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Abstract
This thesis presents an innovative approach to implementing a security enforce-

ment mechanism in the contexts of untrusted software systems, where a piece of
code in a base system may come from an untrusted third party. The key point of
the approach is that it is lightweight in the sense that it does not need an addi-
tional policy language or extra tool. Instead, the approach uses the aspect-oriented
programming paradigm – a programmatic means to modify the behaviour of an ap-
plication based on aspects – to specify security policies and embed the policies into
untrusted software. As a result, the policies can be fine-grained and application-
specific, and can be inlined into the untrusted software without modifying the base
system, in order to detect and prevent unintended behaviour of the software at
runtime. The approach has been elaborated in two particular untrusted software
contexts in this thesis.

Firstly, we have developed the approach in the context of a vehicle software ar-
chitecture, where a third-party application can be installed and executed in a vehicle
system. We have shown that various classes of fine-grained security policies can be
specified and enforced in such a system by the approach. The security assurance
provided by the enforcement mechanism is promising for deployment in an exist-
ing vehicle software system. Furthermore, we have identified a number of potential
threats in the vehicle software architecture and developed countermeasures in terms
of security policies. We have demonstrated the deployment of countermeasures to
prevent possible attacks.

Secondly, we have studied web application security. We propose a novel enforce-
ment method called lightweight self-protecting JavaScript by applying the light-
weight approach in the context of web security. The method prevents or modifies
inappropriate behaviour of JavaScript execution in web pages by intercepting secu-
rity relevant API calls. Unlike other approaches to enforcing policies for JavaScript,
the enforcement and policy code are provided as a library and therefore do not re-
quire a modified browser. Furthermore, the approach does not employ runtime
parsing or transformation of code, and thus has low runtime overhead. We also
present an application of the method in the context of untrusted JavaScript such
as mashups by proposing a two-tier sandbox architecture in which untrusted Java-
Script code can be loaded and executed dynamically. The execution of untrusted
code is monitored by modular and fine-grained security policies defined via an
adaptation of self-protecting JavaScript to ensure security for the hosting page.

Keywords: security policy enforcement, vehicle software security, web-application
security, JavaScript security, untrusted software
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Preface

This thesis comprises a collection of papers contributing to the topic of
security of untrusted software. The thesis is divided into two parts. Part I
gives an overview of the thesis, summarises the included papers, discusses
some practical issues, more recent related work, and some shortcomings
which have not been discussed in the included papers. Part II reprints four
published papers and one technical report, listed in order of publication as
follows:

1. Phu H. Phung, and David Sands. Security Policy Enforcement for the
OSGi Framework using Aspect-Oriented Programming. In Proceed-
ings of the 32nd Annual International Computer Software and Ap-
plications Conference (COMPSAC’2008), July 28- August 01 2008,
Turku, Finland, pp. 1076-1082, IEEE Computer Society. ISSN: 0730-
3157. ISBN: 978-0-7695-3262-2.

2. Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight
Self-Protecting JavaScript. In Proceedings of the ACM Symposium
on Information, Computer and Communications Security (ASIACCS’
2009), 10 - 12 March 2009, Sydney, Australia, ACM Press.

3. Phu H. Phung, and Dennis K. Nilsson. A Model for Safe and Se-
cure Execution of Downloaded Vehicle Applications. In Proceedings of
Road Transport Information and Control - RTIC 2010 and ITS United
Kingdom Members’ Conference, IET.

4. Jonas Magazinius, Phu H. Phung, and David Sands. Safe Wrap-
pers and Sane Policies for Self Protecting JavaScript. Accepted at
OWASP AppSec Research 2010, and published in Proceedings of The
15th Nordic Conference in Secure IT Systems (Nordsec’10), LNCS, to
appear.

5. Phu H. Phung. A Two-Tier Sandbox Architecture to Enforce Modu-
lar Fine-Grained Security Policies for Untrusted JavaScript. Technical
report No.2011:11 - Department of Computer Science and Engineer-
ing, Chalmers University of Technology and University of Gothenburg,
ISSN 1652-926X.
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Chapter 1

Introduction

Many modern software programs are application extensions, running within
application platforms rather than running as separate processes in an op-
erating system [Tan01, UE04]. Common examples of such programs in-
clude macros running on Microsoft Word or Excel, web browser plug-ins,
JavaScript in web pages running on web browsers or email clients. Espe-
cially, with the advent of Internet, modern software systems may consist
of several software components which are loaded from external or third-
party sources. We refer such components as untrusted software, since the
components loaded from external sources are possibly untrusted. Users of
untrusted software, therefore, face security problems because untrusted soft-
ware is potentially malicious and their execution may be harmful.

Conventional security mechanisms such as encryption, firewalls, anti-
virus programs, and operating system-based access control cannot solve the
problems of untrusted software because these mechanisms deal with the op-
erating system-level and treat programs as a black-box and thus cannot
intercede inside each application to enforce security. This is the source for
some attacks in the past such as Melissa.V1 or ILOVEYOU2 worms which
propagate themselves by a piece of script code hidden within an email mes-
sage that is executed by the email-client when being opened. These worms
were successful because the worm scripts are executed within the email-
client application in which operating system level enforcement mechanisms
cannot monitor. These limitations motivate the development of application-
level security approaches generally known as language-based security where
the security mechanisms use the developed techniques of programming lan-

1http://en.wikipedia.org/wiki/Melissa (computer virus)
2http://en.wikipedia.org/wiki/ILOVEYOU

http://en.wikipedia.org/wiki/Melissa_(computer_virus)
http://en.wikipedia.org/wiki/ILOVEYOU


4 Chapter 1 - Introduction

guages [SMH01].
One of the approaches in language-based security to providing security

for untrusted software is to monitor the execution of potential untrusted
code so that any unintended behaviour can be detected and prevented ac-
cording to some pre-defined security policies3. These security policy enforce-
ment mechanisms consist of two parts: security policy definition and policy
enforcement mechanism. A security policy defines which circumstance a
behaviour is allowed to be executed, while a policy enforcement mechanism
ensures that the behaviour of untrusted code complies with a security policy.
A classical approach to implementing a security policy enforcement mech-
anism is the security reference monitor [And72] which imposes a security
policy on an otherwise untrusted system. There are several ways to imple-
ment a security reference monitor. A traditional approach is to place it at
the operating system level with hardware support to mediate system calls.
This approach, however, cannot enforce security at the software level for
untrusted software scenarios. Another implementation approach is to put
applications running inside a virtual machine at the base system and imple-
ment the reference monitor as part of the base system so that the execution
of application instructions is monitored by the reference monitor. This re-
quires the base system running the untrusted software to be modified. A
variant of the reference monitor concept is the automatic transformation
of the application to check security-relevant events at application level at
runtime to ensure its security.

Implementing a security policy enforcement mechanism for untrusted
software using application level reference monitors is appealing because it
can monitor the behaviour of the software at runtime with application-
specific policies and it does not need to modify the base system running
the untrusted software. Two key criteria for comparing security policy en-
forcement mechanisms are how expressive a security policy is specified and
which mechanism a policy is enforced. The expressiveness of a security
policy ranges from coarse-grained to fine-grained. Coarse-grained security
policies can only define a limited set of conditions for program execution.
Whitelist access control is a coarse-grained security policy example which
only specifies a list of operations that are allowed to run; operations not in
the list are denied. On the contrary, fine-grained security policy can define
a richer set of conditions, not only allowing or denying an operation, but
the decision on an operation depends on some conditions such as the his-

3Other related approaches for untrusted software security problem are reviewed and
discussed in Chapter 2 (Section 2.1.
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tory of the program execution. For example, stateful security policies are
fine-grained policies which can specify in which conditions, based on some
security states recording program execution history, an operation is allowed
to execute. Security policies are defined in a specific language to be enforced
by a policy enforcement mechanism.

Recently, there has been considerable interest in using reference mon-
itors at a purely software level – for example by rewriting software com-
ponents to “inline” security policies within them to provide expressive and
efficient application-specific security policies for the software components,
e.g. in [FBF99, UE04, Lig06, Ham06]. These approaches provide applica-
tion level reference monitors for security policy enforcement. The imple-
mentation of these approaches consists of a trusted rewriter tool and a
security policy language. Based on security policies defined in the policy
language, the rewriter transforms a target application into a secured ver-
sion that embeds security code which can monitor the application execu-
tion at runtime. A security policy defines which security-relevant events
are monitored and which security checks are performed at a corresponding
security-relevant event. A security check is a function that verifies whether
an event is in a secure state. Examples of such approaches include: PoET-
/PSLang [UES00b], Naccio [ET99], Polymer [BLW05], Mobile [Ham06], or
ConSpec [AN08]. These are enforcement implementations consisting of a
policy language and a software tool to transform an insecure program to a
secured version of the program based on policies defined in the language.

The studies and realisations of the above mentioned enforcement ap-
proaches have shown that the approaches are quite promising, however, they
face several drawbacks. Firstly, most existing enforcement tools in these ap-
proaches are research prototypes and lack the robustness and completeness
of mature industrial tools. This makes them difficult to deploy in real con-
texts. Furthermore, these approaches need an additional language rather
than the language of the software to specify security policies. This of course
benefits in having policies constrained by e.g. a static type system [GSK10],
however, the classes of policies are less expressive than those written in the
language of the software. These points motivate an alternative approach
to implementing security policy enforcement mechanism in which security
policies can be expressively defined in the source language (the language
of the untrusted software) and the policy enforcement can be implemented
by a mature industrial tool. This thesis explores such an alternative ap-
proach by proposing a lightweight approach to security policy enforcement
in order to enforce fine-grained security policies for untrusted software. The
approach is lightweight in sense that it does not use an additional language
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other than the base language of the untrusted software to define security
policies and uses an off-the-shelf implementation of the tool or plain library
code to realise the enforcement. The overview of our approach is presented
as follows.

1.1 Overview of the Approach

Independently of the security policy enforcement, aspect-oriented program-
ming (AOP) [KLM+97] is a programming paradigm providing programmatic
means to modularise the cross-cutting functionalities of complex software
systems so that program concerns in a software system can be captured and
encapsulated into so-called aspects. An aspect comprises a pointcut, which
defines the point and the condition under which the aspect modifies the be-
haviour of an application, and an advice, which defines what modifications
should be applied. At compile-time, a process called weaving is performed
to analyse and modify the target program4 by matching pointcuts and in-
serting advice. In principle, these features of AOP make its language and
weaver tool suitable as an implementation of security policy enforcement
mechanism where security policies could be defined by aspects and runtime
security checks could be defined in advice.

This thesis studies an alternative realisation of a security policy enforce-
ment mechanism by taking the advantages of the aspect-oriented program-
ming [KLM+97] paradigm rather than using a security-specific policy lang-
uage and program rewriting tool, or designing a new policy language and
tool. We call this a “lightweight approach” to security policy enforcement for
untrusted software. In the following subsections, we elaborate the key fea-
tures of our realisation approach and relate to previous implementations of
security policy enforcement mechanisms. We first characterise fine-grained
security policies, and the class of security policies which our approach can
describe and enforce. Second, we present the overview of lightweight features
of the implementation of the enforcement mechanism.

1.1.1 Fine-grained security policies

Although the term “security policy” is fundamental to computer security
[Ste91], a security policy has broad meaning. Conventional security policies
are normally coarse-grained which is based on “all-or-nothing” approach,

4Note that the target program is in its source language or could be in object code,
e.g. Java bytecode, not in an AOP language.
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i.e. allow or deny an operation. These coarse-grained policies normally deny
security-critical operations that may be harmful to the base system, for ex-
ample do not allow the software to access system files. Smartphone operat-
ing systems such as Android currently implement these coarse-grained secu-
rity policies for third-party applications installed on the phone [EGgC+10].
For instance, when installing an third-party application, an Android-based
phone user must allow the application to access a list of operations it re-
quests but cannot specify only some separate operations as the user wishes.
This class of policies is not adequate for untrusted software since it may
need to use security-critical operations to function. As an example, suppose
a smartphone user wishes to install a third-party software, and the software
needs to be able to send SMS (text) messages in order to function properly.
With coarse-grained security policies, the user can only allow or disallow the
third-party software to send SMS. If the policy is to disallow to send SMS,
the software of course cannot run properly. On the other hand, allowing
the third-party software to send SMS, the mobile device still faces potential
security problems: the software could be malicious and deliberately send
too many messages, or the software may simply have bugs, causing it, under
certain circumstances, to repeatedly send messages. This scenario motivates
the need for more expressive security policies. Such an expressive policy ex-
ample for the software might be something like the following [PS08]: “allow
a third-party software to use the SMS service, but:

• restricted to a specific recipient address,

• with a limit on the number of messages sent per day, and

• depending on the mobile’s location.”

The above policy is one of the examples of “fine-grained” security poli-
cies which can be enforced for untrusted software in this thesis. Differing
from previous security policy enforcement mechanisms, e.g. [ET99, UE04,
BLW05, Ham06, AN08] which define a policy specification language to ex-
press security policies, our approach is to use a base language of the un-
trusted software in aspect-oriented programming style to define security
policies, and thus we do not need an additional security policy language.
As this thesis employs a reference monitor approach to security enforcement
for untrusted software, our policies are reference monitor-style which de-
fine unacceptable behaviour. Since a security policy in our approach can be
defined in a base language, it is fine-grained in the following sense:
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application-specific: the policies can be defined specifically to each un-
trusted software.

stateful: security states can be defined and updated at runtime so that
policy decisions can be based on execution history of the untrusted
software.

expressive response actions: a classical reference monitor-style policy
only stops an execution if it violates the policies. Our security pol-
icy specifications provide more powerful transformational abilities (in-
spired by the edit automata [LBW05]) such as the ability to suppress
actions, replace actions, insert new actions, and to truncate an execu-
tion.

1.1.2 Lightweight enforcement of fine-grained security poli-
cies

The approach proposed in this thesis is to implement a security policy en-
forcement mechanism in a reference monitor style using an aspect-oriented
style programming language. This has the benefits of providing a relatively
complete and well-tested tool which can be applied at an appropriate level.
The enforcement mechanism is lightweight in that:

i) it uses an off-the-shelf implementation of the tool,

ii) it does not need an additional security policy language, and

iii) it does not require modification of the base system.

However, an aspect-oriented programming language provides neither di-
rect support for policy specification nor enforcement. Therefore, one of the
goals of this thesis is to study whether an aspect-oriented programming lang-
uage is suitable and adequate for a particular untrusted software system. In
particular, we consider the following main questions in this study:

1. What classes of fine-grained security policies can be defined and en-
forced?

2. How can the approach be integrated with a base system without mod-
ifying the base system?

3. What security assurances can the approach provide to a particular
untrusted software system?
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4. What are the shortcomings of the approach?

To answer the above research questions, one needs to study the approach
in particular untrusted software systems. In this thesis, we consider two ar-
eas of untrusted software to study the approach. The next section introduces
the two untrusted software systems and the application of the approach in
each system.

1.2 The Lightweight Enforcement Approach to Prob-
lem Areas

We study the lightweight enforcement of fine-grained security policies for two
particular untrusted software systems. Firstly, we consider security aspects
for a vehicle software architecture, analyse security threats and present the
needs for fine-grained security policy enforcement in the architecture, and
propose a lightweight enforcement approach to enforcing security policies
for the vehicle software architecture. Secondly, we employ the lightweight
enforcement approach to the context of web browser security. The enforce-
ment method is called “lightweight self-protecting JavaScript” which controls
and modifies the behaviour of JavaScript to make it self-protecting. In the
following subsection, we describe each area, motivate the need for an al-
ternative lightweight approach to implementing fine-grained security policy
enforcement, and summarise our approaches in each area.

1.2.1 A lightweight enforcement approach to a vehicle soft-
ware architecture

Vehicle systems today consist of many infotainment/telematics applications.
The infotainment category consists of systems for information and entertain-
ment for the driver and passengers in a vehicle, including digital broadcast-
ing TV, audio streams, TFT displays as well as systems receiving data from
external sources, e.g. traffic and weather information systems. The telemat-
ics category includes systems that integrate telecommunications and infor-
matics. Such systems are used to provide networked software applications to
the vehicle. Such infotainment/telematics applications not only run inside a
vehicle but also communicate with other vehicles or servers in order to use
external services such as road charges, traffic, weather, and travel support.
A recent trend in telematics applications is to establish an open telematics
market that allows the different players of the value chain to easily develop,
implement and deploy new functionality or sub-systems [GST]. The open
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telematics market is dedicated to lightweight execution environments and
enables third-parties to develop services that can be integrated into vehicle
systems. The Open Services Gateway initiative (OSGi) [OSG07] is a frame-
work which has been considered as one of the most prominent standards
and an ideal solution for the open telematics market [GST]. OSGi is an
open software architecture providing a collaborative software environment
running on a Java virtual machine. An application in OSGi is composed of
different components called bundles that can be downloaded and installed
from external sources. Bundles can be developed by third parties and can
be integrated with existing bundles to create new applications.

This trend also requires IT security considerations in order to guarantee
system security. The OSGi specification Service Platform Release 4 (version
4.1, May 2007 [OSG]) has a security layer which is based on the Java 2
security model. In this security model, called a sandbox, all program code –
regardless of whether it is installed locally or downloaded remotely– can be
subjected to a security policy configured by a Java Virtual Machine (JVM)
user. But this model unduly restricts the function of third-party services
in the sandbox while these services might need to use system resources
and sensitive information, such as sending SMS messages or getting GPS
location from the vehicle system. In addition, although the security layer
in OSGi also provides a mechanism to sign and validate code to ensure
that the deployed code comes from a trusted source, this mechanism only
certifies the origin and the integrity of the downloaded code, and is not
able to address possible malicious actions such as deliberately sending too
many SMS messages, for instance, to a high-cost service. Moreover, in
an open environment it is hard to establish meaningful trust relationships,
and even when one can, trust is not equated with quality. For example, a
trusted third-party service may simply have bugs, causing it, under certain
circumstances, to repeatedly send messages.

In this thesis, we have proposed a lightweight approach to enforcing fine-
grained security policies for the vehicle application architecture. We study
the implementation of security policy enforcement using AspectJ [Asp], an
aspect-oriented programming language for Java, for the OSGi framework in
the vehicle application architecture. We have identified and demonstrated
the use of AspectJ to specify fine-grained security policies for untrusted soft-
ware in the OSGi framework. The policies are enforced by being embedded
in the untrusted software using the weaver tool of AspectJ. To the best of our
knowledge, our work is the first study of security policy enforcement using
an aspect-oriented language in an open system for untrusted software like
the OSGi framework. We further study the application of our lightweight
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enforcement approach to the vehicle software architecture by developing a
security model in order to prevent potential cyber attacks in the vehicle
systems. We analyse possible threats and potential cyber attacks including
add-on software and ECU firmware. For each threat, we introduce a cor-
responding countermeasure that can be specified as a security policy. We
have proposed a model to deploy the countermeasures by using our security
policy enforcement method in the vehicle context.

These contributions have been published in [PS08], and [PN10] which
are included in this thesis as Paper A and Paper B, respectively. The con-
tributions are summarised and reviewed in Chapter 3, where we also discuss
some limitations of the approach and further directions to solve the issues.

1.2.2 A lightweight enforcement approach to web application
security

The second domain we study and apply our lightweight enforcement ap-
proach to is the area of web application security. In this subsection, we
review web application security at the client side, motivate a lightweight
approach to fine-grained security policy enforcement, and summarise our
contributions in this area.

Web application security becomes more and more important today as
many financial transactions are performed over the web, and a lot of sensi-
tive information such as credit card numbers are routinely handled by web
applications. Although the sensitive information is encrypted to make it
secret when being sent over the Internet, there are certain vulnerabilities in
practice that allow attackers to steal the information. One way for the at-
tacker to launch such an attack, e.g. steal user information from a web page,
is to inject malicious code into the web page such that the malicious code is
executed with the privileges of the web page. A web page normally contains
script code written in JavaScript which is executed in the web browser to
enhance the web page with dynamic contents. Running script code with the
privileges of the web page means that the script can access any sensitive
information of the web page, such as user information. The attacker can
inject malicious JavaScript code into a web page by e.g. typing a piece of
code in some unprotected user input fields in the web page, or in some fields
that the web developers have failed to filter. This class of attacks is known
as cross-site scripting (XSS) [XSS] where malicious scripts are injected into
a web page by the attacker. According to the OWASP Top 10 Web Appli-
cation Security Risks for 2010, XSS is the second largest security risk in web
applications [OWA].
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Preventing such XSS attacks is a difficult task in practice. Server-side
defence mechanisms are a common approach in industry to deal with XSS.
These mechanisms filter user input at the server-side to ensure that no script
exists in user input. However, it has been shown in practice that these careful
server-side filtering mechanisms can be evaded to inject malicious JavaScript
code. The Samy [Sam] and Yamanner [Sec] worms are two popular real-
world examples of XSS attacks where malicious JavaScript code is injected
into web pages by disguising it so as to escape server filtering [Lev06, Rob].

An alternative to filtering mechanisms deployed on servers is to control
the behaviour of the JavaScript code at runtime (in the client’s browser) in-
stead of statically validating the integrity of the code at the server. Suppose
that the attacker can inject a piece of malicious JavaScript code in a given
page. It may be enough to control the code execution in order to ensure
that the code in the page does not behave in an unintended manner, such
as sending sensitive information to the attacker. One way to implement this
idea is to specify a policy which says under what conditions a page may
perform a certain action, and enforce the policy at runtime to ensure that
the code does not violate the desired policy. We refer this as the client-side
defence approach, since security policies are normally injected into the web
page somewhere between the server and the client, e.g. at server-side, proxy,
or browser plug-in (client-side), and are enforced in the browser at runtime
(c.f. [UELX07]). The attacks which evade filtering mechanisms rely on an
inconsistency between the browser’s view of the syntax of the script and the
view of the filtering tool. The behavioural approach, however, has no such
vulnerability.

Such client-side defence approaches have been widely studied in the lit-
erature5. Relying on a client-side defence approach, we propose a method
called “lightweight self-protecting JavaScript” by employing our lightweight
enforcement approach to enforcing security policies for JavaScript. One of
the novel ideas of the method is that it does not require any aggressive code
manipulation such as parsing or transforming JavaScript code in the body
of the page at all. Instead, the policy code is assumed to be injected into
the header of the web page at the server or by a trusted proxy. Injecting
the policy code into the header ensures that the policy code is executed
first, so the policy code gets to wrap the security critical methods before the
attacker code can get a handle on them. A policy is a piece of JavaScript
code specifying which method calls are to be intercepted, and what actions
are to be taken. The implementation of policy enforcement is based on a

5These approaches are reviewed in detail in Section 4.1.1.
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plain JavaScript library, without modifying the browser. As a result, unlike
previous client-side approaches to instrumenting and monitoring JavaScript
to enforce or adjust behaviour, our method can enforce fine-grained security
policies for JavaScript code at runtime but (i) it does not require a modified
browser, and (ii) it does not require any runtime parsing and transforma-
tion of code (including dynamically generated code) thus having low runtime
overhead.

In this thesis, we present our lightweight self-protecting JavaScript me-
thod in Paper C. We address some security issues in the implementation of
lightweight self-protecting JavaScript (which was born as an adaptation of a
non security-oriented aspect-oriented programming library) and we provide
a systematic way to avoid the identified vulnerabilities, and make it easier
for the policy writer to construct declarative policies – i.e. policies upon
which attacker code has no side effects. This work is presented in Paper D.

We have applied lightweight self-protecting JavaScript in the context
of untrusted JavaScript by proposing a two-tier sandbox architecture, in
which untrusted JavaScript code can be loaded and executed dynamically.
A web mashup – a web application that integrates content such as data or
code from multiple providers – is an example of untrusted JavaScript. As
an example, a page containing a third-party advertisement is a mashup in
which an ad, implemented as JavaScript code, is embedded into a hosting
web page to display the ad content. This raises security problems for the
hosting page since the ad code is potentially untrusted and malicious. In
our proposed two-tier sandbox architecture, the execution of untrusted code,
e.g. a component in a mashup, is constrained by modular and fine-grained
policies. Policies are specified via an adaptation of the lightweight self-
protecting JavaScript mechanism. By enforcing fine-grained policies in a
sandbox, untrusted code is ensured not to perform harmful actions on the
hosting page. This work is presented in Paper E in this thesis.

These contributions of the lightweight enforcement of fine-grained secu-
rity policies for JavaScript are summarised and discussed in Chapter 4.

1.3 Thesis Contributions

Parts of the results in this thesis have been published in the following tech-
nical papers:

Paper A. Phu H. Phung, and David Sands. Security Policy Enforcement for the
OSGi Framework using Aspect-Oriented Programming. In Proceed-
ings of the 32nd Annual International Computer Software and Ap-
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plications Conference (COMPSAC’2008), July 28- August 01 2008,
Turku, Finland, pp. 1076-1082, IEEE Computer Society. ISSN: 0730-
3157. ISBN: 978-0-7695-3262-2.

Paper B. Phu H. Phung, and Dennis K. Nilsson. A Model for Safe and Se-
cure Execution of Downloaded Vehicle Applications. In Proceedings of
Road Transport Information and Control - RTIC 2010 and ITS United
Kingdom Members’ Conference, IET.

Paper C. Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight
Self-Protecting JavaScript. In Proceedings of the ACM Symposium
on Information, Computer and Communications Security (ASIACCS’
2009), 10 - 12 March 2009, Sydney, Australia, ACM Press.

Paper D. Jonas Magazinius, Phu H. Phung, and David Sands. Safe Wrap-
pers and Sane Policies for Self Protecting JavaScript. Accepted at
OWASP AppSec Research 2010, and published in Proceedings of The
15th Nordic Conference in Secure IT Systems (Nordsec’10), LNCS. To
appear.

Paper E. Phu H. Phung. A Two-Tier Sandbox Architecture to Enforce Modu-
lar Fine-Grained Security Policies for Untrusted JavaScript. Technical
report No.2011:11 - Department of Computer Science and Engineer-
ing, Chalmers University of Technology and University of Gothenburg,
ISSN 1652-926X.

In summary, the contributions of this thesis fall into two folds:

Runtime Enforcement for Downloaded Vehicle Applications: Our
lightweight enforcement approach has been deployed in a vehicle software
architecture to provide security for untrusted applications downloaded from
external sources. The untrusted applications are transformed, based on
predefined policies, by the enforcement mechanism before deployment. Ap-
plying our mechanism, the execution of vehicle applications are monitored at
run-time so that malicious behaviours violating the policies can be prevented
and thus make the vehicle platform secure and safe. We have applied the
enforcement mechanism to implement proposed countermeasures to prevent
a number of concrete possible threats that we have identified in the vehicle
software architecture. These contributions have been published in [PS08]
(Paper A), and [PN10] (Paper B).
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Lightweight Self-Protecting JavaScript: We have studied the light-
weight enforcement approach in the context of web browser security and
proposed a method called lightweight self-protecting JavaScript. The con-
tribution of the method is that it can enforce fine-grained policies for Java-
Script at run-time without browser modification. Using the self-protecting
JavaScript method, a web developer can specify application-specific secu-
rity policies for her web application and inject the policy and enforcement
code into the web application to prevent e.g. cross-site scripting attacks.
The method has been described and published in [PSC09] (Paper C), and
a hardened implementation of the method has been published in [MPS10]
(Paper D). We have also studied an application of self-protecting JavaScript
by proposing a two-tier sandbox architecture in which untrusted JavaScript
code can be loaded and executed dynamically within a sandbox environ-
ment. The execution of untrusted code in the environment is monitored
and controlled by an adaptation of the self-protecting JavaScript method to
ensure security for the hosting page running the untrusted JavaScript. This
work has been reported in [Phu11] (Paper E).

1.3.1 Statement of personal contributions

I hereby state my personal contributions on joint-work publications.

Security Policy Enforcement for the OSGi Framework using
Aspect-Oriented Programming: This paper has been written un-
der the supervision of David Sands. I have written and developed most
of the technical material.

A Model for Safe and Secure Execution of Downloaded Ve-
hicle Applications.: Dennis Nilsson and I have made equal contri-
bution in designing and implementing the system. I have written and
developed most of the technical material.

Lightweight Self-Protecting JavaScript: I have contributed to
the design, implementation and experimental evaluation of the meth-
ods and policies presented in the paper. I have written and developed
most of the technical material.

Safe Wrappers and Sane Policies for Self Protecting Java-
Script: I have partially contributed to the design, and implementation
of the revised libraries fixing the identified vulnerabilities. I and the
co-authors have made equal contribution in developing technical ma-
terial.
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Enforcing Modular Fine-Grained Security Policies for Un-
trusted JavaScript in EcmaScript 5: I have written and developed
the paper by myself.

1.4 Thesis Organisation

This thesis contains two parts: an overview of the thesis (Part I) and in-
cluded papers (Part II). Part I contains five chapters including this intro-
duction chapter. The next chapter (Chapter 2) reviews in detail the back-
ground of the thesis including state-of-the-art literature and related work.
First, approaches to untrusted software security are reviewed to provide a
broader view of the area. Then, we discuss how reference monitors can be
implemented by transforming programs so that security checks are inlined
in the code – the so-called inlined reference monitor approach. Finally, we
review the specific technology we apply in this thesis: aspect-oriented pro-
gramming, and, together with a particular language such as the AspectJ
language, and an AOP implementation for JavaScript.

In Chapter 3, we summarise our lightweight approach to enforcing fine-
grained security policies for vehicle application architecture. We first review
the vehicle software architecture and the OSGi framework used in vehicle
systems. Then we introduce our approach to deploying the implementation
of security policy enforcement using aspect-oriented programming for the
OSGi framework.

We also present our further study on applying the lightweight enforce-
ment approach to a vehicle application architecture to prevent potential
cyber attacks in the system. In that work, we analyse the architecture to
define the problems, and identify threats as well as propose countermeasures
for the threat model. We present a model to deploy a reference monitor
approach for vehicle applications for monitoring their execution to enable
safety and security. Finally, we discuss some practical issues which have not
been mentioned in the studies.

Chapter 4 presents our work on applying the lightweight enforcement
approach of fine-grained security policies into the context of client-side Java-
Script in web application scenarios. First the client-side JavaScript and the
state-of-the-art of JavaScript security are reviewed. Then we briefly present
our enforcement method called lightweight self-protecting JavaScript which
implements the lightweight enforcement approach by inlining policy code
into a web page to monitor and control the behaviour of the code so that
the page becomes self-protecting. We discuss some implementation issues
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in the self-protecting JavaScript method and review a hardened version of
the self-protecting JavaScript implementation that can fix some identified
implementation issues. An application of self-protecting JavaScript in the
context of untrusted JavaScript is also presented. We propose a two-tier
sandbox architecture to allow untrusted JavaScript code to be loaded and
executed dynamically in a sandbox environment enforced by a reference
monitor adapted from self-protecting JavaScript. Finally, we discuss more
recent related work, short-comings of the approach and suggestions for fur-
ther work.

The last chapter (Chapter 5) presents the concluding remarks of the
thesis.

Part II reprints our published papers and technical reports listed in
the previous section (1.3). The papers are reprinted in their published form,
modulo reformatting and typo correcting for the thesis. Further discussion of
shortcomings beyond those provided in the papers is presented in Chapter 3
for the vehicle software domain, and Chapter 4 for web browser security
domain.



18 Chapter 1 - Introduction



Chapter 2

Background

In this chapter, two main strands of background material for this thesis are
reviewed. First, we briefly overview the existing approaches to untrusted
software security and review the execution monitoring approach and its re-
lated aspects to security policy enforcement that is employed in this thesis.
Second, we review the Aspect-Oriented Programming (AOP) technique that
we adopt in this thesis to implement the lightweight enforcement of secu-
rity policies. More specifically, we review the AspectJ language and an AOP
implementation for JavaScript.

2.1 Approaches to Untrusted Software Security

Conventional enforcement mechanisms implemented at the operating system
(OS) level are not applicable to software security since they “cannot enforce
policies concerning application-implemented resources” [SMH01]. As alter-
natives to OS level mechanisms, the problem of untrusted software security
has been widely studied in a number of approaches in the literature, such
as [Nec97, Eva00, CW02, VN04, UE04, Fon04, Ham06, Lig06, DJM+07,
Her07, DJM+08] and so on. These approaches can be divided into two di-
rections: static analysis and runtime execution monitoring. Static analysis
is a technique that checks a program before executing it. By analysing pro-
grams, only those not violating the policy are allowed to be executed. The
analysis is based on some safety properties e.g. [ECCH00, CW02] or type
systems e.g. [MWCG99, STFW01]. The benefit of the program analysis ap-
proach is zero runtime overhead. However, static analysis techniques must
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inevitably reject some good programs since they use an abstracted model of
program state that loses some information. In this thesis, our lightweight en-
forcement approach is based on the runtime execution monitoring approach,
which is discussed in more details in the next section. Related work to our
studies has been discussed in detail in the included papers. Alternative to
static analysis and execution monitoring, some other approaches rely on
a collaboration between the untrusted third-party producing the code and
the host platform running the untrusted code. These approaches include
Proof-Carrying Code [Nec97], Model-Carrying Code [SVB+03], security by
contract [DJM+08].

Proof-Carrying Code (PCC) [Nec97] is an interesting static analysis tech-
nique to provide security for untrusted code security problem without estab-
lishing trust relationships. The idea of PCC is to replace a trusted compiler
with an untrusted certifying compiler plus a trusted certificate checker. The
basic idea is that it is much easier and simpler to check the validity of a
given proof that a program is well-behaved than it is to construct a proof
from scratch. In the PCC approach, a code producer (which could be un-
trusted) delivers code together with a proof that the code satisfies some
property of interest (which could in principle be anything from basic mem-
ory safety to some complex security policy). The proof is generated by a
so-called certifying compiler based on a previously defined policy. At the
consumer side, a trusted certificate checker validates that the proof com-
plies with the policy. If the proof is valid and the policy is appropriate, the
program is guaranteed to be safe and allowed to be executed. The advan-
tage of this approach is that validating such proofs is typically much easier
and quicker than performing the analysis and transformations to generate
certified code. Furthermore, PCC does not rely on a central trustworthy
entity, which makes PCC eminently suitable for ensuring security for exten-
sible and open systems. This approach is promising in principle, however,
its implementation is quite challenging in practice. Despite more than 10
years of research, the PCC technology is still quite immature, and no real
usable tools have emerged yet.

Model-Carrying Code (MCC) [SVB+03] combines a static analysis tech-
nique like PCC with an execution monitoring mechanism to provide safe
execution of untrusted code. The idea of this approach is that the code
producer generates a model capturing the security-relevant behaviour of the
code, and supply this model together with the code to the base system. At
the base system side (code consumer), the code consumer uses the model
to check if the code violates predefined policies. As such, MCC is a collab-
orative framework between code producers and code consumers to provide
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safe execution of untrusted code. The implementation of MCC is based on
system call interception in a Unix system. MCC is believed to be adaptable
to other execution environments, however, it requires the base system to be
modified. The policies in MCC are generic to the base system, not specific
to an untrusted application.

Security by contract [DMM+08, DJM+08] is another approach, devel-
oped in the S3MS project [S3M], for providing security of untrusted mo-
bile applications on mobile devices. A contract is a description of security-
relevant behaviour of the application specified by the application developer
before the development stage. Similar to MCC or PCC approaches, the con-
tract is provided together with the application to the base system. When
the application is deployed on the base system, the contract is checked:
if the contract complies with the device policy, the application is allowed
to run without any further enforcement; otherwise, the application will be
monitored at runtime according to the base system policies.

In this section, some of the other approaches and more related work are
briefly reviewed to provide a broader view of the area. The security prob-
lem of untrusted software is often referred to as mobile code security which
has been widely studied in the literature. We refer the reader to [Fon98]
for more details of the approaches in the area. In general, each approach
has potential advantages as well as disadvantages. When employed in a
particular system, each must overcome numerous technical problems to be
practically applicable. We note, in particular, that with a dynamic language
such as JavaScript, where code can be created or modified at runtime, there
are many scalability challenges to deal with.

2.2 Security Policy Enforcement by Execution Mon-
itoring

Security policy enforcement is a mechanism that enforces some desired
policies in a computer system in order to prevent unacceptable behaviour
[Sch00]. In contrast to static analysis techniques mentioned above, execu-
tion monitoring is a security policy enforcement approach that can enforce
application-specific security policies to prevent bad behaviours at runtime.
The execution monitoring approach is rooted in the classic reference moni-
tors approach to intercepting security relevant resource requests and apply-
ing a security policy to decide whether to grant such requests [And72]. The
lightweight enforcement approach presented in this thesis is based on the
classic reference monitors. In this section, we review the reference monitors
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as well as some recent variant implementations of the reference monitors
which can enforce application-level and more flexible security policies.

2.2.1 Classic Reference Monitors

The classic reference monitors were introduced in 1972 in a study plan of
the U.S. Air Force [And72] which aims to propose a secure computing envi-
ronment that can defend against malicious users in resource sharing systems
with multiple categories of users. In such a system, all references to pro-
grams, data, and peripherals have limited control such that a malicious user
(attacker) is able to access any references to any other data or programs in
the system. Such limited control references let the attacker launch attacks
such as getting other users’ passwords, or denying legitimate use by others.
Due to such threats, the goal of the reference monitor is to control the exe-
cution of users’ programs in the system in order to ensure the security of the
system. “The function of the reference monitor is to validate all references
(to programs, data, peripherals, etc.) made by programs in execution against
those authorised for the subject (user, etc). The Reference Monitor not only
is responsible to assure that the references are authorised to shared resource
objects, but also to assure that the reference is the right kind (i.e. read, or
read and write, etc.)” [And72, p. 17]. In other words, the reference monitor
observes the execution of a program in order to stop the program whenever
the execution is about to violate some desired security policies.

Implementation of the reference monitor concept is based on the combi-
nation of hardware and software, which is called a reference validation mech-
anism. An operating system mediating access to files is an example of a ref-
erence monitor implementation. A reference monitor implementation must
follow certain principles in order to provide high-assurance and complete
mediation of relevant references. Those principles are described [And72,
p. 17] as:

A) The reference validation mechanism must be tamper proof.

B) The reference validation mechanism must always be invoked.

C) The reference validation mechanism must be small enough to be sub-
ject to analysis and tests to assure that it is correct.
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2.2.2 Implementing Reference Monitors

In practice, there are several approaches to implementing reference monitors
described as follows.

Traditional approach The traditional approach is to place the reference
monitor at the operating system (kernel) level with hardware support to me-
diate system calls. If a system call violates a security policy, the reference
monitor halts the execution to protect the system. Since this implementation
only concerns events at the system level, it cannot distinguish the origin of a
system call, i.e. from which application the call originates, therefore, it can-
not enforce application-level policies. In addition, this implementation uses
a memory protection hardware mechanism which separates address spaces
between the target application and the reference monitor, to ensure that
the execution of one program cannot corrupt the instructions or data of an-
other [SMH01]. Therefore, it creates performance costs for context switching
of control between the reference monitor and the target application.

Interpreter approach Another approach is to run applications in an
interpreter and implement the reference monitor as a part of the inter-
preter. Although this approach was inapplicable and was dismissed due
to its high performance overhead [And72] at the time of the report (1972),
there have been a number of recent implementations of this approach such
as [JSH07, YCIS07, ML10] in the context of web-application security. These
implementations modify the JavaScript interpreter in web browsers to im-
plement a reference monitor within the browser. This mechanism provides
precise and transparent security enforcement, however, the downside of this
approach is that the modifications are certainly time consuming, error prone,
and short lived in practice since the codebase of base systems, e.g. web
browsers of a interpreter, is rapidly changing.

Program rewriting approach The third approach is to embed a ref-
erence monitor into a target application by modifying the application to
include the functionality of a reference monitor. Recently, there have been
such implementations in the literature such as Inlined Reference Monitors
(IRM) [UES00a, UE04]. This implementation approach uses a trusted pro-
gram rewriter which takes a target program (untrusted) and security poli-
cies as input and transforms the target program into a new version of the
program that embeds the policy. Compared to the other approaches, the
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IRM implementation has various advantages which are summarised in the
following subsection.

Inlined Reference Monitors

An inlined reference monitor (IRM) [UES00a, UE04] is an approach to en-
forcing security policies for software by rewriting the software to “embed”
(inline) security policies within it. More specifically, security checks will be
added in security-relevant actions or events of the software.

The IRM implementation of reference monitors has various advantages
compared to the other implementation approaches as follows:

• It can enforce a richer set of security policies. Since the code of the
IRM is “inlined” to the target application, the IRM is a part of the
application and can mediate any application instruction. This means
that application-level policies can be enforced.

• It can support more flexible policies. The IRM code can be inserted
before and/or after an application instruction execution or memory-
relevant operation in the target application [UE04, WLAG93, PH98].
Moreover, application execution history can be tracked by storing cor-
responding events in security states. Therefore, the IRM can enforce
history-dependent policies such as, for example, “do not allow network
send after the file system is read by the application”.

• It is more efficient. Since an IRM is located inside the target applica-
tion, there is no overhead by context switching between the application
and the operating system or the execution environment. Moreover, be-
ing located inside the target application provides the IRM with possi-
bilities to optimise the program performance.

2.2.3 Fundamental aspects of Execution Monitoring

With execution monitoring, a program is monitored at runtime by some
security checks which are defined in security policies. Specifying a security
policy therefore involves three aspects [UES00a]:

- security events, the policy-relevant operations that must be mediated
by the reference monitor;
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- security states, information stored about earlier security events that
is used to determine which security events can be allowed to proceed;
and

- security updates, program fragments that are executed in response
to security events and that update security states, signal security vi-
olations, and/or take other remedial actions such as suppressing or
replacing an action.

For example, in the policy “do not allow a network send after the filesys-
tem has been read”, filesystem read and network send are two policy-relevant
operations that must be mediated; the information whether the filesystem
has been read is stored in a security state; for each policy-relevant operation,
a policy will define a corresponding security update such as setting (updat-
ing) the security state, or stopping the network send if the security state of
filesystem read is set. In the following subsections, the aspects of execution
monitors including security policies and security automata are presented fol-
lowing [Sch00]. We also discuss the limitations of the security automata and
review the edit automata which have more powerful remedial actions that
we employ in this thesis.

Monitor-enforceable security policies

So far, we have mentioned security policies, but have not defined them. In
the context of a reference monitor, Schneider [Sch00] introduced the term
“security policy” as: “A security policy defines execution that, for one rea-
son or another, has been deemed unacceptable”. A security policy might
include access control policy, which is to restrict access on objects or system
operations; information flow policy, which is to restrict the leakage of con-
fidential information by observing system behaviour; or availability policy,
which specifies that the use of a resource must be released at some later
point of the application execution. Formally, Schneider has provided the
definition of a security policy as follows.

Definition of Security Policy: A security policy is specified by giving a
predicate on a set of executions. A target system S satisfies security policy
P if and only if P(ΣS) is true, where ΣS is the set of executions of a target
system S, which is represented by a finite or infinite sequence of states or
actions.

Schneider [Sch00] defined a class of enforcement mechanisms which re-
spond to policy violations by terminating the target application, and proved
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that security policies enforceable by such enforcement mechanisms are ex-
actly the safety properties1. Liveness properties, which ensure “good events
do occur” [AS87]2, and information flow policies are not in safety properties,
and thus they cannot be enforced in this class of enforcement mechanisms.

Security automata

As identified in [Sch00], a reference monitor can be modeled by a security au-
tomaton, which can be used to specify monitor-enforceable security policies.
By definition, a security automaton A is a deterministic finite or countably
infinite state machine (Q, q0, δ), where Q is the possible automaton states,
q0 ∈ Q is the initial state, and δ ∈ Q × I → Q is the transition function
where I is a countable set of input symbols. The transition function defines
a next state for the automaton given its current state and an input symbol.
For example, if the automaton is in state q and accepts an input symbol s
and changes to a next state q′ then δ(q, s) = q′.

The set of input symbols I represents target execution events and is
dictated by the security policy being enforced. The execution events might
correspond to system states, atomic actions, e.g. machine instructions, or
higher-level actions of the target system. Thus, a sequence s1s2... of input
symbols in I represents a set of executions3 in the target system. To process
the sequence s1s2..., the automaton starts with the starting state q0 and
reads one input symbol of the sequence at a time. Once an input symbol si

is read, the automaton changes its current state qi to qi+1 = δ(qi, si).
If δ(qi, si) is undefined, the input is rejected, i.e. stops the corresponding

action violating the policy being enforced by the automaton; otherwise, the
input is accepted, i.e. the action is allowed to execute normally.

Figure 2.1 illustrates a security automaton for a security policy that
does not allow message sending (by operation Send) after files were read
(by operation FileRead). There are two nodes, which represent the states of
the automaton, in the figure labeled start (the initial state of the automaton)
and noSend. The edges in the figure represent the transition function δ(q, s),
where q is the node that an edge starts and s is an input symbol. Each edge
is labeled by a so-called transition predicate: a Boolean-valued effectively
computable total functions with domain I. Let pij denote the predicate for
the transition from node qi to node qj , i.e. pij is labeled for the edge from

1Safety properties specify “nothing bad ever happens”, i.e. preventing “bad events”
from occurring in a valid run of the target [AS87].

2Availability policies are examples of liveness properties.
3Corresponding to security-relevant actions that a reference monitor mediates.
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Figure 2.1: A security automaton: no Send after FileRead (taken from
[SMH01])

node qi to node qj . The security automaton, after reading an input symbol
s, changes its current state qi to qj if and only if pij(s) is true, meaning that
the input symbol s satisfies the predicate pij . For example, in Figure 2.1,
the transition predicate not FileRead is satisfied by all input symbols except
FileRead operations, or the transition predicate FileRead (from node start
to node noSend) is satisfied only by input symbol FileRead operations.

If there is no transition defined for a input symbol sr from a node qr,
it means that the security automaton rejects the input symbol sr from the
node qr. For instance, in the security automaton depicted in Figure 2.1, no
transition is defined from node noSend for input symbol corresponding to
operation Send (message-send operation), therefore, the automaton rejects
inputs Send from node noSend (i.e. after a file read by operation FileRead).
Thus, the security automaton in Figure 2.1 describes a policy like “prohibit
network send after file read”.

Limitations As mentioned, the security automaton is only able to enforce
safety properties, since it can only recognise acceptable actions and reject
undefined actions, i.e. actions having bad behaviour. In [LBW05], the au-
thors have identified several cases in which security automata fail to enforce
a security policy. Firstly, security automata are unable to encode a policy
that is not a predicate on execution sequences. For instance, the security
automata cannot encode policies which require some external information
that is hidden from the monitor. Thus, the monitor cannot enforce such a
policy properly. Secondly, since security automata can simply accept or re-
ject security-relevant actions, some effective manipulations such as insertion,
suppression to certain security-relevant actions, cannot be performed in the
monitor. Thirdly, the monitor is unable to observe certain security-relevant
actions that has direct access to some hardware device. Lastly, if the mon-
itor is compromised by the untrusted program, i.e. the program is able to
corrupt the monitoring code, then the monitor cannot enforce any mean-
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ingful properties. In the next subsection, we describe edit automata, a more
powerful automaton that acts as a program monitor with more response
actions.

Edit automata

Examining the limitations of the security automata [Sch00] (introduced
above), Ligatti, Bauer and Walker [LBW05] have introduced a more power-
ful automaton called edit automaton that acts as a program monitor. Dif-
fering from security automata, edit automata act as transformers that can
modify security-relevant actions and behaviour of a target application. The
authors have defined a hierarchy of enforcement mechanisms with different
transformational capabilities:

- Truncation automata: Truncation automata can detect bad behaviour
of a target program and terminate program execution if the security
policy is violated4.

- Suppression automata: Suppression automata are able to suppress
policy-violated program actions without terminating the program.

- Insertion automata: Insertion automata can inject a sequence of ac-
tions into the target program5.

- Edit automata: An edit automaton is the combination of a suppres-
sion automaton and an insertion automaton so as it has the ability to
truncate or suppress security policy-violated actions as well as to insert
action sequences into security-relevant events of the target program.

In summary, an edit automaton is able to enforce a wider range of prop-
erties rather than safety properties. In particular, an edit automaton, in
addition to being able to terminate or truncate program execution, can sup-
press and insert actions. In [Lig06], Ligatti has demonstrated that, in prac-
tice, edit automata can enforce non-safety properties and even pure liveness
properties.

Monitor-enforceable security policy languages

As we have mentioned, an execution monitoring responds to security-relevant
actions at runtime based on security policies defined by a policy specifica-

4These automata are similar to security automata [Sch00].
5In fact, similar ideas have been implemented elsewhere e.g. [UES00a, UES00b].
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tion language. In this section, we review such existing languages and their
corresponding tools that enforce the policies on programs.

The Ariel project [PH98] introduced a declarative policy language to
specify security policies and developed a program transformer tool to enforce
such policies by injecting enforcement code for checking access constraints
into the program (Java classes) and the target system’s resource definitions.
Ariel policies are described at the level of the Java APIs in terms of a set
of constraints on accesses to local resources and the conditions under which
they apply. Thus, the resources of the target system are protected since
the executions of the transformed program are ensured to satisfy all access
constraints. Since the language aims to specify access control policies, it is
unable to describe policies that can modify the behaviour of a program.

The Naccio project [ET99] developed a general architecture for defining
and enforcing code safety policies. The approach of Naccio is to modify
method-call instructions, redirecting them to a wrapper method in order
to enforce safety policies. Safety policies are defined by attaching checking
code to resource operations. A policy consists of any number of safety
properties that place constraints on resource manipulations. Naccio takes
a program and a safety policy then produces a transformed program that
behaves similarly to the original program except that it is guaranteed to
satisfy the safety policy. Thus, Naccio has ability to define and enforce
policies that place arbitrary constraints on resource manipulations as well
as policies that alter how a program manipulates resources. However, Naccio
cannot define or enforce liveness properties or policies that depend on the
structural properties of the code.

Apart from Ariel and Naccio, Erlingsson and Schneider introduced Se-
curity Automata SFI Implementation (SASI) system [UES00b], an IRM
system that implements the idea of security automata. SASI enforces safety
properties by rewriting x86 machine code programs and Java bytecode (Java
Virtual Machine Language (JVML)) programs based on security policies de-
fined in SAL (Security Automaton Language). Later the authors introduced
PSLang/PoET [UES00a, UE04], a language and system implementing IRMs.
PoET, which stands for Policy Enforcement Toolkit, is a tool that rewrites
the JVML class files of target programs and inserts IRM enforcement code
implementing a reference monitor into programs. PSLang, the Policy Spec-
ification Language, is a policy language used to define security policies that
identify security-relevant actions and the IRM enforcement code that the
PoET tool should embed around each.

Mobile [HMS06, Ham06] is an extension of the .NET framework support-
ing certified Inlined Reference Monitoring. Mobile rewrites .NET CLI bina-
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ries based on a declarative security policy language such that the rewritten
programs are guaranteed not to violate that security policy when executed.
The policies denote types in the Mobile’s type system. The rewritten pro-
grams also adhere a policy proof in the form of typing annotations which is
verified by a trusted checker to guarantee the policy-adherence of rewritten
code.

After developing a theoretical framework edit automata [LBW05], Bauer,
Ligatti and Walker proposed a language and system called Polymer [BLW05,
Lig06] that implements edit automata. The design of the Polymer system
is similar to other policy enforcement languages/tools such as Ariel, Naccio,
or PSLang/PoET in which a declarative language is used to define desired
policies and policy enforcement is performed by a rewriter. Polymer is a
policy specification language for specifying runtime policies on Java byte-
code. It provides a methodology for conveniently specifying and generating
complex monitors from simpler modules. The advantage of the language is
the ability of composition of complex runtime security policies by making all
policies first-class and composeable so that higher-order policies (superpoli-
cies) can compose simpler policies (subpolicies). To use the system, a policy
developer first identifies all program methods (on target system libraries)
that might affect system security. Then, these methods are instrumented by
a bytecode rewriter that inserts security checks into the methods in all the
necessary places. Independently from this step, the developer specifies secu-
rity policies in Polymer language. The security policies are then compiled by
a policy compiler which translates the Polymer policy into ordinary Java and
then invokes a Java compiler to translate it to bytecode. When loading the
target application with the modified libraries, an implemented class loader
rewrites the target code based on the compiled policy. By implementing the
edit automata, the Polymer system has a wide range of remedial actions to
security-violated program executions. Such remedial actions in the Polymer
system include the ability to truncate, suppress, or replace violated actions
as well as the ability to insert a sequence of actions into security-relevant
events.

Strongly inspired by PSLang, ConSpec [AN08], a language for specifying
policies and contracts, has been recently developed to exploit both for the
specification of requirements and for the description of the security-relevant
behaviour of actual systems. For providing the formal semantics of the
language, ConSpec is more restrictive than PSLang. In particular, ConSpec
does not allow arbitrary types in representing the security state and restricts
the way the security states are updated. Interestingly, ConSpec has the
ability to express policies on different levels such as on multiple executions
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of the same application, on executions of all applications of a system as well
as on a single execution of the application and on lifetimes of objects of a
certain class. This language is employed in the EU S3MS project [S3M] that
aims to enforce security for untrusted applications in mobile devices.

Remark This section reviews the background of execution monitoring
mechanism to enforce security policies which is the basic of our approach in
this thesis. Our approach is a lightweight alternative implementation of a
reference monitor. The key aspect to make the implementation lightweight
is that it uses off-the-shelf tools and languages to define and enforce secu-
rity. The tools and languages are in aspect-oriented programming paradigm
which is presented as follows.

2.3 Aspect-Oriented Programming

Independently of security policy languages, a programming paradigm of
aspect-oriented programming (AOP) [KLM+97] provides a means to modu-
larise the cross-cutting functionalities of complex software systems so that
the behaviour of an application can be modified by aspects. These features
make AOP can be considered as a suitable implementation for security pol-
icy enforcement. In this section, we review the aspect-oriented programming
paradigm and relate it to an alternative realisation of security policy enforce-
ment which is investigated in this thesis.

Aspect-oriented programming (AOP) is a programming paradigm provid-
ing a programmatic means to modularise the cross-cutting functionalities of
complex software systems by allowing the separation of cross-cutting con-
cerns. The paradigm was originated by Kiczales and his research team at
Xerox PARC [KLM+97] in 1997.

Separation of concerns [Dij76] is a general principle in software engineer-
ing to control the complexity of evergrowing programs by breaking down a
program into distinct parts, i.e. concerns, the cohesive areas of function-
ality. In programming paradigms, these concerns are represented by new
abstractions such as modules, and classes. These abstractions are separate
and independent entities that support different levels of grouping and en-
capsulation of concerns. However, some concerns are called crosscutting
concerns since their implementations do not provide the separation of con-
cerns, cutting across multiple abstractions in a system. An example of such
a crosscutting concern is the logging functionality in which the logging is
normally invoked in every single logged class of the system, thereby crosscuts
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all logged classes or methods. As such, crosscutting concerns raise problems
for programming standards, such as object-oriented programming, in which
it is hard and error-prone to introduce such concerns in existing systems or
to change afterwards.

AOP is an alternative solution6 to deal with such problems of cross-
cutting concerns by providing possibilities to cleanly separate concerns that
would otherwise be cross-cutting using language mechanisms to capture ex-
plicitly cross-cutting structure. AOP implementations provide expressions
for cross-cutting concerns and encapsulate each concern in one place. Join
point, pointcut, advice, and aspect are terminologies used to express new con-
cepts in AOP. Joint points are certain points in the dynamic execution of
the program such as method calls, constructor calls, field access, exceptions,
etc. A pointcut designates a set of join points for any program execution and
the condition of execution under which crosscutting concern could be modi-
fied. An advice is the modification or additional code that would execute at
each of the join points in a pointcut. Aspects are the modular units of cross-
cutting implementation, comprising pointcuts, advice, that can modify the
dynamic behaviour of program.

2.3.1 AOP implementation

An aspect language with different abstraction and composition mechanisms
is needed in order to express appropriate AOP concepts, such as pointcuts,
advice, and aspects. The main work of any AOP language implementation
is to ensure that aspect and non-aspect (component) code run together in a
properly coordinated fashion [KHH+01]. The original method to ensure this
coordination is to weave the advice code into the target program at desired
jointcuts by a tool called aspect weaver, a special language processor to co-
ordinate the co-composition of the aspects and components. The weaving
process can be performed by different weaving techniques including source-
level weaving and load time (or deploy-time) weaving. Source-level weaving
is usually implemented using special preprocessors that require access to
program source and performed during compilation. Load time weaving uses
post-compiler processors [KLM+97] as a part of virtual machine, using run-
time instructions, or using the combinations of these approaches [KHH+01].
In the case of Java bytecode, bytecode weavers can be deployed during the

6A possible treatment of cross-cutting concerns in software engineering is to refactor
them away, i.e. to change the module hierarchy, by applying design patterns, so that the
cross-cutting concerns become modular. This method, however, still faces limitations such
as still leaving some cross-cutting boiler-plate, difficult to capture all aspects.
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build process, or during class loading. In practice, various of such AOP
implementations are available supporting most mainstream and other pro-
gramming languages such as C/C++, Java, C#/VB.NET, JavaScript, PHP,
and so on (see [AOPb] for more references). Here we briefly review two
AOP implementations which have been studied in this research: AspectJ
- an aspect-oriented language for Java, and an AOP implementation for
JavaScript.

AspectJ

AspectJ [KHH+01, Asp] is a seamless aspect-oriented extension to Java sup-
porting two kinds of cross-cutting implementation, namely dynamic cross-
cutting, and static cross-cutting. Dynamic cross-cutting is a mechanism
that makes it possible to define additional implementation to run at certain
well-defined points in the execution of the program. Static cross-cutting pro-
vides means to modify the static structure of a program such as adding new
methods, implementing new interfaces, modifying the class hierarchy. “In
AspectJ’s dynamic join point model, join points are well-defined points in the
execution of the program; poincuts are collections of join points; advice are
special method-like constructs that can be attached to pointcuts; and aspects
are modular units of crosscutting implementation, comprising pointcuts, ad-
vice, and ordinary Java member declarations. AspectJ code is compiled into
standard Java bytecode” [KHH+01]. There are three types of advice in As-
pectJ, namely before, after, and around. For before and after advice types,
aspect code is attached at before or after a defined pointcut, respectively.
For advice type around, the execution behaviour of the concerned poincut
can be controlled by allowing it to execute normally, suppressing the exe-
cution, or replacing the execution by aspect code. AspectJ has been first
implemented with a source-level weaving technique, later a Java bytecode
weaver has been developed to support load time weaving for Java bytecode.
Detailed references for the language and tools can be found at [Asp].

An AOP implementation for JavaScript

We consider the client-side JavaScript context where JavaScript code is em-
bedded into a web page to be interpreted and executed in a web browser.
Differing from other languages, AOP implementation for JavaScript does
not need a separate language to express cross-cutting concerns nor an inde-
pendent aspect weaver. Instead, the reflective features of scripting language,
and the prevalence of dynamic content can be exploited to add AOP fea-
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tures for JavaScript. Recently, various projects implementing AOP features
for client-side JavaScript have been introduced (see [AOPb] for more refer-
ences). For instance, jQuery AOP [AOPa] is a very small plugin that adds
the features of AOP to jQuery7. jQuery AOP allows to add advice before,
after, around and introduction to any global or instance object. In Paper C,
we adapt this plugin to implement a lightweight IRM for JavaScript security.
Our base library for AOP support, illustrated in Listing C.3, has only 454
bytes of code (compressed).

2.3.2 Security approaches using aspect-oriented programming

There have been recent interests in applying AOP techniques to security.
In [VBC01], an aspect-oriented extension to the C programming lang-

uage was developed aiming to allow security policies to be separate from
the code, enabling developers to write the main application and a security
expert to specify security properties. The approach can be applied to secu-
rity by different methods such as replacing insecure function calls by secure
replacements, automatically performing error checking on security-critical
calls, automatically logging data that may be relevant to security, etc.

Numerous research efforts e.g. [GRF02, SH03, YLH+05, Set07] have
shown some preliminary results in applying aspect orientation principle to
secure software architecture design. More approaches to adopting AOP
technique into security domain have been surveyed in [DS06]. Basically,
these proposals only introduce the aspect-oriented approach as a part of
the general design and development of security requirements for a software
system.

In [Win04], the author has studied how aspect-oriented software develop-
ment (AOSD) can be applied for the enforcement of application-specific re-
quirements. The work elaborates on two specific AOSD techniques, namely
interception-based and weaving-based. The interception-based AOSD tech-
nique is to operate on the execution of an application by capturing particu-
lar events to modify the execution whenever necessary. The weaving-based
AOSD has been used for the modularisation of security based on the modifi-
cation of development units to enforce the modularised security requirements
within the boundaries of the application.

Hamlen and Jones [HJ08] have presented a language called SPoX (Se-
curity Policy XML), an aspect-oriented, declarative, security policy speci-
fication for enforcement by an IRM. The authors have introduced aspect-

7A JavaScript library that simplifies HTML document traversing, event handling, ani-
mating, and Ajax interactions to help JavaScript developers code their application faster.
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oriented security automata, whose edge labels are encoded as pointcut ex-
pressions. The semantics of the language is defined to establish a formal
connection between AOP and the IRM. This work is close to this thesis in
reasoning about the connection between AOP and the IRM. They, however,
provide a formal connection by designing a new language and providing
the semantics for the language while the goal of this thesis is to study the
application of exiting AOP languages for an IRM in particular untrusted
systems.

Several studies such as [DWPJ06, SBM08] attempt to explore how se-
cure an AOP approach to security can provide. These studies conclude that
more formal security assurances should be provided to build a secure sys-
tem with AOSD. However, according to a large number of AOP studies for
software security, the AOP technique is a promising method to design and
implement a secure software system. In particular, various authors, e.g. in
[DW06, HJ08, BLW05, SH03, CR07], have observed that AOP can be con-
sidered as an implementation of security policy enforcement mechanism like
IRMs. In [Yan10], Yang combines aspect-oriented programming techniques
with static program analysis to provide a flexible and modular mechanism to
enforce security policies on distributed systems. Alexandersson [Ale10] stud-
ies the use aspect-oriented programming to implement software-based fault
tolerance and shows that the implementation results in clear advantages.
Whether the AOP approach to implementing a security policy enforcement
mechanism is adequate for particular systems needs to be investigated. Moti-
vated by this, this thesis studies the application of aspect-oriented program-
ming to the context of security policy enforcement. We call this lightweight
enforcement approach to security policy enforcement. We investigate the ap-
proach for two specific untrusted systems: vehicle software architecture, and
client-side JavaScript. In Chapter 3, we present our lightweight enforcement
approach to vehicle software systems. We employ the lightweight approach
to the context of JavaScript security which is summarised in Chapter 4.
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Chapter 3

Runtime Enforcement for
Downloaded Vehicle
Applications

This chapter summaries our approach to enforcing fine-grained security poli-
cies for a vehicle application architecture. In the first section, the vehicle
software architecture and the OSGi framework used in vehicle systems are
reviewed. In Section 3.2, we introduce our approach to deploying the imple-
mentation of security policy enforcement using aspect-oriented programming
for the OSGi framework. This work is included in this thesis in Paper A.
Section 3.3 summaries our work to identify possible threats in the vehicle
software architecture and deploy the security policy enforcement mechanism
to design countermeasures against the threats. This work is included in this
thesis in Paper B. Some practical issues are discussed in Section 3.4.

3.1 Vehicle Software Architecture

A modern in-vehicle system contains an in-vehicle network consisting of var-
ious Electronic Control Units (ECUs) and networks such as the Controller
Area Network (CAN), and the Local Interconnect Network (LIN), among
others. There is a wireless gateway connecting to the CAN bus that allows
the in-vehicle network access to external networks such as fleet-management
systems and the Internet. The in-vehicle system contains applications which
can be divided into two categories: vehicle software and ECU firmware.
The vehicle software requires an underlying platform to run the applica-
tions while ECU firmware is a self-contained application, flashed to a ROM,
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and run on a microprocessor responsible for a certain functionality in the
vehicle [LPE06].

The functionality of ECU firmware ranges from small tasks, such as
opening a window and unlocking a door, to more advanced functionality,
such as automatic brake systems and collision warning systems. Recent ad-
ministrative functions in vehicle systems, such as remote diagnostics and
Firmware Updates Over The Air (FOTA), require the in-vehicle network
to communicate with the Internet. However, allowing external communi-
cation with the previously isolated in-vehicle network introduces a number
of security risks. As shown in a number of studies, e.g. [NLPJ08, NL08b,
HD07, LNJ08, NL08a], ECU firmware is highly plausible targets for future
attacks that could have serious consequences. In [NPL08] an ECU classifica-
tion based on safety and security is presented in order to assist in designing
security to know what to protect. Based on the classification it is suggested
that automotive manufacturers should emphasise the security or restrict the
remote diagnostics and FOTA procedures to certain ECUs.

For vehicle software, we consider the architecture described in the client
part of the reference implementation of the open Global System for Telematics
(GST) standard[GST] based on J2ME/OSGi. In this architecture (c.f.
[GST], Open Systems Implementation Guide), software is installed and ex-
ecuted on an OSGi [OSG] software platform, that runs on a Java Virtual
Machine (JVM) on an on-board vehicle computer with an underlying Oper-
ating System (OS). The on-board vehicle computer is connected to the CAN
bus and provides interfaces for applications such that applications could ac-
cess the underlying car infrastructure. The vehicle software applications are
downloaded over the Internet from a control centre via the wireless gateway
and then installed and run within the OSGi framework.

3.1.1 Open Services Gateway initiative(OSGi)

OSGi is a framework implementing a complete and dynamic component-
model that is missing in stand-alone JVM environment. An application in
OSGi consists of one or more components, called bundles. Bundles can be
installed remotely and can be started, stopped, updated and uninstalled
without restarting the JVM. The OSGi framework offers a co-operative
model so that bundles can discover and use services provided by others in
the same OSGi framework. The main advantage of using OSGi is to split
systems into multiple components that can be dynamically loaded, unloaded
or replaced by new implementations. Moreover, using OSGi makes it easy
to develop new applications without recreating common services. Figure 3.1
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depicts system layers in the software architecture using OSGi.

Figure 3.1: OSGi & System-Layering.

The OSGi technology based middleware has been deployed in many dif-
ferent industries such that it creates a large software market for OSGi soft-
ware components [OSG07]. The OSGi framework has also been used in
in-vehicle systems by several car manufactures. For example, the GST pro-
ject defines an application runtime environment for a client system (vehicle)
using the OSGi framework as mentioned; BMW used the OSGi specifications
as the base technology for its high-end infotainment platform [OSG07].

OSGi Security The OSGi framework provides a secure environment that
executes applications in a sandbox so that these applications cannot harm
the environment, nor interfere with other resident applications. However,
in an open system such as the open telematics market, one needs to allow
potentially untrusted applications access to security sensitive resources in
order to get the full benefits of extensibility. Such a simple sandboxing view
which grants all-or-nothing access to a static set of resources, determined
on the basis of trust, is too coarse-grained. The OSGi framework sits on
top of a JVM and its security mechanism is based on the Java 2 security
model [Jav]. In addition, OSGi Service Platform Release 4 [OSG] has pro-
vided an optional security layer that can help the infrastructure to deploy
and manage applications that must run in controlled fine-grained environ-
ments. The main addition is simply the ability to authenticate bundles to be
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able to verify bundle integrity. Several security mechanisms have been pro-
posed to secure the OSGi execution environment. For example, in [LKMB05]
and [PF07], the authors proposed protocols for secure bundle deployment.
These solutions, however, only help certify the origin and the integrity of
code. Unfortunately, these security mechanisms are inadequate for an open
telematics market that allows third-party providers to develop and provide
services for in-vehicle systems. Since these security mechanisms cannot de-
tect and prevent possible problems, e.g. downloaded applications could be
malicious, or applications may simply have bugs, causing harmful to the sys-
tem. To be flexible we need to be able to enforce application-specific policies
at runtime. In the next section we present our work which identifies these
limitations in details and studies the implementation of application-specific
security policy enforcement for the OSGi framework.

3.2 Security Policy Enforcement in the OSGi Frame-
work Using Aspect-Oriented Programming

This section briefly presents our work which has been published in COMP-
SAC’08 [PS08], and is included in this thesis in Paper A. In this work we
have investigated on the implementation of security policy enforcement in
the context vehicle telematics/infotainment systems – on-board vehicle com-
puter and communications systems. The contribution of this work is a new
combination of methods. We consider the OSGi (Open Services Gateway
initiative) standard [OSG] as a representative open middleware platform
for telematics systems. The main points of the study is to propose the
architecture for enforcing security policies for third-party applications run-
ning on the OSGi framework and to implement the enforcement mecha-
nism. We adopt a language-based approach using aspect-oriented program-
ming (AOP) (c.f. Section 2.3) with the AspectJ compiler [Asp, KLM+97],
rather than a more security-specific program rewriting tools such as e.g. Po-
ET/PSLang [UES00a] or Polymer [BLW05]. Security policies are specified
as aspects in AspectJ language, an extension of Java programming language
for AOP. Based on the policies, a third-party application distributed in Java
source code or Java bytecode are rewritten the AspectJ weaver tool. After
the rewriting process, the application is modified to a “secured” version that
the policies are embedded into it. The secured application is deployed to
the framework to run such that any behaviours of the application violating
the policies at runtime are detected and prevented. The rewriting process
is illustrated in Fig. 3.2.
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OSGi bundle
in Java source code 

or bytecode

Security 
policies

in AspectJ

Rewriting tool 
(AspectJ weaver)

. . . .

The secured bundle 
with embedded policies

Embedded 
security policies

Figure 3.2: The process to embed security policies for a vehicle application

A strength of this approach is that it uses a relatively complete and
well-tested tool. A weakness, in principle, is that is does not provide direct
support for policies (aspects). For example, in order to support different
levels of security states such that history-dependent security policies, we
design and implement a library for this purpose. We have illustrated how
various sorts of security policies are categorised and described in AspectJ
as advice. Our demonstration has resulted in the first study of security
policy enforcement using an aspect-oriented language in an open system
like the OSGi framework. The study differs from research of security policy
enforcement in that it is based on the more industrially well-known language
AspectJ and the main stream Java language without defining any new policy
languages.

3.3 Preventing Potential Cyber Attacks for Down-
loaded Vehicle Applications

Based on the security policy enforcement method introduced in the above
section, we have performed further studies in the vehicle software archi-
tecture to deploy the method in order to prevent potential cyber attacks
[NL08a] in the vehicle systems. In this section, we summary our work per-
forming this study which is included in this thesis in Paper B and published
in RTIC’10 [PN10].

The work analyses possible threats and potential cyber attacks in the
vehicle software architectures including add-on software and ECU firmware.
For each threat, we introduce a corresponding countermeasure that can be
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specified as a security policy. We have proposed a model to deploy the
countermeasures by using our security policy enforcement method in a ve-
hicle context. In our proposed model, a transformation module is located
at the wireless gateway as a proxy between the downloading module and
the installation/updating module. After downloading, the code is rewrit-
ten to “embed” (inline) security policies within it. Thus, the execution of
the modified code is enforced by application-specific security policies imple-
menting countermeasures to prevent identified threats. We have illustrated
the implementation of countermeasures in terms of policies in AspectJ, an
aspect-oriented programming language. A similar solution for the imple-
mentation in the Electronic Control Unit (ECU) firmware architecture is
also discussed in Paper B.

3.4 Discussion

Enforcing security for untrusted software in mobile systems like a vehicle
software architecture has been an active research direction. There have
been several research projects such as European S3MS [S3M, DJM+07], GST
[Sec06], VII [SWE08], EVITA [Evi] which investigate security mechanisms
for such systems. In this chapter, we have summarised our contributions on
providing security for the untrusted software architecture in vehicle systems.
We have shown that our lightweight enforcement approach is promising for
untrusted software scenarios in a vehicle software architecture. However,
there are several issues which have not been discussed in detail in our studies
i.e. [PS08, PN10]. In this section, we review the issues and discuss possible
solutions.

We have demonstrated that various classes of security policies can be de-
fined in AspectJ which can be embedded into untrusted programs to ensure
the execution of the modified programs do not violate policies. However,
several security aspects are not directly supported in an AOP language like
AspectJ. For example, although we can encode security states in variables
to define history-dependent security policies, we have to implement a li-
brary to deal with issues such as temporal policies and system level versus
application level security states. Since we encode these temporal states via
files, we assume that common access for multiple threads are handled by the
platform, e.g. OSGi. We have not investigated the issues of concurrency for
policy enforcement of multithreaded programs in detail. For instance, some
of the concurrency issues such as race conditions when checking and updat-
ing security states have not been considered in [PS08]. The problem of time
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of check/time of use might happen when the reference monitors of two or
more untrusted application concurrently access a global (system) security
state. In a policy example such as “limit the number of SMS messages all
applications in the system can send to 10 per day”, a global security state
must be defined to store the number of SMS messages sent per day in the
whole system. When an application tries to send a SMS, the reference mon-
itor must first check the global state before granting sending operation to
the application. If the operation is proceeded, the reference monitor then
update the security state. The race problem happens when one application
checks before another concurrent application updates the global state, the
policy might be violated but the monitor could not detect to stop the op-
eration. One possible solution to solve this problem could be to introduce
a global lock for accessing global security states. However, it is needed to
be further investigated to provide a complete solution as well as security
assurance. While these problems have not been studied in this thesis, they
have been handled by others in the literature such as [DJLP10, DJLP09].
In those studies, the authors deal with concurrency issues for multi-thread
Java-like application in the context of inlined reference monitors by intro-
duce race-free policies. The formal correctness of the approach has also been
proved.

Although we have shown that the lightweight enforcement approach us-
ing aspect oriented programming is promising, there remain some theoreti-
cal and practical issues needed to be further investigated. For instance, we
have demonstrated that fine-grained policies can be defined and enforced us-
ing an AOP language and tool, however the guarantees of the enforcement
have not been shown yet. The design and implementation of AOP are not
security-oriented, thus have not considered the case that applications may
be malicious and can break the woven process. In the context of security
enforcement, this issue should be studied to ensure that no policies can be
bypassed. Moreover, the design and implementation of these tools do not
consider the case that malicious code can be injected to an application which
can break the security of the enforcement. In [DWPJ06], the authors have
identified several security risks in using AspectJ to build secure applications.
For example, a significant risk is the level of control that aspects have over
other modules in a system [DWPJ06]. Moreover, it is possible that an as-
pect is malicious which can compromise the system. The work also suggests
a number of steps should be investigated further that an AOP is mature for
developing a secure system.
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Chapter 4

Lightweight Self-Protecting
JavaScript

In this chapter, we summarise our lightweight approach to enforcing fine-
grained security policies for client-side JavaScript in order to prevent pos-
sible malicious actions. In the first section, we review client-side Java-
Script and the state-of-the-art of JavaScript security. In Section 4.2, we
briefly present our enforcement method called lightweight self-protecting
JavaScript and is presented in this thesis in Paper C. We discuss some
implementation issues in self-protecting JavaScript method and review a re-
vised implementation to provide a more tamper-proof library and better sup-
port for authoring sensible policies (Section 4.3.1). This is included in this
thesis in Paper D. In Section 4.4, we present an application of the self-
protecting JavaScript approach in the context of untrusted JavaScript. We
have proposed a two-tier sandbox architecture so that untrusted code can be
loaded and executed dynamically in a sandbox environment enforced by a ref-
erence monitor adapted from self-protecting JavaScript. This architecture is
presented in Paper E in this thesis. Section 4.5 discusses more recent related
work, short-comings of the approach and suggestions for further work.

4.1 Client-side JavaScript and its security

JavaScript is a dynamic scripting language embedded in web (HTML) pages
and executed in web browsers1 (client machines). We call this client-side
JavaScript because although JavaScript was originally created to run on

1In fact, JavaScript interpreters can also be found several tools such as Adobe Acrobat,
Photoshop, Google Desktop Gadgets, email clients, and more [MDCa].
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client-side, i.e. web browsers, the language is no longer limited to just client-
side, e.g. server-side JavaScript is also available [MDCa, PS01]. JavaScript is
tightly integrated with the browser Document Object Model (DOM) [W3C]
to interact with the web page content. The DOM is a World Wide Web Con-
sortium (W3C) standard, defining specifications for programs and scripts
accessing document elements of a web page so that the programs or scripts
can dynamically access and update the content, structure, and style of the
document elements. JavaScript has dynamic features that allow web devel-
opers to build dynamic contents of a web page by generating the content
based on user information when the JavaScript code in the web page is exe-
cuted on a web browser. The key dynamic feature of JavaScript is that the
code can be generated and executed at runtime by the document.write,
and eval functions.

When a user visits a web page containing JavaScript code, the code is
loaded to the web browser to be interpreted and executed within a JavaScript
engine implemented in the browser. Each web browser has its own Java-
Script engine implementation, and there are inconsistencies cross browsers.
For example, some JavaScript code which runs in a browser properly might
cause an error in another browser. ECMAScript is a standard specifica-
tion, by Ecma International, which tries to solve the inconsistency problem
by standardising the JavaScript language. ECMA-262 ECMAScript Lang-
uage Specification 3rd edition (ECMAScript 3) is a standard version which
is implemented by almost all current browsers. In December 2009, EC-
MAScript version 5 was released aiming to provide a huge improvement over
ECMAScript 3. Latest version of major browsers, such as Mozilla Firefox
6.0, Google Chrome 15.0.865, Internet Explorer 10, support ECMAScript
5. Some new features of ECMAScript 5 are significant from a security per-
spective and are reviewed in this thesis in Paper E.

4.1.1 JavaScript security

Modern web applications generate web pages that contains both text (HTML)
and JavaScript code. Since the JavaScript code can be arbitrary code from
unknown sources, web browsers have security mechanisms to protect users
and the system from such potential malicious code. One of the JavaScript se-
curity mechanisms is based on sandboxing, where JavaScript code is treated
as an untrusted component and allowed to execute with only a restricted
set of operations in order to isolate it from the rest of the operating system.
For example, no access is granted to the local file system, the memory space
of other running programs, or the operating system’s network layer. This
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mechanism can prevent malfunctioning or malicious scripts from wreaking
havoc in the user’s environment [PS01]. The reality of the situation, how-
ever, is that scripts may conform to the sandbox policy, but still violate the
security of the system, both by design and by accident. A simple example
is to generate annoying pop-ups that difficult to terminate, i.e. by opening
a pop-up window without control buttons or re-generating instantly when a
pop-up window is closed. Phishing attacks [Phi] are a more serious example
of the popup window problem where the location bar of origin web page is
hidden and the attacker attempts to acquire sensitive information, such as
credit card details, by redirecting a user into a malicious site.

The same origin policy [Rud] is another security mechanism provided
by JavaScript and the web browser to prevent a document or script loaded
from one origin from getting or setting the properties of a document from
a different origin. For instance, JavaScript code from othercompany.com
could not access the cookies’ information of company.com. The origin, in
this context, includes domain name, protocol, and port. In reality, however,
the same origin policy has been exploited to launch attacks such as Cross-
site Scripting (XSS) [XSS]. Cross-site scripting is a known attack where
malicious scripts are injected into a web page at its origin, i.e. via wiki
contents, blog comments, etc. and executed by the privileges of the web page
which can bypass browser same origin policy mechanism to steal sensitive
information of victims such as cookie, history.

As mentioned in Section 1.2.2, server-side and client-side defence are
two approaches in the literature to preventing XSS attacks. Client-side
defence mechanisms offer more advantages than server-side filtering mecha-
nisms since its enforcement is performed in the browser at runtime, and it is
easier for the enforcement mechanism to have a browser-consistent view of
the source code. We divide client-side defence mechanisms into two direc-
tions based on whether they require browser modification or not. Modifying
a browser has the advantage that it can access lower-level implementation
details, so that the protection mechanism can modify or extend JavaScript
in order to enforce richer precise security policies. However, this direction
also has down side from an immediate practical perspective: it requires the
browser users to be proactive to protect themselves. Moreover, modifying
a browser requires much effort and it is difficult in practice to provide the
same modification of all browsers for a protection mechanism. JCShadow
[PDL+11], and ConScript [ML10] are two state-of-the-art examples of this
direction.

Avoiding browser modification, on the other hand, is an advantage in
itself. For example it could allow a server to protect its own code from
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XSS attacks using an application-specific policy. The user would receive
this protection without being proactive. The enforcement can be provided
as a library by a server or a proxy and the policies are enforced at runtime
at the browser. One approach in this area is to transform the original pro-
gram to embed runtime security check to enforce policies. We refer to these
styles as an invasive approach since it requires run-time parsing and trans-
formation of the code, therefore can create great runtime overhead (see e.g.
BrowserShield [RDW+07]). A number of widely used approaches such as
FBJS [Fac], or ADsafe [Cro] work by filtering JavaScript. These approaches
first check that the code is in a well-behaved subset of JavaScript to ensure
that problematic language features such as eval and document.write are
excluded. A principled perspective on this approach is provided in the work
of Maffeis et al, e.g. [MMT09].

Differing from the invasive approaches (and the above mentioned mech-
anisms), we employ our lightweight enforcement approach to enforcing secu-
rity policies for JavaScript. Our approach is non-invasive since it does not
require any aggressive code manipulation. The method is called lightweight
self-protecting JavaScript, where the policy code is written in JavaScript
and is safely embedded into web pages to control and modify the behavior
of JavaScript code execution. In the next Section we introduce this approach
in a JavaScript/browser context.

4.2 The Lightweight Self-Protecting JavaScript Ap-
proach

Our proposed lightweight self-protecting JavaScript is an enforcement mech-
anism which is implemented by inserting an enforcement library and policy
code into a web page. The code wraps security-relevant events of JavaScript
in the web page with pre-defined policies so that the security-relevant be-
haviour in the web page is monitored and controlled by the policies and thus
the page becomes self-protected.

The injected self-protecting JavaScript code contains two parts: wrapper
code and policy code. The wrapper code is the enforcement mechanism
implementation which intercepts security-relevant events defined in policies
with a corresponding policy. The policy code can be application-specific, i.e.
specific to a particular web page, and therefore can be defined by the web
developer who knows the intended functionality of the application so that
he can define policies to prevent e.g. XSS attacks by restricting the usage
of certain JavaScript features (without adversely affecting the function of
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the application). A key point of self-protecting JavaScript is that security
policies are defined in pure JavaScript language which can fine-grained and
stateful policies based on execution history.

<html> 

<head> 

<title>Self-protecting JavaScript test</title>

<meta content=…> <style>…</style>

<script>…</script>

<!-- more heading setting -->

</head> 

<body> 

<script type="text/javascript"> 

(function() {..})();

</script>

<!-- the content of page -->

</body>

</html>  

The original web page New version of the web page with 
embedded self-protecting JavaScript

<html> 

<head>

<script src=“selfprotectingJS.js"></script> 

<title>Self-protecting JavaScript test</title>

<meta content=…> <style>…</style>

<script>…</script>

<!-- more heading setting -->

</head> 

<body> 

<script type="text/javascript"> 

(function() {..})();

</script>

<!-- the content of page -->

</body>

</html>  

Figure 4.1: Illustration of injection of self-protecting JavaScript code to a
web page. The code is defined in the selfprotectingJS.js file.

In order to deploy the policy enforcement, the self-protecting code is
injected into the header of a web page such that the content of the page re-
mains unchanged. Injecting the self-protecting code into the header ensures
that the self-protecting code is executed first, so it gets to wrap the security
critical events before the attacker code can get a handle on them. The in-
jection of self-protecting code can be performed at any point between client
(web browser) and server, e.g. at server, or at a trusted proxy, or even as
a browser plug-in. For example, a web developer can inject self-protecting
JavaScript code into their web pages to protect their users from XSS at-
tacks. A company can set up a proxy to inject self-protecting JavaScript
code into every web pages accessing within the company to prevent some
known vulnerabilities. Therefore, the self-protecting approach does not re-
quire browser modification. A web page having self-protecting JavaScript
code injected is illustrated in Fig. 4.1.

Not very event can be controlled by our method since it is based on
wrapping built-in functions. The key idea of wrapping a built-in function is
to define a wrapper function such that the actual native code for the built-in
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function is only accessible via the wrapper function. Policies are run within
the wrapper function to control the access to the native code at runtime.
Although wrapper functions can be overwritten by e.g. the attacker, the
reference to the original built-in function is held uniquely by the wrapper
function. This enforcement method is illustrated in Fig. 4.2.

Call chain of an API 
(alert) of JavaScript 
in a normal web page

alert 
implementation

JavaScript execution 
environment  (e.g. browser)

(Native 
implementations)

code pointers

alert window.alert

user 
functions

alert 
wrapper

(+policy code)
alert 

implementation

JavaScript execution 
environment  (e.g. browser)

(Native 
implementations)

code pointers

alert window.alert

user 
functions

This reference must be unique and inaccessible 
from e.g. the attacker

Call chain of an API 
(alert) of JavaScript 
in a web page carrying 
self-protecting 
JavaScript code 

Figure 4.2: Illustration of the enforcement method

Because the wrapping code and policy code are defined independently
from JavaScript code or the body of the page, i.e. only based on security
relevant events, parsing or transforming the code of the page is not needed.
This ensures low runtime overhead. Moreover, the enforcement method
intercepts the behaviour of the code, it can deal with dynamic language
features such as on-the-fly code generation which have proved difficult for
filtering or code transformation mechanisms.

4.3 Self-protecting JavaScript implementation

The main challenges for implementing self-protecting JavaScript are com-
pleteness, ensuring that all security relevant events are intercepted, and
tamper-proofing, ensuring that the malicious code cannot subvert the mon-
itor mechanism itself. JavaScript provides reflection capabilities, in which
code can be loaded and executed at runtime by using e.g. eval or document.
write function, that makes it difficult to provide completeness. Tamper-
proofing is another problem because the enforcement code is placed within
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the same code base, therefore it can be overwritten by attacker code. The
key point to resolve these problems in self-protecting JavaScript is to ensure
the original built-in methods can only be accessible via wrapper methods.
Although wrapper methods can be overwritten, the reference to the original
built-in method is held uniquely by the wrapper method.

The lightweight self-protecting JavaScript approach has been implemented
by adapting an aspect-oriented programming (AOP) library (jQuery AOP
[AOPa]) for JavaScript. Using AOP, a security event is defined as a point-
cut, which defines the point and the condition under which to modify the
behaviour of an application, and a policy is defined as an advice, which
specifies what modifications should be applied. The work has been pub-
lished in ASIACCS’09 [PSC09] (which is included in this thesis in Paper C).
However, the AOP library is not designed for security purposes, there were
several security issues that the attacker can exploit to bypass the enforce-
ment2. In the continuation of this work, we have identified these issues and
proposed solutions to fix the vulnerabilities to make the enforcement safe.
In the following subsection, these issues are reviewed briefly.

4.3.1 Safe wrappers and sane policies for self-protecting Java-
Script

The implementation of self-protecting JavaScript approach in [PSC09] has
not considered all circumstances in which the attacker can exploit to obtain
pointers to the original method. These issues include the generic wrapper
code and ones relating to the construction of safe policies. We have studied
and fixed vulnerabilities of both kinds in the implementation in [PSC09],
and propose a way to make it easier to write policies which behave in a way
which is not unduly influenced by attacker code.

There are two major issues in the wrapper implementation. First, the
attacker can subvert functions or objects that are used in the wrapping
function to bypass the policies or extract the original unwrapped methods.
If the policy functions were to rely on inherited properties of objects it
could be influenced in a similar way. Second, the attacker can use difference
aliases of a function to bypass wrapped built-in function since there may
be several aliases to the same built-in. These issues are discussed in detail
and corresponding solutions are proposed in Paper D [MPS10] to handle the
issues.

2In fact, we have studied other AOP libraries for JavaScript and these libraries face
the same problems (c.f. Paper D, Section 2.6)
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We have also provided a way to specify “sane” policies by introducing
declarative arguments3 for policies. The idea is that the policy writer writes
a policy and an inspection type. An inspection type is a specification of the
types of the call parameters that will be inspected by the policy code. This
is to ensure that what you see (in the policy checking code) is what you get
in subsequent use of the parameters.

4.4 An application of self-protecting JavaScript in
the context of untrusted JavaScript

Self-protecting JavaScript can be deployed to monitor the execution of Java-
Script in a web page to prevent unintended behaviour, e.g. XSS. One of
the appealing points of self-protecting JavaScript is that it does not parse
or transform the code and it can enforce fine-grained policies for the code at
runtime. Enforcing fine-grained policies at runtime without code transfor-
mation is ideal for untrusted JavaScript context since untrusted JavaScript
code can be loaded and executed at runtime under the enforcement of fine-
grained policies without support of an extra tool to transform or validate the
code as in recent approaches. However, deploying self-protecting JavaScript
into the context of untrusted JavaScript is not trivial since the enforcement
mechanism in self-protecting JavaScript cannot distinguish trusted or un-
trusted JavaScript. In this section, we introduce our work (Paper E) which
proposes a two-tier sandbox architecture in which untrusted JavaScript code
can be loaded and executed dynamically within a sandbox environment.
The execution of untrusted JavaScript in the environment is monitored un-
der predefined modular and fine-grained policies which can be defined via
an adaptation of the self-protecting JavaScript mechanism.

4.4.1 A two-tier sandbox architecture for enforcing modular
fine-grained security policies for untrusted JavaScript

Existing approaches to providing security for untrusted JavaScript include
isolation of capabilities – a.k.a. sandboxing. Features of the JavaScript lang-
uage conspire to make this nontrivial, and isolation normally requires com-
plex filtering, transforming and wrapping untrusted code to restrict the code
to a manageable subset. The latest JavaScript specification (ECMAScript

3Arguments in JavaScript are untyped, and the language applies automatic type coer-
cion when there is a type mismatch. Attacker code can exploit this issue to launch attacks
to defeat some enforced policies.
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5) has been modified to make sandboxing easier and more widely applica-
ble. ECMAScript 5 (ES5) [Ecm], released by the ECMA committee in De-
cember 2009, is a new standard specification of JavaScript language which
represents, from a security perspective, a huge improvement over the previ-
ous (current) specification, ECMAScript 3. ES5 provides more robust pro-
gramming to write secure JavaScript. Firstly, objects in ES5 can be frozen
such that the frozen objects are tamper-proof. Secondly, isolation problems,
i.e. static lexical scope, and no encapsulation leak in ES3 are solved in ES5
strict mode which makes it possible to construct a sandbox environment.
This is illustrated in a sandboxing library recently developed by the Google
Caja Team which allows untrusted code to interact with a restricted API
[TME+11].

However, specifying and enforcing fine-grained policies within an API
implementation is complex and inflexible, since each sandboxed applica-
tion (there may be several within a single web page) may need application-
specific policies. Assume that there exists a baseline API that a sandbox
environment provides to an untrusted application. Our goal is to specify
and enforce modular and fine-grained policies on such an API for specific
untrusted applications. By modular, we aim that policy code is separate
from API implementation and specific to a particular untrusted application.

We have proposed a two-tier sandbox architecture to define and enforce
modular and fine-grained security policies for untrusted JavaScript in Se-
cureECMAScript (SES) environment in the context of ECMAScript 5. In-
stead of implementing security policies within an API, our mechanism is to
intercept a baseline API with modular and fine-grained policies before pro-
viding the API to a sandbox environment. Thus the untrusted code running
inside this architecture can interact with outside environment through two
layers of enforcement: the interaction is first enforced by fine-grained policies
on a baseline API, and then enforced by the confinement of the API itself.
The implementation of the fine-grained policy part is an adaptation of the
self-protecting JavaScript mechanism. More restricted than self-protecting
JavaScript, the policy enforcement mechanism in this architecture is also ex-
ecuted within a sandbox so that the policy code cannot expose unprotected
resources. The implementation of the architecture is based on client-side
JavaScript libraries so that it does not require browser modification.

The two-tier sandbox architecture allows untrusted code to be dynam-
ically loaded and executed without runtime checking or transformation.
The execution of untrusted code is enforced by fine-grained security poli-
cies which can be specified modularly and specifically to each application.
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4.5 Discussion

Web application security has recently received wide attention both in indus-
try and in the research community. Although most web browsers provide
security mechanisms for JavaScript, such as sandboxing, same-origin pol-
icy and signed scripting [Rud, MDCb], in practice attacks, such as XSS,
phishing, or resource abuse, could defeat these protections.

In the research community, there have been a great number of approaches
trying to provide security for JavaScript application. Each approach has po-
tential advantages and disadvantages, and each must both overcome numer-
ous technical problems to be practically applicable. Concrete related work
has been discussed in Paper C, D, and E. In this section, we highlight the
key features of our lightweight self-protecting JavaScript approach. We also
discuss some limitations of the approach that the method can be improved
to be practically applicable.

In the literature, our self-protecting JavaScript is a unique lightweight ap-
proach which does not require any aggressive code manipulation nor browser
modification. Lightweight self-protecting JavaScript approach [PSC09] has
received a quite wide attention in the literature. However, several pa-
pers have cited the paper with some imprecise criticisms. For example,
in [MMT09], the authors mention that lightweight self-protecting JavaScript
approach is not sound for existing browsers. Although our initial imple-
mentation had flaws, we believe that the approach is viable and sound (the
work of [MMT09] deals with the idealised ECMA-262 Standard which cer-
tainly does not model the features of real browsers). More concretely, as
we have discussed in [PSC09] (c.f. Paper C, Section 3.5) that in Mozilla
deleting a wrapper method exposes the original built-in method. But this
problem does not exist in other browsers such as Google Chrome or Safari.
In latest browsers such as Firefox 4, and Google Chrome 12.x, the delete
problem can be avoided by setting non-configurable to an object thanks to
the new features in ECMAScript 5, as we have illustrated in Paper E. An-
other implementation-specific issue is that we rely on Mozilla-style getter
and setter methods to enforce policies property accesses. However, these
Mozilla-style methods are included in ECMAScript 5, making our approach
to dealing with property access potentially more widely applicable. A re-
vised implementation of our self-protecting JavaScript in ECMAScript 5,
described in Paper E, is applicable for the browsers supporting ECMAScript
5. IceShield [HFH11] is a very recent ECMAScript 5 library similar to our
lightweight self-protecting JavaScript approach and developed concurrently
with the work in Paper E. The library is inlined to a page to detect and
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prevent malicious behaviour of the page. In IceShield [HFH11], the authors
showed how to use the new features of ECMAScript 5 to implement the
library such that the attacker cannot subvert the enforcement.

[MFM10], and [ML10] also identified some vulnerabilities of lightweight
self-protecting JavaScript. However, these are just implementation-specific
issues, not flaws in the method itself. We discovered these and other flaws
concurrently with their work, we have revised the implementation in [PSC09]
to fix the issues as mentioned briefly in Section 4.3.1.
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Chapter 5

Conclusion

Security enforcement mechanisms remain a topic of research for all infras-
tructure systems [Sch00]. Implementing a security enforcement mechanism
at application level is appealing because it can monitor the behaviour of the
software at runtime with application-specific policies. Differing from previ-
ous approaches to implementing security policy enforcement at application
level, this thesis proposes a lightweight enforcement approach by taking the
advantages of the aspect-oriented programming [KLM+97] paradigm rather
than using a security-specific policy language and program rewriting tool.

The approach has been investigated in two different domains to study
its effectiveness. In the vehicle application domain, we have shown that the
approach is promising and certainly adequate for small examples. We have
also applied our approach in implementing the proposed countermeasures
in terms of policies for downloaded vehicle applications in order to prevent
potential threats in such application.

In the context of JavaScript security, the lightweight enforcement ap-
proach has been deployed to prevent script injection attacks. Because the
enforcement implementation and policies are provided as a JavaScript li-
brary, they can be used to inject into any web page to make the page
self-protected without transforming or parsing the page, or modifying the
browser. We have also illustrated an application of the lightweight enforce-
ment approach in JavaScript in the context of untrusted JavaScript such as
mashup web applications.
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Through these studies, we conclude the thesis by answering the research
questions raised in the introduction chapter:

What classes of fine-grained security policies can be defined and
enforced?

The lightweight enforcement mechanism is based on reference monitor
style, therefore the basic class of security policy is monitor-enforceable
[Sch00] which is safety properties. Defined in a base language, the
security policies can be specified in a flexible way such as a reponse
action can be inserted before and/or after an application instruction.
We have shown that edit automata [LBW05]-based security policies
can be specified in the lightweight enforcement approach. These pol-
icy classes allow the enforcement mechanism can take richer response
actions, such as truncate, insert, or replace an operation, to a security
request. Moreover, the policies can be defined specifically to each un-
trusted software and statful that policy decisions can be depended on
execution history of the untrusted software.

How can the approach be integrated with a base system without
modifying the base system?

The lightweight enforcement approach can be integrated with a base
system running untrusted software without modifying the base sys-
tem. In particular, in the OSGi framework, the base system running
applications in vehicle software architecture, the transformation of un-
trusted applications is performed at a control center before deploying
to the framework. The transformed application can run on the base
system as usual.

In the context of JavaScript security, the enforcement code and policy
are provided as a library and injected into web pages some where
between the server and the browser so that no modification of the
browser is needed.

What security assurances the approach can provide to a partic-
ular untrusted software system?

Security assurances of the lightweight enforcement mechanism have
been provided empirically with examples and experiments. Formal
proof of the security assurances needs to be investigated further.

In the OSGi framework for the vehicle application architecture, we
have demonstrated that the security assurance provided by the light-
weight enforcement mechanism is promising and certainly adequate for
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small application examples. Security assurance for large and realworld
examples remains to be investigated.

In the lightweight self-protecting JavaScript approach, we have demon-
strated that the approach can be deployed to defeat a number of known
attacks and some realworld applications. We have also conducted ex-
periments attempting to break the enforcement to show that the en-
forcement mechanism is secure.

What are the shortcomings of the approach?

There are certain shortcomings of the lightweight enforcement ap-
proach that are needed to be investigated further.

i, Although the lightweight policy enforcement approach does not
need an additional security policy language, this, however, is quite
difficult for policy-developers to write security policies. For ex-
ample, an AOP language does not directly support security as-
pects, such as history-based or time dependent policies, or policy
combination.

ii, Our first attempts are to use off-the-shelf tools to implement
the lightweight enforcement approach. However, these tools do
not support security aspects directly. Moreover, the design and
implementation of these tools do not consider the case that mali-
cious code can be injected to an application which can break the
security of the enforcement. For example, [DWPJ06] has iden-
tified several security risks in using AspectJ to build secure ap-
plications. In JavaScript, we have confirmed that all off-the-shelf
AOP tools are vulnerable to the attacks that we have identified
in Paper D.
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ments. PhD thesis, Linköping Studies in Science and Technol-
ogy, May 2007.

http://www.evita-project.org/
http://developers.facebook.com/docs/fbjs
http://developers.facebook.com/docs/fbjs
http://www.gstforum.org


Bibliography 65

[HFH11] Mario Heiderich, Tilman Frosch, and Thorsten Holz. IceShield:
Detection and Mitigation of Malicious Websites with a Frozen
DOM. In Proceedings of the International Symposium on Recent
Advances in Intrusion Detection, RAID’11, 2011. To appear.

[HJ08] Kevin W. Hamlen and Micah Jones. Aspect-Oriented In-lined
Reference Monitors. In PLAS ’08: Proceedings of the third ACM
SIGPLAN workshop on Programming languages and analysis
for security, pages 11–20, New York, NY, USA, 2008. ACM.

[HMS06] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Cer-
tified In-lined Reference Monitoring on .NET. In PLAS ’06:
Proceedings of the 2006 workshop on Programming languages
and analysis for security, pages 7–16, New York, NY, USA,
2006. ACM.

[Jav] Sun Microsystems, Java Security Architecture.
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/
security-specTOC.fm.html.

[JSH07] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script
injection attacks with browser-enforced embedded policies. In
WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 601–610, New York, NY, USA, 2007.
ACM.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An Overview of AspectJ.
In ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, pages 327–353, London, UK,
2001. Springer-Verlag.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. In ECOOP, pages 220–
242, 1997.

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata:
Enforcement Mechanisms for Run-time Security Policies. In-
ternational Journal of Information Security, 4(1-2):2–16, 2005.

[Lev06] Elias Levy. Worst-case scenario. IEEE Security and Privacy,
4(5):71–73, 2006.

 http://java.sun.com/j2se/1.4.2/docs/guide/ security/spec/security-specTOC.fm.html
 http://java.sun.com/j2se/1.4.2/docs/guide/ security/spec/security-specTOC.fm.html


66 Bibliography

[Lig06] Jarred Adam Ligatti. Policy Enforcement via Program Moni-
toring. PhD thesis, Princeton University, 2006.

[LKMB05] Hee-Young Lim, Young-Gab Kim, Chang-Joo Moon, and Doo-
Kwan Baik. Bundle Authentication and Authorization Using
XML Security in the OSGi Service Platform. In Proceedings of
ICIS ’05, pages 502–507, Washington, DC, USA, 2005. IEEE
Computer Society.

[LNJ08] Ulf E. Larson, Dennis K. Nilsson, and Erland Jonsson. An Ap-
proach to Specification-Based Attack Detection for In-Vehicle
Networks. In Proceedings of the 12th IEEE Intelligent Vehicles
Symposium (IV), 2008.

[LPE06] Kerstin Lemke, Christof Paar, and Marko Wolf (Eds.). Embed-
ded Security in Cars: Securing Current And Future Automotive
IT Applications. Springer, 2006.

[MDCa] Mozilla Developer Center: JavaScript. https://developer.
mozilla.org/en/JavaScript.

[MDCb] Mozilla Developer Center: Core JavaScript 1.5 Refer-
ence. http://developer.mozilla.org/en/docs/Core JavaScript 1.
5 Reference.

[MFM10] Leo Meyerovich, Adrienne Porter Felt, and Mark Miller. Ob-
ject Views: FineGrained Sharing in Browsers. In WWW2010:
Proceedings of the 16th international conference on World Wide
Web, New York, NY, USA, 2010. ACM.

[ML10] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying
and Enforcing Fine-Grained Security Policies for JavaScript in
the Browser. In SP ’10: Proceedings of the 2010 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society, 2010.

[MMT09] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating
JavaScript with Filters, Rewriting, and Wrappers. In ES-
ORICS, pages 505–522, 2009.

[MPS10] Jonas Magazinius, Phu H. Phung, and David Sands. Safe Wrap-
pers and Sane Policies for Self Protecting JavaScript. In Tuomas
Aura, editor, The 15th Nordic Conference in Secure IT Sys-
tems, LNCS. Springer-Verlag, October 2010. (Selected papers

https://developer.mozilla.org/en/JavaScript
https://developer.mozilla.org/en/JavaScript
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference 
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference 


Bibliography 67

from OWASP AppSec Research 2010, June 2010, Stockholm,
Sweden). To appear.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From system f to typed assembly language. ACM Trans. Pro-
gram. Lang. Syst., 21:527–568, May 1999.

[Nec97] George C. Necula. Proof-carrying code. In POPL’97, pages
106–119. ACM Press, 1997.

[NL08a] Dennis K. Nilsson and Ulf E. Larson. Conducting Forensic In-
vestigations of Cyber Attacks on Automobile In-Vehicle Net-
works. In Proceedings of the First ACM International Confer-
ence on Forensic Applications and Techniques in Telecommuni-
cations, Information and Multimedia (e-Forensics). ACM Press,
2008.

[NL08b] Dennis K. Nilsson and Ulf E. Larson. Simulated Attacks on
CAN Buses: Vehicle virus. In Proceedings of the Fifth IASTED
Asian Conference on Communication Systems and Networks
(ASIACSN). ACTA Press, 2008.

[NLPJ08] Dennis K. Nilsson, Ulf E. Larson, Francesco Picasso, and Erland
Jonsson. A First Simulation of Attacks in the Automotive Net-
work Communications Protocol FlexRay. In Proceedings of the
First International Workshop on Computational Intelligence in
Security for Information Systems (CISIS), 2008.

[NPL08] Dennis K. Nilsson, Phu H. Phung, and Ulf E. Larson. Vehi-
cle ECU Classification Based on Safety-Security Characteris-
tics. In Proceedings of Road Transport Information and Control
- RTIC 2008 and ITS United Kingdom Members’ Conference,
IET, pages 1–7, Manchester, UK, 20-22 May 2008. IET.

[OSG] OSGi Alliance, OSGi - The Dynamic Module System for Java.
http://www.osgi.org/About/WhatIsOSGi. Accessed in August
2011.

[OSG07] About the OSGi Service Platform, Technical Whitepa-
per. http://www.osgi.org/wiki/uploads/Links/
OSGiTechnicalWhitePaper.pdf, June, 2007.

http://www.osgi.org/About/WhatIsOSGi
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf


68 Bibliography

[OWA] OWASP - The Open Web Application Security Projects. Top
10 2010 - Cross-Site Scripting (XSS). https://www.owasp.org/
index.php/Top 10 2010-A2. 2010.

[PDL+11] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and Xux-
ian Jiang. Towards Fine-Grained Access Control in JavaScript
Contexts. In Proceedings of the 31st IEEE International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2011.

[PF07] Pierre Parrend and Stephane Frenot. Supporting the Secure
Deployment of OSGi Bundles. In Proceedings of WoWMoM
2007. IEEE Computer Society, June 2007.

[PH98] Raju Pandey and Brant Hashii. Providing fine-grained access
control for mobile programs through binary editing. Technical
Report TR98-08, University of California, Davis, 1998.

[Phi] CNN: ’Phishing’ scams reel in your identity. http://www.cnn.
com/2003/TECH/internet/07/21/phishing.scam.

[Phu11] Phu H. Phung. A Two-Tier Sandbox Architecture to En-
force Modular Fine-Grained Security Policies for Untrusted
JavaScript. Technical Report 2011:11, Department of Com-
puter Science and Engineering, Chalmers University of Tech-
nology, Gothenburg, Sweden, June 2011. Project URL: http:
//www.cse.chalmers.se/∼phung/projects/jss. ISSN:1652-926X.

[PN10] Phu H. Phung and Dennis K. Nilsson. A Model for Safe and Se-
cure Execution of Downloaded Vehicle Applications. In Proceed-
ings of Road Transport Information and Control - RTIC 2010
and ITS United Kingdom Members’ Conference, IET, London,
UK, 2010. IET.

[PS01] Thomas A. Powell and Fritz Schneider. JavaScript: The Com-
plete Reference. McGraw-Hill/Osbone, second edition, 2001.

[PS08] Phu H. Phung and David Sands. Security Policy Enforcement in
the OSGi Framework Using Aspect-Oriented Programming. In
Proceedings of the 32nd Annual International Computer Soft-
ware and Applications Conference (COMPSAC 2008), pages
1076–1082, Turku, Finland, Jul. 28-Aug. 1 2008. IEEE Com-
puter Society.

https://www.owasp.org/index.php/Top_10_2010-A2
https://www.owasp.org/index.php/Top_10_2010-A2
http://www.cnn.com/2003/TECH/internet/07/21/phishing.scam
http://www.cnn.com/2003/TECH/internet/07/21/phishing.scam
http://www.cse.chalmers.se/~phung/projects/jss
http://www.cse.chalmers.se/~phung/projects/jss


Bibliography 69

[PSC09] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight
Self-Protecting JavaScript. In ASIACCS ’09: Proceedings of the
4th International Symposium on Information, Computer, and
Communications Security, pages 47–60, Sydney, Australia, 10 -
12 March 2009. ACM.

[RDW+07] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky,
and Saher Esmeir. BrowserShield: Vulnerability-driven filtering
of dynamic HTML. ACM Trans. Web, 1(3):11, 2007.

[Rob] Robert Lemos, SecurityFocus. Researchers warn over Web
worms. http://www.securityfocus.com/brief/229. Published in
August 04th 2006.

[Rud] Jesse Ruderman. Same origin policy for JavaScript. http://
developer.mozilla.org/En/Same origin policy for JavaScript.

[S3M] S3MS Project. Security of Software and Services for Mobile.
http://www.s3ms.org. Accessed in June 2010.

[Sam] Samy. I’ll never get caught. I’m Popular. http://namb.la/
popular/. Published in October 04th 2005.

[SBM08] Andreas Sewe, Christoph Bockisch, and Mira Mezini. Aspects
and class-based security: a survey of interactions between ad-
vice weaving and the java 2 security model. In Proceedings
of the 2nd Workshop on Virtual Machines and Intermediate
Languages for emerging modularization mechanisms, VMIL ’08,
pages 3:1–3:7, New York, NY, USA, 2008. ACM.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, 2000.

[Sec] SecurityFocus. Yahoo!, you’ve got worms. http://www.
securityfocus.com/brief/229. Published in October 19th 2005.

[Sec06] GST Security. The GST Security White Pa-
per. http://gstforum.org/download/White%20Papers/
DOC SEC White Paper.pdf, December 2006.

[Set07] Rohit Sethi. Aspect-Oriented Programming and Secu-
rity. http://www.securityfocus.com/infocus/1895, October
2007. Visited Dec, 2007.

http://www.securityfocus.com/brief/229
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.s3ms.org
http://namb.la/popular/
http://namb.la/popular/
http://www.securityfocus.com/brief/229
http://www.securityfocus.com/brief/229
http://gstforum.org/download/White%20Papers/DOC_SEC_White_Paper.pdf
http://gstforum.org/download/White%20Papers/DOC_SEC_White_Paper.pdf


70 Bibliography

[SH03] Viren Shah and Frank Hill. An Aspect-Oriented Security
Framework. In Proceedings of DARPA Information Survivabil-
ity Conference and Exposition,, volume 2, pages 143–145, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.

[SMH01] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A
Language-Based Approach to Security. In LNCS 2000, Infor-
matics - 10 Years Back. 10 Years Ahead., pages 86–101, Lon-
don, UK, 2001. Springer-Verlag.

[Ste91] Daniel F. Sterne. On the Buzzword “Security Policy”. In Secu-
rity and Privacy, IEEE Symposium on, page 219, Los Alamitos,
CA, USA, 1991. IEEE Computer Society.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David
Wagner. Detecting format string vulnerabilities with type qual-
ifiers. In Proceedings of the 10th conference on USENIX Security
Symposium - Volume 10, SSYM’01, pages 16–16, Berkeley, CA,
USA, 2001. USENIX Association.

[SVB+03] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar,
and Daniel C. DuVarney. Model-carrying code: a practical ap-
proach for safe execution of untrusted applications. In Proceed-
ings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 15–28, New York, NY, USA, 2003.
ACM.

[SWE08] Peter SWEATMAN. Vehicle infrastructure integration (vii) for
heavy trucks: A new perspective of truck research. In 10th In-
ternational Symposium on Heavy Vehicle Transportation Tech-
nology, HVTT08, 2008.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice
Hall, 2nd edition, 2001.

[TME+11] Ankur Taly, John C. Mitchell, Ulfar Erlingsson, Jasvir Nagra,
and Mark S. Miller. Automated analysis of security-critical java-
script apis. In Proc of IEEE Security and Privacy’11. IEEE,
2011. To appear.
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