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ABSTRACT

The need for suitable software abstractions is proportional to the complexity of the underlying
computer architecture. Even though language technology has made significant contributions
over the years, many hard decisions have been delegated to the compiler. Naturally, compilers
are only as efficient as the algorithms they contain.

In this thesis we consider an approach to detecting commuting operations that give the same
result independent of execution order. Our approached is based on analyzing commutativity of
any pair of statements rather than just consecutive function calls. This will allow us to detect
opportunities for parallelization that previous conservative approaches would ignore or miss be-

cause of context-insensitivity.
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FOREWORD

Imagine yourself preparing dinner for some friends, a few of them have agreed to help.
You know that dinner will be delicious if you follow a recipe. But, as always, you don’t
want to spend more time then necessary (author’s opinion). So how would you delegate
the subtasks of the recipe to your friends so that the time requirement is minimized?
Looking at the tasks you quickly figure out that chop onion, carrots and lime and
prepare a white roux can be done by two different friends at the same time since they
are independent. But there are also instructions such as pout warm milk into the
frying pan and put grated cheese into the frying pan, these are not independent
since both uses the frying pan. The important question here is: “Will the state of the
frying pan be the same if these are performed by different friendsg .

A very similar problem happens to be the topic of this thesis.
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Chapter 1

Introduction

Processors are a part of everyday life, ranging from small embedded computers locked away in
devices of various shapes and sizes (such as TVs, DVD-players, and cars) to large supercomputers
used by the scientific community for simulation purposes. Processors have since the beginning
made use of inherent parallelism of the micro-operations within the instructions themselves in
a similar fashion to how cars are manufactured. As the demand for more computational power
grew, engineers added more execution units for common operations, decreased the clock cycle
period, etc., all to transparently allow for the implicit performance increase expected by the user
community. At some point, fishing for more parallelism among instructions grew too expensive,
and power consumption and heat dissipation became a problem. One of the solutions was then
to add more processor cores (each operating at a lower frequency then before) to the chip to
exploit parallelism between tasks and map sequential program to one or more of these to realize
performance improvements.

This, however, posed a new problem in that programmers now had to consider the architecture
to a larger extent. The issue of increasing performance was now switching from a hardware to a
software problem that programmers must address. Writing good parallel programs is a daunting
task even when the number of cores is relatively small [1].

In the extreme, creating parallel programs from sequential versions can be done either manually
or automatically. The benefit of manual parallelization lies in changing the algorithm to map
better onto the architecture, but at the cost of increased development time. Manual paralleliza-
tion can ultimately prove to be an inefficient usage of personnel [2]. The second option requires
the compiler writer to come up with ways of detecting and exploiting parallelism. The clear
advantage is that from the programmer’s view the target platform is still a uniprocessor. In real
life a combination of these options is used, since the tasks associated with software development
require knowledge that the compiler lacks.

This thesis addresses one of the fundamental problems in parallel compiler theory: detecting
which parts of the program must execute sequentially. To do this, we use the algebraic property
of commutativity. Two statements in the source code can be said to “commute” if they com-
plete with the same result irrelevant of execution order. If two statements commute they can be
executed in parallel, assuming they are atomic.

We assume that the reader has an understanding of computer architecture, and in particular



parallel architectures where Thread Level Parallelism (TLP) is of central concern. The standard

textbooks on the subject [3, 4] explain central issues and terminology of the field.

1.1 Report outline

This report starts by introducing the reader to the necessary background information in com-
pilation and the algorithms used in Chapter 2. We primarily deal with the analysis phase of
compilation (explained below), and the emphasis of the discussion will be on methods from this
and neighboring phases. Earlier and later parts of compilation will only be touched on lightly
but names and references to important work are cited for completeness. Chapter 3 introduces
(fine-grain) commutativity analysis, an analysis algorithm for deciding whether two statements
commute. Chapter 4 discusses the design choices and implementation details concerning the
developed algorithm and framework. Chapter 5 includes the results of algorithm, evaluated on
microbenchmarks. Finally Chapter 6 discusses further work to improve the algorithm, reflections

about the thesis, and conclusion.



Chapter 2

Background information

Compilation is the process in which source-code is translated to machine-dependent instructions.

The assembler later translates (often called “assembles”) the instructions into binary code/data,

and the linker produces the executable. Figure 2.1(a) shows a textbook example of the flow of

compilation with three primary parts described below: the frontend, midend(s), and backend.

The midend and backend have similar functions but operate on different Intermediate Represen-

tations (IRs); and for this reason we discuss them as one entity.

Sourcecode

Frontend

AST

Analysis

M achinecode

. IRT
Midend[1..N] Backend
(a) Compilation flow
Optimization Generation

(b) Midend flow

FIGURE 2.1: Compilation flow in 2.1(a) and midend flow in 2.1(b)

The choice of IR depends on the function of the midend/backend and the information needed
by these and later parts. It can be as simple as the RTL IR used in the GCC backend or as

complex as the C language used as one of the IRs in Haskell. Compilers may further include

various numbers of IRs ranging from one in a simple compiler operating only on the Abstract
Syntax Tree (AST) itself to GCC with many IRs.

e Common to all compilation is the frontend in which a lexical analyzer (lexer) takes the

input sourcecode and translates it to an ordered set of tokens. The resulting AST is then

forwarded to a parser, which performs syntactic analysis to determine the grammatical

structure with respect to the source language. The AST is then verified by the typechecker

for semantic consistency with the type rules of the source language. Once passed through

all frontend processes, the AST is generally normalized and/or converted to an IR used in

a possible midend/backend.

The frontend mechanisms are often mechanically generated by syntax-directed translation

3



[5], where the syntax (and possibly type information) is described in a domain-specific
metalanguage that represents the source language in Backus-Naur Form (or any extension
such as LBNF, XBNF, ABNF, etc.). Terminals of the language are given as regular
expressions to the lexer-generator. These are then transformed to minimized deterministic
finite automata (e.g., Thompson’s algorithm [6] — subset construction algorithm [7] —
Hopcroft’s algorithm [8]). The non-terminals are transformed to a LR(k) parser, such as

the LALR(1) parser [5] used by the parser-generator (such as Yacc or Bison).

e The midend/backend phases can be broken down into analysis, optimization, and genera-
tion, as shown in Figure 2.1(a). The analysis phase deduces implicit information from the
IR to provide the optimization phase with the necessary information to improve the com-
putation. The generation phase finally transforms the IR to another IR or to a machine-

dependent language.

2.1 Analysis phase

The analysis phase deduce information from the sourcecode that later guide the optimization
phase. In this section we describe conventional program analysis methods that influence our
approach. Although symbolic analysis, explained in Section 2.4, belongs to this group it is of

central concert to this thesis and hence given a separate section.

2.1.1 Data-flow analysis

Data-flow analysis is performed via a set of functions that gather information about the data
calculated at various points in the program as a function of previous calculations, hence the
flow of data. For example, Reaching Definitions (RD) determine what variables reach a certain
instruction without being altered. This information can then be used to produce the use-def and
def-use chains which describe all the definitions for a certain use of a variable or all uses of a
particular definition, respectively.

The RD sets of a basic block S are described by Equation 2.1, where the GEN,, are all the
assignments y of the basic block not killed by previous basic blocks and KILL,, refers to the
killed definitions (= redefined) of the previous basic blocks (that are killed).

if S is ENTRY
RDi(S) = 0 ISIS. R o)
UpEpred(s) RDoyi(p) otherwise
RDout(S) = U,epredcs) GENp U (RDin(p) \ KILLy) (2.2)

Computing data-flow equations, including RD, is done iteratively. For RDs the algorithm starts
by computing GEN,, and KILL,, of each basic block S. It then compute the in/out-state until it
converges, and no changes occur to RDy,(S) in an iteration. As an example, consider the CFG

shown in Figure 2.2; by computing the RD;,,(S)/RDoyut(S) we end up with the result shown in

4



the tables of the same figure. The contents of the RDy,:(S) then show which definitions exit

the block. RD can be used for data dependency analysis and constant propagation.

d1 i=m
dy:7=mn
dy 2 =0 INTb]
b1 0
i b dy,ds, ds,ds, dg, d7
d4Z:Z+1 b3 d3ad47d57d6
ds:j=7j—1 by d3,dy,ds,dg
EXIT | ds,ds,dg, dr
/ OUT[H]
. by dy,ds,ds
do:z =g+ i
6rE=ET b ds,dy, ds,dg
b3 dy,ds,dg
b4 d37d57d6
EXIT | ds,d5, dg

F1GURE 2.2: CFG of a toy function and table showing its corresponding reaching
definitions IN[S] and OUT]S]

Another useful data-flow analysis is live variable analysis, in which the compiler deduces, for
each point in the program which variables that later will be read before written. This can later

be used for dead-code elimination, described in Section 2.2.

2.1.2 Data dependency analysis

A very central problem to compilation of formal languages is which statements depend on one
another. A semantics-preserving compiler can figure out which statements can be reordered. A
necessary step is thus to find the constraints (= dependencies) that prevent legal reordering.
From Bernstein’s conditions [10] two references depend on one another if the following hold:

e They reference the same memory location.

e At least one of the references is writing.

e The two associated statements are executed.

By referring to the first reference in program order as A and the next as B it is possible to name

and categorize the dependencies according to:



a = 2a; a = a+b;
b = 2b; a = 2a;
a = a+b; b = 2b;
Sourcecode Possible reordered sourcecode

Flow, Anti, and Output dependency

Flow dependency

)

Dependency graph of sourcecode

FIGURE 2.3: Example where reordering statements break dependencies but are still
valid

e Flow dependence (True dependence, Read-after-write (RAW) [9]): A assigns a variable
and B reads it.

o Anti-dependence (Write-after-read (WAR) [9]): A uses the variable and B reassigns it.

o Output-dependence (Write-After-Write (WAW) [9]): A assigns a variable and B reassigns
it.

Both anti and output dependencies represent false dependencies which arise when a variable is
reused or reassigned. One should note that dependency analysis is a necessary but not sufficient
test for reordering as exemplified in Figure 2.3. As shown, the third statement depends on both
the first and the second, yet it is possible to swap the first and third statements with equal
results. Data dependency analysis can either use values (contents) or addresses of variables to
discover these constraints. Value-based algorithms are a subset of address-based algorithms, and
are generally more accurate but take more time [11]. The output of data dependency analysis
is a data dependency graph that describes these constraints. This is, however, not enough to
handle loops or arrays which are the primary source for coarse-grain concurrency today. Instead,
dependencies among loop iterations are used. The most fundamental descriptions of iteration

dependencies are the iteration space and iteration vector [11].

Based on these, the compiler can form the expanded dependency graph (EDG), as shown in Fig-
ure 2.4. The EDG cannot be used as input to a parallelization algorithm, since it usually becomes
too large or cannot be created at compile-time due to expressions with unknown results [12].
This calls for an approximation of the EDG, namely the Reduced Dependency Graph (RDG).
But since the decision of approximation can lead to two source codes having the same RDG it
generally is not used either. Instead, an extension of the RDG often used is the Polyhedral Re-
duced Dependency Graph (PRDG), or simply the Polyhedral Dependency Graph. The choice of
dependency graph is further complicated by loop transformation algorithms that require specific

dependency graphs [12].



for(i = 1; i <= 5; i++)
for(j = 1; j <= 5; j++)
alil[j] = ali-11[j-1]1 + alil[j-1];
Sourcecode
a(1,1) = a(0,0) + a(1,0) | a(2,1) = a(1,0) + a(2,0) |
a(1,2) = a(0,1) + a(L,1) | a(2,2) = a(1,1) + a(2,1) |
a(1,3) = a(0,2) + a(1,2) | a(2,3) = a(1,2) + a(2,2) |
Access pattern
S[1,1] 67 S[1,2] / S[2,2] | S[2,1] 6/ S[2,2] / S[3,2] | -
S[1,2] 6/ S[1,3] / S[2,3] | S[2,2] 6/ S[2,3] / S[3,3] 5 -
S[1,3] 6/ S[1,4] / S[2.4] | S[2,3] 6/ S[2,4] / S[3,4] | 4
S[1,4] 67 S[1,5] / S[2,5] | S[2,4] 6/ S[2,5] / S[3,5] | 3 |
Iteration vector 2 1
1

T T T T 1

1 2 3 4 5

Iteration space

FIGURE 2.4: Dependency analysis of loop represented as iteration space and iteration

vector
<*a,b>, <*b,d>, <*c,d>,
2z sz Explicit <**a,d>, <**a, *b>,
¢ = &d; <**a, *c¢>, <*b, *c>

Compact/equivalence sets

<*a, b>, <*b,*c,d,**a>

Points-to pairs

(a—=b), (b—4d), (c—d)

TABLE 2.1: Alias analysis example code (left) and representation (right)

2.1.3 Pointer analysis

Pointer analysis refers to a set of analysis techniques (for language paradigms that include
pointers) to deduce information via alias analysis (what memory location is the pointer pointing
to), liveness analysis (which variables are live at the program exit), and escape analysis (what

is the dynamic scope of the pointer).

Alias / points-to analysis Over the years a lot of work has gone into developing algorithms
that can deduce alias information [13], a problem that is undecidable, in general [14]. Algorithms

are categorized based on:



e Flow-sensitivity — Does the algorithm take advantage of the CFG? Otherwise one
solution is calculated for the whole program/function. Notice that this does not include
whether the algorithm unifies results for consecutive pointer assignments as one (this is
a further question of flow-insensitive algorithms). This is called unification based (or
Steensgaard-style [15]), while keeping separate information is called inclusion based (or

Andersen-style [16]). These represent two extremes of flow-insensitivity.
e Context-sensitivity — Does the algorithm use information in the calling context?

e Aggregate/Field -sensitivity — Are different fields of a structure given different treat-

ment or is the structure handled as one unit?
e Heap-sensitivity — Is a dynamically allocated memory area treated as one unit?

e Alias representation — How are the aliases represented? Table 2.1 illustrates varies

alias representations.

e Definiteness — Is the result definitely true (must) or might it be true (may)?

2.1.4 Call graph generation

A call graph is a direct (a)cyclic (depending on whether recursive functions exist) multi-graph
where each vertex represents a function and an edge e:A — B represents that function A is
calling B. The problem with generating a call graph lies in whether the language supports
function pointers (and whether these can be passed as formal parameters) to another function.
Furthermore the precision in the call graph depends on whether context is taken into account;
for instance, function A might call function B in one path and C in another mutual exclusive
path. Research has shown that even scalable alias analyzers can achieve good precision [17].
Call graphs can be generated statically (at compile time) and dynamically (at runtime). Dynamic
generation has the highest precision but may only be valid for a limited input set. Generating
an exact call graph statically is undecidable. With low precision comes the ambiguity problem,
as shown by the call graph in Figure 2.5 (middle), which when generated statically could come
from any of the source codes in Figure 2.5 (left) or (right).

2.1.5 Constant propagation

Constant propagation looks for operands that are unchangeable, in which case it substitutes the
operand to the evaluated value. It is generally implemented using reaching definitions, where a
variable is considered constant if all reaching definitions are the same assignment which assigns
the same constant to the variable. By using symbolic analysis (as outlined in Section 2.4) on an
SSA IR it is possible to create sparse conditional constant propagation [21, 22], which is strictly
more powerful then applying dead-code elimination and constant propagation in any order and

with any number of repetitions.



int a(int x) { int a(int x) {

int ack; int ack;
c(O); cO);
for(i = 0; i < LIMIT; i++) for(i = 0; i < LIMIT;
ack += b(i); ack += b(i);
return ack; return ack;
¥ }
b ©
int b(int x) { int b(int x) {
if(x == 0) if(x == 0)

cO); cO;
else if(x == 1) else

return d(); return b(x-1)+d();
else ¥
return b(x-1)+d();

¥ int c() {

int c¢() { ¥

} int 40O {

int 40 { y

FIGURE 2.5: Call graph (middle) statically generated from sourcecode (left) and (right)

2.2 Optimization phase

Crucial questions when trying to transform a certain code block to something else is that of le-
gality and benefit. This is particularly true for parallel execution where code might be scheduled
to execute nondeterministically compared to the sequential schedule. With legality it is meant
that the transformed code needs to produce the same result as the original for all possible inputs,
although this is sometimes relaxed to mean within a certain difference of the original because
of the presence of floating point operations. The benefit of a transformation decides what is
gained by the optimization in units of memory accesses, I/O operations or, more general, in
performance (latency, throughput), power, etc.

Neither of these properties is easy to guarantee. There might have been undetected dependen-
cies, in the program and the benefit may very well diminish depending on execution context, for

instance, due to synchronization requirements.

Although global value numbering (GVN), explained in Section 2.2.1, are of practical impor-

tance in this thesis other optimization techniques include, but are far from limited to:

e Loop invariant code motion detects statements within loops that is not dependent on
the iteration, allowing them to be moved outside the loop. This is the case for variable A

in Listing 2.3 which only depends on variable B that is not updated in the loop body.

e Dead-code-elimination tries to remove code whose results are not used in later compu-

tation, hence it remove redundant computation.

e Induction variable substitution refers to the process of finding alternative expressions
for recurrence (or induction) variables that are changed in a loop iteration. This can

sometimes make the loop iterations independent of each other. Consider Listing 2.1, the

9
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loop cannot be parallelized because of variable A which is flow dependent on the assignment

of the previous iteration. In Listing 2.2 the recurrence relation for variable A has been

rewritten to a closed form which is now only dependent on the current value of variable I

and hence the loop is parallel.

e Loop transformations change one loop construct to another equivalent but improved

loop construct. This to optimize for locality! and alter dependency directions. Since loops

make up the single biggest source of TLP in todays programs, a large number of loop

transformations have been developed. Table 2.2 shows a few of them. One of the most

common is loop interchange; unrolling is also very common, since it may add additional

instructions that may benefit scheduling.

Transformation name

Initial sourcecode

After transformation

for(i = 1; i < N; i++) for(i = 1; i < N; i++) {
Y[i] = 2%Z[i]; Y[i] = 2%Z[i];
Fusion (Combining) for(j = 1; j < N; j++) X[i] = 2*Y[il;
X[j1 = 2*%Y[jl; }
for(i = 1; i < N/2; i+=2) {
for(i = 1; i < Nj; i++) Y[i]l = Z[i]l * X[il;
Unrolling (Unwinding) Y[i] = z[i] * X[il; Y[i+1] = Z[i+1] * X[i+1];
}
for(i = 1; i < N; i++) { for(i = N-1; i > 0; i--) {
Y[il = Z[i]+1; Y[il = Z[i]+1;
Reversal X[il = Y[il/2; X[il = Y[il/2;
} }
for(i = 1; i < N; i++) for(j = 1; j < Nj j++)
. for(j = 1; j < N; j++) for(i = 1; i < N; i++)
Interchanging Y1051 = Z[i1051; Y1031 = z[i103];
for(i = 1; i <= N+M+1; i++)
for(j = max(1,i+N); for(i = 1; i <= N; i++)
. j <= min(i,M); for(j = 1; j <= M; j++)
Skewing j++) Z[i105-1] = z[i-11j-1];
zZ[i1[j] = Z[i-11[j-11;

TABLE 2.2: Common loop transformations

'That is, by minimizing the access distance in time or space. The spatial distance is sometimes
referred to as stride, where stride-1 would be a distance of one word.
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A =10 A =10

while (I < LIMIT) { while (I < LIMIT) {
A=A+5 A = 10 + 5x%I
heavy_computation(A) heavy_computation (A)
} }
LisTING 2.1: Induction variable sub- LisTING 2.2: Induction variable sub-
stitution stitution with A expression rewritten
A = 10
while (I < LIMIT) {
A = 5%*B
}

LI1STING 2.3: Loop invariant code de-

tection

2.2.1 Global value numbering

Global value numbering (GVN) is a method for “naming” an expression, is useful for discovering
redundant /constant computations. This information can then used by optimization techniques
such as common sub-expression elimination to factor out redundant computations.

Traditionally, value numbering was performed separately on each (extended) basic block using
hashing [18] where each instruction, including its operands, is added (and given a value num-
ber) if it does not exist in the hashmap. Later approaches [19], extend this work and instead
of associating assignments with a expression graph use a direct-cyclic graph (representing the
program) and make use of Hopcroft’s algorithm to minimize it before comparison.

In this thesis we use value numbering for comparing symbolic expressions, a problem which in

general is undecidable [20].

2.3 Generation phase

Generation phase concerns converting the IR to machine-code. The difficulty in this lies in:
1. Deciding how an abstract operation should be executed, or selecting the particular in-
struction.
2. Deciding the order of instructions executed, or the execution schedule.

3. Since by the cache principle only a small amount of memory (registers) is directly accessible
for computations, the compiler also has to decide which operands stay in registers and
which are stored on the stack at a particular point in the program. This is called register

allocation.

11



sog  krand = ,randVarS =V1
s1 O(sg;krand =V1/C1)
s2 O0(sp;randVarS = C2x* (randVarS — (V1/C1) « C1) — ((V1/C1) x C3))

TABLE 2.3: Symbolic analysis of Listing 2.4 statements 1-3

All these tasks are just as complicated as any of the previous but since it is of little concern to

this thesis topic interested readers are referred to textbooks on the subject [5, 9, 11, 12].

2.4 Symbolic analysis

Symbolic analysis is an implementation of abstract interpretation [23], which is the theory of
sound approximation of program semantics. By this we mean that abstract interpretation is a
partial execution of the computer program without using the actual values in the computation.
This allows for understanding of the computation itself, to some extent.

In symbolically executing a statement one obtains a program context, a 3-tuple [s,t,p] where
s is the state, t is the state condition, and p is the path condition. The state is a set of
variable/expression pairs 11 = e1,vs = ea,... where v, is the variable (memory location) and
e, is the expression unambiguously describing the abstract value of v,. The state condition
includes constraints on the execution order and variable value such as implied by loops, variable
declarations, and user assertions. Path condition describes the condition for the execution of a
certain statement. Different statements have different impact (or require different representation)

on the variable state, as presented below.

2.4.1 Basic statements/blocks

int Yacm_random ()
{
register int krand ;
krand = randVarS / C1 ;
randVarS = C2 * (randVarS - krand * C1) - (krand * C3) ;
if ( randVarS < 0 ){
randVarS += C4 ;
¥
return ( randVarS ) ;

} /% end acm_random */

LisTiNG 2.4: Park-Miller pseudo-random number generator

In a basic statement, a set of outputs is assigned values based on operations on a set of inputs.
Symbolically executing a basic statement hence yields a state as a function of previous state
d(previous state, changes to the current state). Consider Listing 2.4. In symbolically analyzing
statements 1-3 (line 3-5) we obtain the results shown in Table 2.3. Initially the value of krand
is set to a default value () while randVars, being a global has an unknown value (V1). krand is

then updated and finally randVars$ is updated in the third state as a function of krand.
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s3 O(s2,randVarS = o((C2 * (randVarS — (V1/C1) « C1) — ((V1/C1) %« C3) < 0) :
C2x (randVarS — (V1/C1) x C1) — ((V1/C1) x C3) + C4,
C2 % (randVarS — (V1/C1) « C1) — ((V1/C1) x C3)))

TABLE 2.4: Symbolic analysis of Listing 2.4 statements 4-5

2.4.2 Conditional statements

In order to proceed, in the symbolic analysis of Listing 2.4 we need a way to deal with statements
constrained by conditions where the new path condition forms a predicate of the execution. For
this we use the function ¢(condition, true — part, false — part) which assigns an expression to
a state variable based on the condition. Table 2.4 shows the results of symbolically executing

statements 4-5.

2.4.3 Loops and recurrences

Loops are statements for describing recurrence relations. Such as the loop “for(i = 0; i <
LIMIT; i++)", where the induction variable i starts at the value 0 (its boundary condition)
and is increased by 1 as long as it is below LIMIT (its recurrence condition). A expression

describing the recurrence relation (excluding the recurrence condition) is hence

i(:z:)—{o r=0;

i(r—1)+1 z>0.

To handle loops within a symbolic analyzer more easily, one would like to obtain a closed form
of the expression (which here is i(z) = « where z is the iteration number). The number of itera-
tions, as determined by the recurrence condition is given by the number of times i can increase
while being less then LIMIT hence [%] = LIMIT times. The complete equation of i is
thus 1« LIMIT = LIMIT.

while(I < M) {
F = ExF
I = I+B

LisTING 2.5: While-loop

As an example of a complete run of symbolic analysis on a loop, consider Listing 2.5. The
variable I increases arithmetically (i,+1 —i, = B) and F increases geometrically (fr1+1/fn = E).
Assuming an initial program context of {B = b, [ = b, F =2, F =y, M = m}, the sym-
bolic analyzer will run the loop body with temporary values for the variables (it is possi-
ble that these are in fact conditional expressions) for simplicity, with path condition set to
the loop recurrence condition. At the end of the loop body the initial state is inserted and
solved to closed-form if possible. As shown in the result in Table 2.5 we use the function

v(Instance, (Boundary, Recurrence), Condition) for this with the last state showing I solved
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s9 B=bl=bE=x,F=y M=m
s1 B=B F=F,I=I''E=FE M=M ,p=1 <M
s2 O(s;F=E"«F'),pp=p

s3 O(sas ] =1'+B'),ps =po

S4 5(8371 = (Ia 50 [S3ap3])7F - (F7 s0, [837p3]),B = va =m

sqa 0(s3; I =v($1, (b, I($1 — 1) +b),1(31) <m),F =v($1,(y, E « F($1 — 1)), I($1) < m))
sg O(s3; I =b[(m+1)/b], F =yl ("Dl B = b M =m)

TABLE 2.5: Symbolic analysis of Listing 2.5

to b[(m 4+ 1)/b] and F as y % z[(m+1/01,

2.4.4 Symbolic analysis in parallelizing compilers

Symbolic analysis has long been used by parallelizing compilers [20, 24], such as the Parafrase-2
compiler [25] and SUTF [26], for various tasks including constant propagation, induction variable
substituion, and loop invariant code detection, to name a few.

In this thesis we use it to obtain expressions of a particular ordered set of statements so that a

change to the order can be compared for correctness.

2.5 Summery

In this chapter we have introduced methods in compilation that are important to this thesis

(and some surrounding topics). In particular the following are of importance.

e A textbook model of compilation can be broken down into a frontend, zero or more midends
and one backend phase. Although the control flow tends to be more complicated, particular

between midend and backend, this model emphasize that analysis precedes optimization.

e Data dependency analysis is a necessary but not sufficient test in deciding legality of a
particular reordering. Although simple for most basic statement, deciding loop-carried

dependencies is troublesome.

e Alias analysis is undecidable in general and its approximation algorithms can be categories

by six features. Scalable algorithms are fast but conservative.

e Value numbering is a technique to assign a value to expressions and hence ease deciding

equivalence between two symbolic expressions. The general case is undecidable.

e The optimization phase deals with problems regarding legality and benefit of transforma-

tions.

e Symbolic analysis is a powerful static analysis method to compute symbolic states at a

particular program points.
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Chapter 3

Commutativity analysis

Deciding commutativity between blocks of statements for the use in automatic parallelization
was first shown by Diniz and Rinard [27]. In their work object-oriented applications written in
C++ was analyzed to detect instance variable access restrictions and the invoked operations.
Two operations were said to commute if the new value of each instance variable of the receiver
objects and the invoked operations where the same in both executions orders. The algorithm to

detect and verify possible commuting operations worked in the following way:

1. Traverse the call graph to identify variables that the two operations read but do not alter

(called extent constant variables).

2. Traverse the call graph again to divide the call sites into auxiliary call sites (= functions
that can return values, read/write reference parameters, invoke other auxiliary methods
but does not compute values based on state modified by other operations) or full call sites
(= functions that may access objects, read reference parameters or invoke full/auxiliary

methods but do not return values or change reference parameters).
(a) Full call sites are visited to make sure that all variables passed by reference into full
methods only contain extent constant values.
(b) Auxiliary call sites are checked to make sure that all auxiliary methods only compute

extent constant values.

3. All methods are checked to make sure that they can be divided into a object- and
invocation- section. The object section performs all access to the receiver while the invo-
cation section invokes operations and does not access the receiver. It is of course allowed

for the object section to pass values to the invocation section.

4. Independence testing and symbolic analysis is then used to verify commutativity according

to above criteria.

The practical limitation of this approach came from the symbolic analysis algorithm used as well

as limitations on the application it analyzed.

Aleen and Clark [28] extended this work by recognizing that the approach depended on the
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fact that operations had to be commuting right after the completion of the last operations. It
is however possible that later operations does not care about the difference (a subset of the ex-
pression). A conceptually simple case of this is when two functions return values inserted into a
array and then consequently compute the difference between these. Depending on the order they
are inserted a certain pair may result in x or -x and hence will not be commuting. If however
the absolute is applied to this result then both cases will produce the value x.

The approach in [28] depended on random interpretation [29], a combination of random testing

and abstract interpretation to verify commutativity. The algorithm worked in the following way:

1. Generate two sets of random inputs used by a function F, called I; and I3, as well as a

random memory map M for the outputs.

2. Run random interpretation on F(I3, M) generating memory values M; which are used as

context for a second run: F(I3, M7) generating memory map M;2.

3. Redo the execution, but now switch order (equivalent to swapping I; and I): Run F(Ia,
M) = M2 and then F(Il, Mg) = M21

4. If M2 = M>1 then the function F is commuting otherwise go on and recursively try

readers of changed memory location to see if their result is altered by the new input.

Notice that the “otherwise” part in Item 4 is what’s new. This adds another dimension to the
problem in that results have to be rechecked by all readers of the result. In the case of Aleen
and Clark [28] the algorithm iterated over all readers and if a certain reader did not accept the
change then the readers reader was checked and so on. This recursive behavior was limited to

not explode.

Example

Consider the sourcecode in Listing 3 which shows the computation of a histogram of a image
which is also sharpened by a Laplacian convolution kernel. The two for loops in the histf()
function are commuting but not independent because of the update of the global hist variable,
neither PoCC [30] or the automatic parallelization program in ROSE [31] can detect this. To
reach the conclusion that the loop iterations are commuting we will need to unroll the loop (for
simplicity only the inner loop is used in this example) and compare the context for iteration order
i;i+1 (orginal) to i+1;i (swapped). The expressions can be obtained as per Section 2.4 and are
shown below. As shown both contexts are equal and the result will be the same independently

of loop iteration order.

i=IMAGE SIZE_ X
j=IMAGE_SIZEY

= hist[(—1[j +1][i — 1] — I[j + 1)[i] = I[j + 1][i + 1] = I[j][i — 1] + 8 = I[][i] — ..] + +

hist[(—=I[j+2][i =1 —I[j+2][i] = I[j+2)[i+1]—1I[j +1][i — 1]+ 8« I[j + 1][i] — ...
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t=IMAGE SIZE_X

. . j=IMAGE SIZEY
i+1;1 =

hist[(—=I[j+2][i =1 = I[j+2][i] = I[j+2)[i+ 1] —1I[j +1][i — 1]+ 8« I[j + 1][¢] — ...
hist[(—=1[j+1][ — 1) = I[j + 1][g] = I[j + 1][i + 1] — I[j][z — 1] + 8 = I[j][d] — ...

1+ +

int hist [MAX_INTENSITY-MIN_INTENSITY];
int I[IMAGE_SIZE_Y+2] [IMAGE_SIZE_X+2];

int laplacian (int x, int y) {
//Laplacian sharpening kernel [-1 -1 -1; -1 8 -1; -1 -1 -1]
return -I[y+1][x-1]1-I[y+1][x]-I[y+1][x+1] +
~I[yl[x-11+8xI[y]l[x]-I[y]l[x+1] +
~Ily-1]1[x-11-I[y-11[x]1-I[y-1]1[x+1];
}
int histf () {
//Create histogram...
int i,j;
for(i = 1; i <= IMAGE_SIZE_X; ++i)
for(j = 1; j <= IMAGE_SIZE_Y; ++j) {
hist[laplacian(i,j)-MIN_INTENSITY]++;
}

return O0;

int main() {
printf ("Histf: \/%d\n", histf ());

3.1 Fine-grain commutativity analysis

|++

In our approach we instead try to detect commutativity on a finer granularity. The motivation
behind this is:

e This allows us to identify functions that are commuting in one context but not in another.
As a practical example of this consider a function for creating linked list nodes. This
function is not commuting. But if it is used to create containers for hashmap entries this
call can however be considered commuting, if its also used to store nodes in a standard
queue then it will not be commuting in this context. An approach only focusing on
detecting commutativity on a function level will not be able to discover this as both

contexts will be unified.

e One may always find cases where a few statements are between two calls to different func-
tions, the question is do these statements alter the possibility of the calls to be commuting?
In the event that these statements are independent of the calls - no, but if they commute
(and are not independent of course) with the state variables of the calls you need a more

sophisticated approach to detect this.
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In contrast to previous coarse-grain approaches the output of our algorithm is not a list of com-
muting functions but rather a lower triangular matrix of size proportional to the number of
statements of interest. All possible permutations of a function can be expressed by pairwise
swapping statements [32]. A certain reordering is possible (or alive) if the result (or program
context in terms of symbolic analysis) is the same for both the reordered and original order,
otherwise it is not possible (or dead). As discussed above we also need to reconsider dead re-
orderings later on, hence a certain reordering can fail at first (conditional dead) and later be
revived (conditional alive) or succeed in the first place (unconditional alive).

To begin developing an algorithm consider Algorithm 1. In this algorithm all statements are
traversed and for each statement there is one more possible reordering than for the previous
statement (the first statement can’t be moved upwards). In total there are Zi]\;o (]j ) = 2N
possible permutations for N statements. As per Menon et al. [32] we can generate each permu-
tation of a set of statements by sequences of adjacent transpositions (i.e., iteratively swap two

elements). This leaves N2, but due to symmetry (i.e., reordering statements (i,j) and (j,i), where

i,7 € {1, N}) and redundant swaps (i.e., (i,i)) the total is N22_N possible reorderings. For each
possible reordering we check if it is independent in which case it is also commutative. Otherwise
the algorithm tries to swap the order of the two statements (called s; and s; in program order)
involved in the reordering, symbolically execute s;, all dependent statements in between these
two and finally symbolically execute s;. If the expressions for all altered variables are equal to
that of the original order then the reordering is commutative. After each reordering for a partic-
ular statement has been considered the algorithm needs to go back and redo all failed reorderings

for the previous statements, a very costly operation.

Compared to Algorithm 1 the improved Algorithm 2 does not “go back” and redo the calculations
for all failed reorderings. In order to skip this stage we need to be able to deduce properties
about the program context and its variables, properties that will give us an idea of when a certain
reordering is possible.

When a certain reordering is found not to be commuting the algorithm creates a global value
vector (more discussed in Section 3.1.1) for each variable that describes the state of that particular
variable in terms of composite functions. The global value vector is then added (together with
the global value vector of the context of the original order) to a list in such a way that it will
only be revisited if its possible that a later executed statement canceled that difference (more
discussed in Section 3.1.2). At the very end of the algorithm the list is revisited and reorderings

that can be revived are rechecked.

3.1.1 Global value vector

A global value number is a index for a certain operation as mentioned in Section 2.2.1, a complex
expression will be composed of many numbers. Such as 2z + 2 = +(*(2,x),/(*(3.y).2)) =
A(B(C,D),E) where A refers to the addition, B to the 2x multiplication and E to division.
Applying 2% + 2z = +(/(*(2,x),2),*(2,x)) to the same algorithm with the previous dictionary
would yield G(F,B(C,D)) where the new operations: the first addition G and division F, has
been added to the dictionary.

Global value vector on the other hand represent an expression by naming each subexpression.
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Algorithm 1: Main algorithm (Naive)

Input: S - set of N statements
Input: Cj - Input expressions of dependent variables
Output: A commutativity matrix CM
begin
forall the Stm s; in S[1 to N/ do
C; +— RSSymbolicAnalyse(s;, Cij_1)
forall the Stm s; in S[2 to i] do
if IsIndependant(s;, s;) then
| CM(i,j) = UNCOND_ALIVE

else

Cmp <— RSSymbolicAnalyse(s;, C;_1)

forall the DepStm d; in S[i+1 to j-1] do

| Cimp = RSSymbolicAnalyse(d;, Cipyp)

Cimp <— RSSymbolicAnalyse (;,Cimp)

if Cynp = C; then CM(i,j) = UNCOND ALIVE
else CM(i,j) = COND DEAD

forall the j in [1 to i/ do
forall the k in [2 to j/ do
if CM(j,k) = COND_DEAD then
Ctmp <— RSSymbolicAnalyse (s, Cj_1)
forall the DepStm d; in S[j+1 to k-1] do
| Cimp = RSSymbolicAnalyse(d;, Cypyp)
Cimp <— RSSymbolicAnalyse (5;,Cimp)
forall the DepStm d; in S[j+1 to i/ do
| Cimp = RSSymbolicAnalyse(d;, Cypyp)

if Ciynp = C; then CM(i,j) = UNCOND_ALIVE

Global value numbering is applied as above but the result is represented as a vector. In above
we have 7 (A to G) (sub)expressions each is given a component 7 in a vector. If an expression
includes the subexpression then the component ¢ will be 1 else 0. For the above expression the
global value vector is <1,1,1,1,1,0,0> and <0,1,1,1,0,1,1> respectively. Algorithm 3 performs

the above calculation which forms a description of an expression.

3.1.2 Revisiting a failed reordering

As mentioned previously we need more than simply knowing whether that a reordering failed or
not. The very reason that a reordering is possible is because for one/many variables the state
was different compared to the original execution order.

In Section 3.1.1 we used two expressions to show how a global value vector was represented. The
difference between the two is <1,0,0,0,1,1,1> or A, E, F and G. In order for a later statement
to justify this reordering the previous components of the difference would need to be 0 (or
nonexistent). One should note that a reordering that failed because subexpression A was included

will be more likely to regain alive status then one where B and A was missing. In fact a reordering
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Algorithm 2: Main algorithm

Input: S - set of N statements
Input: Cy - Input expressions of dependent variables
Output: A commutativity matrix CM
begin
forall the Stm s; in S[1 to N/ do
C; +— RSSymbolicAnalyse(s;, Cij_1)
V; «— GlobalValueVector (C;)
forall the Stm s; in S[2 to i] do
if IsIndependant(s;,s;) then
| CM(i,j) = UNCOND_ALIVE

else

Cimp <— RSSymbolicAnalyse(s;,Ci—1)
forall the DepStm d; in S[i+1 to j-1] do
| Cimp = RSSymbolicAnalyse(d;, Cipyp)
Ctmp <— RSSymbolicAnalyse (s;,Cimp)
if V; = GlobalValueVector (Cyy,) then
| CM(i,j) = UNCOND_ALIVE

else
CM(i,j) = COND_DEAD AddRetryEntry(V,
GlobalValueVector (Cipmp) )

forall the ApplicableReorderings (V1j,Vak) in RetryMap[Component] do
Cimp <— RSSymbolicAnalyse (s, Cj_1)

forall the DepStm d; in S[j+1 to k-1] do

| Cimp = RSSymbolicAnalyse(d;, Cipyp)

Cimp <— RSSymbolicAnalyse (Si,Clmp)

forall the DepStm d; in S[k+1 to i/ do

| Cimp = RSSymbolicAnalyse(d;, Cipyp)

if V; = GlobalValueVector(Cyy,) then CM(j, k) = COND_ALIVE

Algorithm 3: GlobalValueVector - Generation of global value vector

Input: E - Variable state

Input: Map - Map of previous named expressions
Output: A expression description V

begin

forall the Children C; in E.Children [I to N] do
L Ejescli] = GlobalValueVector (C;)

if Map.Lookup(E(Eges.[1 to NJ])) != 0 then
L return Map.Lookup (E(Eges.[1 to NJ))

else
Map[E(Fgesc[1 to N])] = AssignNewIndex ()
return Map[E(Eges.[1 to N])]
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with an A extra has to be alive before A and B. For that reason, failed reorderings are added to a
list based on how many subexpressions it needs as well as which expressions it needs. Algorithm
4 shows how this is done. Consider three different reorderings to the same variable: in the first
case the difference was A, the second A and B and the third A, B and C. The structure of the
retrymap for that variable will now look as in Figure 3.1. If a later statement would change the
variable in such a way that A is removed then the first reordering will be rechecked, if that passes
the second and later the third. If B is removed then the second reordering will be rechecked and

later the third reordering. If C is removed then the third reordering is rechecked.

Algorithm 4: AddRetryEntry - Adding expression to retry buffer

Input: (Vi, V3) - Variable state encoded as a set of value numbers

Input: Var - Variable name

begin

AV «— V] — Vs

(NumComp, Comp) +— CountComponents (AV)

forall the Component C; in Comp do

Index =0

while Index != NumComp do

if RetryLink[i][Index] = UNSET —— NumComp then
RetryLink[i][Index-1] = Index; RetryLink|i|[Index] = NumComp

L Index = NumComp

else if RetryLinkfi/[Indez] ; NumComp then

L Index = RetryLink|i|[Index]+1

else if RetryLink[i/[Index] ; NumComp then
RetryLink[i][NumComp| = RetryLink[i][Index]

L RetryLink[i][Index] = NumComp

if Component in Vi then
L RetryMapl[i][NumComp]| = (V1, V2)

else
L RetryMapl[i][NumComp] = (Va, V1)

Number of components
) w
| |
w

A B C

Component

FIGURE 3.1: Retry map after insertion of A, A/B and A/B/C
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3.2 Summery

A context-sensitive algorithm to determine commutativity between blocks of statements has been

presented. Its introduction is primarily motivated by:

1. Blocks (such as functions) can be commuting in one context but not in another.

2. Current approaches may have problems dealing with seemingly irrelevant but still inter-

fering statements when pattern-matching for statements applicable to their analysis.

The analysis starts from the conclusion of Aleen and Clark [28] but uses symbolic analysis to
construct a comparable symbolic expressions of the original and altered state. In contrast to
their approach this method does not iterate recursively to all readers of the altered variables, but
rather in a bottom-up approach construct summaries in the form of symbolic differences that

are later revisited.
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Chapter 4

Implementation

The following chapter discusses the implemented framework and design decisions related to it.
In order to analyze a program it has to be translated to a representation it can manipulate,
something that is done by the frontend of a compiler. Section 4.1 outlines the various host
compilers that were considered for this task. A dedicated intermediate language was also defined
and is, together with the transformation from the host compilers IR described in Section 4.2.

Finally, Section 4.3 describe the framework and its main components.

4.1 Host compiler

Since our approach uses dependence- and alias- analysis it was also necessary for the chosen
compiler to easily export such functions. The following compilers were investigated with ROSE
as the chosen host mainly because of its clear focus towards researching algorithms as this and

its well documented architecture.

e Trimaran [33] is a integrated compiler and simulation infrastructure. The compilation
process begins with profiling and inlining followed by applying various analysis methods.
Optimizations such as loop optimizations, constant folding and simdization (vectorize code
using SIMD instructions) are then applied. Finally the application is simulated to obtain

runtime results.

e The LLVM compiler framework was designed to provide transparent program analysis
and transformation during the whole life-time of the application. This “incremental” op-
timization is achieved using a abstract RISC-like instruction set with 31 opcodes that
includes type information, control flow graphs and a dataflow representation using an in-
finite, typed register set in SSA form [34]. The LLVM IL is very low-level in that it does
not contain high-level constructs such as classes or exception handling (such as Microsoft
CLI or JVM).

LLVM include various alias analyzers and methods to generate call graphs, perform live-

ness analysis, (loop) dependency analysis, constant propagation and induction variable
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detection. Supported optimizations include various forms of dead code elimination, con-
stant folding, library-aware compilation and loop optimizations. However LLVM is not a

parallelizing compiler; the optimizations done are for uniprocessor systems.

e ROSE is a source-to-source compiler framework meant for building program transforma-
tions and analysis tools. It support Fortran, C/C++, OpenMP and Unified Parallel C as
input languages. The IL used in ROSE is named after its frontend, Sagelll and includes
all the details of the sourcecode within a AST to not lose information for possible later
analysis/transformations. The ROSE framework is compiled to a library which later is
called upon from the application. From the application it is possible to control which anal-
ysis and transformation passes to use. Included analysis methods include various graph
generation functions (such as call-, program-, data- and control- graph), alias analysis,
data flow analyses such as live variable and def use/use def. Supported optimizations are
more limited then both LLVM and Trimaran but include partial redundancy elimination (a

version of common subexpression elimination), constant folding and loop transformations.

The Sagelll IR is the complete AST of the input source-code. To simplify SAFT the IR was
converted to another, more normalized representation (i.e., converted to a canonical form) that
ignore redundant nodes (e.g., comments, variable declarations). The transformation step is

outline below in Section 4.2.

4.2 Intermediate language transformation

The framework component “RoseToSAFT” is responsible for converting Sage IIT IR to an easier
manipulated IR. In the process a number of other methods are invoked to retrieve information
that is needed by the analyzer. The different transformation phases are classified as either global

or local.

4.2.1 Global transformation

The global transformations include transformations done on a project level (a set of source-files).
This includes alias analysis and generation/minimization of readers/writers.

The readers are calculated based on inter-procedural data-flow analysis starting with a static
callgraph the strongly connected components are computed. FEach component will reflect the
functions called in a cyclic recursive manner. The strongly connected graph (SCG) is traversed
in a reverse topological order. At each component the readers and writers are propagated up-
wards to the caller. For a component with more than one member the readers and writers are
collected in a worst case manner and hence not subject to minimization. The output of this
phase is a readers/writers map.

Minimization occurs in the sense that a certain function may have outputs that are only written
by itself in a possible execution path. By removing these outputs the symbolic analyzer can
safely ignore comparing the expression for this variable. In general this kind of optimization

may prove worthwhile for object-oriented languages rather than C as investigated here. This
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step was however included for future use.

4.2.2 Local transformations
Local transformations occur on a function basis. The following passes are included:

e Transform sourcecode to canonical form (Desugaring/Normalization).

Variable names are renamed in such a way that scopes can be removed.

— For- and Do-while- loops are converted to while loops.

Switch cases are represented as consecutive if-else.

— Subtraction is converted to addition where the second operand is negated.
e Dependence analysis is being performed so that independence can be determined easily.

e Filters can be applied to limit which reorderings the analyzer considers later.

Dependence analysis is performed on the constructs of the IR. This means (in contrast to con-
ventional approaches) that a a loop reading/assigning the variable X is dependent on a previous
assignment of X. The reason for this is that no reorderings occur across control dependencies and

hence additional information (such as which statements in the loop) is unnecessary. Since the

n?—n
2

limit the number. The filter includes which type of statement/expression to pass such as calls,

number of reorderings for a program of n statements in a basic block is a filter is applied to

loops etc. This can later be extended to automatically create a filter based on profiling results.

Finally statements are grouped based on the control structure they belong to.

4.2.3 Intermediate language
The language is organized into 5 different constructs as detailed below.

1. Basic constructs include expression statements such as assignment and calls.
2. Group represents a set of other statements.

3. If and Loop has a direct equivalence to same construct in C. Loop represents a while-loop

or normalized do-while-/for- loop.

4. Function represent a named group of constructs.

The syntax of the language is further described by the context insensitive description of Table
4.1.

4.3 SAFT

Symbolic Analysis Framework-T (SAFT) performs the computation of the program context for

each IR construct. Given a construct it recursively creates the program context by symbolic
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Basic — Expression

Group — (Group | If | Loop | Basic)*
If — Basic Group Group

Loop — Basic Group

Function — Group

TABLE 4.1: CFL description of the SAFT IR

analysis as outlined in Section 2.4. Each state is then subject to simplification and reduction
to further improve comparison. Both the simplifier and reducer are important and could be
implemented using a Computer Algebra System (CAS), however the cost of performing more

elaborate operations may be severe.

4.3.1 Primitive representations

Primitives in SAFT include equation trees and program contexts. The data structures needs to
be efficient both in space and execution time since many functions either concatenate or copying

them.

Expression

Expressions in SAFT are represented as a direct acyclic graph. Currently nodes are either inter-
nal for operations or external for operands. In some cases it might be necessary to have a few
special cases, i.e. nodes that represent functions calls (the first operand is the function name)
and conditional assignment (first operand is condition, second is true-part and third is false-part)
with dedicated nodes. In order to handle conditions, expressions are extended to binary decision
diagrams (BDD) with (recurrence) expressions as terminals.

The two most important expressions in the symbolic analysis are the call and assignment ex-
pression. Both of them can incur a state update. Since at all times a fully expanded program
context is going to be a function of its inputs, globals and various constants (in contrast to a
partial expanded program context where locals can exist) it is necessary to have an efficient
implementation of lazy-copy for expression trees. Without this, an expression tree would have to
be deep copied (in contrast to shallow copied) every time an assignment or (possibly) a call was
executed. SAFT implements an observer pattern to handle this across the different layers. As a
parent node adds a new child it tells the observer that it is interested in knowing about updates
to that child. If the child is also found and changed as part of another parents tree it will dupli-
cate (deep-copy) itself and send a message to the first parent with the copy before updating itself.

Program context

Many applications written in the imperative programming paradigm lack recursive functions
of higher order (one seldom find anything higher then self-recursion). Together with the fact
that the callgraph of the applications in this paradigm has a very tree-like structure another
optimization was added. Besides having the same support for lazy-copy as the expressions, the
program context (together with the state) also supports (de)serialization to/from disk depending
on when it was previously used. This decreases the memory requirement as it is otherwise quite

large when using BDDs.
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4.3.2 Symbolic expression solving and manipulation

Simplifier The simplifier propagates not/negations down the expression tree to terminal or

non distributive operations (i.e. —5 :—z), expand distributive operations and boolean expres-

sions subject to DeMorgans law.

Reducer The reducer uses an interpreter to precompute constant operations as well as re-

moving terminals subject to cancellation (i.e. x-x).

Recurrence equation Solving recurrence equations to closed forms is central to obtaining
easier to manipulate expressions. As this is an elaborate task [35] it was decided to delegate this

to a library or tool. The following were investigated

e Parma University’s Recurrence Relation Solver (PURRS) [36] is a recurrence relation solver
library in C++. It supports a number of recurrence equation types (some are limited to

special cases) such as:

— Linear Recurrences of (in)finite order with constant/variable coeflicients (e.g., x(n)
= 2x(n-1)+1, x(n) = a(n)*x(n-1)+p(n))

— Generalized recurrences (e.g., x(n) = a * x(n/b) + p(n)) which are very common in

divide-and-conqueror functions.

Non-linear recurrence relations of finite order (ex. x(n) = x(n-1)*x(n-2))
— Multivariate recurrences (ex. x(m,n) = f(x(m-1,n-1))).
e Mathematica [37] is a CAS that include automatic simplification/solver, (partial/total) dif-
ferentiation, (definite/indefinite) integration, (un)constrained optimization as core func-
tions. Mathematica is really the name of the front end linked using a socket protocol

called MathLink [38] to the Mathematica kernel. The internal recurrence solver RSolve

has previously been used in symbolic analysis engines [39].

Since PURRS has open bugs and is no longer maintained it was decided to go with Mathematica.

4.3.3 Organization of SAFT

The implemented framework is shown in Figure 4.1. As mentioned ROSE IR is transformed to
SAFT simplified representation. The fine-grain commutativity analysis module then iterate on

program context returned from SAFT for each statement block in sourcecode.

4.4 Summery

This chapter outlined the implementation specific details of the framework. The host compiler
ROSE transforms the sourcecode to its IL which is normalized to SAFT IR. The fine-grain
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Commutativity matrix

FIGURE 4.1: Implemented framework flowchart

commutativity analysis then work together with SAFT to produce the commutativity matrix for
each block of statements.
The primitives in SAFT are optimized and its IL include the structures Basic, Group, If, Loop

and Function.
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Chapter 5

Results

The main result from this thesis is the symbolic analysis framework with the following properties:

Support for C constructs with its own simplified IR.

e Modular design to support different compilers frontends.

Performance enhanced context maps.

Reader/Writer identification and minimization.

Simplification & Reduction (Interpreter based) routines.

Solves, when possible, recurrence equations to their closed form using Mathematica.

Corner cases of the analysis have been verified using microbenchmarks. Due to various issues
(presented below) it has been impossible to verify the presented commutativity analysis approach

on any larger piece of software, such as benchmark applications.

5.1 Microbenchmarks

The microbenchmarks include code-snippets to test that the symbolic simplifier/reducer is able
to rewrite the state expressions to a form that allows the symbolic comparator to detect com-
mutativity. FEach microbenchmark includes one or a few cases that we expected it to find. This
includes various recursive functions (such as naive Fibonacci sequence computation), loop con-
structs, basic statements (such as a variation of Listing 5.1) and kernels (such as IIR). Although
the core functionality of SAFT is capable of analyzing and producing valid program contexts
for almost all the microbenchmarks the simplifier/reducer is yet not capable normalizing the
expressions to a form that yields successful comparison.

To emphasize further the problems, some of microbenchmarks are discussed together with their

respective problem in Section 5.2. The results of the evaluation is presented in Section 5.3.

Listing 5.4, 5.2 and 5.1 (without pointers) are part of the microbenchmark suite together with

seven other kernels, which although similar in structure includes statements that implement
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more complicated expressions for the symbolic engine to handle. As such all microbenchmarks

are represented depending on how similar they are to one of the given three cases. Table 5.1

outlines the various kernels.

Microbenchmark ID

Similar to/different from

Listing 5.1 but only a basic block without pointers.

Listing 5.2.

Listing 5.2 but using arrays rather than scalars.

IIR kernel, similar to ID 3.

Listing 5.1 without pointers.

similar to ID 1 but uses pointers.

Listing 5.2 but more complicated.

Listing 5.1 but uses compound types such as structs and arrays.

OO0 =W DN+~

Listing 5.4.

—
o

similar to ID 8 but more complicated.

—_
—_

similar to ID 7 but more complicated.

TABLE 5.1: Microbenchmark categorization

5.2 Problems

5.2.1 Alias analysis

Pointers are modeled as a set of variables in SAFT, writing to pointers are seldom expanded

(as variables primitive types) but rather kept as a set to minimize storage space. Without

alias analysis SAFT will not be able to deduce which variables a pointer could refer to and

will hence operate on null-pointers. The implemented alias analysis in ROSE uses Stensgaard’s

algorithm, which unfortunately is too conservative to allow detecting the calls to a() in Listing

5.1 as commutative. Our approach can however detect commutativity if the definition and

declaration of a() is changed so that the result is returned rather then passed through a pointer.

Naturally this example could be reduced with aggressive constant propagation/folding to a single

printf("1");, but it still illustrates the problem.
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int global_1, global_2;

void a(int *d) {
int tmp = global_2 % 2;

if (tmp == 0) {
(¥d) = global_1;
else
(¥d) = -(global_1 + 7 + tmp);
global_1++;
} 1 int main() {
2 int i, a = 0;
void b(int e, int f) { 3
return e-f; 4 for(i = 0; i < 10; i++) {
} 5 a += func_a() - i; //pure function
6 }
int c(int g) { 7 a += func_b(); //pure function
if(g < 0) 8 return a;
return -g; 9 3
return g;
} LisTING 5.2:  Multiple recurrence

equation example
int main() {
int foo, bar;
a(&foo);
a(&bar);
printf ("%d", c(b(foo, bar)));

return O0;

LisTING 5.1: Example from [28]

Due to issues with the alias analysis implementation support for pointers was restricted in SAFT

and consequently, sourcecodes that include pointers are termed unanalyzable.

5.2.2 Recursive equations

Many of the recursive equations encountered from loops lack closed-form. As such they are hard
to manipulate symbolically to discover commutativity. Another case is when a induction variable
is updated by two variables in the loop such as in Listing 5.2. In this case statement 3 (the for
loop) is commuting with the assignment in statement 6. Although recurrence equation of the
loop counter (variable i) can be resolved to its final expression n — 1 (n is the loop iteration
number) the reducer can’t yet successfully combine the expression with that of the variable a to
produce the final expression 41"2—’”2.

Listing 5.4 show the example of a naive Fibonacci sequence generator. Since SAFT currently
does not include functionality to detect and handle recursive functions it is not able to compute
the program context for this example. Instead it expands the function calls till the maximum
call depth is reached, where it returns an uninterpreted function with the proper arguments as
results. This expression can of course not be solved by the recurrence equation solver.
Although related to the issue with pointers, the problem of determining the index of an array

access mostly manifests itself when the index is a recurrence equation. Consider Listing 5.3 which
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is a simplified version of the critical loop in the kmeans application from the Rodinia benchmark
suite [40]. The loop has loop-carried dependencies given that the variable index maybe equal
in two different iterations. The problem lies in that the index cannot be resolved to a proper

comparable expression.

1 int fib2(int n) {
2 int a = fib(n-1);
3 int b = fib(n-2);
for(i = 0; i < LIMIT_1; i++) { 4 return a + b;
5 }
index = func(...); //Pure functidn
7 int fib(int n) {
arrayl [index]++; 8 if(n == 0)
for (j=0; j< LIMIT_2; j++) 9 return 1;
array2[index][j] += datal[il[j110 else if(n == 1)
T 11 return 1;
12 else
I3 return fib2(n);

LISTING 5.3: Array access example 14 3

LISTING 5.4: Recursive function ex-

ample

5.3 Evaluation

Table 5.2 shows the results of evaluating the microbenchmarks on the given framework and
algorithm. Failed due to core refers to errors within the program context generation engine.
In this particular case (with the mentioned microbenchmark kernels) it refers to problems with
pointers as well as recursive functions. Failed due to simplifier/reducer refers to cases
where the simplifier /reducer was not able to normalize the state expressions sufficiently. Failed
since storage location could not be determined refers to examples where for instance
array indexes could not be determined and the framework reverted to conservative assumptions.

Successfully determined commutativity is of course success in all stages of the framework.

Result status

| List of microbenchmark IDs

Failed due to core

{6,9}

Failed due to simplifier /reducer

{234,711

Failed since storage location could not be determined

{4.8}

Successfully determined commutativity

{1,5}

TABLE 5.2: Evaluation results

5.4 Summery

In evaluating the algorithm and framework 11 microbenchmarks were created. These include one
or more cases of commuting operations. Due to problems with alias analysis, pointers are not

supported and recursive functions is yet not handled. Furthermore, the support for recurrence

32



equations is yet limited and in particular poses problems when arrays are accessed by a loop

variable.
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Chapter 6

Conclusion

The benefit of multicores diminishes if applications can’t take advantage of the parallel archi-
tecture. As such is it necessary to develop algorithms that are able to identify code-blocks that
can run in parallel. This thesis has explored an approach to context insensitive and fine-grain
commutativity analysis. Section 6.1 discusses improvements that can be done to improve the
results of our approach. Section 6.2 reflects over the progress in this thesis and Section 6.3

concludes this thesis.

6.1 Future work

Although this thesis has addressed issues with commutativity analysis that were previously
overseen there are still a number of issues to deal with. As seen the framework fails to discover
commuting operations mostly due to limited symbolic simplification/reduction. This is obvious
a question of accuracy versus speed, still one could have multiple algorithms to decide equality,
ranging from fastest but least accurate to slowest but most accurate.

It is also a question of whether all failed reorderings should be reconsidered, if the comparator can
tell that these expressions never will be the same. A common case is when the state expression
is equal to a constant in one order but another expression in the opposite order. Since constants
are static expressions such as these will always correspond to non-commutativity.

Finally, it is necessary to come up with decision rules on when to exploit detected commutating
operations. As the cost of guaranteeing atomicity can be quite substantial such a decision may

well have to be delayed till runtime when the environment is known.

6.2 Discussion and reflections

A lot of time of the thesis was devoted to on perfecting the SAFT modules. Design decisions
critical to the overall running time and memory consumption was early prioritized to allow for
scalability. Symbolic analysis is an elaborate method in many aspects; unfortunately it comes

with multiple non-trivial design tradeoffs.
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Although problems exist with the current framework, it was decided that these were outside the

scope of this thesis.

6.3 Final thoughts

As seen more aggressive alternatives exist to dependency analysis, a keystone in compilation
and particular parallelizing compilation. The cost of a less conservative analysis is in general
a higher price in the form of execution time. Whether the gain outweight the cost depends on
the execution context and the application. Even though commutativity analysis may well find
additional opportunities the cost of synchronization to grantee atomicity of the dependent and
commuting operations may be high. In the other extreme few/small commuting operations in a
otherwise independent iteration space may well enhance execution time.

The algorithm introduced here can detect commuting operations even in the context where they

are not immediately visible.
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