. The connections between the nodes, fittingly referred
to as connectors, are regions across which the potential changes significantly.
They are characterised by the conductance of the material. In more famil-
iar terms of standard circuit analysis, for instance, a connector would be a
resistor connecting two good conductors (nodes).

The point is then to be able to determine the current through each of
the connectors and the potential in each of the nodes, given the potentials
of the terminals. This is most often accomplished using Kirchhoff’s current
rule and Ohm’s law. Kirchoff’s current rule, for clarity later on, is a current
balance equation stating that the sum of all currents into and out of a node
i to and from the connected nodes k is zero, i.e.∑

k

Iik = 0.
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CHAPTER 4. FINITE-ELEMENT QUANTUM CIRCUIT THEORY

It is essentially the result of integrating the Laplace equation over a volume,∫
(∇ · I)dV =

∫
(N · I)dA = 0, but where the surface integral is separated

into finite elements, i.e. the connectors to the neighbouring nodes. In the
finite-element picture, Ohm’s law from eq. 2.7 becomes Iik = Gik(Vi − Vk),
that is, that the current through the connector between nodes i and k is
given by the potential difference between the nodes and the characteristic
conductance of the connector, Gik. In this sense, Ohm’s law acts as a
boundary condition for the two ends of the connector.

4.2 Conservation equation

The classical circuit theory described in chapter 2 relied on two things: a
current conservation equation (eq. 2.7) and a boundary condition (Ohm’s
law) for the regions of greater potential differences. Section 3 began with the
Green’s function methods standard to studies of superconductivity leading
to the Eilenberger and Usadel equations which were clearly similar in nature
to the balance equations of chapter 2. The Usadel equation particularly,

∇R · ǰ −
ie2ν

~
[Ě, Ǧ] = 0; ǰ = −σ Ǧ ∇RǦ, (4.1)

may be seen as a non-conservation equation, indicating that there is some
“leakage” due to the [Ě, Ǧ] term. Redefining the sum of matrix currents
to include the leakage allows the Usadel equation to be considered a con-
servation equation instead. To do so, the volume leakage current is defined
as

ǰlc ≡ −
ie2ν

~
[Ě, Ǧ].

With this and integrating eq. 4.1 over volume results in an expression for
spectral current,

Ǐtot = Ǐ + Ǐlc =

∫
(ǰ ·N)dA−

∫
ie2ν

~
[Ě, Ǧ]dV = 0, (4.2)

where N is a unit vector in the direction of the surface at the point of
integration and dA is a surface area element. The leakage current Ǐlc =
−
∫
ie2ν[Ě, Ǧ]/~ dV has the same form as other connectors and may be

seen as a ficitious terminal connected to the node.
Discretising the integrals in eq. 4.2 gives the following generalised Kirch-

hoff current rule for quantum circuits:∑
k

Ǐik + Ǐlc = 0. (4.3)

This is the equation used to construct a quantum circuit theory in the same
sense as is done with the drift-diffusion equation in classical circuit theory.
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4.3. BOUNDARY CONDITION

How to divide nanostructures into nodes will be discussed later. What
remains to complete a quantum circuit theory is a boundary condition for
connectors analogous to Ohm’s law.

4.3 Boundary condition

Regardless of the type of connector (point contact, tunnel junction,...) be-
tween two nodes, provided that the transport within is diffusive with no
inelastic scattering, then an appropriate boundary condition for the matrix
current across it may be written, rather compactly, as [8]

Ǐik = GQ
∑
p

Tp[Ǧi, Ǧk]

2 + (Tp/2)({Ǧi, Ǧk} − 2)
, (4.4)

where the Tp are the set of transmission eigenvalues of the scattering matrix
specific to each kind of junction. Tunnel junctions, for instance, have only
small transmission eigenvalues, Tp → 0, leading to the Kuprianov-Lukichev
boundary condition [18]

Ǐik =
GT
2

[Ǧi, Ǧk], (4.5)

where GT = GQ
∑

p Tp and GQ = 2e2/h is the conductance quantum. Equa-
tion 4.4 concisely contains a lot of information about Josephson junctions,
much of which can be derived derictly from it. See the end of appendix
section E for an example derivation.

Equation 4.4 can be written in another form in terms of the “matrix
phase” φ̌ ≡ −i ln(Ǧ1Ǧ2) as [9]

Ǐ = iI(φ̌); I(φ) = GQ
∑
p

Tp sinφ

1− Tp sin2(φ/2)
. (4.6)

See appendix section D for a derivation. This form can be used to gain
insight into the relation between transmission distribution functions, ρ(T ),
and the matrix structure.

4.4 Separation of a nanostructure into elements

With a conservation equation and a boundary condition established, the
finite-element circuit theory is completed. The first thing to consider then
is how to divide a nanostructure into elements. Put simply, a region where
the matrix voltage, the Green’s function Ǧ, changes rapidly is regarded as
a connector, whereas regions where it is relatively constant can be regarded
as nodes. Given that all circuits considered here include superconductors,
a natural upper limit on the size of nodes is the coherence length, given by
ξ0 =

√
~D/(2 max(∆, ε)). Increasing the number of nodes/divisions should
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CHAPTER 4. FINITE-ELEMENT QUANTUM CIRCUIT THEORY

increase accuracy. A real nanostructure is typically already divided into
separate elements that should give insight as to how to divide it for calcu-
lations.

The example of dividing a bulk diffusive conductor is illustrative [8]. The
volume of the conductor is divided into a mesh of cubic nodes with sides
of length a, separated exclusively by tunnel junction connectors. Equation
4.5 can then be used. The period a should be small enough to simulate
continuous conductivity throughout the conductor. Practically speaking,
one wishes of course for as large a’s as possible to have as few nodes to
compute as possible while retaining the desired accuracy.

Consider a node i centered at point ri, having volume Vi = a3. Given
that the condition for a volume to be considered a node is that its Green’s
function vary little in space, approximate the Green’s function of node i by

Ǧi(r) = Ǧ(ri) + Ξ̌ · (r − ri), (4.7)

similarly to as was done in section 3.7, where aΞ� Ǧ(ri). Using eq. 4.7 in
ǰ = −σǦ∇Ǧ from section 3.7,

ǰ = −σǦ(ri)Ξ̌. (4.8)

Recalling that the total current is given by Ǐ =
∫

(ǰ ·N)dA, the current
flowing into node i through the surface connecting node k is

Ǐik = Aǰik, (4.9)

where A = a2 is the surface area of the connector and ǰik is the component
of the matrix current density in the direction from node k towards node i,
ǰ ·Nik. Note that Nik points in towards the node i.

Now let us apply the boundary condition eq. 4.5 and write the Green’s
function of node i as above and that of node k as Ǧk = Ǧ(ri) + Ξ̌ · (r−ri−
lNik), where l = a is the distance between the centers of the nodes, written
as l to distinguish it from the surface area of the connector. Clearly then
Ǧk = Ǧi + Ξ̌lNik giving

Ǐik =
GT
2

[Ǧ(ri), Ξ̌ · (−lNk)] = −GT l Ǧ(ri)Ξ̌k, (4.10)

which indeed reproduces eq. 4.8. Comparing eqs. 4.10 and 4.9, shows that
σ = GT l/A or, using conductance per unit area, gT ≡ GT /A = σ/l.

As mentioned, to increase accuracy, the nodes composing a structure
can be made smaller. This implies imagining the presence of connectors
in regions of the structure where there may not actually exist any such
connector. This point, which may seem confusing, is addressed later in
section 5.2.1.
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4.5. APPLYING THE FINITE-ELEMENT CIRCUIT THEORY

4.5 Applying the finite-element circuit theory

In this section, an algorithm for computing the Green’s functions in the
nodes as given in [8] is described. The algorithm was the basis for most of
the calculations performed in this thesis project.

The boundary condition eq. 4.4 can always be written as Ǐik = [Ǧi, Ľik]
where Ľ is a matrix. This allows the Kirchhoff’s current rule eq. 4.3 to be
written as

[Ǧi, Ǧi] = 0, (4.11)

where

Ǧi =
∑
k

Ľik −
ie2νVi

~
Ě,

where Ľik generally depends on Ǧi.
Writing

Ǧ =

(
R̂ K̂
0 Â

)
and inserting it into eq. 4.11 produces the following relations: [R̂, R̂] = 0,
[Â, Â] = 0 and R̂K̂ + K̂Â = R̂K̂ + K̂Â. The first two imply that

R̂ = R̂/r ; Â = Â/a,

where r and a are just normalisation constants. Using these expressions
together in R̂2, Â2 = 1̂ gives

r =

√
Tr(R̂2)

2
; a =

√
Tr(Â2)

2
.

The symmetry relation Â = −η̂3R̂
†η̂3 may then be used to show that

a = r∗.

The Keldysh part is found by left-multiplying the equation R̂K̂ + K̂Â =
R̂K̂ + K̂Â by R̂ and using that R̂2, Â2 = 1̂ and R̂K̂ = −K̂Â, giving

K̂ =
1

a + r
(K̂ − R̂K̂Â).

We now have equations for the conservation of current in the nodes in
terms of the connected nodes. To approach a circuit consisting of several
nodes and connectors, the conservation equation can be applied in each
of the nodes to determine the Green’s functions. Given that the Green’s
functions of the reservoirs are known, inserting estimated Green’s functions
for the nodes in the conservation equations and iterating will determine the
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CHAPTER 4. FINITE-ELEMENT QUANTUM CIRCUIT THEORY

Green’s functions in the nodes. Once the Green’s functions in all of the
nodes are found, any transport quantity can be deduced. The density of
states may be found from

ν(ε)

ν
=

1

2
Re[Tr(η̂3R̂)]. (4.12)

The electric current between node i and node k is found from the Keldysh
component of the matrix current by

Iik =
1

4e

∫
Tr(η̂3Î

K
ik )dε. (4.13)

The expression for current in the Matsubara technique is instead

Iik = − Im

 π
2e
T
∑
ζ

Tr(η̂3ÎM )

 .
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Chapter 5

Application to Josephson
Junctions

In this chapter, transport through diffusive SNS and SS’S type Josephson
junctions (see [19] and [20] for reviews) is calculated using the quantum cir-
cuit theory. All connectors were considered to be tunnel junctions. In this
work two different SNS type scenarios were considered. The first scenario,
discussed in section 5.1, was an STNTS junction where the tunnel junc-
tions’ resistances are much greater than the resistance of the intermediate N
metal. The second SNS scenario was to model a short, diffusive, normal wire
between two superconducting reservoirs. This case was derived analytically
from the Usadel equation by Kulik and Omel’yanchuk (KO1) [10]. Section
5.2 discusses the scenario and why the nodecode for tunnel junctions is able
to model this system which contains no tunnel junctions. The KO1 current
equation is also derived in section 5.2.2.

Additional care must be taken when the nodes of the circuit theory are
superconducting. Section 5.3 identifies some challenges that are encountered
in these cases as well as describes how to resolve them.

Note that in the following calculations, a dimensionless parameter, g, is
used to characterise the junctions. It is given by

g ≡ 2πGT
1.76σNA

(
ξ2
N

L

)
,

where σN is the normal state conductivity of the intermediate material, A is
the cross-sectional area of the nodes, L is the length of the junction between
the reservoirs, and ξN is the coherence length of the normal metal given
by ξ2

N = 1.76
2π

~D
∆0

with ∆0 = 1.76kTc where Tc is the critical temperature of
the reservoirs. The parameter g is related to the leakage current prefactor
e2νFVN/~ by

GT /g = e2νFVN/~.
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CHAPTER 5. APPLICATION TO JOSEPHSON JUNCTIONS
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Figure 5.1: The circuit diagram after discretising the STNTS junc-
tion, assuming that the tunnel junction resistances are much greater
than the resistance of the intermediate normal metal, RT � RN , and
that the length of the normal metal is much shorter than the coherence
length in the normal metal, ξN � L.

5.1 STNTS

All connectors are assumend to be tunnel junctions making eq. 4.5,

Ǐi,k =
GT
2

[Ǧi, Ǧk],

applicable for the connectors. This simplifies the expression for Ǧi to be
independent of Ǧi:

Ǧi =
GT,i−1

2
Ǧi−1 +

GT,i
2
Ǧi+1 − i

e2ν

~
ViĚ.

By the assumption that all superconductors are at voltage V = 0 and that
there are no temperature gradients, the system is at equilibrium and so only
the retarded Green’s function R̂i needs to be determined.

Assuming that the tunnel junctions’ resistances, RT , are much larger
than the resistance of the N metal, RN , and that the length of the N metal,
L, is much shorter than the coherence length, ξN , the intermediate metal
may be treated as a single node. More specifically, the second condition
should be (L/ξN )2 � RN/ε. To see this, consider the equations if one
divides the intermediate metal into two nodes. The equation for the first
node is then

R̂1 =
1

2RT
R̂L +

1

2RN
R̂2 − i

1.76

2π

(
L/2

ξN

)2 ε

RN
η̂3.

The assumptions that RT � RN and ξN � L reduce the equation to simply

R̂1 ≈
1

2RN
R̂2,

which gives in turn R̂1 ≈ R̂2 since r =
√

Tr(R2
1)/2 ≈ GN/2. Because the

Green’s functions in the nodes are roughly equal, calculating for more than
a single node does not provide much additional information.
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5.1. STNTS

Figure 5.2: Density of states, ν(ε), in the normal node for the STNTS
case with g = 0.2, plotted against the phase difference between the su-
perconducting reservoirs, φ. The proximity effect, in which a minigap
in ν ”leaks” into the normal metal from the superconductors, is clearly
seen. The valleys above the minigap and below the gap in the super-
conductors, |∆|, result from scattering due to the impurities in the
normal metal.

Using a single node has the advantage of not requiring iteration since
the Green’s functions of the reservoirs are known. After finding R̂1 in the
node, the advanded Green’s function is found from Â = −η̂3R̂

†η̂3 and then
the Keldysh component is found from eq. 3.34, K̂ = (R̂ − Â) tanh (ε/2T ).
The density of states, ν(ε), and the current can then be calculated using
eqs. 4.12 and 4.13.

The density of states, ν(ε), calculated from eq. 4.12 for parameter g =
0.2, is plotted in figure 5.2 against energy, ε, and against the phase difference,
φ, across the junction. Of note is that the gap in ν disappears as the phase
difference φ → π/2. Also of note is that there are no sharp Andreev peaks
inside −|∆| < ε < |∆|. They are instead spread out in the valleys shown.
This spreading is due to the high concentration of impurities in the normal
metal.

Figure 5.3 shows ν for φ = 0 plotted against ε and g. For given σN ,
A, and ξN , decreasing g corresponds either to increasing RT , i.e. making
the tunnel resistances stronger, or to increasing the length of the junction,
since the parameter g ∝ (RTL)−1. Both cases may be seen as increasing an
effective length of the junction because increasing RT will cause particles
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CHAPTER 5. APPLICATION TO JOSEPHSON JUNCTIONS

Figure 5.3: Density of states ν(ε) in the normal node for the STNTS
case with φ = 0 plotted against the parameter g. The widening of the
valleys for decreasing g results from the increased amount of scattering
inherent in decreasing g.

to reflect more inside the junction thereby causing them to travel a greater
distance in the wire before leaving. The parameter g is thus inversely related
to this effective length. Figure 5.3 then shows that the gap is reduced as the
effective length is increased.

5.2 Short SNS Junction

5.2.1 Tunnel junction model

Now let us turn to the other type of SNS setup studied here: a diffusive
normal metal wire connecting two superconducting reservoirs. The code
developed so far in this work, alas, is based entirely upon tunnel junctions.
In the present system, however, there are no obvious tunnel junctions. How
can one then model the diffusive wire using the code developed? This is
in fact simply accomplished by modelling the diffusive wire as a series of
tunnel junction connectors of equal conductances. The reason a tunnel
junction may be imagined to be within the diffusive wire is that the diffusive
wire itself may be considered as a series of many tunnel junctions of equal
conductances [9]. This can be seen from the Ǐ = iI(φ̌) form of the matrix
current from eq. 4.6. Using the simplest possible Green’s function satisfying
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5.2. SHORT SNS JUNCTION
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Figure 5.4: The quantum circuit theory model of a diffusive wire as
many discrete nodes separated by tunnel junctions of equal conduc-
tance.

Ǧ2 = 1̌,

Ǧ1,2(φ1,2) =

(
0 exp(iφ1,2)

exp(−iφ1,2) 0

)
, (5.1)

allows the transmission distribution function to be easily related to a matrix
structure [9]. Such Green’s functions are just a tool for getting some insight,
and so the “phases”, φ1,2, do not represent anything physical. Using eq. 5.1
to solve φ̌ = −i ln(Ǧ1Ǧ2) gives φ̌ = iη̌3(φ1 − φ2). The matrix current then
takes the simple form Ǐ = η̌3I(φ) where now φ = φ1−φ2 is simply a scalar.
The function I(φ) from eq. 5.1, provided again here for reference is

I(φ) = GQ
∑
p

Tp sinφ

1− Tp sin2(φ/2)
. (5.2)

Writing this instead as an integral with a transmission distribution function,
I(φ) becomes

I(φ) = GQ

∫ 1

0
ρ(T )

T sin(φ)

1− T sin2(φ/2)
dT. (5.3)

Equation 5.3 indicates that if the transmission distribution of a connector is
known then the phase dependence of the current, I(φ), is also known. This
equation can be inverted so that if the I(φ) relation is instead known, then
ρ(T ) can be found uniquely. The equation for this is

ρ(T ) =
ρD(T )

πG
Re
(
I(π − 0 + 2i cosh−1(T−1/2))

)
;

ρD(T ) =
GD

2GQT
√

1− T
,

where ρD(T ) is known to be the transmission distribution for a diffusive
connector of conductance GD.

Since the focus of this section is to model a diffusive conductor, note that
using ρD(T ) in eq. 5.3 gives a linear I-φ relation for a diffusive connector:

I(φ) = GDφ. (5.4)

As mentioned, a method of modelling the diffusive connector is to have
a large number, N , of identical tunnel junctions in series. In such a case,
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CHAPTER 5. APPLICATION TO JOSEPHSON JUNCTIONS

each tunnel junction has the same I-φ relation, labelled I0(φ) for clarity.
Assigning to each of the N − 1 nodes a phase θi, i = 1, 2, ..., N − 1, current
conservation then implies that I0(θi − θi−1) across each connector is the
same, i.e.

I0(φ− θ1) = I0(θ1 − θ2) = ... = I0(θN−2 − θN−1) = I0(θN−1).

Since all connectors are equivalent, the difference θi − θi−1 across each con-
nector is then θi − θi−1 = φ/N and the overall I-φ characteristic for the
structure is given by I(φ) = I0(φ/N). From the form of eq. 5.2, I0(φ/N)
is linear in φ for large N according to

I(φ) = I0(φ/N) ≈ GDφ; GD = N−1GQ
∑
p

Tp.

The GQ
∑

p Tp part of the conductance GD is recognised as the tunnel con-
ductance, GT , from eq. 4.5. The point here is that the long series of
connectors provides, for large N , the same linear I(φ) relation as a dif-
fusive connector. Since the I-φ relation unambiguously gives ρ(T ), the
chain of many connectors thus approximates the diffusive transmission dis-
tribution, ρD(T ). The diffusive connector can thus be regarded as simply
a series of many (large N) identical tunnel junctions of tunnel conductance
GT = NGD. This is why the tunnel junction “nodecode” can be used to
model the diffusive wire.

5.2.2 Derivation of KO1 equation

The starting point in deriving the KO1 current expression is to neglect
the non-gradient terms in the Usadel equation [20]. This corresponds to
neglecting the leakage current in eq. 3.39. The Usadel equation becomes

∇R · ǰ = 0; ǰ = −σ Ǧ∇RǦ,

exactly conserving matrix current. Since the leakage current accounts for
decoherence of particles and holes and the conversion of cooper pairs to
quasiparticles, the no leakage assumption is that the junction is so much
shorter than the coherence length, ξN , that the particles do not have enough
time in the normal region to lose coherence or be converted to quasiparticles.
In appendix B, a general expression for the matrix current, Ǐ, in the absence
of leakage current is derived and given as eq. B.7. The result is

Î = GD ln(Ĝ1Ĝ2),

where the hats are used since the Matsubara technique with 2x2 matrices is
used in the following derivation. The quantity ln(Ĝ1Ĝ2) is recognised as the
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5.2. SHORT SNS JUNCTION

matrix phase from eq. D.1, φ̂ = −i ln(Ĝ1Ĝ2). The current may therefore be
written as

Î = iGDφ̂,

in agreement with eq. 5.4 for a diffusive conductor. The KO1 current
equation can be simply derived using the expression for φ̂ in eq. E.2, as well
as other results given in appendix E. The expression for φ̂ is, for reference,

φ̂ = −2 tan−1

(√
1−Θ

1 + Θ

)
P̂ η̂3P̂

−1,

where
Θ(ζn) ≡ Tr(Ĝ1Ĝ2)/2,

and P̂ Ĝ1Ĝ2P̂
−1 is diagonal. The expression for the current is

IM = Im

 iπ
e
GDT

∑
ζ

tan−1

(√
1−Θ

1 + Θ

)
Tr(η̂3P̂ η̂3P̂

−1)

 . (5.5)

The KO1 result is for two equal superconducting reservoirs at equilibrium,
so the usual reservoir Green’s functions are used in the following. Using the
results of appendix E, the trace evaluates to

Tr(η̂3P̂ η̂3P̂
−1) =

2 cos(φ/2)

δ

while √
1−Θ

1 + Θ
=
|∆| sin(φ/2)

δ
,

where δ ≡
√
ζn + |∆|2 cos2(φ/2). Inserting these into the current expression

eq. 5.5 gives the KO1 current relation [20]:

IM (φ, T ) =
4πT

eRD

∑
ζn>0

|∆| cos(φ/2)

δ
arctan

|∆| sin(φ/2)

δ
, (5.6)

where a factor 2 was extracted by using the symmetry of the sum over
Matsubara frequencies.

5.2.3 Results of the TJ model

Having the KO1 equation now at hand, the tunnel junction model may be
applied to the short diffusive junction and compared with theory. The KO1
theory uses the approximation of no leakage current. To match the results
of the theory while keeping the same code including leakage current, a very
large value for g should be used to make the leakage current negligible.
This corresponds also to the notion that L� ξN . Accordingly, g was set to
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Figure 5.5: Current-phase relation
for multinode chains at T/Tc = 1/100
compared to KO1 result.

Figure 5.6: Convergence of the
“nodecode” towards the KO1 result
as the number of nodes (the fineness
of the discretisation) is increased.

g = 106 for the following calculations. Since no true junction has zero length,
the nodecode with a fine enough discretisation may provide more accurate
results than the KO1 theory. Figure 5.5 shows the CPR for T/Tc = 1/100,
calculated using the tunnel junction model, compared with the correspond-
ing KO1 result. Using a single node, the tunnel junction model provides
roughly the same features as theory. Increasing the number of nodes brings
the result closer and closer to the theoretical result, exhibiting agreement
within 1% for 10 nodes. Figure 5.6 shows how the tunnel model result
converges to the KO1 result as the number of nodes is increased.

The tunnel junction model succeeds also in reproducing the correct Ic-T
relations. This is shown in figure 5.7. Once again the results are better for
greater numbers of nodes. In this case, one sees that fewer nodes are required
to achieve good results for higher temperatures than for lower temperatures.
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5.2. SHORT SNS JUNCTION
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Figure 5.7: Critical current vs. temperature for the many-node
model of the short diffusive wire compared to the KO1 result as well
as the Ambegaokar-Baratoff (AB) result for a single tunnel junction.
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CHAPTER 5. APPLICATION TO JOSEPHSON JUNCTIONS

5.3 SS’S

With the code working for the SNS case, a natural extension is for cases
where the intermediate metal has an attractive coupling. Two cases arise
where the temperature, T , is either below or above the superconducting
critical temperature Tc′ of the intermediate metal so that it may be either
superconducting or not. In this work, only the case where the intermediate
metal is of the same type as the reservoirs is considered so that Tc = Tc′ .
Compared to the SNS case, the superconductivity in the intermediate metal
poses an additional challenge; the Hamiltonian term, Ě, in the leakage cur-
rent now contains a non-zero energy gap |∆| 6= 0. Care must be taken in
dealing with the order parameter ∆, because simple intuition will likely pro-
duce incorrect results. The problems with intuitive assumptions about the
size and phase of the order parameter are illustrated in sections 5.3.1 and
5.3.2. In section 5.3.3, a procedure to obtain correct results is described and
applied.

5.3.1 Problem 1: periodicity

Consider the STNTS case as in section 5.1 but now with a superconducting
metal in the junction (STSTS). Given that the intermediate material is the
same as the reservoirs, an intuitive guess for the order parameter on the node
would be that it have the same magnitude as the reservoirs and that the
total change in the phase is distributed equally between the two connectors.
Figure 5.8 shows the I-φ relation (or CPR for Current-Phase Relation) of
this single node circuit under the above assumptions for different values g
of the intermediate metal.

Josephson junctions have 2π-periodicity in the CPR. The present as-
sumptions shown in fig. 5.8 clearly deviate from this. The CPR proved
instead to be 4π-periodic. This is not correct. One may consider that the
error is due to the relatively long effective lengths plotted. The approach of
circuit theory is then to discretise the intermediate metal further to account
for the rapid changes in the Ǧ’s on the scale of ξN . This possible resolution
is examined in the following section.

5.3.2 Problem 2: current conservation

To remedy the non-2π periodicity of the SSS junction examined above, one
can try discretising the system further using the same approach as in sec-
tion 5.2. This should better account for the rapid changes in the Green’s
functions on the scale of ξN . Keeping the same intuitive assumptions as
above the phase is assumed to drop an equal amount across each connector.
The size of the energy gap is again assumed to be the same everywhere.
Results from this approach using five nodes are shown in figure 5.9. As
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5.3. SS’S

Figure 5.8: I − φ for STSTS for
g =2,5, and 10. Junctions of this type
are known to have 2π periodic I − φ
relations. This is clearly not the case
here under the present assumptions.

Figure 5.9: CPR for SSS discretised
into 5 nodes using intuitive assump-
tions for ∆. The plot shown is for
g = 2. Not only is the 2π-periodicity
not recovered but also the multi-node
approach exhibits non-conservation of
current.

can be seen, discretising the system more thoroughly does not restore the
required 2π-periodicity to the CPR. Not only that but by having multiple
nodes also shows that the assumptions have led to non-conservation of cur-
rent. As there is no actual leakage of current anywhere in the system, better
discretisation is not the solution to the errors in the CPR. Self-consistency of
the order-parameter has not been accounted for under the present assump-
tions. Current conservation in superconductors requires self-consistency so
it might be expected to solve at least the non-conservation of current prob-
lem. Incorporating self-consistency into the circuit theory is the topic of the
next section.

5.3.3 Solution: self-consistency

Self-consistency is generally required for current-conservation in supercon-
ductors. It is clearly a potential solution, at least to the current-conservation
problem of section 5.3.2. A self-consistent order-parameter can be added
straightforwardly to the circuit theory algorithm. First, Green’s functions
are calculated as usual according to the circuit theory algorithm. Once the
Green’s functions have relaxed to the desired accuracy, the order parameter
in each node is calculated from the anomalous component of the Green’s
function of each node according to eq. 3.28,

∆ =

iπT

nc∑
n=−nc

〈[ĜM ]12(R, p̂, ζn)〉

ln

(
T

Tc

)
+

nc∑
n=0

1

|ζn|

.
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CHAPTER 5. APPLICATION TO JOSEPHSON JUNCTIONS

Figure 5.10: Magnitude of the gap,
|∆|, for a single node, vs. phase differ-
ence φ for the STSTS circuit.

Figure 5.11: The gap sizes in the 5
nodes when discretising the intermedi-
ate metal in the STSTS circuit into 5
nodes.

The node-code is then run again but this time using the updated order-
parameter. This procedure is repeated until the order parameter has relaxed
to the desired accuracy. At this point, observables from the resulting Green’s
functions can be calculated as usual. An initial guess for the order-parameter
is required. In this work ∆ = 0 was used as the guess.

Figure 5.10 shows the magnitude of the order-parameter for a single
node circuit, |∆|, when calculated self-consistently. That |∆| varies with
respect to φ is seen immediately, a feature not incorporated in the intuitive
assumption which assumed |∆| = |∆res| 6∝ φ. The first iteration result of
the self-consistency calculation with the guess |∆| = 0 is also shown for
comparison. This first iteration corresponds to ∆ = (∆L + ∆R)/2, the
average of the order-parameters of the left and right reservoirs. Taking such
an average is clearly a better approximation for this single-node case to the
full self-consistent calculation than the initial intuitive guess.

The result for the five node case is shown in figure 5.11. The size of the
gap again changes with φ but the effect is more pronounced as the center
node is approached. The behaviour of the center node is the same as for the
node in the single-node case above.

Finally, the CPR for the five node case is shown in figure 5.12. The figure
shows clearly that both the problems of sections 5.3.1 and 5.3.2 have been
solved by the implentation of the self-consistent order parameter algorithm;
both the 2π-periodicity and current conservation have been restored.
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5.3. SS’S
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Figure 5.12: CPR for the 5 node model of an STSTS junction. Both 2π-periodicity
and current conservation are restored by adding self-consistency to the algorithm.
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Chapter 6

Conclusions and Outlook

Much of the thesis work was literature review of quasiclassical methods in
superconductivity and Nazarov’s circuit theory. The most relevant parts of
this review were presented in chapters 2 to 4. The quantum circuit theory
was derived from the Usadel equation, eq. 4.1, in a manner analogous to
how classical circuit theory is derived from Laplace’s equation, eq. 2.7.
Quantum circuit theory is important as an alternative to the Usadel equation
which is known to be difficult to solve analytically and numerically. It offers
instead a discrete element method of solution that is relatively easy to solve
numerically and occasionally analytically.

The aim of this thesis project was originally to model the Andreev inter-
ferometer shown in figure 1.1 using quantum circuit theory. This remains to
be done but the most fundamental of the building blocks which arise from
discretising the interferometer were modelled. The STNTS case showed that
stronger tunnel barriers destroy the superconducting proximity effect in the
normal metal. It also exhibited the correct behaviour for density of states
with phase, φ, the gap closing at φ = π. The short diffusive wire case studied
by Kulik and Omelyanchuk was also modelled using QCT. Using only tunnel
junctions as connectors, the circuit theory converged to the KO1 result as
the number of nodes is increased, reaching accuracy of within %1 with as
few as 10 nodes. The model exhibited the correct I-φ and Ic-T relations and
showed that fewer nodes are required for accuracy at temperatures close to
Tc than at lower temperatures. The SSS junction case added complications
to the circuit theory in that, without a self-consistently determined order
parameter ∆(R), incorrect results were obtained for I-φ: 2π-periodicity
and current conservation were lost. Applying the self-consistency algorithm
described in section 5.3.3 resolved both problems without adding much com-
plexity to the program code.
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Outlook

The first steps towards modelling the complete Andreev interferometer using
quantum circuit theory were laid out in this work. In studies of Andreev
interferometers to date, the superconducting parts of the ring are usually
regarded as bulk (as in [13]), ignoring changes in the order parameter within
these regions. For the Andreev interferometer depicted in Fig. 1.1, these
regions are too small to be considered as bulk. To describe them accurately
one may be able to model them as SSS junctions using quantum circuit
theory. The self-consistency algorithm developed in this work for the SSS
type junction should work nicely for this purpose. The current that is pushed
through the interferometer needs also to be incorporated into the theory.
This will require the inclusion of the magnetic vector potential, A(R). In
any case, quantum circuit theory offers an interesting and powerful means
of considering such complex structures as the Andreev interferometer.
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Appendix A

Useful implications of Ǧ2 = 1̌

In this section some simple but useful relations for quasiclassical Green’s
functions are derived for reference from the normalisation condition, Ǧ2 = 1̌.

Given the Green’s functions at two different points, Ǧ1 and Ǧ2 we have
clearly then that

Ǧ2
1 = Ǧ2

2 = 1̌.

This allows the following:

Ǧ2
1 = Ǧ1(Ǧ2Ǧ2)Ǧ1 = 1̌.

Clearly then,
Ǧ1Ǧ2 = (Ǧ2Ǧ1)−1. (A.1)

It is also clear that
[Ǧ1Ǧ2, Ǧ2Ǧ1] = 1̌− 1̌ = 0, (A.2)

so that Ǧ1Ǧ2 and Ǧ2Ǧ1 commute. Two matrices that commute are simul-
taneously diagonalisable.

Further useful relations come from considering the anticommutator of
the sum and difference of Ǧ1 and Ǧ2:

{(Ǧ1 + Ǧ2), (Ǧ1 − Ǧ2)} = 0. (A.3)

Now consider that {Ǧ1, (Ǧ2 − Ǧ1)} → 0 in the limit Ǧ2 → Ǧ1. Since
any derivative of Ǧ is based on this type of limit we have that differential
variations of Ǧ anticommute with Ǧ, i.e. that

{Ǧ,∇Ǧ} = 0. (A.4)
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Appendix B

No leakage current

In cases where [Ě, Ǧ] = 0, there is no leakage current. No leakage current
implies consequently that the Green’s function may be rewritten everywhere
as Ǧ(r) = a(r)Ě(r) where a is a scalar function of r. Taking the gradient
in r-space of Ǧ gives

∇Ǧ =
(∇a)

a
Ǧ+ a∇Ě. (B.1)

Left and right multiplying eq. B.1 by Ǧ and taking the difference gives:

−2(∇Ǧ)Ǧ = Ǧ∇Ǧ− (∇Ǧ)Ǧ = a[Ǧ,∇Ě].

As a result

∇Ǧ = −ǓǦ, (B.2)

where Ǔ is a matrix of vectors defined as

Ǔ =
a

2
[Ǧ,∇Ě]Ǧ = −Ǧ∇Ǧ = ǰ/σ(r). (B.3)

Consider a terminal connected at r1 where Ǧ(r1) = Ǧ1. Since ∇G1 = 0, eq.
B.2 has a solution of the form

Ǧ(r) = exp(Ľ) Ǧ1,

where Ǔ = −∇Ľ. The normalisation condition requires then that {Ľ, Ǧ1} =
0 and subsequently Ľ = u(r)M̌ where u is a scalar function and M̌ is
a constant matrix that anticommutes with Ǧ1. We now have that Ǔ =
−∇u(r)M̌ and further that

ǰ = −σ(r)∇u(r)M̌. (B.4)

Given the form of the matrix current density ǰ = σ(r)Ǔ , which is recognised
as analogous to Ohm’s law, the scalar function u(r) must be related to the
electric potential per unit energy. Suppose the values of u at the terminal
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APPENDIX B. NO LEAKAGE CURRENT

at r1 and at another point, r2, in the nanostructure are known: u(r1) = 0
and u(r2) = 1. The matrix M̌ may then be found from Ǧ2 = exp((u(r) =
1)M̌)Ǧ1, giving

M̌ = ln(Ǧ2Ǧ1) = − ln(Ǧ1Ǧ2). (B.5)

The Usadel equation now takes the form

∇ · (σ∇uM̌) = 0. (B.6)

Integrating the matrix current density in eq. B.4 over a cross-section
gives the matrix current through that cross-section as

Ǐ = GD ln(Ǧ1Ǧ2), (B.7)

where GD is the proportionality factor of the current through the chosen
cross-section to the total current, i.e. the conductance of the material.
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Appendix C

Usadel equation analysis of
1D normal metal wire

In this section, charge and heat transport in a normal 1D wire are examined
using the Usadel equation. As there are no superconductors present, only
2 × 2 matrices are required. For a normal metal then Ě = ε1̌ so that
[Ě, Ǧ] = 0 allowing use of the results of section B.

C.1 Distribution function and electric current

Assuming the metal to have homogeneous conductivity σ(r) = σ, the Usadel
equation (eq. B.6) becomes simply ∇2u = 0. The function u takes the
general form u = Ax+C where A and C are constants. Boundary conditions
may be set as normal terminals at x = 0, L, at the ends of the wire, so that
u(0) = 0 and u(L) = 1. This gives A = 1/L and C = 0, i.e.

u(x) = x/L.

Using the form of the Green’s function from appendix B,

Ǧ(x) = exp(u(x)M̌)Ǧ0.

An expression for the matrix M̌ is needed. The Keldysh Green’s functions
in the terminals are known to be

Ǧ0,L =

(
1 2(1− 2f0,L)
0 −1

)
,

where f0,L = fF (ε+ µ0,L) and fF is the usual Fermi distribution.
The equation for the matrix M̌ is M̌ = − ln(Ǧ0ǦL). After Jordan

decomposition, rewrite Ǧ0Ǧ1 = ŠJ̌ Š−1, where

Š =

(
1 0
0 (f0 − fL)/4

)
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APPENDIX C. 1D NORMAL METAL

and the Jordan block, J̌ , is

J̌ =

(
1 1
0 1

)
.

Using the identity for an invertible matrix Y , ln(Y XY −1) = Y ln(X)Y −1

gives

M̌ =

(
0 −4(f0 − fL)
0 0

)
.

Since M̌2 = 0, the matrix Green’s function in the wire is simply

Ǧ(x) = (1̌ + u(x)M̌)Ǧ1.

To find the distribution function in the wire as a function of position, only
the Keldysh component of the Green’s function is needed, since its form is
known for a normal metal (when using only 2× 2 matrices) to be

K = Rh− hA = (R−A)h; h = 1− 2f.

Solving for f gives

f(x) =
1

2

(
1− K

R−A

)
.

From above, the Keldysh component is K = 1 − 4(f0 − fL)u(x) so, since
R−A = 2 and u(x) = x/L, the distribution function in the wire is

f(x) =

(
L− x
L

)
fL +

(x
L

)
fR.

The electric current density is

j =
σ

L
(f0 − fL),

since j = Tr(ǰK

4 ). Assuming a potential difference, V , between x = 0 and
x = L and then integrating over energy gives the total current as

I = gV,

where g = σ/L is the linear conductance of the nanowire.

C.2 Wiedemann-Franz law

The current density j found in the previous section can be used further to
investigate heat transport in the wire. The heat current density is given by

Q =
1

e2

∫ ∞
−∞

EjdE.
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C.2. WIEDEMANN-FRANZ LAW

Using the previous result j = σ/L(f0−fL) and switching back E → E−EF
produces

Q =
σx̂

e2L

∫ ∞
0

(E − EF )(f0 − fL)dE.

Assuming no applied potential difference, but a small temperature gra-
dient, ∆T = T1 − T2, f0 − fL can be expanded in powers of ∆T about
T1:

(f0 − fL) ≈ −
(E − EF ) exp

(
E−EF
kT

)
∆T(

1 + exp
(
E−EF
kT

))2
kT 2

.

A factor 2 is required to account for the spins of the particles. Using the
trigonometric identity

ex + e−x + 2 = 2(cosh x + 1) = 4 cosh
x

2
,

and that ∫ ∞
0

x2dx

cosh2 x
=
π2

12
,

gives

Q = −κ∆T ; κ ≡ π2

3

σ

e2
k2
BT,

where κ is the thermal conductivity. This exhibits the Wiedemann-Franz
law for the ratio of the thermal and electric conductivities:

κ

σT
=
π2k2

B

3e2
.
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Appendix D

Rewriting Ǐ as function of φ̌

This appendix shows how to transform the boundary condition for connec-
tors,

Ǐ = GQ
∑
p

Tp[Ǧ1, Ǧ2]

2 +
Tp
2 ({Ǧ1, Ǧ2} − 2)

,

to being written in terms of the “matrix phase” φ̌ = −i ln(Ǧ1Ǧ2).
Since (Ǧ1Ǧ2)−1 = Ǧ2Ǧ1, the commutator [Ǧ1, Ǧ2] may be rewritten

in the form [Ǧ1, Ǧ2] = exp(iφ̌) − exp(−iφ̌), where the matrix phase, φ̌, is
defined

φ̌ ≡ −i ln(Ǧ1Ǧ2). (D.1)

Using 2i sin φ̌ = exp(iφ̌) − exp(−iφ̌) gives [Ǧ1, Ǧ2] = 2i sin φ̌. Similarly,
2 cos φ̌ = {Ǧ1, Ǧ2}. The matrix current now takes the form

Ǐ = iGQ
∑
p

Tp sinφ

1− Tp
2 (1− cos φ̌)

.

The denominator may be rewritten using the half-angle formula, sin2(φ̌/2) =
(1− cos φ̌)/2, leading to the final result:

Ǐ = iI(φ̌); I(φ) = GQ
∑
p

Tp sinφ

1− Tp sin2(φ/2)
.
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Appendix E

Diagonalising Ǧ1Ǧ2

The form of the matrix current Ǐ = iI(φ̌) containing the matrix phase,
φ̌ = −i ln(Ǧ1Ǧ2), is tricky to use for practical calculations containing real
Green’s functions. By diagonalising the matrix Ǧ1Ǧ2, however, φ̌ may be
cast into another form that may be useful. This relies on the identity for the
matrix logarithm ln(Y XY −1) = Y ln(X)Y −1, given matrix Y is invertible.
The matrix Ǧ1Ǧ2 is known to be diagonalisable due to equation A.2. The
derivation follows the usual method of diagonalising a matrix, by finding the
matrices P̌ and Ď such that P̌−1Ǧ1Ǧ2P̌ = Ď where Ď is a diagonal matrix
composed of the eigenvalues of Ǧ1Ǧ2 and P̌ is composed of the respective
eigenvectors. The starting point is thus to find the eigenvalues, λ, from the
equation

det

(
R̂1R̂2 − λ̂ R̂1K̂2 + K̂1Â2

0̂ Â1Â2 − λ̂

)
= 0,

which reduces to det(R̂1R̂2 − λ̂) det(Â1Â2 − λ̂) = 0. Solving gives the fol-
lowing set of 4 eigenvalues:

λG,± =
Tr(Ĝ1Ĝ2)

2
± 1

2

√
2 Tr2(Ĝ1Ĝ2)− 4,

where G is used as an index for either R̂ or Â. The diagonal matrix Ď may
therefore be written

Ď =

(
λ̂R 0̂

0̂ λ̂A

)
; λ̂G =

(
λG+ 0

0 λG−

)
.

Using the eigenvalues to find the eigenvectors gives the diagonalising matrix
P̌ as

P̌ =

(
P̂R P̂K
0̂ P̂A

)
,

wherein

P̂G =

(
[Ĝ1Ĝ2]12 [Ĝ1Ĝ2]12

λG+ − [Ĝ1Ĝ2]11 λG− − [Ĝ1Ĝ2]11

)
,

51



APPENDIX E. DIAGONALISING Ǧ1Ǧ2

and

P̂K =

(
[R̂1R̂2]12 [R̂1R̂2]12

[PK ]2+ [PK ]2−

)
,

where

[PK ]2± = −
(Φ̂11[P̂A]11 + Φ̂12[P̂A]2(1,2))

[R̂1R̂2]12

− ([R̂1R̂2]11 − λA±).

Finally, the matrix Φ̂ is defined

Φ̂ = R̂1K̂2 + K̂1Â2.

It is useful to note the form of P̂−1:

P̂−1 =

(
P̂−1
R −P̂−1

R P̂K P̂
−1
A

0̂ P̂−1
A

)
.

Now the matrix phase can be written φ̌ = −iP̌ ln(Ď)P̌−1. The matrix
logarithm of a diagonal matrix is just the same matrix but with each diagonal
entry replaced by its natural logarithm. To compute the logarithm, any of
the complex sinusoidal identities cos−1 z = −i ln[z + (z2 − 1)1/2], sin−1 z =
−i ln[iz + (1 − z2)1/2], and 2i tan−1 z = ln [(i− z)/(i+ z)] may be used,
depending on convenience. Using the sin−1 z and the tan−1 z identities puts
φ̌ respectively in the following forms:

φ̌ = −P̌ sin−1(
√

1−Θ2)η̌3P̌
−1 (E.1)

φ̌ = −2P̌ tan−1(
√

(1−Θ)/(1 + Θ))η̌3P̌
−1. (E.2)

The function Θ is defined, following Nazarov,

Θ(ε) ≡ Tr(R̂1R̂2)/2.

Although the form of Ǐ given in eq. 4.4 is more useful for most applications,
its form is given here in terms of P̌ and Ď in accordance with the present
context. Using eq. E.1 for φ̌ in Ǐ = iI(φ̌) gives the matrix current as

Ǐ = Z(Θ)
√

Θ2 − 1 P̌ η̌3P̌
−1. (E.3)

The function Z(Θ) is defined, following again Nazarov, as

Z(Θ) = GQ
∑
p

Tp

1 +
Tp
2 (Θ(ε)− 1)

,

containing all the information regarding the transmission eigenvalues.
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Use of eq. E.3 can be illustrated by switching to the Matsubara tech-
nique. The electric current is found from

IM = − Im

 π
2e
T
∑
ζ

Z(Θ)
√

Θ2 − 1 Tr(η̂3P̂ η̂3P̂
−1)

 .
Evaluating the trace gives

Tr(η̂3P̂ η̂3P̂
−1) =

F1F
†
2 − F2F

†
1√

Θ2 − 1
.

The expression for the current is then

IM = − Im

 π
2e
T
∑
ζ

Z(Θ) (F1F
†
2 − F2F

†
1 )

 .
Assuming equal superconducting reservoirs, the Matsubara Green’s func-

tions are

GM1,2 =
iζn
Ω

; FM1,2 =
|∆|e(∓iφ/2)

Ω
,

where Ω = i
√
ζ2
n + |∆|2. These give that

F1F
†
2 − F2F

†
1 =
−2i|∆|2 sinφ

ζ2
n + |∆|2

,

and that

Θ = G1G2 +
1

2
(F1F

†
2 + F †1F2) =

ζ2
n + |∆|2 cosφ

ζ2
n + |∆|2

.

Using this expression for Θ, the function Z(Θ) simplifies to

Z(Θ) = GQ
∑
p

(ζ2
n + |∆|2)Tp

ζ2
n + |∆|2(1− Tp sin2(φ/2))

.

The expression for the spectral current density is now

IM =
πT

e
GQ sinφ

∑
p,ζ

|∆|2Tp
ζ2
n + |∆|2(1− Tp sin2(φ/2))

.

Performing the summation over Matsubara freqencies ζn recovers the gen-
eral current relation for a connector between two equal superconductors at
equilibrium:

IM =
π

2e

∑
p

GQTp|∆| sinφ√
1− Tp sin2(φ/2)

tanh

(
|∆|
2T

√
1− Tp sin2(φ/2)

)
.

The energy spectrum can be found directly from the poles of Z(Θ). They
are

iζ → E = ±|∆|2
√

1− Tp sin2(φ/2),

the Andreev levels.

53



Bibliography

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of supercon-
ductivity,” Phys. Rev., vol. 108, pp. 1175–1204, Dec 1957.

[2] J. Waldram, Superconductivity of Metals and Cuprates. Institute of
Physics Pub.(Bristol and Philadelphia, Pa.), 1996.

[3] P. G. De Gennes, Superconductivity of Metals and Alloys. WA Ben-
jamin, Inc., New York, 1966.

[4] J. R. Schrieffer, Theory of Superconductivity. Benjamin (New York),
1964.

[5] A. A. Abrikosov, L. P. Gor’kov, and I. Dzyaloshinskii, Methods of Quan-
tum Field Theory in Statistical Physics. Pergamon (London), 1963.

[6] K. Usadel, “Generalized diffusion equation for superconducting alloys,”
Physical Review Letters, vol. 25, no. 8, pp. 507–509, 1970.

[7] Y. V. Nazarov, “Circuit theory of andreev conductance,” Physical re-
view letters, vol. 73, no. 10, pp. 1420–1423, 1994.

[8] Y. V. Nazarov, “Novel circuit theory of andreev reflection,” Superlat-
tices and microstructures, vol. 25, no. 5-6, pp. 1221–1231, 1999.

[9] Y. V. Nazarov and Y. M. Blanter, Quantum transport. Cambridge
University Press, 2009.

[10] I. O. Kulik and A. N. Omel’Yanchuk, “Contribution to the microscopic
theory of the josephson effect in superconducting bridges,” Soviet Jour-
nal of Experimental and Theoretical Physics Letters, vol. 21, p. 96, 1975.

[11] J. Rammer and H. Smith, “Quantum field-theoretical methods in trans-
port theory of metals,” Reviews of modern physics, vol. 58, no. 2,
pp. 323–359, 1986.

[12] J. W. Serene and D. Rainer, “The quasiclassical approach to superfluid
3he,” Physics Reports, vol. 101, no. 4, pp. 221–311, 1983.

54



BIBLIOGRAPHY

[13] V. Chandrasekhar, “Proximity-coupled systems: Quasiclassical theory
of superconductivity,” in Superconductivity (K. H. Bennemann and J. B.
Ketterson, eds.), vol. 1, ch. 8, Springer, Berlin, 2004.

[14] L. Pitaevskii, “Phenomenology and microscopic theory: Theoretical
foundations,” in Superconductivity (K. H. Bennemann and J. B. Ket-
terson, eds.), vol. 1, ch. 2, Springer, Berlin, 2004.

[15] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin, “Qua-
siclassical green’s function approach to mesoscopic superconductivity,”
Superlattices and Microstructures, vol. 25, no. 5-6, pp. 1251–1288, 1999.

[16] G. Eilenberger, “Transformation of gorkov’s equation for type ii su-
perconductors into transport-like equations,” Zeitschrift für Physik A
Hadrons and Nuclei, vol. 214, no. 2, pp. 195–213, 1968.

[17] A. Shelankov, “On the derivation of quasiclassical equations for super-
conductors,” Journal of low temperature physics, vol. 60, no. 1, pp. 29–
44, 1985.

[18] M. Y. Kuprianov and V. F. Lukichev Sov. Phys. JETP, vol. 67, p. 1163,
1988.

[19] K. K. Likharev, “Superconducting weak links,” Reviews of Modern
Physics, vol. 51, no. 1, p. 101, 1979.

[20] A. A. Golubov, M. Y. Kupriyanov, and E. Il’Ichev, “The current-phase
relation in josephson junctions,” Reviews of modern physics, vol. 76,
no. 2, p. 411, 2004.

55


